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Recurrent cortical networks provide reservoirs of states that are thought to play a

crucial role for sequential information processing in the brain. However, classical reservoir

computing requires manual adjustments of global network parameters, particularly of

the spectral radius of the recurrent synaptic weight matrix. It is hence not clear if the

spectral radius is accessible to biological neural networks. Using random matrix theory,

we show that the spectral radius is related to local properties of the neuronal dynamics

whenever the overall dynamical state is only weakly correlated. This result allows us to

introduce two local homeostatic synaptic scaling mechanisms, termed flow control and

variance control, that implicitly drive the spectral radius toward the desired value. For both

mechanisms the spectral radius is autonomously adapted while the network receives

and processes inputs under working conditions. We demonstrate the effectiveness

of the two adaptation mechanisms under different external input protocols. Moreover,

we evaluated the network performance after adaptation by training the network to

perform a time-delayed XOR operation on binary sequences. As our main result, we

found that flow control reliably regulates the spectral radius for different types of input

statistics. Precise tuning is however negatively affected when interneural correlations are

substantial. Furthermore, we found a consistent task performance over a wide range

of input strengths/variances. Variance control did however not yield the desired spectral

radii with the same precision, being less consistent across different input strengths. Given

the effectiveness and remarkably simple mathematical form of flow control, we conclude

that self-consistent local control of the spectral radius via an implicit adaptation scheme

is an interesting and biological plausible alternative to conventional methods using set

point homeostatic feedback controls of neural firing.

Keywords: recurrent networks, homeostasis, synaptic scaling, echo-state networks, reservoir computing, spectral

radius

1. INTRODUCTION

Cortical networks are highly recurrent, a property that is considered to be crucial for processing
and storing temporal information. For recurrent networks to remain stable and functioning, the
neuronal firing activity has to be kept within a certain range by autonomously active homeostatic
mechanisms. It is hence important to study homeostatic mechanisms on the level of single neurons,
as well as the more theoretic question of characterizing the dynamic state that is to be attained
on a global network level. It is common to roughly divide adaptation mechanisms into intrinsic
homeostasis, synaptic homeostasis, and metaplasticity.
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Synaptic scaling was identified as a mechanism that can
postsynaptically regulate neural firing by adjusting synaptic
efficacies in a proportional, multiplicative way. This finding
has led to numerous studies investigating the role of synaptic
scaling in controlling neural network activity (Turrigiano et al.,
1998; Turrigiano and Nelson, 2000; Turrigiano, 2008) and in
stabilizing other plasticity mechanisms (van Rossum et al.,
2000; Stellwagen and Malenka, 2006; Tetzlaff, 2011; Toyoizumi
et al., 2014). Indeed, synaptic scaling has proven successful in
stabilizing activity in recurrent neural networks (Lazar et al.,
2009; Remme andWadman, 2012; Zenke et al., 2013; Effenberger
and Jost, 2015; Miner and Triesch, 2016). However, these studies
either used synaptic scaling as the sole homeostatic mechanism
(Remme and Wadman, 2012; Zenke et al., 2013) or resorted to a
variant of synaptic scaling where the scaling is not dynamically
determined through a control loop using a particular target
activity, but rather by a fixed multiplicative normalization rule
(Lazar et al., 2009; Effenberger and Jost, 2015; Miner and Triesch,
2016). Therefore, these homeostatic models cannot account for
higher moments of temporal activity patterns, i.e., their variance,
as this would require at least the tuning of two parameters
(Cannon and Miller, 2017).

Within more abstract models of rate encoding neurons,
intrinsic homeostasis and synaptic scaling essentially correspond
to adjusting a bias and gain factor on the input entering a
nonlinear transfer function. Within this framework, multiple
dual-homeostatic adaptation rules have been investigated
concerning their effect on network performance. In this
framework, the adaptation of the bias acts as an intrinsic
plasticity mechanism for the control of the internal excitability
of a neuron (Franklin et al., 1992; Abbott and LeMasson, 1993;
Borde et al., 1995), while the gain factors functionally correspond
to a synaptic scaling of the recurrent weights. Learning rules for
these types of models were usually derived by defining a target
output distribution that each neuron attempts to reproduce by
changing neural gains and biases (Steil, 2007; Triesch, 2007;
Schrauwen et al., 2008; Boedecker et al., 2009), or were directly
derived from an information-theoretic measure (Bell and
Sejnowski, 1995).

While these studies did indeed show performance
improvements by optimizing local information transmission
measures, apparently, optimal performance can effectively be
traced back to a global parameter, the spectral radius of the
recurrent weight matrix (Schrauwen et al., 2008). Interestingly,
to our knowledge, theoretical studies on spiking neural networks
did not explicitly consider the spectral radius as a parameter
affecting network dynamics. Still, the theory of balanced states
in spiking recurrent networks established the idea that synaptic

strengths should scale with 1/
√
k, where k is the average number

of afferent connections (Van Vreeswijk and Sompolinsky,
1998). According to the circular law of random matrix theory,
this scaling rule simply implies that the spectral radius of the
recurrent weight matrix remains finite as the number of neurons
N increases. More recent experiments on cortical cultures
confirm this scaling (Barral and D’Reyes, 2016).

In the present study, we investigated whether the spectral
radius of the weight matrix in a random recurrent network

can be regulated by a combination of intrinsic homeostasis and
synaptic scaling. Following the standard echo-state framework,
we used rate encoding tanh-neurons as the model of choice.
However, aside from their applications as efficient machine
learning algorithms, echo state networks are potentially relevant
as models of information processing in the brain (Nikolić et al.,
2009; Hinaut et al., 2015; Enel et al., 2016). Note in this context
that extensions to layered ESN architectures have been presented
by Gallicchio and Micheli (2017), which bears a somewhat
greater resemblance to the hierarchical structure of cortical
networks than the usual shallow ESN architecture. This line of
research illustrates the importance of examining whether local
and biological plausible principles exist that would allow to tune
the properties of the neural reservoir to the “edge of chaos” (Livi
et al., 2018), particularly when a continuous stream of inputs
is present. The rule has to be independent of both the network
topology, which is not locally accessible information, and the
distribution of synaptic weights.

We propose and compare two unsupervised homeostatic
mechanisms, which we denote by flow control and variance
control. Both regulate the mean and variance of neuronal firing
such that the network works in an optimal regime concerning
sequence learning tasks. Themechanisms act on two sets of node-
specific parameters, the biases bi, and the neural gain factors
ai. We restricted ourselves to biologically plausible adaptation
mechanisms, viz adaptation rules for which the dynamics of all
variables are local, i.e., bound to a specific neuron. Additional
variables enter only when locally accessible. In a strict sense,
this implies that local dynamics are determined exclusively by
the neuron’s dynamical variables and by information about the
activity of afferent neurons. Being less restrictive, one could claim
that it should also be possible to access aggregate or mean-field
quantities that average a variable of interest over the population.
For example, nitric oxide is a diffusive neurotransmitter that can
act as a measure for the population average of neural firing rates
(Sweeney et al., 2015).

Following a general description of the network model, we
introduce both adaptation rules and evaluate their effectiveness
in tuning the spectral radius in sections 2.4 and 2.5. We assess
the performance of networks that were subject to adaptation in
section 2.7, using a nonlinear sequential memory task. Finally, we
discuss the influence of node-to-node cross-correlations within
the population in section 2.8.

2. RESULTS

2.1. Model
A full description of the network model and parameters can be
found in the methods section. We briefly introduce the network
dynamics as

xi(t) = xr,i(t)+ Ii(t) (1)

xr,i(t) : = ai

N∑

j=1

Wijyj(t − 1) (2)

yi(t) = tanh
(
xi(t)− bi

)
. (3)
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Each neuron’s membrane potential xi consists of a recurrent
contribution xr,i(t) and an external input Ii(t). The biases bi are
subject to the following homeostatic adaptation:

bi(t) = bi(t − 1)+ ǫb
[
yi(t)− µt

]
. (4)

Here, µt defines a target for the average activity and ǫb is the
adaptation rate.

The local parameters ai act as scaling factors on the recurrent
weights. We considered two different forms of update rules.
Loosely speaking, both drive the network toward a certain
dynamical state which corresponds to the desired spectral radius.
The difference between them lies in the variables characterizing
this state: While flow control defines a relation between the
variance of neural activity and the variance of the total recurrent
synaptic current, variance control does so by a more complex
relation between the variance of neural activity and the variance
of the synaptic current from the external input.

2.1.1. Flow Control

The first adaptation rule, flow control, is given by

ai(t) = ai(t−1)
[
1+ǫa1Ri(t)

]
, 1Ri(t) = R2t y

2
i (t−1)−x2r,i(t) .

(5)
The parameter Rt is the desired target spectral radius and ǫa the
adaptation rate of the scaling factor. The dynamical variables y2i
and x2r,i have been defined before in Equations (1) and (2). We
also considered an alternative global update rule where 1Ri(t) is
given by

1Ri(t) =
1

N

[
R2t ||y(t − 1)||2 − ||xr(t)||2

]
, (6)

where || · || denotes the Euclidean vector norm. However,
since this is a non-local rule, it only served as a comparative
model to Equation (5) when we investigated the effectiveness
of the adaptation mechanism. Three key assumptions enter flow
control, Equation (5):

• Represented by xr,i(t), we assume that there is a physical
separation between the recurrent input that a neuron receives
and its external inputs. This is necessary because xr,i(t) is
explicitly used in the update rule of the synaptic scaling factors.

• Synaptic scaling only affects the weights of recurrent
connections. However, this assumption is not crucial for
the effectiveness of our plasticity rule, as we were mostly
concerned with achieving a preset spectral radius for the
recurrent weight matrix. If instead the scaling factors acted
on both the recurrent and external inputs, this would lead to
an “effective” external input I′i(t) : = aiIi(t). However, ai only
affecting the recurrent input facilitated the parameterization of
the external input by means of its variance (see section 2.7), a
choice of convenience.

• For (5) to function, neurons need to able to represent and store
squared neural activities.

Whether these three preconditions are satisfied by biological
neurons needs to be addressed in future studies.

2.1.2. Variance Control

The second adaptation rule, variance control, has the form

ai(t) = ai(t − 1)+ ǫa

[
σ 2
t,i(t)−

(
yi(t)− µ

y
i (t)

)2]
(7)

σ 2
t,i(t) = 1− 1√

1+ 2R2t yi(t)
2 + 2σ 2

ext,i(t)
. (8)

Equation (7) drives the average variance of each neuron toward
a desired target variance σ 2

t,i(t) at an adaptation rate ǫa by
calculating the momentary squared difference between the local
activity yi(t) and its trailing averageµ

y
i (t). Equation (8) calculates

the target variance as a function of the target spectral radius
Rt, the current local square activity y2i (t) and a trailing average
σ 2
ext,i(t) of the local variance of the external input signal. When

all ai(t) reach a steady state, the average neural variance equals
the target given by (8). According to a mean-field approach that
is described in section 5.6, reaching this state then results in
a spectral radius Ra that is equal to the target Rt entering (8).
Intuitively, it is to be expected that σ 2

t,i is a function of both the
spectral radius and the external driving variance: The amount of
fluctuations in the network activity is determined by the dynamic
interplay between the strength of the external input as well as the
recurrent coupling.

A full description of the auxiliary equations and variables used
to calculate µ

y
i (t) and σ 2

ext,i(t) can be found in section 5.1.
Similar to flow control, we also considered a non-local version

for comparative reasons, where (8) is replaced with

σ 2
t,i(t) = 1− 1√

1+ 2R2t ||y(t)||2/N + 2σ 2
ext,i(t)

. (9)

Again, ||·|| denotes the Euclidean norm. Before proceeding to the
results, we discuss the mathematical background of the proposed
adaptation rules in some detail.

2.2. Autonomous Spectral Radius
Regulation
There are some interesting aspects to the theoretical framework
at the basis of the here proposed regulatory scaling mechanisms.

The circular law of random matrix theory states that the
eigenvalues λj are distributed uniformly on the complex unit
disc if the elements of a real N × N matrix are drawn from
distributions having zero mean and standard deviation 1/

√
N

(Tao and Vu, 2008). Given that the internal weight matrix Ŵ
(̂· denoting matrices) with entriesWij has prN non-zero elements
per row (pr is the connection probability), the circular law
implies that the spectral radius of aiWij, the maximum of |λj|,
is unity when the synaptic scaling factors ai are set uniformly to
1/σw, where σw is the standard deviation of Wij. Our goal is to
investigate adaptation rules for the synaptic scaling factors that
are based on dynamic quantities, which includes the membrane
potential xi, the neural activity yi and the input Ii.

The circular law, i.e., a N × N matrix with i.i.d. entries
with zero mean and 1/N variance approaching a spectral radius
of one as N → ∞, can be generalized. Rajan and Abbott
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(2006) investigated the case where the statistics of the columns
of the matrix differ in their means and variances: given row-
wise E-I balance for the recurrent weights, the square of the
spectral radius of a random N × N matrix whose columns have
variances σ 2

i is N
〈
σ 2
i

〉
i
for N → ∞. Since the eigenvalues are

invariant under transposition, this result also holds for row-
wise variations of variances and column-wise E-I balance. While
the latter is not explicitly enforced in our case, deviations from
this balance are expected to tend to zero for large N given the
statistical assumptions that we made about the matrix elements
Wij. Therefore, the result can be applied to our model, where
node-specific gain factors ai are applied to each row of the
recurrent weight matrix. Thus, the spectral radius Ra of the
effective random matrix Ŵa with entries aiWij [as entering (2)] is

R2a ≅
1

N

∑

i

R2a,i, R2a,i : = a2i

∑

j

(
Wij

)2
, (10)

for large N, when assuming that the distribution underlying the
bare weight matrix Ŵ with entries Wij has zero mean. Note that
R2a can be expressed alternatively in terms of the Frobenius norm∥∥Ŵa

∥∥
F
, via

R2a ≅
∥∥Ŵa

∥∥2
F
/N. (11)

We numerically tested Equation (10) for N = 500 and
heterogeneous random sets of ai drawn from a uniform [0, 1]-
distribution and found a very close match to the actual spectral
radii (1–2% relative error). Given that the Ra,i can be interpreted
as per-site estimates for the spectral radius, one can use the
generalized circular law (10) to regulate Ra on the basis of local
adaptation rules, one for every ai.

For the case of flow control, the adaptation rule is derived
using a comparison between the variance of neural activity that
is present in the network with the recurrent contribution to
the membrane potential. A detailed explanation is presented in
sections 2.6, 5.5. In short, we propose that

〈
||xr(t)||2

〉
t
≅ R2a

〈
||y(t − 1)||2

〉
t
, (12)

where xr,i is the recurrent contribution to the membrane
potential xi. This stationarity condition leads to the adaptation
rule given in Equation (5). An analysis of the dynamics of this
adaptation mechanisms can be found in section 5.5.

Instead of directly imposing Equation (12) via an appropriate
adaptation mechanism, we also considered the possibility of
transferring this condition into a set point for the variance of
neural activities as a function the external driving. To do so, we
used a mean-field approach to describe the effect of recurrent
input onto the resulting neural activity variance. An in-depth
discussion is given in section 5.6. This led to the update rule given
by Equations (7) and (8) for variance control.

2.3. Testing Protocols
We used several types of input protocols for testing the here
proposed adaptation mechanisms, as well as for assessing the
task performance discussed in section 2.7. The first two variants
concern distinct biological scenarios:

• Binary. Binary input sequences correspond to a situation when
a neural ensemble receives input dominantly from a singular
source, which itself has only two states, being either active
or inactive. Using binary input sequences during learning
is furthermore consistent with the non-linear performance
test considered here for the echo-state network as a whole,
the delayed XOR-task. See section 2.7. For symmetric binary
inputs, as used, the source signal u(t) is drawn from±1.

• Gaussian. Alternatively one can consider the situation
that a large number of essentially uncorrelated input
streams are integrated. This implies random Gaussian inputs
signals. Neurons receive in this case zero-mean independent
Gaussian noise.

Another categorical dimension concerns the distribution of the
afferent synaptic weights. Do all neurons receive inputs with the
same strength, or not? As a quantifier for the individual external
input strengths, the variances σ 2

ext,i of the local external input
currents where taken into account. We distinguished two cases

• Heterogeneous. In the first case, the σ 2
ext,i are quenched random

variables. This means that each neuron is assigned a random
value σ 2

ext,i before the start of the simulation, as drawn from
a half-normal distribution parameterized by σ = σext. This
ensures that the expected average variance

〈
σ 2
ext,i

〉
is given

by σ 2
ext.

• Homogeneous. In the second case, all σ 2
ext,i are assigned the

identical global value σ 2
ext.

Overall, pairing “binary” vs. “Gaussian” and “heterogeneous”
vs. “homogeneous,” leads to a total of four different input
protocols, i.e., “heterogeneous binary,” “homogeneous binary,”
“heterogeneous Gaussian,” and “homogeneous Gaussian.”
If not otherwise stated, numerical simulations were done
using networks with N = 500 sites and a connection
probability pr = 0.1.

2.4. Performance Testing of Flow Control
In Figure 1, we present a simulation using flow control for
heterogeneous Gaussian input with an adaptation rate ǫa = 10−3.
The standard deviation of the external driving was set to σext =
0.5. The spectral radius of Ra of Ŵa was tuned to the target Rt = 1
with high precision, even though the local, row-wise estimates
Ra,i showed substantial deviations from the target.

We further tested the adaptation with other input protocols
(see section 2.3 and Supplementary Figure 1). We found that
flow control robustly led to the desired spectral radius Rt
under all Gaussian input protocols, while binary input caused
Ra to converge to higher values than Rt. However, when
using global adaptation, as given by Equation (6), all input
protocols resulted in the correctly tuned spectral radius (see
Supplementary Figure 2).

Numerically, we found that the time needed to converge to
the stationary states depended substantially on Rt, slowing down
when the spectral radius becomes small. It is then advantageous,
as we have done, to scale the adaptation rate ǫa inversely with the
trailing average x̄2r of ||xr||2, viz as ǫa → ǫa/x̄

2
r . An exemplary
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FIGURE 1 | Online spectral radius regulation using flow control. The spectral radius Ra and the respective local estimates Ra,i as defined by (10). For the input

protocol see section 5.3. (A) Dynamics of R2
a,i and R2

a , in the presence of heterogeneous independent Gaussian inputs. Local adaptation. (B) Distribution of

eigenvalues of the corresponding effective synaptic matrix Ŵa, after adaptation. The circle denotes the spectral radius.

plot showing the effect of this scaling is shown in Figure 7 (see
section 5.2 for further details).

To evaluate the amount of deviation from the target spectral
radius under different input strengths and protocols, we plotted
the difference between the resulting spectral radius and the target
spectral radius for a range of external input strength, quantified
by their standard deviation σext. Results for different input
protocols are shown in Supplementary Figure 5. For correlated
binary input, increasing the input strength resulted in stronger
deviations from the target spectral radius. On the other hand,
uncorrelated Gaussian inputs resulted in perfect alignment for
the entire range of input strengths that we tested.

2.5. Performance Testing of Variance
Control
In comparison, variance control, shown in Figure 2,
Supplementary Figure 3, resulted in notable deviations
from Rt, for both uncorrelated Gaussian and correlated binary
input. As for flow control, we also calculated the deviations
from Rt as a function of σext (see Supplementary Figure 6).
For heterogeneous binary input, deviations from the target
spectral radius did not increase monotonically as a function
of the input strength (Supplementary Figure 6A), reaching a
peak at σext ≈ 0.4 for target spectral radii larger than 1. For
homogeneous binary input, we observed a substantial negative
mismatch of the spectral radius for strong external inputs (see
Supplementary Figure 6C).

Overall, we found that variance control did not exhibit
the same level of consistency in tuning the system toward a
desired spectral radius, even though it did perform better in
some particular cases (compare Supplementary Figure 5A

for large σext with Supplementary Figure 6). Moreover,
variance control exhibited deviations from the target (shown in
Supplementary Figure 4) even when a global adaptation rule
was used, as defined in (9). This is in contrast to the global
variant of flow control, which, as stated in the previous section,
robustly tuned the spectral radius to the desired value even in the
presence of strongly correlated inputs.

2.6. Spectral Radius, Singular Values, and
Global Lyapunov Exponents
Apart from the spectral radius Ra of the matrix Ŵa, one may
consider the relation between the adaptation dynamics and the
respective singular values σi of Ŵa. We recall that the spectrum

of Ûa = Ŵ†
a Ŵa is given by the squared singular values, σ 2

i , and

that the relation ||xr||2 = y†Ŵ†
a Ŵay holds. Now, assume that

the time-averaged projection of neural activity y = y(t) onto all
eigenvectors of Ûa is approximately the same, that is, there is no
preferred direction of neural activity in phase space. From this
idealized case, it follows that the time average of the recurrent
contribution to the membrane potential can be expressed with

〈
||xr||2

〉
t
≈

〈
||y||2

〉
t

N

∑

i

σ 2
i =

〈
||y||2

〉
t

N

∑

i,j

(
aiWij

)2
(13)

as the rescaled average of the σ 2
i . For the second equation, we

used the fact that the
∑

i σ
2
i equals the sum of all matrix elements

squared (Sengupta and Mitra, 1999; Shen, 2001). With (10), one

finds that (13) is equivalent to
〈
||xr||2

〉
t
= R2a

〈
||y||2

〉
t
and hence

to the flow condition (12). This result can be generalized, as
done in section 5.5, to the case that the neural activities have
inhomogeneous variances, while still being uncorrelated with
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FIGURE 2 | Online spectral radius regulation using variance control. The spectral radius Ra and the respective local estimates Ra,i as defined by (10). For the input

protocol see section 5.3. (A) Dynamics of R2
a,i and R2

a , in the presence of heterogeneous independent Gaussian inputs. Local adaptation. (B) Distribution of

eigenvalues of the corresponding effective synaptic matrix Ŵa. The circles denote the respective spectral radius.

zero mean. We have thus shown that the stationarity condition
leads to a spectral radius of (approximately) unity.

It is worthwhile to note that the singular values of Ûa =
Ŵ†

a Ŵa do exceed unity when Ra = 1. More precisely, for
a random matrix with i.i.d. entries, one finds in the limit of
large N that the largest singular value is given by σmax =
2Ra, in accordance with the Marchenko-Pastur law for random
matrices (Marčenko and Pastur, 1967). Consequently, directions
in phase space exist in which the norm of the phase space vector
is elongated by factors greater than one. Still, this does not
contradict the fact that a unit spectral radius coincides with the
transition to chaos for the non-driven case. The reason is that the
global Lyapunov exponents are given by

lim
n→∞

1

2n
ln

((
Ŵn

a

)†
Ŵn

a

)
(14)

which eventually converge to ln‖λi‖, see
Supplementary Figure 7 and Wernecke et al. (2019), where λi
is the ith eigenvalue of Ŵa. The largest singular value of the nth
power of a random matrix with a spectral radius Ra scales like
Rna in the limit of large powers n. The global Lyapunov exponent
goes to zero as a consequence when Ra → 1.

2.7. XOR-Memory Recall
To this point, we presented results regarding the effectiveness of
the introduced adaptation rules. However, we did not account
for their effects onto a given learning task. Therefore, we tested
the performance of locally adapted networks under the delayed
XOR task, which evaluates the memory capacity of the echo
state network in combination with a non-linear operation. For
the task, the XOR operation is to be taken with respect to a

delayed pair of two consecutive binary inputs signals, u(t−τ ) and
u(t−τ−1), where τ is a fixed time delay. The readout layer is given
by a single unit, which has the task of reproducing

fτ (t) = XOR
[
u(t−τ ), u(t−τ−1)

]
, t, τ = 1, 2, . . . ,

(15)
where XOR[u, u′] is 0/1 if u and u′ are identical/not identical.

The readout vector wout is trained with respect to the mean
squared output error,

||Ŷwout − fτ ||2 + α||wout||2, (16)

using ridge regression on a sample batch of Tbatch = 10N time
steps, here for N = 500, and a regularization factor of α = 0.01.
The batch matrix Ŷ , of size Tbatch × (N + 1), holds the neural
activities as well as one node with constant activity serving as a
potential bias. Similarly, the readout (column) vector wout is of
size (N + 1). The Tbatch entries of fτ are the fτ (t), viz the target
values of the XOR problem. Minimizing (16) leads to

wout =
(
Ŷ†Ŷ + α2

1̂

)−1
Ŷ† fτ . (17)

The learning procedure was repeated independently for each time
delay τ . We quantified the performance by the total memory
capacity, MCXOR, as

MCXOR =
∞∑

k=1

MCXOR,k (18)

MCXOR,k =
Cov2

[
fk(t), yout(t)

]
t

Var
[
fk(t)

]
t
Var

[
yout(t)

]
t

. (19)
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This is a simple extension of the usual definition of short term
memory in the echo state literature (Jaeger, 2002). The activity
yout =

∑N+1
i=1 wout,i yi of the readout unit is compared in

(19) with the XOR prediction task, with the additional neuron,
yN+1 = 1, corresponding to the bias of the readout unit.
Depending on themean level of the target signal, this offset might
actually be unnecessary. However, since it is a standard practice to
use an intercept variable in linear regression models, we decided
to include it into the readout variable yout. The variance and
covariance are calculated with respect to the batch size Tbatch.

The results for flow control presented in Figure 3 correspond
to two input protocols, heterogeneous Gaussian and binary
inputs. Shown are sweeps over a range of σext and Rt. The update
rule (5) was applied to the network for each pair of parameters
until the ai values converged to a stable configuration. We then
measured the task performance as described above. Note that in
the case of Gaussian input, this protocol was only used during
the adaptation phases. Due to the nature of the XOR task,
binary inputs with the corresponding variances are to be used
during performance testing. See Supplementary Figure 8 for a
performance sweep using the homogeneous binary and Gaussian
input protocol. Optimal performance was generally attained
around the Ra ≈ 1 line. A spectral radius Ra slightly smaller
than unity was optimal when using Gaussian input, but not for
binary input signals. In this case the measured spectral radius Ra
deviated linearly from the target Rt, with increasing strength of
the input, as parameterized by the standard deviation σext. Still,
the locus of optimal performance was essentially independent of
the input strength, with maximal performance attained roughly
at Rt ≈ 0.55. Note that the line Ra = 1 joins Rt = 1 in the limit
σext → 0.

Comparing these results to variance control, as shown in
Figure 4, we found that variance control led to an overall

lower performance. To our surprise, for external input with
a large variance, Gaussian input caused stronger deviations
from the desired spectral radius as compared to binary input.
Therefore, in a sense, it appeared to behave opposite to
what we found for flow control. However, similar to flow
control, the value of Rt giving optimal performance under
a given σext remained relatively stable over the range of
external input strength measured. On the other hand, using
homogeneous input (see Supplementary Figure 9), did cause
substantial deviations from the target spectral radius when using
binary input.

2.8. Input Induced Correlations
A crucial assumption leading to the proposed adaptation rules
is the statistical independence of neural activity for describing
the statistical properties of the bare recurrent contribution to
the membrane potential, xbare =

∑
j Wijyj. In particular, the

variance σ 2
bare

of xbare enters the mean-field approach described
in section 5.6. Assuming statistical independence across the
population for yi(t), it is simply given by σ 2

bare
= σ 2

wσ 2
y , where

σ 2
w ≡ Var




N∑

j=1

Wij


 (20)

is the variance of the sum of the bare afferent synaptic
weights (see also section 5.1). Being a crucial element of
the proposed rules, deviations from the prediction of σ 2

bare
would also negatively affect the precision of tuning the spectral
radius. In Figure 5, a comparison of the deviations |σ 2

bare
−

σ 2
wσ 2

y | is presented for the four input protocols introduced
in section 5.3. For the Gaussian protocols, for which neurons
receive statistically uncorrelated external signals, one observes

FIGURE 3 | XOR performance for flow control. Color-coded performance sweeps for the XOR-performance (18) after adaptation using flow control. Averaged over

five trials. The input has variance σ 2
ext and the target for the spectral radius is Rt. (A,B) Heterogeneous binary/Gaussian input protocols. Optimal performance for a

given σext was estimated as a trial average (yellow solid line) and found to be generally close to criticality, Ra = 1, as measured (white dashed lines).
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FIGURE 4 | XOR performance for variance control. Color-coded performance sweeps for the XOR-performance (18) after adaptation using variance control. Averaged

over five trials. The input has variance σ 2
ext and the target for the spectral radius Rt. (A,B) Heterogeneous binary/Gaussian input protocols. Optimal performance

(yellow solid line) is in general close to criticality, Ra = 1, as measured (white dashed lines).

FIGURE 5 | Size dependence of correlation. Comparison between the variance σ 2
bare of the bare recurrent input xbare =

∑
j Wijyj with σ 2

wσ 2
y . Equality is given when the

presynaptic activities are statistically independent. This can be observed in the limit of large network sizes N for uncorrelated input data streams (homogeneous and

heterogeneous Gaussian input protocols), but not for correlated inputs (homogeneous and heterogeneous binary input protocols). Compare section 5.3 for the input

protocols. Parameters are σext=0.5, Ra=1, and µt=0.05.

that σ 2
bare

→ σ 2
wσ 2

y in the thermodynamic limit N → ∞
via a power law, which is to be expected when the presynaptic
neural activities are decorrelated. On the other side, binary 0/1
inputs act synchronous on all sites, either with site-dependent
or site-independent strengths (heterogeneous/homogeneous).
Corresponding activity correlations are induced and a finite and
only weakly size-dependent difference between σ 2

bare
and σ 2

wσ 2
y

shows up. Substantial corrections to the analytic theory are to

be expected in this case. To this extend we measured the cross-
correlation C(yi, yj), defined as

C̄ = 1

N(N − 1)

∑

i6=j

|C(yi, yj)|,

C(yi, yj) =
Cov(yi, yj)√

Cov(yi, yi)Cov(yj, yj)
, (21)
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with the covariance given by Cov(yi, yj) = 〈(yi − 〈yi〉t)(yj −
〈yj〉t)〉t . For a system of N = 500 neurons the results for the
averaged absolute correlation C̄ are presented in Figure 6 (see
Supplementary Figure 10 for homogeneous input protocols).
Autonomous echo-state layers are in chaotic states when
supporting a finite activity level, which implies that correlations
vanish in the thermodynamic limit N → ∞. The case σext = 0,
as included in Figure 6, serves consequently as a yardstick for
the magnitude of correlations that are due to the finite number
of neurons.

Input correlations were substantially above the autonomous
case for correlated binary inputs, with the magnitude of C̄
decreasing when the relative contribution of the recurrent
activity increased. This was the case for increasing Ra. The effect
was opposite for the Gaussian protocol, for which the input
did not induce correlations, but contributed to decorrelating
neural activity. In this case, the mean absolute correlation C̄ was
suppressed when the internal activity became small in the limit
Ra → 0. For larger Ra, the recurrent input gained more impact
on neural activity relative to the external drive and thus drove C̄
toward an amount of correlation that would be expected in the
autonomous case.

3. DISCUSSION

The mechanisms for tuning the spectral radius via a local
homeostatic adaptation rule introduced in the present study
require neurons to have the ability to distinguish and locally
measure both external and recurrent input contributions.
For flow control, neurons need to be able to compare the
recurrent membrane potential with their own activity, as
assumed in section 2.2. On the other hand, variance control
directly measures the variance of the external input and
derives the activity target variance accordingly. The limiting
factor to a successful spectral radius control is the amount

of cross-correlation induced by external driving statistics. As
such, the functionality and validity of the proposed mechanisms
depended on the ratio between external input, i.e., feed-forward
or feedback connections, with respect to recurrent, or lateral
connections. In general, it is not straightforward to directly
connect experimental evidence regarding the ratio between
recurrent and feed-forward contributions to the effects observed
in the model. It is, however, worthwhile to note that the
fraction of synapses associated with interlaminar loops and
intralaminar lateral connections are estimated to make up
roughly 50% (Binzegger et al., 2004). Relating this to our
model, it implies that the significant interneural correlations
that we observed when external input strengths were of the
same order of magnitude as the recurrent inputs, can not
generally be considered an artifact of biologically implausible
parameter choices. Synchronization (Echeveste and Gros, 2016)
is in fact a widely observed phenomenon in the brain (Usrey and
Reid, 1999), with possible relevance for information processing
(Salinas and Sejnowski, 2001).

On the other hand, correlations due to shared input reduces
the amount of information that can be stored in the neural
ensemble (Bell and Sejnowski, 1995). Maximal information is
achieved if neural activities or spikes trains form an orthogonal
ensemble (Földiak, 1990; Bell and Sejnowski, 1995; Tetzlaff
et al., 2012). Furthermore, neural firing in cortical microcircuits
was found to be decorrelated across neurons, even if common
external input was present (Ecker et al., 2010), that is, under
a common orientation tuning. Therefore, the correlation we
observed in our network due to shared input might be
significantly reduced by possible modifications/extensions of
our model: First, a strict separation between inhibitory and
excitatory nodes according to Dale’s law might help actively
decorrelating neural activity (Tetzlaff et al., 2012; Bernacchia
and Wang, 2013). Second, if higher dimensional input was
used, a combination of plasticity mechanisms in the recurrent
and feed-forward connections could lead to the formation of

FIGURE 6 | Input induced activity correlations. For heterogeneous binary and Gaussian inputs (A,B), the dependency of mean activity cross correlations C̄ (see

Equation 21). C̄ is shown as a function of the spectral radius Ra. Results are obtained for N=500 sites by averaging over five trials, with shadows indicating the

standard error across trials. Correlations are due to finite-size effect for the autonomous case σext=0.
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an orthogonal representation of the input (Földiak, 1990; Bell
and Sejnowski, 1995; Wick et al., 2010), leading to richer,
“higher dimensional” activity patterns, i.e., a less dominant
largest principal component. Ultimately, if these measures helped
in reducing neural cross-correlations in the model, we thus
would expect them to also increase the accuracy of the presented
adaptation mechanisms.We leave these modifications to possible
future research.

Overall, we found flow control to be generally more robust
than variance control in the sense that, while still being affected
by the amount of correlations within the neural reservoir, the task
performance was less so prone to changes in the external input
strength. Comparatively stable network performance could be
observed, in spite of certain deviations from the desired spectral
radius (see Figure 3). A possible explanation may be that flow
control uses a distribution of samples from only a restricted
part of phase space, that is, from the phase space regions that
are actually visited or “used” for a given input. Therefore, while
a spectral radius of unity ensures—statistically speaking—the
desired scaling properties in all phase-space directions, it seem
to be enough to control the correct scaling for the subspace of
activities that is actually used for a given set of input patters.
Variance control, on the other hand, relies more strictly on the
assumptions that neural activities are statistical independent. In
consequence, the desired results could only be achieved under a
rather narrow set of input statistics (independent Gaussian input
with small variance). In addition, the approximate expression
derived for the nonlinear transformation appearing in the mean
field approximation adds another layer of potential source of
systematic error to the control mechanism. This aspect also
speaks in favor of flow control, since its rules are mathematically
more simple. In contrast to variance control, the stationarity
condition stated in Equation (12) is independent of the actual
nonlinear activation function used and could easily be adopted
in a modified neuron model. It should be noted, however, that
the actual target Rt giving optimal performance might then also
be affected.

Interestingly, flow control distinguishes itself from a
conventional local activity-target perspective of synaptic
homeostasis: There is no predefined set point in Equation (5).
This allows heterogeneities of variances of neural activity to
develop across the network, while retaining the average neural
activity at a fixed predefined level.

We would like to point out that, for all the results presented
here, only stationary processes were used for generating the input
sequences. Therefore, it might be worth considering the potential
effects of non-stationary, yet bounded, inputs on the results in
future work. It should be noted, however, that the temporal
domain enters both adaptation mechanisms only in the form of
trailing averages of first and second moments. As a consequence,
we expect the issue of non-stationarity of external inputs to
present itself simply as a trade-off between slower adaptation,
i.e., longer averaging time scales, and the mitigation of the effects
of non-stationarities. Slow adaptation is, however, completely
in line with experimental results on the dynamics of synaptic
scaling, which is taking place on the time scale of hours to days
(Turrigiano et al., 1998; Turrigiano, 2008).

4. CONCLUSION

Apart from being relevant from a theoretical perspective,
we propose that the separability of recurrent and external
contributions to the membrane potential is an aspect that is
potentially relevant for the understanding of local homeostasis in
biological networks. While homeostasis in neural compartments
has been a subject of experimental research (Chen et al., 2008),
to our knowledge, it has not yet been further investigated
on a theoretical basis, although it has been hypothesized
that the functional segregation within the dendritic structure
might also affect (among other intraneural dynamical processes)
homeostasis (Narayanan and Johnston, 2012). The neural
network model used in this study lacks certain features
characterizing biological neural networks, like strict positivity
of the neural firing rate or Dale’s law, viz E-I balance (Trapp
et al., 2018). Future research should therefore investigate whether
the here presented framework of local flow control can be
implemented within more realistic biological neural network
models. A particular concern regarding our findings is that
biological neurons are spiking. The concept of an underlying
instantaneous firing rate is, strictly speaking, a theoretical
construct, let alone the definition of higher moments, such as the
“variance of neural activity.” It is however acknowledged that the
variability of the neural activity is central for statistical inference
(Echeveste et al., 2020). It is also important to note that real-
world biological control mechanisms, e.g., of the activity, rely on
physical quantities that serve as measurable correlates. A well-
known example is the intracellular calcium concentration, which
is essentially a linearly filtered version of the neural spike train
(Turrigiano, 2008). On a theoretical level, Cannon and Miller
showed that dual homeostasis can successfully control the mean
and variance of this type of spike-averaging physical quantities
(Cannon and Miller, 2017). An extension of the flow control to
filtered spike trains of spiking neurons could be an interesting
subject of further investigations. However, using spiking neuron
models would have shifted the focus of our research toward the
theory of liquid state machines (Maass et al., 2002; Maass and
Markram, 2004), exceeding the scope of this publication. We
therefore leave the extension to more realistic network/neuron
models to future work.

5. MATERIALS AND METHODS

5.1. Model
We implemented an echo state network with N neurons,
receiving Din inputs. The neural activity is yi ∈ [−1, 1], xi
the membrane potential, ui the input activities, Wij the internal
synaptic weights and Ii the external input received. The output
layer will be specified later. The dynamics

xi(t) = ai

N∑

j=1

Wijyj(t−1)+ Ii(t), yi(t) = tanh
(
xi(t)− bi

)

(22)
is discrete in time, where the input Ii is treated instantaneously. A
tanh-sigmoidal has been used as a nonlinear activation function.
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The synaptic renormalization factor ai in (22) can be thought
of as a synaptic scaling parameter that neurons use to regulate
the overall strength of the recurrent inputs. The strength of the
inputs Ii is unaffected, which is biologically plausible if external
and recurrent signals arrive at separate branches of the dendritic
tree (Spruston, 2008).

The Wij are the bare synaptic weights, with aiWij being
the components of the effective weight matrix Ŵa. Key to our
approach is that the propagation of activity is determined by Ŵa,
which implies that the spectral radius of the effective, and not of
the bare weight matrix needs to be regulated.

The bare synaptic matrix Wij is sparse, with a connection
probability pr = 0.1. The non-zero elements are drawn from a
Gaussian with standard deviation

σ = σw√
Npr

, (23)

and vanishing mean µ. Here Npr corresponds to the mean
number of afferent internal synapses, with the scaling ∼
1/

√
Npr enforcing size-consistent synaptic-weight variances.

As discussed in the results section, we applied the following
adaptation mechanisms:

bi(t) = bi(t − 1)+ ǫb
[
yi(t)− µt

]
(24)

for the thresholds bi.

• adaptation of gains, using flow control:

ai(t) = ai(t − 1)
[
1+ ǫa1Ri(t)

]
,

1Ri(t) = R2t |yi(t − 1)|2 − |xr,i(t)|2 . (25)

• adaptation of gains, with variance control:

ai(t) = ai(t − 1)+ ǫa

[
σ 2
t,i(t)−

(
yi(t)− µ

y
i (t)

)2]
(26)

σ 2
t,i(t) = 1− 1√

1+ 2R2t yi(t)
2 + 2σ 2

ext,i(t)
(27)

µ
y
i (t) = µ

y
i (t − 1)+ ǫµ

[
yi(t)− µ

y
i (t − 1)

]
(28)

σ 2
ext,i(t) = σ 2

ext,i(t − 1)+ ǫσ

[(
Ii(t)− µext,i(t)

)2 − σ 2
ext,i(t − 1)

]

(29)

µext,i(t) = µext,i(t − 1)+ ǫµ

[
Ii(t)− µext,i(t − 1)

]
. (30)

Note that Equations (28)–(30) have the same
mathematical form

〈trail〉(t) = 〈trail〉(t − 1)+ ǫ
[
〈var〉(t)− 〈trail〉(t − 1)

]

since they only serve as trailing averages that are used in the
two main Equations (26) and (27).

For a summary of all model parameters (see Table 1).

5.2. Convergence Acceleration for Flow
Control
For small values of Rt and weak external input, the average
square activities and membrane potentials y2i (t) and x2t,i(t) can

TABLE 1 | Standard values for model parameters.

N pr σw µt ǫb ǫa ǫµ ǫσ

500 0.1 1 0.05 10−3 10−3 10−4 10−3

become very small. As a consequence, their difference entering
1Ri(t) in (25) also becomes small in absolute value, slowing down
the convergence process. To eliminate this effect, we decided
to rescale the learning rate by a trailing average of the squared
recurrent membrane potential, i.e., ǫa → ǫa/x̄

2
r . The effect of this

renormalization is shown in Figure 7. Rescaling the learning rate
effectively removes the significant rise of convergence times for
small σext and small Rt.

5.3. Input Protocols
Overall, we examined four distinct input protocols.

• Homogeneous Gaussian. Nodes receive inputs Ii(t) that are
drawn individually from a Gaussian with vanishing mean and
standard deviation σext.

• Heterogeneous Gaussian. Nodes receive stochastically
independent inputs Ii(t) that are drawn from Gaussian
distributions with vanishing mean and node specific standard
deviations σi,ext. The individual σi,ext are normal distributed,
as drawn from the positive part of a Gaussian with mean zero
and variance σ 2

ext.
• Homogeneous binary. Sites receive identical inputs Ii(t) =

σextu(t), where u(t) = ±1 is a binary input sequence.
• Heterogeneous binary.We define with

Ii = Wu
i u(t), uj(t) = ±1 (31)

the afferent synaptic weight vector Wu
i , which connects the

binary input sequence u(t) to the network. All Wu
i are drawn

independently from a Gaussian with mean zero and standard
deviation σext.

The Gaussian input variant simulates external noise. We used
it in particular to test predictions of the theory developed in
section 5.6. In order to test the performance of the echo state
network with respect to the delayed XOR task, the binary input
protocols are employed. A generalization of the here defined
protocols to the case of higher-dimensional input signals would
be straightforward.

5.4. Spectral Radius Adaptation Dynamics
For an understanding of the spectral radius adaptation dynamics
of flow control, it is of interest to examine the effect of using the
global adaptation constraint

1Ri(t) =
1

N

[
R2t ||y(t − 1)||2 − ||xr(t)||2

]
(32)

in (5). The spectral radius condition (12) is then enforced
directly, with the consequence that (32) is stable and precise
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even in the presence of correlated neural activities (see
Supplementary Figures 5A–C). This rule, while not biologically
plausible, provides an opportunity to examine the dynamical

flow, besides the resulting state. There are two dynamic
variables, a = ai ∀i, where, for the sake of simplicity,
we assumed that all ai are homogeneous, and the activity

FIGURE 7 | Convergence time with and without adaptation rate renormalization Number of time steps Tconv needed for |Ra(t)− Ra(t− 1)|2 to fall below 10−3. Shown

are results using heterogeneous Gaussian input without and with, (A) and respectively (B), a renormalization of the learning rate ǫa → ǫa/x̄
2
r . Note that, due to

computational complexity, an estimate of Ra given by (10) was used. An initial offset of 0.5 from the target Rt was used for all runs. Color coding of Rt is the same in

both panels.

FIGURE 8 | Spectral radius adaptation dynamics. The dynamics of the synaptic rescaling factor a and the squared activity σ 2
y (orange), as given by (6). Also shown is

the analytic approximation to the flow (blue), see (33) and (34), and the respective nullclines 1a = 0 (green) and 1σ 2
y = 0 (red). For the input, the heterogeneous binary

protocol is used. (A–D) Correspond to different combinations of external input strengths and target spectral radii. The black dots show the stead-state configurations

of the simulated systems. ǫa = 0.1.
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variance σ 2
y = ||y||2/N. The evolution of (a, σ 2

y ) resulting
from the global rule (6) is shown in Figure 8. For the flow,
1a = a(t + 1) − a(t) and 1σ 2

y = σ 2
y (t) − σ 2

y (t − 1),
the approximation

1a = ǫaa
(
R2t − a2σ 2

w

)
σ 2
y (33)

1σ 2
y = 1− σ 2

y − 1√
1+ 2a2σ 2

wσ 2
y + 2σext

(34)

is obtained. For the scaling factor a, this leads to a fixed
point of Rt/σw. We used the mean-field approximation for
neural variances that is derived in section 5.6. The analytic
flow compares well with numerics, as shown in Figure 8. For
a subcritical rescaling factor a and σext = 0, the system flows
toward a line of fixpoints defined by a vanishing σ 2

y and a finite
a ∈ [0, 1] (see Figure 8A). When starting with a > 0, the fixpoint
is instead (a, σ 2

y ) = (1, 0). The situation changes qualitatively
for finite external inputs, viz when σext > 0, as shown in
Figures 8B–D. The nullcline1σ 2

y = 0 is now continuous and the
system flows to the fixed point, as shown in Figures 8B–D, with
the value of σ 2

y being determined by the intersection of the two
nullclines. In addition, we also varied the target spectral radius
(see Figures 8B,C). This caused a slight mismatch between the
flow of the simulated systems and the analytic flow. It should be
noted, however, that this is to be expected anyhow since we used
an approximation for the neural variances, again (see section 5.6).

This analysis shows that external input is necessary for a
robust flow toward the desired spectral weight, the reason
being that the dynamics dies out before the spectral weight
can be adapted when the isolated systems starts in the
subcritical regime.

5.5. Extended Theory of Flow Control for
Independent Neural Activity
We would like to show that the stationarity condition in
Equation (12) results in the correct spectral radius, under
the special case of independently identically distributed neural
activities with zero mean.

We start with Equation (12) as a stationarity condition for a
given Rt:

〈
||xr(t)||2

〉
t

!= R2t
〈
||y(t − 1)||2

〉
t
. (35)

We can express the left side of the equation as

E
[
y†(t)Ŵ†

a Ŵay(t)
]
t
. (36)

We define Ûa ≡= Ŵ†
a Ŵa with {σ 2

k
} being the set of eigenvalues,

which are also the squared singular values of Ŵa, and {uk} the
respective set of orthonormal (column) eigenvectors. We insert

the identity
∑N

k=1 uku
†
k
and find

E

[
y†(t)Ûa

N∑

k=1

uku
†
k
y(t)

]

t

(37)

=E

[
N∑

k=1

σ 2
k y

†(t)uku
†
k
y(t)

]

t

(38)

=
N∑

k=1

σ 2
k u

†
k
E

[
y(t)y†(t)

]
t
uk (39)

=
N∑

k=1

σ 2
k u

†
k
Ĉyyuk (40)

=Tr
(
D̂σ 2 Ŝ†

uĈyŷSu

)
. (41)

Given zero mean neural activity, Ĉyy = E[y(t)y†(t)]t is the
covariance matrix of neural activities. D̂σ 2 is a diagonal matrix
holding the {σ 2

k
} and Ŝu is a unitary matrix whose columns are

{uk}. Ŝ†
uĈyŷSu is expressing Ĉyy in the diagonal basis of Ûa.

Including the right hand side of (35), we get

Tr
(
D̂σ 2 Ŝ†

uĈyŷSu

)
= R2t Tr

(
Ĉyy

)
. (42)

However, since the trace is invariant under a change of basis,
we find

Tr
(
D̂σ 2 Ŝ†

uĈyŷSu

)
= R2t Tr

(
Ŝ†
uĈyŷSu

)
. (43)

Defining Ĉu ≡= Ŝ†
uĈyŷSu, we get

N∑

k=1

σ 2
kC

u
kk = R2t

N∑

k=1

Cu
kk. (44)

If we assume that the node activities are independently identically
distributed with zero mean, we get (Ĉyy)ij = (Ĉu)ij =

〈
y2

〉
t
δij.

In this case, which was also laid out in section 2.6, the equation
reduces to

N∑

k=1

σ 2
k = R2tN . (45)

The Frobenius norm of a square Matrix Â is given by ‖Â‖2F ≡∑
i,j Â

2
ij. Furthermore, the Frobenius norm is linked to the

singular values via ‖Â‖2F =
∑

k σ 2
k
(Â) (Sengupta andMitra, 1999;

Shen, 2001). This allows us to state

∑

i,j

(
Ŵa

)2
ij
= R2tN (46)

which, by using (10), gives

R2a = R2t . (47)

A slightly less restrictive case is that of uncorrelated but
inhomogeneous activity, that is (Ĉyy)ij =

〈
y2i

〉
t
δij. The statistical
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properties of the diagonal elements Cu
kk

then determine to
which degree one can still claim that Equation (44) leads to
Equation (45). Supplementary Figure 11 shows an example of
a randomly generated realization of (Ĉyy)ij =

〈
y2i

〉
t
and the

resulting diagonal elements of Ĉu, where the corresponding
orthonormal basis Ŝu was generated from the SVD of a random
Gaussian matrix. As one can see, the basis transformation
has a strong smoothing effect on the diagonal entries, while
the mean over the diagonal elements is preserved. Note that
this effect was not disturbed by introducing random row-
wise multiplications to the random matrix from which the
orthonormal basis was derived. The smoothing of the diagonal
entries allows us to state that Cu

kk
≅

〈
y2

〉
is a very good

approximation in the case considered, which therefore reduces
(44) to the homogeneous case previously described. We can
conclude that the adaptation mechanism also gives the desired
spectral radius under uncorrelated inhomogeneous activity.

In the most general case, we can still state that if Cu
kk

and σ 2
k

are uncorrelated, for large N, Equation (44) will
tend toward

N
〈
σ 2

〉 〈
Cu

〉
= NR2t

〈
Cu

〉
(48)

which would also lead to Equation (45). However, we can not
generally guarantee statistical independence since the recurrent
contribution on neural activities and the resulting entries of Ĉyy

and thus also Cu
kk

are linked to Ŝ and σ 2
k
, being the SVD of the

recurrent weight matrix.

5.6. Mean Field Theory for Echo State
Layers
In the following, we deduce analytic expressions allowing to
examine the state of echo-state layers subject to a continuous
timeline of inputs. Our approach is similar to the one presented
by Massar and Massar (2013).

The recurrent part of the input xi received by a neuron
is a superposition of Npr terms, which are assumed
here to be uncorrelated. Given this assumption, the
self-consistency equations

σ 2
y,i =

∫ ∞

−∞
dx tanh2(x)Nµi ,σi (x)− µ2

y,i (49)

µy,i =
∫ ∞

−∞
dx tanh(x)Nµi ,σi (x) (50)

σ 2
i = a2i σ

2
w

〈
σ 2
y,j

〉
j
+ σ 2

ext,i, µi = µext,i − bi (51)

determine the properties of the stationary state. We recall that
σw parameterizes the distribution of bare synaptic weights via
(23). The general expressions (49) and (50) hold for all neurons,
with the site-dependency entering exclusively via ai, bi, σext,i
and µext,i, as in (51), with the latter characterizing the standard
deviation and themean of the input. Here, a2i σ

2
wσ 2

y is the variance
of the recurrent contribution to the membrane potential, x,
and σ 2 the respective total variance. The membrane potential

is Gaussian distributed, as Nµ,σ (x), with mean µ and variance
σ 2, which are both to be determined self-consistently. Variances
are additive for stochastically independent processes, which has
been assumed in (51) to be the case for recurrent activities
and the external inputs. The average value for the mean neural
activity is µi.

For a given set of ai, σext,i, and bi, the means and variances of
neural activities, σ 2

y,i and µy,i, follow implicitly.

We compared the numerically determined solutions of (49)
and (50) against full network simulations using, as throughout
this study, N = 500, pr = 0.1, σw = 1, µt = 0.05. In Figure 9,
the spectral radius Ra is given for the four input protocols
defined in section 5.3. The identical ensemble of input standard
deviations σext,i enters both theory and simulations. Theory and
simulations are in good accordance for vanishing input. Here, the
reason is that finite activity levels are sustained in an autonomous
random neural network when the ongoing dynamics is chaotic
and hence decorrelated. For reduced activity levels, viz for
small variances σ 2

y , the convergence of the network dynamics is
comparatively slow, which leads to a certain discrepancy with the
analytic prediction (see Figure 9).

5.6.1. Gaussian Approximation

The integral occurring in the self-consistency condition (49)
can be evaluated explicitly when a tractable approximation to
the squared transfer function tanh2() is available. A polynomial
approximation would capture the leading behavior close to the
origin, however without accounting for the fact that tanh2()
converges to unity for large absolute values of the membrane
potential. Alternatively, an approximation incorporating both
conditions, the correct second-order scaling for small, and
the correct convergence for large arguments, is given by the
Gaussian approximation

tanh2(x) ≈ 1− exp
(
−x2

)
. (52)

With this approximation the integral in (49) can be evaluated
explicitly. The result is

1

1− σ 2
y − µ2

y

=
√
1+ 2σ 2/ exp

(
−µ2/

(
1+ 2σ 2

))
(53)

=
√
1+ 2a2σ 2

wσ 2
y + 2σ 2

ext/

exp
(
−µ2/

(
1+ 2a2σ 2

wσ 2
y + 2σ 2

ext

))
.

Assuming that µ ≈ 0 and µy ≈ 0, inverting the first equation
yields a relatively simple analytic approximation for the variance
self-consistency equation:

σ 2
y = 1− 1√

1+ 2a2σ 2
wσ 2

y + 2σ 2
ext

. (54)

This equation was then used for the approximate update rule in
(8) and (34).
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FIGURE 9 | Variance control for the spectral radius. The spectral radius Ra, given by the approximation R2
a =

∑
i a

2
i /N, for the four input protocols defined in

section 5.3. Lines show the numerical self-consistency solution of (49), symbols the full network simulations. Note the instability for small σy and σext. (A) Homogeneous

independent Gaussian input. (B) Homogeneous identical binary input. (C) Heterogeneous independent Gaussian input. (D) Heterogeneous identical binary input.

FIGURE 10 | Phase transition of activity variance Shown are solutions of the

analytical approximation given in (55), capturing the onset of activity

(characterized by its variance σ 2
y ) at the critical point Ra = 1.

Alternatively, we can write (54) as a self- consistency equation
between σ 2

y , σ 2
ext a

2σ 2
w = R2a , describing a phase transition at

Ra = 1:

2R2aσ
2
y

(
1− σ 2

y

)2
= 1−

(
1+ 2σ 2

ext

) (
1− σ 2

y

)2
. (55)

See Figure 10 for solutions of (55) for different values of σ 2
ext.

Note that for vanishing external driving and values of Ra above
but close to the critical point, the standard deviation σy scales
with σy ∝ (Ra − 1)1/2, which is the typical critical exponent for
the order parameter in classical Landau theory of second-order
phase transitions (Gros, 2008, p. 169). If combined with a slow
homeostatic process, flow or variance control in our case, this
constitutes a system with an absorbing phase transition (Gros,
2008, p. 182–183), settling at the critical point Ra = 1. This phase
transition can also be observed in Figure 9 for σext = 0 as a sharp
onset in σy.
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