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Problem: Brain imaging studies of mental health and neurodevelopmental disorders

have recently included machine learning approaches to identify patients based solely

on their brain activation. The goal is to identify brain-related features that generalize

from smaller samples of data to larger ones; in the case of neurodevelopmental

disorders, finding these patterns can help understand differences in brain function and

development that underpin early signs of risk for developmental dyslexia. The success

of machine learning classification algorithms on neurofunctional data has been limited to

typically homogeneous data sets of few dozens of participants. More recently, larger

brain imaging data sets have allowed for deep learning techniques to classify brain

states and clinical groups solely from neurofunctional features. Indeed, deep learning

techniques can provide helpful tools for classification in healthcare applications, including

classification of structural 3D brain images. The adoption of deep learning approaches

allows for incremental improvements in classification performance of larger functional

brain imaging data sets, but still lacks diagnostic insights about the underlying brain

mechanisms associated with disorders; moreover, a related challenge involves providing

more clinically-relevant explanations from the neural features that inform classification.

Methods: We target this challenge by leveraging two network visualization techniques

in convolutional neural network layers responsible for learning high-level features. Using

such techniques, we are able to provide meaningful images for expert-backed insights

into the condition being classified. We address this challenge using a dataset that

includes children diagnosed with developmental dyslexia, and typical reader children.

Results: Our results show accurate classification of developmental dyslexia (94.8%)

from the brain imaging alone, while providing automatic visualizations of the features

involved that match contemporary neuroscientific knowledge (brain regions involved in

the reading process for the dyslexic reader group and brain regions associated with

strategic control and attention processes for the typical reader group).

Conclusions: Our visual explanations of deep learning models turn the accurate yet

opaque conclusions from the models into evidence to the condition being studied.
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1. INTRODUCTION

Developmental dyslexia is a neurodevelopmental disorder that

presents with persistent difficulty to read fluently and accurately;

it is not related to intelligence, lack of educational opportunities
or inadequate schooling and affects between 5 and 17% of

children (American Psychiatric Association, 2013). Dyslexia is
typically diagnosed after about 2–3 years of formal schooling
(2nd or 3rd grade), after a child has failed to learn to read.
In lower socioeconomic status (SES) countries, studies suggest
an even older age at diagnosis among poor children (e.g., 10–
11 years; Costa et al., 2015; Buchweitz et al., 2019). However,
current neurobiological studies suggest that the functional
and anatomical bases associated with dyslexia predate reading
instruction (Gabrieli, 2009; Raschle et al., 2014; Ozernov-Palchik
and Gaab, 2016; Centanni et al., 2019). In this sense, early
identification of developmental dyslexia could help ameliorate
the poor mental health and educational outcomes associated with
the disorder (Sanfilippo et al., 2020).

There is an emerging consensus about the alterations in
brain structure and function associated with dyslexia: functional
MRI (fMRI) studies have shown left-lateralized, hypoactivation
of posterior brain systems in the ventral occipitotemporal and
temporoparietal regions; these regions are part of the brain’s
network that adapts to reading, in typical readers. The findings
of hypoactivation in dyslexia in these posterior brain areas,
relative to consistent activation in typical reading, have been
replicated across fMRI studies in different languages (Paulesu
et al., 2001; Seki et al., 2001; Kronbichler et al., 2006; Cattinelli
et al., 2013; Cao et al., 2017; Buchweitz et al., 2019). On the
other hand, a typical reader usually shows consistent activation
of these occipitotemporal and parietotemporal posterior brain
systems; these regions become functionally and morphologically
integrated with the areas of the brain that are hardwired for
spoken language as one learns to read (Pugh et al., 1996;
Michael et al., 2001; Shaywitz et al., 2004; Buchweitz et al., 2009;
Rueckl et al., 2015). The adaptations of these posterior brain
regions represent brain markers of reading development, and
their hypoactivation and altered function, markers of dyslexia.
As markers of risk for dyslexia, understanding how these regions
function and adapt can potentially inform earlier identification of
risk for dyslexia and better understanding of reading treatment
response (Gabrieli, 2009; Van Den Bunt et al., 2018).

Distinct brain imaging techniques such as structural MRI,
fMRI, and diffusion-weighted imaging (DWI) are applied
to investigate altered cortical tissue, structure and function
associated with mental health and neurodevelopmental
disorders (Atluri et al., 2013). These techniques allow for the
identification of neural markers, which in turn may provide
or inform a diagnosis based on image features (American
Psychiatric Association, 2013).

Recent advances in deep learning have led researchers to
employ machine learning to automate the analysis of medical
imaging, including neurological images (Craddock et al., 2009;
Froehlich et al., 2014; Tamboer et al., 2016). The most successful
technique derived from deep learning for image classification
consists of building neural network with convolutional layers, i.e.,

Convolutional Neural Networks (CNNs). The CNN specializes in
processing multiple arrays, such as images (2D), audio and video
or volumetric data (3D) (Bengio et al., 2015).

Brain imaging volumes have tens of thousands of voxels
(3D-pixel) per image. Neurofunctional indices are mapped to
these voxels, which makes feature selection a challenge for most
machine learning approaches. Supervised approaches to machine
learning relied on experts for feature selection (Bengio et al.,
2015). Deep learning approaches obviate the dependence on
supervision by automatically learning the features that better
represent the problem domain (Bengio et al., 2015). Before deep
learning methods were effectively applied to classification of
brain imaging data, support vector machine (SVM) algorithms
were the frequent choice for machine learning analyses of brain
imaging (Cortes and Vapnik, 1995). SVM algorithms have the
ability to generalize well in smaller fMRI datasets (Craddock
et al., 2009; Buchweitz et al., 2012; Froehlich et al., 2014; Li
et al., 2014; Tamboer et al., 2016; Just et al., 2017), which are
typically in the dozens of participants due to the high costs
of fMRI scans (Craddock et al., 2009; Froehlich et al., 2014).
Moreover, SVMmodels trained with linear kernels offer relatively
straightforward explanations. This SVM characteristic may be
useful to break the “curse of dimensionality” by reducing the risk
of overfitting the training data. The number of voxels used in
feature selection should be reduced as much as possible.

Feature selection for brain imaging data is often performed
on voxels in anatomically or functionally defined regions-of-
interest (ROIs) based on the literature (Wolfers et al., 2015)
or by data-driven methods that establish clusters of stable
voxels (Shinkareva et al., 2008; Just et al., 2014). By contrast,
deep learning models learn feature hierarchies at several levels of
abstraction, which allows the system to learn complex functions
independent of human-crafted features (Bengio et al., 2015).
CNNs are applicable to a variety of medical image analysis
problems, such as disorder classification (Heinsfeld et al., 2018),
anatomy or tumor segmentation (Kamnitsas et al., 2017), lesion
detection and classification (Ghafoorian et al., 2017), survival
prediction (van der Burgh et al., 2017), and medical image
construction (Li et al., 2014). Although these models can be
accurate, their conclusions are opaque to human understanding
and lack a straightforward explanation to help diagnosis. The
provision of tools for healthcare practitioners to apply and trust
the results of machine learning models of brain imaging to assist
them in their clinical diagnoses is a challenge for brain imaging
and machine learning research alike. Providing accurate visual
representation of neural networks involved in deep learning
classification may be a step in the direction of improving
diagnostic application of classification using neurofunctional
indices. For example, the prediction of brain states at slice level,
and the subsequent generation of more fine-grained information
about the features relevant for classification, can help improve
interpretability (Ballester et al., 2021).

The goal of the present study is to integrate feature
visualization techniques for CNNs. The key contribution is
a visual representation of the regions involved in classifying
whether children are dyslexic or not. This provides a better
understanding of CNN behavior and may provide practitioners
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with a tool to glean neural alterations associated with a disorder
from functional brain imaging scans.

2. MATERIALS AND METHODS

2.1. Data
The brain imaging data was collected as part of a research
initiative to investigate the neural underpinnings of dyslexic
children in Brazil. The participants were diagnosed with
dyslexia following a multidisciplinary evaluation that included
medical history, reading and writing tests (Costa et al., 2015;
Toazza et al., 2017), and an IQ test (Wechsler Abbreviated
Scale of Intelligence, Wechsler, 2012). The reading and
other tests applied are described elsewhere (Costa et al.,
2015; Buchweitz et al., 2019); in the interest of providing
comprehensive information about the participants, see also the
Supplementary Materials (supplementary information about
participants and instruments).

2.1.1. Participants

The present study included 32 children who were divided into
two groups: typical readers (TYP; n = 16) and dyslexic readers
(DYS; n = 16) (Buchweitz et al., 2019). The participants were
all monolingual speakers of Portuguese and right-handed. The
two groups were matched for age, sex and IQ [age 8−12 (9
± 1.39)]. The typical readers were scanned during the 2015
school year; the dyslexic children were scanned between 2014
and 2015 (Buchweitz et al., 2019). Table 1 summarizes the
complete demographics on this dataset. As indicate above, see
also the Supplementary Materials for additional information
on participants.

2.1.2. Word-Reading Task

Task based fMRI examines brain regions whose activity changes
from baseline in response to the performance of a task or
stimulus (Petersen and Dubis, 2012). The study was designed as
a mixed event-related experiment using a word and pseudoword
reading test validated for Brazilian children (Salles et al., 2013).
The task consisted of 20 regular words, 20 irregular words, and
20 pseudowords. The 60 stimuli were divided into two 30-item
runs to give the participants a break halfway into the task. Words
and pseudowords were presented on the screen one at a time for
7 s each. A question was presented to participants along with each
word (“Does the word exist?”), to which participants had to select
“Yes” or “No” by pressing response buttons. After 10 trials (10
words) either a baseline condition or rest period was inserted in
the experimental paradigm. The baseline condition consisted of
presentation of a plus sign “+” in the middle of the screen for 30 s,
during which participants were instructed to relax and clear their
minds (Buchweitz et al., 2019).

2.1.3. Data Acquisition

Data was collected on a GE HDxT 3.0 T MRI scanner with
an 8-channel head coil (Buchweitz et al., 2019). The following
MRI sequences were acquired: a T1 structural scan (TR/TE =

6.16/2.18 ms, isotropic 1 mm3 voxels); two task-related 5-min
26-s functional fMRI EPI sequences; and a 7-min resting state

sequence. The task and the resting-state EPI sequences used the
following parameters: TR= 2,000ms, TE= 30ms, 29 interleaved
slices, slice thickness = 3.5 mm; slice gap = 0.1 mm; matrix size
= 64 × 64, FOV = 220 × 220 mm, voxel size = 3.44 × 3.44 ×

3.60 mm (Buchweitz et al., 2019).

2.1.4. Data Preprocessing

The preprocessing steps for the task-based (word-reading task)
fMRI are described as follows. Word-reading task: preprocessing
included slice-time and motion correction, smoothing with
a 6 mm FWHM Gaussian kernel, and a nonlinear spatial
normalization to 3.0 × 3.0 × 3.0 mm voxel template
(HaskinsPedsNL template). TRs with motion outliers (>0.9 mm)
were censored from the data. The criteria for exclusion due to
head motion were: excessive motion in 20% of the TRs. The
average head motion for each group for the participants included
in the study, in the word-reading paradigm, was: DYS M = 0.16
± 0.08, TYP M= 0.18± 0.15 (Buchweitz et al., 2019).

First level analysis included modeling regressor for the
conditions for each of the three types of word (regular
words, irregular words and pseudowords), and for the fixation
condition. As a final preprocessing step, we averaged the words
activation, and used this average as an input to the deep learning
models. T-test analysis (3dttest++) were carried out to compare
the distribution of activation between the two groups using a
random-effects model and the contrast images for all the word
types vs. fixation. Participant age was entered as a covariate in
the analysis between groups to control for any effects due to
the average 1-year difference in age between the groups. Table 1
shows the demographics for the dataset used in this study.
The accuracy and response time, during the MRI exam, were
statistically significant between groups.

2.2. Classification Task
We trained a number of deep learning models for the
classification task using two key recent techniques in learning
for image classification: CNNs (LeCun et al., 1998) and data
augmentation (Perez and Wang, 2017). For the CNNs, we
evaluated both two-dimensional (2D) and three-dimensional
(3D) CNNs.

First, regarding the CNNs, our choice of model focuses
on 2D CNNs due to the size of our dataset. Specifically, 2D
CNNs have a smaller number of parameters in comparison to
3D CNNs (Szegedy et al., 2015). Thus, training a 3D CNN
necessitates substantially larger datasets in order to generalize
well. Indeed, our experiments show that 2D CNNs achieve
superior accuracy to 3D CNNs given the limitations of our
dataset. A 2D CNN takes an input having three dimensions
(a height h, a width w, and a number of color channels or
a depth d). This input volume is then processed by k filters,
which operate on the entire volume of feature maps that have
been generated at a particular layer. 2D convolutions have
a pseudo third dimension comprising the color channels in
each image, such that a 2D CNN applies convolutions to each
channel separately, combining the resulting activations. Figure 1
illustrates each RGB channel in the input as a slice. A filter,
which corresponds to weights in the convolutional layer, is
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TABLE 1 | Demographic information of the study subjects.

Typical readers Dyslexic readers p-valuea

No. of subjects 16 16

Age

Mean ± STD 8.44 ± 0.51 9.63 ± 0.88 <0.001

Range 8–9 8–12

Sex (Male/Female) 9 / 7 11 / 5

IQ

Mean ± STD 102.73 ± 15.37 107.85 ± 26.6 NS

Range 71–127 88–144

Socioeconomic status (SES) (mean ± STD) 24.1 ± 4.9 26.4 ± 6.5

Reading speed—words per minute (mean ± STD) 84.71 ± 31.89 13.07 ± 7.68 <0.001

Average motion—fMRI Task (mean ± STD) 0.17 ± 0.15 0.26 ± 0.08 NS

fMRI task—accuracy (mean ± STD) 54.68 ± 6.71 35.06 ± 14 <0.001

fMRI task—response time (mean ± STD) 2039.2 ± 423.56 2981.06 ± 954.82 NS

a Independent samples t-test; STD, standard deviation; NS, not significant.

FIGURE 1 | A 3D representation of a convolutional layer, where each RGB channel in the input is a colored slice. We show six filters with the same depth of the input

in the middle and, on the right, we show the output activations of combined convolution operations where each slice in the output corresponds to each filter.

then multiplied with a local portion of the input to produce
a neuron in the next volumetric layer of neurons. In the
Figure 1, the middle part represents filters, the depth of the filter
corresponds to the depth of the input. The last cube in the figure
represents the output activations of the combined convolution
operations for each channel. The depth of the output volume
of a convolutional layer is equivalent to the number of filters
in that layer, that is, each filter produces its own slice. This can
be viewed as using a 3D convolution for each output channel,
which happens to have the same depth as the input (Buduma and
Locascio, 2017). For this reason, it is possible to use volumetric
images as inputs to a 2D CNN. In effect, this means that a
2D CNN processes the 3D volume of brain scan activations
slice-by-slice.

Second, we avoid overfitting in our small dataset by employing
data augmentation. Data augmentation is a technique (Perez and
Wang, 2017) that provides the model with more data to increase
the model’s ability to generalize from it. Such techniques are
already employed in several image problems in deep learning
models, but are still incipient in fMRI data (Mikołajczyk and
Grochowski, 2018).

We adopted two approaches to build the 2D CNN
architectures: (i) use genetic programming, more specifically
grammar-based genetic programming (GGP) fitted to our
problem; and (ii) employ a modified version of the LeNet-
5 (LeCun et al., 1998) classification model. We then trained
the resulting architecture using our dataset, and compared the
effectiveness of 3D convolutions by converting the generated 2D
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CNNs into 3D ones by swapping the 2D convolutional layers to
appropriately-sized 3D convolutions.

2.3. Visual Explanations Task
While many application areas for machine learning focus simply
on model performance, recent work has highlighted the need
for explanations for the decisions of trained models. Most
users of machine learning often want to understand the trained
models in order to gain confidence in the predictions. This is
especially true for machine learning models used in medical
applications, where the consequences of each decision must be
carefully explained to patients and other stakeholders (Yang
et al., 2018; Jin et al., 2019). Besides the explainability aspect
required of direct medical applications, our key motivation is
to allow neuroimaging specialists to derive new insights on
underpinnings of specific learning disorders such as dyslexia.
Indeed, clinical diagnosis of dyslexia is reliable and costs less
than using fMRI scans to validate such diagnostics (Torgesen,
1998; Ramus et al., 2003). However, researchers of dyslexia are
interested in further understanding of the disorder and its neural
underpinnings in-vivo (Shaywitz et al., 2001; Hoeft et al., 2011).
For this reason, building data-driven diagnostics models via
machine learning and generating explanations for such models
can be an invaluable tool for dyslexia research.

Recently researchers developed several methods for
understanding and visualizing CNNs, in part as a response
to criticism that the learned features in a neural network are
not interpretable to humans (Zeiler and Fergus, 2013; Szegedy
et al., 2014; Zhou et al., 2016). A category of techniques that
aim to help understand which parts of an image a CNN model
uses to infer class labels is called Class Activation Mapping
(CAM) (Zhou et al., 2016). CAM produces heatmaps of class
activations over input images. A class activation heatmap is
a 2D grid of scores associated with a particular output class,
computed for every location for an input image, indicating
how important each location is with respect to that output
class (Zhou et al., 2016). CAM can be used by a restricted
class of image classification CNNs, precluding the model from
containing any fully-connected layers and employing global
average pooling (GAP).

A recent approach to visualize features learned by a CNN
is GRAD-CAM (Selvaraju et al., 2017). GRAD-CAM is a
generalization of CAM and can be applied to a broader range
of CNN models without the need to change their architecture.
Instead of trying to propagate back the gradients, GRAD-CAM
infers a downsampled relevance heatmap of the input pixels from
the activation heatmaps of the final convolutional layer. The
downsampled heatmap is upsampled to obtain a coarse relevance
heatmap. This approach has two key advantages: first, it can
be applied to any CNN architecture; and second, it requires no
re-training or change in the existing neural network architecture.

Figure 2 illustrates the GRAD-CAM approach. Given an
image and a class of interest (in the example, “dyslexic reader”)
as input, GRAD-CAM first forward propagates the image through
the CNN part of the model and then through task-specific
computations to obtain a raw score for the category. Next,
GRAD-CAM sets all the gradients that do not belong to the

desired class (dyslexic reader), which are originally set to one,
are set to zero. GRAD-CAM then backpropagates this signal to
the rectified convolutional feature maps of interest, which it
combines to compute the coarse GRAD-CAM localization (the
bottom heatmap in the figure) representing where the model
has to look to make the particular decision. Finally, GRAD-CAM
pointwise multiplies the heatmap with guided backpropagation
to get Guided GRAD-CAM visualizations which are both high-
resolution and concept-specific (Selvaraju et al., 2017).

3. EXPERIMENTS AND RESULTS

3.1. Classification
The deep learning classification model was implemented using
the Keras open source library (Chollet et al., 2015) and trained
with an Nvidia Geforce GTX 1080 Ti graphical processing unit
(GPU) with 12 GB of memory. In our GGP approach, we
generated a population of CNN architectures, such that each
CNN architecture was an individual in a population, and was
evaluated to produce a fitness value. Network topology for all
CNNs generated was based on a specific grammar for our
problem and a set of different hyperparameters.

We introduced four key modifications in our version of
the LeNet-5 architecture. First, we added batch normalization
layers in the convolutional layers to improve convergence and
generalization (Ioffe and Szegedy, 2015). Second, we used RELU
activations in the convolutional layers instead of tanh. Third, we
changed the average pooling to max pooling in the subsampling
layers. Finally, we used a dropout rate of 0.5 in the fully
connected layer. Figure 3 illustrates our modified version of
LeNet-5. Our model architecture contains ∼175 K parameters,
a small amount in comparison to deeper architectures, such as
VGG-16 (Simonyan and Zisserman, 2014), which contains over
138 million parameters.

Our 3D CNN was developed based on our 2D CNN model.
We made the changes necessary to adapt 2D convolutions, 2D
pooling layers to a 3D model. In order to fit our data to a 3D
CNN model, we expanded our data adding one channel for gray
images resulting in a 4-dimensional array as input to the network.
The resulting architecture has over 3 million parameters.

We compared our induced deep learning models with
the SVM (Cortes and Vapnik, 1995) technique, which has
been used in a substantial number of previous neuroimaging
studies (Froehlich et al., 2014; Tamboer et al., 2016). Specifically,
this technique is popular for fMRI applications because datasets
typically have many features (voxels), but only a relatively small
set of subjects.

We trained all models to classify the participants between
dyslexic readers and typical readers using the Adam
optimizer (Kingma and Ba, 2014).We improved the performance
of our classifier by employing two data augmentations to our
dataset: (i) we added Gaussian noise to fMRI images to generalize
to noisy images; and (ii) we added a random Gaussian offset, or
contrast, to increase differences between images. The input of our
machine and deep learning models was the whole brain volume
(60× 73× 60 voxels) and a binary mask filling the brain volume
to retrieve data from all brain regions. All of our deep learning
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FIGURE 2 | GRAD-CAM overview.

FIGURE 3 | Modified LeNet-5 overview containing three convolutional layers with ReLU activations, followed by a fully connected layer and dropout, and finally a

softmax classifier.

models followed the same split, i.e., 80% train, 10% validation,
and 10% test sets. The parameter values including learning rate,
dropout rate, batch size, and epoch size were optimized using the
ranges summarized in Table 2. Note that we optimized the batch
size to use the maximum available GPU memory.

All hyperparameters were optimized for both the 2D and
3D CNN models. For our SVM models, first, we applied an
exhaustive search over specified parameters values for our SVM
estimator. Second, we evaluated different methods of cross-
validation. We report the results from splitting the data into
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TABLE 2 | CNN hyperparameters used to generate our GGP population of CNN

architectures.

Hyperparameters Values

Kernel size Ranging from 1 to 5

No. of filters Starts with 16; duplicates after every convolution

Stride Ranging from 1 to 3

Learning rate Logarithmic range of [1, 0.1, 0.01, 0.001, 0.0001, 0.00001]

Dropout rate Tuned in the range of [0.1, 0.5, 1]

Batch size 16

No. of epochs Tuned in the range of [10, 50, 100]

No. of Neurons FC

layer

Tuned in the range of [32, 64, 128, 256, 512]

TABLE 3 | Summary of dyslexia classification results, including our Modified

LeNet-5 architecture (2D and 3D) and our best GGP CNN.

Technique Accuracy (%)

Best GGP 2D CNN 94.83

Modified LeNet-5 85.71

Best GGP 3D CNN 78.57

Modified LeNet-5 3D 71.43

SVM (80% train, 20% test) 70

train, validation, and test for Linear SVM implemented using
scikit-learn (Pedregosa et al., 2011) library in Python.

Our modified version of LeNet-5 2D CNN network achieved
85.71% accuracy on subject classification. Our best GGP 2DCNN
model achieved an accuracy of 94.83% on subject classification.
In comparison to the 2D CNN architecture, the 3D CNN, from
both the modified LeNet-5 and GGP approach, had an inferior
accuracy on subject classification. The 3D CNN was also more
prone to overfitting in the first few epochs of training. By
contrast, the SVM approach achieved much lower classification
accuracy, regardless of the training dataset composition. Table 3
summarizes the results from all our classification approaches.

3.2. Visual Explanations
After training the 2D CNN model, we loaded the model with
the best accuracy to visualize the learned gradients using GRAD-
CAM technique (Selvaraju et al., 2017). The class activation
generated by GRAD-CAM shows which regions were more
instrumental to the classification.

To employ GRAD-CAM visualization to identify key
differences between subjects and controls, we chose a pair of
subjects as input, i.e., a control (non-dyslexic) subject and a
dyslexic reader subject to generate the class activation mappings.
Figures 4A,B showGRAD-CAM generated images of control and
dyslexic readers subjects, with respect to the gradients learned by
the network model. Both images depict the central slice from the
axial view of the brain volume. Areas with lower class activation
mappings are colored in gray, whereas areas with higher class
activation mappings are color-coded from yellow (instrumental)

to red (more instrumental). The color coding thus represents the
brain regions impact on the model classification of subjects.

The visualization for the dyslexic readers group (Figure 5)
showed frontal and temporal brain regions that are
traditionally associated with reading processes, and also
temporoparietal and dorsolateral prefrontal regions that are
associated with increased working memory load, including
during reading (Pugh et al., 1996; Chein and Schneider,
2005; Buchweitz et al., 2009, 2014; Waldie et al., 2013).
Additional axial visualizations of brain regions can be found
in Supplementary Figure 2 showed bilateral inferior frontal
gyrus (Supplementary Figures 2A,C,D), the parietal lobe
(Supplementary Figure 2F) and the right temporal lobe
(Supplementary Figure 2E) were some of the regions that
presented high classification mapping in the group analysis. In
addition to the frontal regions, the group analysis (Figure 6)
showed that the left precuneus (Supplementary Figure 3B) and
the right insula (Supplementary Figure 3D) were also among
the regions with higher classification mapping for typical readers
relative to dyslexic readers (Oh et al., 2014). Tables 4, 5 show
the voxel count per brain region for visualization of the dyslexic
readers group and for the typical readers group, respectively.
For group-level analyses of brain activation differences between
dyslexic readers and typical readers, please see Buchweitz et al.
(2019), which included the same participants.

4. DISCUSSION AND RELATED WORK

To the best of our knowledge, there is little work on visual
explanations and brain imaging; for instance, a recent study used
these explanations for Alzheimer’s disease (AD) and structural
MRI (sMRI) (Jin et al., 2019). However, few approaches employed
a visualization technique for MRI data, and there are none for
fMRI data. The lack of approaches using brain imaging data
of Dyslexia led us to search for related work employing deep
learning to process any type of MRI data. Table 6 summarizes
previous work that employed deep learning (Sarraf and Tofighi,
2016; Heinsfeld et al., 2018; Jin et al., 2019) for subject
classification, and approaches that applied machine learning to
identify participants with dyslexia (Cui et al., 2016; Tamboer
et al., 2016; Płoński et al., 2017).

The machine learning techniques we use in this article allow
us to divide the related work into two types: (i) work that
aimed to identify participants with dyslexia using traditional
machine learning algorithms (e.g., SVM); and (ii) work that
used Deep Neural Networks (DNNs) in brain imaging data
for disease classification, as follows. Sarraf and Tofighi (2016)
employed the LeNet-5 architecture to classify patients with
Alzheimer’s disease. Heinsfeld et al. (2018) used two stacked
denoising autoencoders for the unsupervised pre-training stage
to extract a lower-dimensional version of the ABIDE (Autism
Brain Imaging Data Exchange) data. Jin et al. (2019) employed
an attention-based 3D residual network based on the 3D ResNet
to classify Alzheimer’s Disease classification and to identify
important regions in their visual explanation task. The remaining
work applied machine learning techniques to classify dyslexic
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FIGURE 4 | Class activation mapping for a single dyslexic reader (A) and single typical reader (B) subject classification from GRAD-CAM technique. The visualization

highlights areas with lower class activation colored from gray to light blue, whereas areas with higher class activation are colored from yellow to red.

FIGURE 5 | Visual explanation for Dyslexic readers subjects. Supplementary Material contains axial images, instrumental brain regions for dyslexic readers

identification summarized in Table 4. The left side of the images represents the left side of the brain. Surface images for left and right side of the brain showing the

visual explanations at cortical level. AFNI (Cox, 1996) images showing brain activation from GRAD-CAM.

FIGURE 6 | Visual explanation for Typical readers subjects. Supplementary Material contains axial images, instrumental brain regions for Typical readers

identification summarized in Table 5. The left side of the images represents the left side of the brain. Surface images for left and right side of the brain showing the

visual explanations at cortical level. AFNI (Cox, 1996) images showing brain activation from GRAD-CAM.

readers and typical readers subjects. Tamboer et al. (2016) and
Cui et al. (2016) used SVM. Płoński et al. (2017) on top of using
SVM, also used logistic regression (LR), and random forest (RF).

Approaches that adopt deep learning models (Sarraf and
Tofighi, 2016; Heinsfeld et al., 2018; Jin et al., 2019) show that
DNN approaches can achieve competitive results using MRI
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TABLE 4 | Voxel count per brain region of dyslexic readers for Supplementary Figure 2.

Dyslexic readers Peak of activation coordinates

Brain regions No. of voxels x y z

Supplementary Figure 2A Left inferior frontal gyrus 167 −40 27 27

Left rostral middle frontal 52

Left IFGa (pars opercularis) 20

Left postcentral 18

Left precentral 18

Left superior frontal 13

Left supramarginal 5

Left caudal middle frontal 5

White matter 36

Supplementary Figure 2B Left superior frontal gyrus 123 −11 48 24

Left rostral middle frontal 43

Left IFG (pars opercularis) 23

Left superior frontal 19

Right superior frontal 9

Left precentral 4

Left caudal middle frontal 3

Right rostral middle frontal 3

Left caudal anterior cingulate 1

White matter 18

Supplementary Figure 2C Right IFG (pars opercularis) 116 52 9 24

Right IFG (pars opercularis) 40

Right rostral middle frontal 21

Right precentral 14

Right postcentral 4

Right caudal anterior cingulate 2

Right IFG (pars triangularis) 1

White matter 34

Supplementary Figure 2D Right IFG (pars triangularis) 98 49 24 30

Right rostral middle frontal 33

Right IFG (pars opercularis) 14

Right caudal middle frontal 12

Right precentral 11

Right postcentral 2

White matter 26

Supplementary Figure 2E Right middle temporal 77 61 -8 -15

Right inferior temporal 30

Right middle temporal 22

Right superior parietal 11

White matter 14

Supplementary Figure 2F Right angular 65 46 −57 45

Right inferior parietal 59

Right supramarginal 4

White matter 2

Brain regions instrumental for dyslexic readers identification with Grad-CAM (Selvaraju et al., 2017). Region labels follow Haskins pediatric atlas (Molfese et al., 2020).
a IFG, inferior frontal gyrus.

and fMRI data. Heinsfeld et al. (2018) achieved state-of-the-art
results with 70% accuracy in identification of ASD vs. control
patients in the dataset. The authors that used classic machine

learning techniques (Cui et al., 2016; Tamboer et al., 2016; Płoński
et al., 2017) achieved 80, 83.6, and 65% accuracy respectively
on dyslexia prediction from anatomical scans. Performance
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TABLE 5 | Voxel count per brain region of typical readers for Supplementary Figure 3.

Typical readers Peak of activation coordinates

Brain regions No. of voxels x y z

Supplementary Figure 3A Right postcentral 201 43 −11 30

Right supramarginal 43

Right IFGa (pars opercularis) 29

Right caudal middle frontal 25

Right postcentral 17

Right precentral 14

Right supramarginal 8

Right inferior parietal 7

White matter 58

Supplementary Figure 3B Left precuneus 89 −1 −68 39

Left precuneus 35

Left inferior parietal 25

Right precuneus 10

Left superior parietal 7

Left cuneus 2

Right cuneus 1

White matter 9

Supplementary Figure 3C Left superior occipital 82 −16 -89 24

Left inferior parietal 51

Left lateral occipital 17

Left cuneus 7

White matter 7

Supplementary Figure 3D Right insula 64 31 −23 -24

Right supramarginal 19

Right postcentral 9

Right insula 2

Right caudate 2

White matter 32

Brain regions instrumental for typical readers identification with Grad-CAM (Selvaraju et al., 2017). Region labels follow Haskins pediatric atlas (Molfese et al., 2020).
a IFG, inferior frontal gyrus.

TABLE 6 | Comparison with the classification scores of related work.

Study references Modality Dataset Classifier Task Accuracy (%)

Proposed method Task based fMRI ACERTA project 2D CNN Subject classification for Dyslexia 94.83

Sarraf and Tofighi

(2016)

rs-fMRI ADNIa LeNet-5 Subject classification for Alzheimer 96.86

Jin et al. (2019) sMRI ADNIa Attention-based 3D ResNet Subject classification for Alzheimer’s

Disease

92.1%

Cui et al. (2016) sMRI Private dataset SVM Subject classification for Dyslexia 83.6

Tamboer et al. (2016) sMRI Non-disclosed dataset SVM Subject classification for Dyslexia 80

Heinsfeld et al. (2018) rs-fMRI ABIDE Denoising Autoencoder Subject classification for Autism

Spectrum Disorder

Above 70

Płoński et al. (2017) sMRI Private dataset SVM, LR, RF Subject classification for Dyslexia 65

aadni.loni.usc.edu.

of our deep learning models was consistent with other deep
learning approaches for classification of neurological conditions.
By contrast, our SVM results did not generalize as well as

others (Cui et al., 2016; Tamboer et al., 2016; Płoński et al.,
2017), but still outperformed another application of SVM for
dyslexia classification (Płoński et al., 2017). Given the difference
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in datasets, accuracies obtained by our two approaches are not
comparable to other ones.

Jin et al. (2019) visual explanations consisted of an attention
map (much like a heatmap in visual representation) that
indicated the significance of brain regions for AD classification.
The authors compared their explanations to those generated
by 3D-CAM and 3D-GRAD-CAM (Yang et al., 2018) methods.
Jin et al. (2019) observed that these two 3D methods led
to a substantial drop in model performance when classifying
subjects for Alzheimer’s Disease (AD) by the extra calculations
needed to generate the heatmaps. By introducing the attention
method, the authors obtained a 3D attention map for each
testing sample and were able to identify the significance of brain
regions related to changes in gray matter for AD classification.
Our visualization technique may not be comparable to Jin
et al. (2019), but the application of visualization techniques
to medical imaging holds promise for making deep learning
models interpretable.

5. CONCLUSION

We introduce a novel approach for the investigation of neural
patterns in task-based fMRI that allow for the classification
of dyslexic readers and typical readers. While deep learning
classifiers provide accurate identification of dyslexic readers
vs. typical readers based solely on their brain activation, such
models are often hard to interpret. In this context, our main
contribution is a visualization technique of the features that
lead to specific classifications, which allows neuroscience domain
experts to interpret the resulting models. Visual explanations of
deep learning models allows us to compare regions instrumental
to the classification with the latest neuroscientific evidence about
dyslexia and the brain. The left occipital and inferior parietal
regions that discriminated among groups are part of brain
networks associated with phonological and lexical (word-level)
processes in reading in different languages (Paulesu et al., 2001).
Other regions reported in our visualization are also associated
with reading and reading disorders (i.e., Tables 4, 5). More
activation of anterior right-hemisphere prefrontal regions (e.g.,
right pars triangularis) are associated with dyslexia and possible
compensatory mechanisms (Vellutino et al., 2004; Shaywitz and
Shaywitz, 2005).

Feature visualization techniques and visual explanations for
deep learning models are a novel research area, and applying

these techniques to neuroimaging data has the potential to
help research in neuroscience. Our work offers encouraging
results, since the brain areas identified by the visual explanations
are consistent with neuroscientific knowledge about the neural
correlates of dyslexia. There are a number of ways in which we
could extend the present work. The deep learning classification
models can be applied to publicly available, large fMRI or
MRI datasets to investigate the areas that are instrumental
for identification of, for example, autism spectrum disorder.
Moreover, other visualization techniques can be applied to
provide a qualitative comparison among techniques when used
to illustrate machine learning and deep learning studies of
brain imaging.
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