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The brain is a non-linear dynamical systemwith a self-restoration process, which protects

itself from external damage but is often a bottleneck for clinical treatment. To treat

the brain to induce the desired functionality, formulation of a self-restoration process

is necessary for optimal brain control. This study proposes a computational model for

the brain’s self-restoration process following the free-energy and degeneracy principles.

Based on this model, a computational framework for brain control is established. We

posited that the pre-treatment brain circuit has long been configured in response to the

environmental (the other neural populations’) demands on the circuit. Since the demands

persist even after treatment, the treated circuit’s response to the demand may gradually

approximate the pre-treatment functionality. In this framework, an energy landscape

of regional activities, estimated from resting-state endogenous activities by a pairwise

maximum entropy model, is used to represent the pre-treatment functionality. The

approximation of the pre-treatment functionality occurs via reconfiguration of interactions

among neural populations within the treated circuit. To establish the current framework’s

construct validity, we conducted various simulations. The simulations suggested that

brain control should include the self-restoration process, without which the treatment

was not optimal. We also presented simulations for optimizing repetitive treatments

and optimal timing of the treatment. These results suggest a plausibility of the current

framework in controlling the non-linear dynamical brain with a self-restoration process.

Keywords: free energy principle, resting state, brain dynamics, energy landscape, self-restoration, maximum

entropy model, degeneracy

INTRODUCTION

The goal of clinical treatment for the brain is to modify the brain circuit to yield a desirable
brain function. Since the brain is a complex non-linear dynamic system, clinical treatment can be
considered a control problem. For the clinical treatment to the human brain, various methods have
been developed, such as thermal ablation with the high intensity focused ultrasound (Park et al.,
2017), deep brain stimulation (DBS) (Park et al., 2015), vagus nerve stimulation (Yu et al., 2018),
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and transcranial magnetic stimulation (TMS) (Park et al., 2013;
Kar, 2019) as well as conventional medications and traditional
surgical operations (Schreglmann et al., 2018). Despite the
remarkable advancement of these therapeutic techniques, the
optimal control of the brain by treatments has many practical
challenges due to the complexity of the brain and ethical issues.
Since various experiments are not allowed in the human brain,
establishing optimal control procedures for the brain is very slow
and limited. Therefore, optimal brain control remains mostly
theoretical and based on computational models.

The brain control studies with computational models have
been conducted mainly in two approaches: characterization
of the network controllability and prediction of the network
behavior based on the state dynamic equation of the brain. To
characterize the brain network, the controllability of a brain
system has been evaluated in the graph-theoretic perspective (Liu
et al., 2011; Gu et al., 2017; Tang et al., 2017; Cornblath et al.,
2019; Lee et al., 2019; Stiso et al., 2019; Karrer et al., 2020). This
approach optimizes input signals to increase or decrease activity
at some brain network nodes to induce the desired brain activity
at all the brain nodes. The other approach is to predict a brain
system’s behavior by altering some nodes or edges of the brain. In
this approach, the optimal control is determined by evaluating
the outcome after removing nodes or edges or changing the
system’s parameters in the virtual brainmodel (Falcon et al., 2016;
Jirsa et al., 2017; Proix et al., 2017; An et al., 2019; Olmi et al.,
2019). Those two types of computational approaches on brain
control have primarily focused on the immediate changes in
the brain network’s activity or function. Those studies, however,
did not consider the fact that the brain has self-restorative
plasticity, making the system resilient to external treatments
or perturbations.

Self-restoration capacity in the brain has been found
after damage or stress via neural, molecular, and hormonal
mechanisms (Russo et al., 2012; King, 2016; Murrough and
Russo, 2019). At the macroscopic level, the self-restoration
process toward the initial functionality has widely been reported
in clinical neuroscience, for e.g., functional recovery after stroke
(Murphy and Corbett, 2009; Malone and Felling, 2020), recovery
of the language capacity (Saur et al., 2006), recovery of the
vision after surgery (Mikellidou et al., 2019). This self-restorative
property of the brain is advantageous in protecting the brain after
various external attacks (Glassman, 1987). In terms of clinical
treatment, however, this self-restoration process is a bottleneck
as it tends to recover the initial abnormal functionality, acting
against the aim of any treatment. Examples of this anti-
treatment action can be found with neurological or antipsychotic
medication (Abbott, 2010) showing drug resistance in most brain
disease such as schizophrenia (Potkin et al., 2020), depression
(Bennabi et al., 2019), Parkinson’s diseases (Vorovenci et al.,
2016), and epilepsy (Lee et al., 2017). Goellner et al. (2013)
showed that the late seizure recurrence after temporal lobe
epilepsy surgery was as much as 48.9%. Despite the anatomical
alteration by resection, the treated brains, initially showing free or
reduction of abnormal function (seizure behavior) after surgical
dissection, returned to the initial state of abnormal functionality
in a certain period after treatment.

In this respect, the brain’s self-restoration process may well
be included as an essential part of the computational model of
brain control. Despite the criticality of the brain’s self-restoration
process, research that has a self-restoration process in the control
problem is hardly found. This may be partly attributable to the
difficulty in defining the driving force of the self-restoration
process and its mathematical formulation. In contrast to the
microscopic level, where the mechanism of the self-recovery
process has actively been researched in terms of neurogenesis
(e.g., Mattson, 2008), a systematic understanding of the self-
restoration process at the macroscopic level is still lacking. Are
there any principles that we may refer to formulate the brain’s
self-restoration process at the macroscopic level?

In the current study, as an extension of our previous study
(Kang et al., 2021), we propose a computational framework for
controlling the self-restorative brain by formulating the driving
force of self-restoration based on the free-energy principle
(Friston et al., 2006; Friston, 2010) and the degeneracy nature
of a non-linear complex system (Glassman, 1987). According
to the free-energy principle, the brain acts based on a model
established to minimize long-term average surprise from the
external environment (Friston et al., 2006; Friston, 2010). The
brain network and its behavior can be considered a result of
long-term adjustment to meet environmental demands (Park
and Friston, 2013). For a neural population at any level of the
information hierarchy, neural populations that send signals to
and receive signals from the neural population are environment
to the neural population. For a neural circuit of the brain,
the circuit’s environment can involve lower-level and higher-
level neural populations, affecting the neural circuit by sensation
from the lower-level neural populations and regulation from the
higher-level neural populations (Friston, 2008). The long-term
demands of the environment to a neural circuit or system can
be represented by the statistics of bottom-up (from the lower-
level neural populations) and top-down (from the higher-level
neural populations) signals. Although any clinical treatment may
alter a neural circuit, the circuit’s environmental demands persist
and do not change rapidly even after alteration in the circuitry.
Since the functionality before treatment has been developed as
an optimal solution to environmental demands, we posit that
the altered neural circuit gradually approximates the pretreated
neural circuit’s functionality while adjusting itself to meet the
environmental demands after treatment.

In this framework, the pre-treatment state the brain circuit
tends to recover is not the same circuit, but the functionality that
the circuit has established to satisfy the external demands. Inmost
cases, the functionality for ongoing environmental demands
has to be approximated via reallocation of the reduced circuit
resources after treatment (e.g., after removing a node of the
circuit). In this respect, the recovery of functionality via an
altered circuit can be referred to as a well-known property of
the complex biological system called “degeneracy” (Glassman,
1987; Edelman andGally, 2001). Degeneracy of a system indicates
a function (or behavior) can be implemented with different
network configurations (Friston and Price, 2003). Degeneracy
of the self-reorganizing biological system is essential to manage
and protect its functionality from damage (Marder andGoaillard,
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2006; Marder et al., 2017). This study is based on the degeneracy
principle as it focuses on the restoration of the pre-treatment
functionality, not the pre-treatment circuit.

The final component of the current framework for brain
control is to define the pre-treatment functionality of the brain.
As a representation of the brain’s functionality, we used the non-
linear dynamics of regional activity while the brain is at rest
(called resting-state). A strong relationship exists between the
resting-state connectivity (or distributed patterns of endogenous
activity) with task-related brain activation or connectivity (Biswal
et al., 1995; Smith et al., 2009; Cole et al., 2014, 2016; Krienen
et al., 2014; Park et al., 2014; Yeo et al., 2015; Tavor et al.,
2016; Jung et al., 2018). Fox and Raichle (2007) argued that
resting-state connectivity might serve as a potential scaffold
that supports diverse configurations subserving the functional
elements of a given task (Fox and Raichle, 2007). In this respect, a
stabilized brain network’s resting-state dynamics were considered
to summarize the environmental demands established by long-
term interactions with the environment.

The resting-state brain network may behave as a non-linear
dynamical system with its microstate (defined by distributed
regional activity pattern) transitioning over the energy landscape
of multistable microstates (attractors) (Freyer et al., 2011, 2012;
Rabinovich and Varona, 2011; Deco and Jirsa, 2012; Kelso,
2012; Cabral et al., 2014; Tognoli and Kelso, 2014; Deco et al.,
2015; Breakspear, 2017). The non-linear dynamics of the brain
circuit can be modeled in terms of non-linear interactions
among nodes in the network using a pairwise maximum entropy
model (MEM) (Watanabe et al., 2013, 2014a,b,c; Kang et al.,
2017, 2019; Ezaki et al., 2018; Gu et al., 2018). From the
pairwise MEM, we can infer the probability distribution of
each microstate (an activation pattern), the microstates’ energy
landscape. In the energy landscape, a microstate’s energy is
the minus (scaled) log of its probability of occurrence. In this
model, the microstate dynamics (represented in microstates’
energy landscape) are emergent from the underlying complex
network (or circuitry). They are considered to represent the gross
functionality of a brain.

In summary, our proposal for the recovery process can be
explained by the free energy principle to satisfy environmental
demands by reconfiguring the remained resources after
treatment according to the degeneracy principle of the complex
brain. Utilizing this self-restoration model, we could develop a
strategy to identify the optimal treatment target region (nodes
or edges in the network) and the amount of treatment strength
within a source system to be treated (e.g., a disease system) to
induce microstate dynamics of the desired goal system (a healthy
system).We call this procedure optimal brain control throughout
the paper. In the conventional control theory problems, control
signals are inputs to the system to achieve the desired system’s
state without changing the system parameters. Meanwhile,
the optimal brain control in this study refers to adjusting the
source system’s model parameters to approximate the desired
functionality of the goal system. In this study based on the
pairwise MEM, the model parameters include the sensitivity
of a brain region and interaction among brain regions, which
indicate neurobiological connectivity or synaptic efficacy that

modulate the input and output relationship, i.e., the functionality
of the brain.

We used the term “optimal brain control” in consideration
of clinical treatment settings that call for optimal selection of
treatment target gray matter regions (nodes) or white matter
regions (edges) and treatment strength, within limited access
to the brain circuit at a time. For example, the circuit that
generates epileptic seizures is the source system, and the goal
system is a healthy functioning state without a seizure. The
treatment target can be multiple nodes in the medication.
For example, lorazepam enhances the effect of the inhibitory
neurotransmitter gamma-aminobutyric acid (GABA) receptors
distributed inmultiple brain areas. The target can be a single node
by temporal lobectomy, which removes a part of the anterior
temporal lobe. Callosotomy, which dissects interhemispheric
fibers, is an example of targeting edges in the network.

The current paper is composed in the following order. It
begins with a mathematical description of pairwise MEM and its
energy landscape analysis. We then formulated a self-restoration
process and optimal control in a non-linear dynamical system.
Based on this formulation, we present diverse simulations to
illustrate the self-restoration process and show the effect of
modeling the self-restoration process in brain control. We also
present simulations for optimizing repetitive treatment strategy
and its timing in consideration of the clinical practice, where
any treatment is highly restricted. Using these simulations, we
expected to show the construct validity of the current framework
in the brain’s control.

BACKGROUND

Dynamic Properties of the Brain Using
Pairwise Maximum Entropy Model
To define the dynamic properties of a system, we used the energy
landscape of microstate established on pairwise MEM. Here, we
briefly explain the pairwise MEMmodel. The details for deriving
the MEM of the resting-state functional magnetic resonance
imaging (rsfMRI) can be found elsewhere (Watanabe et al., 2013,
2014a; Kang et al., 2017, 2019).

In the pairwise MEMmodel of a brain with N regions, a brain
state Vk, is defined as an N-dimensional binary vector;

Vk = (σ1, ..., σN) , (1)

where σi = 1 for an activated state and σi = 0 for an inactivated
state at region i. Thus, totally 2N states exist. An energy E(Vk) of
a state Vk is defined as

E (Vk) = −

N
∑

i=1

Hiσi (Vk)−

N−1
∑

i=1

N
∑

j=i+1

Jijσi (Vk) σj (Vk) , (2)

where Hi and Jij are model parameters that represent weights
for independent activation of region i and pairwise interaction
(coactivation) between regions i and j, respectively. For
simplicity, we used A = {Hi, Jij}|i=1,··· ,N,j=1,··· ,N to express all the
model parameters. These model parameters were estimated using
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the maximum likelihood estimation approach. For a detailed
mathematical review, see Yeh et al. (2010).

The probability of a state Vk is given by the Boltzmann
distribution p(Vk),

p (Vk) =
exp

(

−E(Vk)
)

∑2N

j=1 exp
(

−E
(

Vj

))

. (3)

To analyze the energy landscape of state dynamics, we defined
local minima (attractors, LM) and occupation time ratio of each
local minimum (OCR(LMi)) as below.

Local Minimum

A local minimum (LMi) of an energy landscape of a system with
parameters A is a state with lower energy than its neighbor states.
Neighbor states are defined as states that differ from each other
by only one element (one region) of the activation state.

Occupation Time Ratio

OCR(LMi): Occupation time ratio of LMi is the sum of
probabilities of all states in the basin region of LMi. The basin
region of LMi is the set of states that belong to the LMi. To
determine whether a state belongs to the LMi, each element of
the state is gradually changed along the energy gradient until it
reaches one of the local minima.

Functional Distance Between Energy
Landscapes
To measure the functional distance between the target and
source systems, At and As, in the energy landscape, we defined a
distance function between states in terms of dynamic properties
(energy landscape) of the two systems, governed by the system’s
network parameters.

To focus on the functional distance between major attractors
and their properties in the optimal treatment, we use a partial
Kullback–Leibler (KL)-divergence defined as follows.

D
(

At ,As
)

=
∑

k∈R

p
(

Vk

∣

∣At
)

ln
p
(

Vk

∣

∣At
)

p (Vk|As)
, (4)

where R represents a set of states that belong to basin regions of
major attractors.

We also defined the similarity between two systems in terms of
system parameters by the root-mean-square deviation (RMSD)
of the two systems’ parameter vectors.

RMSD(At ,As) =
∣

∣

∣

∣At − As
∣

∣

∣

∣ . (5)

Recovery Process
We modeled the recovery process based on three assumptions:
(1) recovery occurs by adjusting the network connectivity
(interactions) of the neighbors of the treated node or edge; (2)
adjustment of connectivity is performed within a range of its
flexibility, and (3) recovery occurs to meet the external demands,
which were represented in the state dynamics of the pretreated
stabilized system.

The treatment at region m (a node or an edge, for simplicity,
we call it “region”) is denoted by changing the element A

p
m in the

pretreated network parameters Ap with

Atr
m ⇐ A

p
m + α (6)

where α is the amount of treatment. The system parameters right

after treatment can be expressed as At =
{

Atr
m,A

p
\m

}

, where m

and \m represent the treated and untreated regions, respectively
(Figure 2D).m can be multiple nodes or edges. In this theoretical
study, we assumed that we know how to achieve the desired level
α and achieve the desired parameter Atr

m. The treated state A
t of a

system is the starting point of the recovery A0
r .

The system proceeds with its recovery to minimize the
functional distance between state dynamics before treatment
and recovery (Figure 2B). When we decompose the network
elements (nodes or edges) into recovery regions (strongly
connected neighbors of the treated node or edge), Rm, and
unchanged (weakly or unconnected) regions, \Rm, for a treated
region (node or edge) m with a treatment strength Atr

m, the
network state of the treated system just after treatment, At =

{Atr
m,A

p
\m}, can be written as At = {At

Rm
,At
\Rm
}. The recovery

then begins from At and the recovery regions Rm cooperate to
find an optimal parameter set A∗

Rm
within a constrained boundC

to return to the pre-treatment state Ap. This recovery process can
be written as below:

A∗
Rm
= arg min

At′

Rm
,
∣

∣

∣
At′

Rm

∣

∣

∣
≤C

Dr

(

Ap,At′
∣

∣

∣At′

Rm

)

(7)

At′ = {At′

Rm
,At
\Rm
},Ar =

{

A∗
Rm

,At
\Rm

}

,

where Dr indicates the distance function between the stabilized
state before treatment Ap and a plausible treatment solution
At′ by adjusting parameters At′

Rm
in the recovery region Rm while

keeping the other region \Rm unchanged after treatment At . The
final recovered state Ar is composed of the optimal parameter
set within the recovered regions A∗

Rm
and the unchanged regions

of the treated system At
\Rm

. Considering the limited capacity of

the biological change, we restricted maximum changes at the
recovered regions A∗

Rm
to be <20 % of those of the previous step.

In this study, we define the pre-treatment network parameter
Ap as a stable state after a long period of adaptation to the
environment. The optimally recovered state Ar can be a new
pre-treatment network state Ap for a subsequent treatment, after
stabilization, e.g., A∞

r = Ap, where ∞ indicates a sufficient
time for stabilization. Since the treated system may not revert
completely to the pre-treatment network state by utilizing the
constrained resources of the recovery regions, Ap is a function
of trial number or time, moving toward the target system over a
very long time scale. It should also be noted that a subsequent
treatment can be applied to a system before the system is
stabilized. We refer to treatment before stabilization as the
treatment at the transient network stage. We considered that
the transient state does not satisfy the environment’s demands.
In this case, the pre-treatment network parameter Ap was not

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 590019

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Park and Kang Optimal Control of Self-Restorative Brain

updated with the state right before treatment, but instead referred
to the recent stabilized state.We utilized functional distanceDr to
generate similar dynamics instead of generating similar network
parameters for the recovering and initial systems.

The reorganization is performed by modifying the network
parameters of neighbors Rm but within a plausible range of each
parameter (connectivity)’s flexibility. In Eq. 7, we denote this with
∣

∣

∣
At′

Rm

∣

∣

∣
≤ C, indicating plausible parameters within a constrained

bound C. The amount of change at each node or edge in the
recovery regions can be defined proportionally to the treated
system’s baseline (pretreated state). For the treated region m, we
can assign less flexibility than for neighbors or assign inflexibility
(i.e., no change) after treatment during the recovery process.

To measure effects of a treatment on brain dynamics, we
define a recovery capacity as the difference between functional
distance (partial KL divergence) of the treated state At and
pretreated state Ap, D

(

Ap,At
)

, and the functional distance
between the recovered state Ar and pretreated state Ap, D

(

p,Ar
)

as follows,

Recovery capacity = △D = D
(

Ap,At
)

− D
(

Ap,Ar
)

.

Optimal Control
A self-restorative system As is decomposed into the region that
requires treatment m and the unaffected (untreated) region \m
and is represented as As = {As

m,A
s
\m}. When a target system

Ag is given as the goal to achieve for a source system As, the
optimal treatment is to find a region m and its treatment level
At∗
m to minimize the distance functionD between the goal system

Ag and recovered system As′r that develops following the self-
restoration process of the source system As in response to
the treatment. To differentiate this from the distance function
D between Ag and As′r , we use D

+ to indicate the functional
distance D between Ag and As. The optimal control is defined
as below,

At∗
m = argmin D

+
(

Ag ,As′
∣

∣

∣
As′

m′

)

(8)

= argmin D

(

Ag ,As′r
∣

∣

∣As′

m′

)

, (9)

As′ =
{

As′

m′ ,A
s
\m′

}

,

As′r =
{

As′∗

Rm′
,As′

\Rm′

}

,

At = {At∗
m ,A

s
\ m},

where the recovered system As′r is achieved following a self-
restoration process after changes in the neighbors Rm′ of the
treated region m′, according to Equation 7. The optimal control
is conducted by searching for the best solution to achieve the

goal system’s dynamics by adjusting the parameter As′

m′ in the
treated regionm′ while maintaining the other parametersAs

\m′ in

untreated regions m′ unchanged. The final treated system At is
composed of the optimal treatment region with its strength At∗

m

and the unaffected parameters of the treated system As
\ m.

Note that the distance function D is defined in functional
space (between energy landscapes), not in parameter space. In

other words,D indicates a distance between the source dynamics
that emerge from the source system with a parameter As, and
the target dynamics that emerge from the goal system with a
parameter Ag . From the perspective of degeneracy, the minimal
distance function D in the dynamics space does not necessarily
indicate the closeness in the network parameter space. Even
though the two parameter sets, Ag and As, are distant in the
parameter space, they can be close in the dynamics space.

Strategy for Iterative Optimal Treatment
Optimal treatment is a recursive procedure between treatment
planning by the operator and the restoration process in the
treated system (Figures 1, 2C). The target region (node and edge)
to be treated and the strength of treatment was chosen using a
grid search algorithm in this study. In practice, the treatment to
the system was performed by altering the MEM parameter Ai (an
activity of a region Hi or a pairwise interaction Jij) by an amount
of α. We assumed that only neighboring nodes and edges of the
treated node participate in the recovery process to return the
brain dynamics to the pre-treatment state (Figures 1B,C). The
treatment strength induces changes in the energy landscape in
a non-linear manner (Figure 2A). When a node is altered (i.e.,
Hi is changed), edges that are strongly connected with the node
(Figure 1B) undergo self-restoration steps, gradually changing
the energy landscape (Figure 2B).When an edge is treated (i.e., Jij
is selected for treatment), two nodes that are connected with the
treated edge and the strongly connected edges of the two nodes
undergo self-restoration (Figure 1C). A threshold (|Jij| ≥ 0.1)
was used to determine strongly connected edges. If we applied
treatments multiple times, the energy landscape evolved as the
iteration of treatment and restoration (Figure 2C).

The restoration process is an optimization procedure with
reference to the stable pre-treatment state (Figure 2B) as shown
in Equation 7. When the restoration process is saturated (no
significant improvement in minimizing the functional distance
by changing parameters), the saturated network becomes a new
pre-treatment state for a new restoration step, i.e., A∞

r = Ap

(Figure 2C).
To implement the recovery process in Equation 7, we adopted

the gradient ascent method, which is generally used to estimate
the pairwise MEM model parameters from the experimental
data by maximizing the log-likelihood (Watanabe et al., 2013,
2014a; Kang et al., 2017, 2019). To maximize the log-likelihood,
model parameters,Hi and Jij, are updated iteratively according to
differences between data-driven and model-driven expectations
of activations and coactivations, as shown below.

Hi (t + 1)← Hi (t)+ αg

(

log 〈σi〉 − log 〈σi〉A
)

, (10)

Jij (t + 1)← Jij (t)+ αg

(

log
〈

σiσj
〉

− log
〈

σiσj
〉

A

)

, (11)

where αg is a learning rate, 〈σi〉 and
〈

σiσj
〉

are expectations
of activations and coactivations of the brain regions evaluated
using the empirical data. From the pairwise MEM parameter
A, probability p (Vk|A) for each state Vk can be derived
using Equation 3, based on which the expected activations
and coactivations of the brain regions are derived using the
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FIGURE 1 | An illustration of the brain control for a self-restorative brain. (A) The state dynamics (or behaviors) of a source system and a desired target system

emerge from the networks of the two systems. The state dynamics of a system is represented in the energy landscape, where the log of the inverse probability of each

state (distributed brain activation) is defined as energy. The treatment on a network node or edge of the source system is determined to generate dynamics of the

desired target system. Restoration is assumed to occur in the neighbors of the treated node (B) or edge (C). Optimal control is the recursive procedure of treatment

and restoration steps to achieve the desired dynamics of the goal system.

following equation.

〈σi〉A =

2N
∑

k=1

σi(Vk)p(Vk|A), (12)

〈

σiσj
〉

A
=

2N
∑

k=1

σiσj(Vk)p(Vk|A). (13)

If the dynamics of a pretreated system Ap follows the pairwise
MEM (we assumed in this study), the expected activations
〈σi〉 and coactivations

〈

σiσj
〉

of sufficiently large samples from
the stabilized system Ap, equal to the model-driven expectations
of the activation 〈σi〉Ap and coactivation

〈

σiσj
〉

Ap of the brain
regions. Then, a recovery process can be explained as follows:

Hi(t + 1)← Hi(t)+ αg

(

log 〈σi〉Ap − log 〈σi〉Ar

)

, (14)

Jij (t + 1)← Jij (t)+ αg

(

log
〈

σiσj
〉

Ap − log
〈

σiσj
〉

Ar

)

, (15)

Ar =
{

Hi, Jij
}

|i=1,··· ,N,j=1,··· ,N

The recovery is proceeded by adjusting the network parameters
of neighbors (At

Rm
) of the treated node or edgem.

In general, a treatment is applied to a system when the
recovery process is saturated for a sufficient time after each
treatment. However, we also presented a simulation of treatment
in the transient state before full saturation. We denote the

transition state as the proportion of time relative to the time
for full recovery. In this case, we used a grid search method
to determine the optimal treatment time without waiting for
full recovery, as well as the target region and its scale. In this
situation, we denote the functional distance D+ as a function of
treatment timing T.

At∗
m = argmin D

+
(

Ag ,As′
∣

∣

∣As′

m
′ ,T

)

(16)

MATERIALS AND METHODS

A Test System: the Subcortical Limbic
Brain
As a test system for optimal control, we reused the MEM
for the subcortical human brain (Kang et al., 2017). Briefly,
the system consists of 15 subcortical regions of interests
(ROIs): the hippocampus (HIPP), amygdala (AMYG), caudate
(CAU), putamen (PUT), pallidum (PAL), thalamus (THL),
nucleus accumbens (NACC) of the left (L), and right (R)
hemispheres, and the brainstem (BSTEM). TheMEM parameters
were estimated from the resting-state fMRI data of 470
participants in the HCP database (Van Essen et al., 2012).
The estimated parameters are presented in Figures 3A,B. The
subcortical-limbic system has highly symmetric interactions
across hemispheres and appears to be modular. We sorted local
minima (LMs) with their occupation time ratios and selected
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FIGURE 2 | Dynamics of energy landscapes (state dynamics) by treatment in the network parameters and by self-restoration processes. (A) Different treatments on

the network alter the energy landscape of the system non-linearly. (B) The brain has a tendency to revert to its initial state before treatment via non-linear state

transitions. (C) Optimal treatment to induce desired behaviors (dynamics) can be achieved by iterative treatment and self-restoration via an optimal adjustment in the

network parameters. (D) Notations for iterative procedures in the optimal control of the brain are explained. Ap, At, and Ar indicate system (network) parameters for

the pretreated state, treated state, and self-recovery state; At*
m: optimal strength of a treated node or edge (m); Ap

\m: the pre-treatment parameters of untreated node

or edge (\m); A*
Rm

: optimal parameters within the recovered regions Rm; At
\Rm

: parameters of the unchanged regions in the recovery process. See the Method section

for details.

the five top local minima that have the highest occupation time
ratios. Among 18 LMs, the five major LMs, i.e., LM1(8000),
LM2(24769), LM3(32768), LM4(1), and LM5(25286), occupied
83.5% of all possible states (Figure 3E). The brain activation
patterns for the two major local minima are displayed in
Figure 3F. In this study, we set this system as a goal of the control
for the virtual abnormal systems. By controlling the regional
activity parameter Hi and pairwise interaction parameter Jij
(node and edge of the MEM parameters) of a virtual abnormal
system, the abnormal system is expected to be guided to have
dynamics of this goal system.

Overview of Simulations
We conducted six simulation experiments to show the construct
validity of the proposed framework. In simulation 1, we present
an example to show the self-restoration process in the energy
landscape of the brain network after treatment (or damage) in
a region. In simulation 2, we present the effects of treatment
on nodes and edges according to the number of neighbors to
show the advantage of more neighboring edges in the restoration
process. In simulation 3, we show the need for a self-restoration
process in the control model by comparing treatment effects
with and without considering the system’s self-restoration. In
simulation 4, we show the effects of repetitive treatment on
each node of a source system to induce the desired dynamics.
In simulation 5, we further control the timing of subsequent
treatments before full recovery when treating a system. In
simulation 6, we optimize the dissection of interhemispheric

connectivity to simulate a corpus callosotomy for epilepsy
surgery. All of these simulations were conducted to show the
effects of the self-restoration process and how to treat the system
to achieve the desired behaviors.

Simulation 1: The System’s
Self-Restoration Process After Treatment
To illustrate the self-restoration process, we presented a
perturbation simulation of the right thalamus (R THL) by adding
0.5 to its Hi parameter. After this perturbation, the neighboring
edges connected to the node were gradually reconfigured to
generate state dynamics similar to those of the initial pre-
treatment state (Figure 4A). For a treatment that induced a
deviation of state dynamics from the pre-treatment state, the
self-restoration procedure gradually moved the system toward
the pre-treatment state, which induced a shorter functional
distance D (partial KL-divergence) between the recovering and
pre-treatment states (Figure 4B), and receded its parameters
from those of the pre-treatment state (Figures 4B,C). Despite the
increasing distance in the parameter space (RMSD, Figure 4C),
the distance in the state dynamics from the pre-treatment state
is reduced (D, Figure 4B). This is an example of degeneracy,
which refers to the phenomenon where similar behaviors can be
formulated using different networks.

Treatment of the right thalamus changed the energy landscape
significantly from that of the pre-treatment state (Figure 4D);
the OCR of LM1 increased from 28.8 to 40.0, and the OCR of
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FIGURE 3 | The human subcortical-limbic system used in the study as a test system. (A) MEM parameters of the baseline sensitivity parameter (Hi ) and pairwise

interaction parameters (Jij ) are displayed as diagonal and off-diagonal elements in the matrix. (B) The system is displayed in the interaction diagram. The pairwise

interaction is displayed for |Jij | > 0.12. The thickness of the lines represents the strength of the pairwise interactions. The red dotted line represents negative pairwise

interactions (Jij < 0). Red and blue nodes represent ROIs that belong to modules 1 and 2. Modified from Kang et al. (2017). (C) Node degree of the subcortical-limbic

system under a threshold |Jij | = 0.1 is shown. (D) A schematic illustration of the energy landscape of the subcortical-limbic system is displayed. (E) The energy

landscape of the human subcortical system is represented in terms of local minima (LM) displayed in circles. The sizes of circles for LMs reflect the occupation time

ratios (OCR) of LMs. The OCRs of LMs are displayed in percentiles. (F) Activation patterns corresponding to two major local minima (LM), i.e., LM1 and LM2, are

displayed. The subcortical-limbic system includes the hippocampus (HIPP, Hi), amygdala (AMYG, Am), caudate (CAU, Ca), putamen (PUT, Pu), pallidum (PAL, Pa),

thalamus (THL, Th), nucleus accumbens (NACC, Ac), and brainstem (BSTEM, Br). Red and blue colors represent activated and inactivated regions, respectively.

LM2 decreased from 29.02 to 18.9. During self-restoration, this
asymmetric energy landscape (between LM1 and LM2) gradually
recovered (Figure 4D). In the final stage of the self-restoration,
the OCRs of LM1 and LM2 were 37.5 and 31.9, similar to those
of the initial system. Full recovery was not achieved in this system
as it utilized only the limited resources of neighboring edges.
Figure 4E shows the changes in the major two local minima
(LM1 and LM4) along with the treatment and transient states
in the recovery process. This suggests that the system recovers
similar energy landscapes after recovery.

Simulation 2: Region-Specific
Self-Restoration Capacity
To test the node- or edge-specific recovery capacity, we
evaluated the self-restoration process after treating each node

(Figure 5) and each edge (Figure 6) one by one. The degree
of freedom was defined by the number of neighboring edges
that participated in the self-restoration process. In the node’s
treatment, the neighboring edges were strongly (threshold
(|Jij| ≥ 0.1) connected with the treated node (Figure 1B). In
the treatment of an edge, neighboring nodes connected to
the treated edge and strongly connected edges connected to
these neighboring nodes were considered to participate in the
self-restoration process (Figure 1C).

Figure 5 presents the node-specific restoration process in the
real subcortical-limbic system. Nodes with diverse node degrees
(Figure 5B) have different recovery capacities (Figure 5A) and
recovery curves (Figure 5C). The finally recovered network
parameters and energy landscapes differed from each other
(Figures 5C,D). The recovery capacity depended highly on the
number of neighbors (or node degrees); nodes with more
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FIGURE 4 | Explanation of the self-restoration process. (A) MEM parameters (and differences from the initial system) at the initial, treated (the time point n = 0),

half-restored (n = 18), and fully restored (n = 36) states are displayed. (B,C) A distance curve (partial KL-divergence) (B) and an RMSD curve of J (interaction

parameters) (C) from the pre-treatment state are displayed. Despite the increasing distance in parameter space, the distance of state dynamics from the

pre-treatment state is reduced in the functional space. (D) Schematic diagrams for energy landscapes of the pre-treatment state (Ap) and self-restored state (Ar ) are

displayed along the time course. (E) Alterations in the energy landscapes following treatment and during the restoration process are explained in terms of the two

major local minima LM1 and LM2. After restoration, the occupation time ratios of LM1 and LM2 become closer to those of the pretreated state.

neighbors had a higher recovery capacity. In this case, the
node degree acted as a degree of freedom of the system.
This was also found in the treatment of edges shown in
Figure 6. In this case, the number of neighboring edges of
the system again explained the recovery capacity. The edges
with a higher number of neighboring edges (size of neighbors
Rm in Figure 6B) showed better restoration (Figure 6C). For
example, greater self-restoration occurred after treatment in
the edge between R CAU and L THL compared to the
edge between L PAL and L NACC (Figure 6D). The latter
utilizes adjustments of more edges than the former one in the
self-restoration (Figure 6E).

Simulation 3. Effects of the
Self-Restoration Process in Controlling the
Brain System
We simulated treatments with and without considering the self-
restorative properties of the system. In this study, we generated a

virtual system by adding a Gaussian random noise ∼N(0, 0.1) to
the parameters of the human subcortical-limbic system presented
in Figure 3. We considered the virtual system as a source system
and the human subcortical system as a goal system (Figure 7A).

For each node, the best strength of treatment (|α|) was
identified using a grid search method among a set of α, 0.05, 0.10,
0.15, . . . , and 0.5. We selected the best treatment strength that
minimizes the functional distance between the final restoration
state and goal state based on Equations 8, 9. Figure 7B shows the
expected treatment effects without considering the restoration
process, while Figure 7C shows the actual treatment results for
the self-restorative system. Discrepancies between the expected
and treatment effects occurred when the self-restoration process
was not considered. In contrast, when the recovery process was
considered, we obtained increased treatment effects (Figure 7D),
with functional distances from the goal system shorter than that
of treatments without considering the system’s recovery process
(Figure 7C). Optimal nodes differed according to how the nodes
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FIGURE 5 | The recovery capacity at the nodes of the subcortical-limbic system. (A) Recovery capacity D is shown for each node. (B) The node degree plays as

degrees of freedom, i.e., numbers of adjustable parameters for the recovery. (C) For the three representative nodes (R HIPP, R THR, and R NACC), recovery curves

are displayed in terms of the functional distance (partial KL divergence) between the restoring state and the pre-treatment state. (D) Differences between parameters

of the restored and pre-treatment states, and schematic energy landscapes at the final restoration state are displayed. The restoration at the R THL was most

successful in terms of recovering the energy landscape of the pretreated state.

were chosen with or without a self-restorative model. When we
determine the optimal node and its treatment strength to treat
without considering the recovery process, an optimal treatment
target was chosen in the left putamen (L PUT) with a treatment
strength of 0.45 (Figure 7B) but the optimal treatment did not
effectively change the system to the desired goal after restoration
(Figures 7C,E). When we consider the restoration’s effects, the
best treatment was selected on BSTEM with−0.5 (Figure 7D).
For this treatment, functional distance from the desired state
decreased right after treatment, followed by an increase during
the restoration process (Figure 7G). The final treatment effects
by considering the restorative process are better in this
treatment than the treatment without considering restoration
(Figure 7E).

Simulation 4. Repetitive Treatment at a
Single Node
In the clinic, most treatments are repetitive, particularly
concerning medications. We simulated repetitive treatments
without changing the treated node. In the repetitive treatment
simulation, the subsequent treatment was applied after the effects
of the previous treatment had become saturated (i.e., reached an
equilibrium state). Figure 8 shows the results of the repetitive
treatment at each node. Compared to the single treatment shown

in Figure 7D, repetitive treatments with a sequence of different
strengths (Figures 8C,F) made the system closer to the desired
goal (Figure 8B). After repetitive treatment, the treated system’s
final energy landscape gets closer to that of the target goal system
(Figure 8H).

In Figure 8E, the state change due to the second treatment
suggests the non-linear nature of the treatment vs. the
behavioral response (dynamics). The optimal treatment was
not always chosen to minimize the distance to the goal
system in the early stages of the time curves, as shown in
the first treatment effect (Figure 8E). Instead, the optimal
treatment made the system deviate from the desired goal
system but eventually get closer to the desired system than
other treatments that are initially effective but finally ineffective
(Figure 8E).

Simulation 5. Repetitive Treatment at a
Single Node With Flexible Timing
Most previous studies did not consider the timing of the
treatment under the dynamically responding brain. When a
treatment is applied, the brain gradually recovers and transitions
to an equilibrium state. Considering the restoration process,
one may apply the subsequent treatment at transient states
without waiting for the equilibrium state. We simulated
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FIGURE 6 | The recovery capacity at the edges of the subcortical-limbic system. (A,B) The model parameters (A) and the number of neighbors Rm as degrees of

freedom of the subcortical-limbic system (B) are presented. (C) Recovery capacities 1D are shown for all the edges. Larger self-restoration occurred in the edges with

high degrees of freedom (e.g., orange asterisk; edge between R CAU-L THL) than edges with lower degrees of freedom (e.g., red asterisk; edge between L PAL-L

NACC). Two representative examples of treatments on the two edges are presented to show their differences in the recovery processes. (D) The distance curves (the

partial KL-divergence) from the pretreated state are presented for the two representative edges; L PAL–L NACC (red asterisk) and R CAU–L THL (orange asterisk). (E)

Differences in the MEM parameters of the recovered states from the pre-treatment state and the schematic energy landscapes of the final states for the recovered two

edges are illustrated.

optimal repetitive treatment by optimizing the timing of
subsequent treatments. In this simulation, we used the same
simulation setting as simulation 3, except for the flexible timing
of the treatment. Compared to simulation 4, we explored
the best strength of the treatment and the best timing of
subsequent treatments for each node. As shown in Figure 9, the
treatment with the best timing increased the treatment effect
compared to treatment after full recovery for each treatment
(Figure 8).

Simulation 6. Optimal Removal of Edges
We simulated dissections of interhemispheric connections
to imitate a corpus callosotomy for epilepsy surgery. We
generated an abnormal brain that has stronger connections
between the left and right hemispheres (Figure 10A). This was

performed by increasing positive inter-hemispheric connectivity
and decreasing the negative interhemispheric connectivity of the
subcortical-limbic system by adding a Gaussian noise ∼ N(0,
0.1) according to the polarity of the initial connectivity. We
tested the optimal treatment strategy for different numbers and
targets of interhemispheric edges (one, two, and three) to be
dissected (Figures 10B,C). For each number of edges (49 single
interhemispheric edges, i.e., left 7 × right 7, 2,352 combinations
for two edges, and 110,544 combinations for three edges),
we evaluated the best edges to remove. For the source brain,
dissection of LAMYG-RCAU (one edge); LAMYG-RCAU and
LAMYG- RPAL (two edges); LAMYG-RCAU, LAMYG- RPAL,
and LHIPP- RCAU (three edges) were the best combinations
to decrease the functional distance from the goal system
(Figure 10D).
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FIGURE 7 | Treatments with and without considerations of the self-restoration. (A) Model parameters of a virtual (source) system and the subcortical-limbic system as

a goal system, and the difference between the goal and the source systems are displayed. The virtual system is generated by adding a noise (Ag−As) to the

subcortical-limbic system. (B) The distance between the goal state and the predicted final state, D
(

Ag,Ar
)

, after treatment at each node without considering the

self-restoration, was minimal for the treatment on the L PUT. (C) The final results of treatments are displayed in (B), which show longer distances from the goal state

than predicted due to the restoration process. For example, the treatment on node L PUT with strength 0.45 results in distance 0.074, which was expected 0.055 in

the prediction without considering the self-restoration process. (D) The final distance for each node treated by considering self-restoration is displayed. In this case,

BSTEM was selected as an optimal treatment node with −0.5 strength. (E–H) The treatment and restoration curves in terms of the distance from the goal system (red)

and the pretreated state (blue) for the treatment on L PUT with strength of 0.45 (E) and for the treatment on BSTEM with strength of −0.5 (G) are displayed. MEM

parameters (and differences from the pretreated state) at the final state are displayed for the treatment on L PUT (F) and for the treatment on BSTEM (H).

DISCUSSION

Although brain control has garnered increasing interest, brain
control research has mainly been conducted based on theoretical
and computational models as the practical control of the brain
has many challenges due to the complexity of the brain and
ethical issues. Several computational models to control the brain
network have been proposed to characterize the graph-theoretic
properties of the system (Tang et al., 2017; Lee et al., 2019;
Stiso et al., 2019; Karrer et al., 2020) or a purpose of predicting
outcomes after treatment (Falcon et al., 2016; Jirsa et al., 2017;
Proix et al., 2017; An et al., 2019; Olmi et al., 2019). These
previous studies have assumed the brain as a dynamic system,
immediately responding to the incoming treatment. However,
the system’s self-restoration process after the cessation of the
treatment has not been fully considered, without which the brain
control may not be optimal. Compared to the brain circuit’s

various dynamic state equations, the formulation of the self-
restoration process has been rarely researched.

To account for the effect of the restoration process on
brain control, we propose a formulation of the brain’s recovery
process that drives the system to perform the function before
treatment. The driving force of this self-restoration process is
based on the free-energy principle (Friston et al., 2006; Friston,
2010) over a non-linear complex system, with degeneracy in
terms of generating the same behaviors from diverse network
configurations. According to the free-energy principle (Friston
et al., 2006; Friston, 2010), the network is configured to
respond or predict the environment’s statistical demands, making
the system energy-efficient. As long as the environment’s
statistics do not change, the treated or partially lesioned system
may well-adjust its remaining subnetwork (neighbors of the
treated node) to satisfy those demands. Since the altered
(treated) node cannot participate in the organized work of the
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FIGURE 8 | Multiple treatments for the nodes of a system. (A) MEM parameters of the virtual source and goal systems, and their differences are displayed. (B) The

distances (partial KL divergence) between the final states and the desired state are displayed for each treatment. The optimal treatment was chosen at the BSTEM.

Results of the treatment at L PUT (C–E) and BSTEM (F,G) are shown. (C) A treatment curve (distance between the transient state and the desired state) with a

treatment strength at each treatment (arrows) is displayed. (D) MEM model of the final state and its difference from the pre-treated state are shown. (E) Restoration

curves with potential strengths of the treatment are displayed for the first and second treatments. In the first treatment, the treatment strength that induces the black

line was chosen as the optimal strength since it finally becomes closest to the desired state after saturation. After a treatment, it gets close to the desired state and

then recedes slightly from it. In the second treatment, some treatment strengths make the system closer to the desired state at the early stage of the treatment (blue

lines in the circle). However, those curves eventually diverge from the goal system. The optimal treatment strength induced a curve colored in black, which initially

deviates from the goal system but eventually comes closer to the desired state than any other treatment strengths. For clarity, we scaled the restoration time for each

treatment. (F,G) A treatment curve at the BSTEM (F) and its final MEM parameter and its differences from the pre-treated state (G) are shown. (H) Energy landscapes

of the goal, the virtual source, and final systems after treatment at L PUT and BSTEM are displayed.

subnetwork at the same performance level as a pre-treatment
state, the system tries to compensate for the role of the
altered node by reorganizing interactions with its neighbors.
This restoration process in the brain can be called a type of
optimization process in that the system tries to adjust itself
and gradually approximates the desired functionality of the
pre-treatment state by interaction with the environment under
biological constraints.

The other central concept of the current study is the
redundant nature of the non-linear brain (Glassman, 1987;
Edelman and Gally, 2001). A complex system has degeneracy,
i.e., the same or similar functions (behavior) can be achieved

using different configurations of networks (or connectivity).
Since it is complicated to restore all connectivity after damage,
optimal control utilizes non-linearity between networks and
behaviors by reconfiguring networks among neighbors within
limited ranges to approximate the goal system dynamics.
In this non-linear relationship, the closeness in the system
parameters (e.g., connectivity) does not necessarily indicate
closeness in behaviors. Instead of matching network connectivity,
the current framework fits behaviors (i.e., microstate dynamics)
by modulating a smaller number of network parameters. This is
possible as the brain is a complex non-linear system from which
non-linear microstate dynamics emerge.
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FIGURE 9 | Repetitive treatments with flexible treatment timing. (A) The same model in Figure 8 is used for the current simulation. (B) The distance between the goal

and final states, D
(

Ag,Ar
)

, from multiple treatments with flexible timing of treatment is evaluated for each node. The best node for the multiple treatments was the L

PUT. (C–F) Results of the treatments at L PUT (C,D) and at BSTEM (E,F) are displayed. (C,E) Treatment curves (the distance between the transient states and the

goal system) are displayed for L PUT and BSTEM. The arrows indicate the timing of each treatment, and the values are the strengths of the treatment. (D,F) MEM

parameters of the final system and its difference from the initial system are shown. (G) Energy landscapes of the goal system, the virtual source system, and final

systems after treatment at the L PUT and BSTEM are displayed.

The non-linearmicrostate dynamics of a brain are represented
in the microstate’s energy landscape, the microstate of which
is often defined by a distributed activity pattern over the
temporal scale of a second. Energy landscape analysis has
been applied to explore dynamics in large-scale functional
brain networks, such as the default mode and pre-frontal
networks, on resting-state fMRI (Watanabe et al., 2013, 2014a;
Kang et al., 2017, 2019) and in sleep (Watanabe et al.,
2014b). In our previous study (Kang et al., 2017), the energy
landscape analysis revealed that the subcortical brain at rest
exhibits the maximal number of stable states and small sets
of stable states account for most of the occupation time.
Furthermore, a graph theory analysis of the energy landscape
revealed a hub-like state transition organization embedded
in the resting-state human brain (Kang et al., 2019). The
energy landscape of brain states is governed by a set of
network parameters in the pairwise MEM, upon which treatment
is imposed.

The brain control extends the energy landscape concept at the
temporal scale of a second (microstates) to the energy landscape
over a more extended period. Over a longer period of years, a

brain can be considered in a network state of the macroscopic
energy landscape. For example, the brain develops from one
network state (a set of network parameters) to another (another
set of network parameters). A network state in the macroscopic
energy landscape is defined by a network parameter, which differs
from the definition of a microstate in the microscopic energy
landscape by a distributed activity pattern. In this respect, the
brain control problem is to choose an optimal way to guide
a brain network to a desired network along the macroscopic
energy landscape.

We assumed that the restoration process is conducted by
the cooperative activity among neural populations within the
brain network, which tries to generate similar functionality
established before treatment. In this process, the brain network’s
modularity, an essential property to protect against damage to
a complex brain (Park and Friston, 2013; Sporns and Betzel,
2016), would be crucial for the recovery. By rearranging resources
within a module (e.g., altering connectivity within a biological
range), the modularity actuates the system’s reorganization
to construct a similar behavior. There is plentiful evidence
of modular-based reorganization in brain diseases (Balenzuela
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FIGURE 10 | Optimal dissection of edges, simulating a corpus callosotomy for epilepsy surgery. (A) MEM parameters of the virtual (abnormal source) system and the

goal system (subcortical-limbic system), and their differences are displayed. The virtual source system was generated by increasing the strengths of the connectivity

between the left and right hemispheres. (B) The box graph shows the final distance between the goal and the treated system, D
(

Ag,Ar
)

for all the combinations of

dissected edges by dissecting one, two, and three inter-hemispheric edges. Optimally treated results for each number of edges are denoted with circles. (C)

Treatment curves (the distance between the transient state and the goal system) are displayed for the optimally chosen edges among the one (blue line), two (red line),

and three (yellow line) edge combinations of dissection. (D) MEM parameters of the final systems after optimal treatments with different numbers of dissected edges

are displayed with their differences from the initial source system.

et al., 2010; Chen et al., 2013; Siegel et al., 2018). In this
study, nodes with more (stronger) connections (functional
neighbors) play a more efficient role in restoration than
nodes with fewer connections. Since the current test system
has a relatively small network size (nodes = 15), we did
not restrict the neighbors within a module but functionally
close regions (Figure 6). Even though not strictly the same
as the modularity concept in systems science, the functional
neighbors work as a functional module in terms of cooperation
within the module. Consideration of neighbors restricted within
a functional module and within an anatomical limit of a
larger network would be more realistic in modeling the
recovery process.

Clinical treatment is generally exerted on the brain multiple
times. After treatment, e.g., antipsychotic medication, clinicians
wait to stabilize the brain to avoid transient states. However, one
may consider applying subsequent treatment before stabilization.
Until fully stabilized, the system has multiple transient states
for network parameters. Some transient states may be more
efficient in achieving a desired goal than the stabilized state.
However, the transient state may be unstable, and finding an
optimal strategy may be unpredictable. In the current study,
we showed a possibility to optimize the right timing without
waiting for complete stabilization when we have a model for
self-restorative process.

The current framework as computational modeling takes
advantage of prediction capacity by simulation. It is theoretically

possible that some treatment parameters may lead the treated
system unstable, generating abnormal functionality. The self-
restoration process may also cause the malformation of the
function. By evaluating treatment outcomes for all possible
ranges of parameters, we may check unstable points before
deciding the treatment. The model-based prediction could also
be used in evaluating the treatment effect due to noise in the
restoration process as a type of Monte-Carlo simulation (See
the Supplementary Material). As the noise effects differ across
brain regions, one may choose a reliable target that is less
sensitive to noise in the restoration process. The treatment could
benefit from evaluating the treatment outcomes with noise in
any parameters or any updating rules besides the restoration
process. This Monte-Carlo simulation may complement the
limitation of the current deterministic approach. We used a
simple deterministic model and its solver for the control problem
to explain the basic framework of brain control and show
the current framework’s construct validity. More sophisticated
models based on more advanced control theory methods, such
as a stochastic model proposed by Todorov (2009), could be
further researched.

In this study, we showed the construct validity of the proposed
framework using various simulations to consider the clinical
environment. A simulation suggests that the optimal brain
control should include the system’s self-restoration process,
without which a (so called optimal) treatment is not optimal.
Using simulation, we also proposed how to control the
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self-restoration process by choosing the optimal target region
and treatment strength. We then presented simulations for
optimizing repetitive treatments and the optimal timing of
treatment. We found that some treatment choices led to a
degraded performance at an early stage but eventually showed
a better treatment effect (Figure 8). This is a typical example
of the non-linear property of the self-restoration system that
should be considered in optimal control. All of these simulations
suggest the plausibility and rationale of the proposed brain
control framework.

The current study is theoretical, and we acknowledge all
possible limitations of the theoretical framework. The current
brain control framework will be more practical when we know
more about the system’s reorganization mechanisms. Empirical
experiments and validation are most demanding. Determining
the means of achieving the desired treatment level at the right
target for each treatment is one of the fundamental challenges.
The details of the restoration process require extensive research
and experiments. There exist many challenges before brain
control can be applied to actual experiments. However, the
current conceptual framework with the self-restorative process
in the treatment is highly needed in clinical practices, which
calls for personalized treatments based on individualized self-
restoration systems and basic neuroscience to understand how
the brain works.

In summary, we propose an optimal brain control framework
by introducing self-restoration processes in the brain after
treatment. Simulation results showing the responses and
movement of a source system toward the desired system
in diverse testing sets suggest the framework’s plausibility in

optimal brain control within a restricted treatment environment.
Although further research with experimental data should be
conducted, we believe the proposed computational framework
would help attain optimal brain control of the dynamic self-
restorative brain after treatment.
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