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Quantifying the similarity between artificial neural networks (ANNs) and their biological
counterparts is an important step toward building more brain-like artificial intelligence
systems. Recent efforts in this direction use neural predictivity, or the ability to predict
the responses of a biological brain given the information in an ANN (such as its internal
activations), when both are presented with the same stimulus. We propose a new
approach to quantifying neural predictivity by explicitly mapping the activations of an
ANN to brain responses with a non-linear function, and measuring the error between
the predicted and actual brain responses. Further, we propose to use a neural network
to approximate this mapping function by training it on a set of neural recordings. The
proposed method was implemented within the TensorFlow framework and evaluated
on a suite of 8 state-of-the-art image recognition ANNs. Our experiments suggest that
the use of a non-linear mapping function leads to higher neural predictivity. Our findings
also reaffirm the observation that the latest advances in classification performance of
image recognition ANNs are not matched by improvements in their neural predictivity.
Finally, we examine the impact of pruning, a widely used ANN optimization, on neural
predictivity, and demonstrate that network sparsity leads to higher neural predictivity.

Keywords: artificial neural networks (ANN), brain-inspired computing, neuromorphic systems, brain similarity,
neural recordings, neural predictivity

INTRODUCTION

The fields of machine learning and neuroscience have a long and deeply intertwined history
(Hassabis et al., 2017). In the quest for developing intelligent systems capable of learning and
thinking by themselves, researchers have repeatedly looked for inspirations in the biological
brain. The first generation of Artificial Neural Networks (ANNs) developed in the 1950s utilized
perceptrons, which are abstract mathematical models of biological neurons (Rosenblatt, 1958).
In subsequent generations of ANNs, engineering efforts to successfully train these networks
eventually led to the design of artificial neuron models that differ from their biological counterparts.
Simultaneously, researchers continued to seek and implement biological inspirations for improving
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ANNs, including their structure and function. For instance,
multi-layer convolutional neural networks developed in the
1990s (Fukushima, 1980; Lecun et al., 1998) were heavily
inspired by the functioning of simple and complex cells in
the human visual cortex (Hubel and Weisel, 1962). More
recently, the development of attention networks (Vaswani et al.,
2017) was motivated by the observation that human brains
“attend to” certain parts of inputs when processing large
amounts of information.

While the desire to emulate more advanced functions of
biological brains serves as one driver of brain-inspiration in the
field of ANNs, a second, equally important motivation arises
from the need for efficiency. While ANNs have matched or
surpassed human performance in many machine learning tasks,
including image recognition, machine translation and speech
recognition, the computational cost required to do so is quite
high and increasing rapidly. Amidst the justified excitement
about the success of artificial intelligence in man vs. machine
contests such as IBM’s Watson (IBM) and Google’s AlphaGo
(Deepmind AlphaGo), the gap in energy efficiency between
artificial and natural intelligence continues to grow. Improved
energy efficiency is crucial in the face of exploding computational
requirements for training state-of-the-art ANNs on the one
hand (AI and Compute, 1998), and the need to deploy them
in highly energy-constrained energy devices on the other hand
(Venkataramani et al., 2016). Recent efforts also suggest that
biologically inspired mechanisms have the potential to improve
the robustness of ANNs to adversarial attacks (Sharmin et al.,
2019; Dapello et al., 2020).

Several efforts have explored the use of biologically inspired
concepts for improving the energy efficiency and robustness of
ANNs, or allowing them to learn from less data. Among these
efforts, one group attempts to increase representational similarity
at the individual neuronal and synaptic level. For instance,
spiking neural networks comprise of neurons mimicking the
firing behavior of biological neurons while employing different
neural coding schemes (Maass, 1997). A second group of
efforts explore biologically inspired learning rules like Spike-
Timing-Dependent Plasticity (STDP) (Bi and Poo, 1998). Finally,
other efforts attempt to create ANNs with topologies that are
derived from neuroanatomy (Riesenhuber and Poggio, 1999).
In summary, prior efforts have taken various approaches in the
attempt to identify desirable features of biological brains and
embody them in ANNs.

In this work, we focus on quantifying the information
similarity between ANNs and biological networks by comparing
their internal responses to a given input stimulus (Schrimpf
et al., 2018, 2020). This approach was pioneered by Brain-
score (Schrimpf et al., 2018), which quantifies information
similarity through a combination of a behavioral sub-score
and a neural predictivity sub-score. We specifically focus on
neural predictivity, which refers to the ability to predict the
responses of a biological brain given the information from
an ANN (such as its internal activations), when both are
presented with the same stimulus. Brain-Score utilizes the
Pearson correlation coefficient to capture the correlation between
ANN activations and neural recordings from the macaque visual

cortex (Schrimpf et al., 2018). The use of Pearson’s correlation
coefficient implicitly assumes a linear relationship between the
ANN activations and neural responses. Alternative metrics such
as Mutual Information can quantify correlation under non-linear
relationships (Cover and Thomas, 2006). However, methods to
compute Mutual Information are only known when the tensors
being compared have the same rank and dimensions, which is not
true when comparing ANN activations with neural recordings.

In this work, we advocate the use of an explicit, non-
linear mapping function to predict neural responses from
ANN activations. The rationale behind this approach is that
ANN activations are themselves a product of non-linear
transformations. In addition, there does not exist a one-to-
one correspondence between ANN and brain layers, decreasing
the likelihood that the relationship between ANN activations
and neural recordings can be modeled by a linear function.
A second key idea that we propose is the use of a neural
network to approximate the mapping function itself. We note
that this is a regression problem, where the form of the function
mapping from ANN activations to neural recordings is unknown.
Neural networks, which are known to be universal function
approximators, have been successfully applied to many regression
problems. Hence, we explore their use in our work.

Embodying the approach outlined above, we propose a new
method for neural response prediction in order to quantify
the informational similarity between an ANN and a set of
brain recordings. The method utilizes a neural network, called
the neural response predictor (NRP) network, to model the
non-linear relationship between ANN activations and brain
recordings. Input stimuli (in our case, images) are fed to the
ANN, and the activations of its layers are extracted. These
activations, along with the corresponding neural recordings
(captured after presentation of the same stimuli to a primate)
(Schrimpf et al., 2018), are then used to train the NRP network.
The prediction error of the NRP network, termed NRP-error, is a
quantitative measure of the ANN’s neural predictivity.

We implement the proposed method within the TensorFlow
(Tensorflow, 2015) machine learning framework and apply it to
calculate the NRP-errors of 8 state-of-the-art image classification
ANNs. We utilize neural recordings from the IT (168 recording
sites) and V4 (88 recording sites) regions of primate brains for
3,200 images (Schrimpf et al., 2018) to evaluate the proposed
method. Our results demonstrate considerable improvement in
neural predictivity over linear models which are used in previous
approaches (Schrimpf et al., 2018). Our results reaffirm the
finding that recent advances in image classification ANNs (from
AlexNet to Xception) are not accompanied by an improvement
in neural predictivity. Finally, we also evaluate the impact of
commonly used network optimizations such as pruning on
neural predictivity.

MATERIALS AND METHODS

In this section, we first describe the general concept of
quantifying brain similarity through neural predictivity. We next
present the proposed method to quantify neural predictivity and
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finally discuss the experimental setup and methodology used to
evaluate our proposal.

Quantifying Brain Similarity Through
Neural Predictivity
Neural predictivity refers to the ability to predict biological
neural behavior using the information inside an ANN. As
illustrated in Eq. 1, one way to quantify neural predictivity is
to explicitly formulate a function f() that maps ANN activations
into predicted neural recordings. In this equation, Acti refers to
the activations of layer i in the ANN and NRpred refers to the
predicted neural responses.

NRpred = f
(
UL

i=1Acti
)

(1)

NRP-error = δ
(
NRpred, NRmeasured

)
(2)

The inputs to the function f() are the collection of activations
from all or a subset of the layers of the ANN. Next, the predicted
neural responses are compared to the measured neural recordings
using a distance metric δ such as mean absolute error, to quantify
neural response prediction error (NRP-error), as illustrated in
Eq. 2. The NRP-error may be calculated separately for different
brain sub-regions (e.g., V1, V4, and IT of the visual cortex) and
then averaged to compute the overall NRP-error for the ANN.
While there exists a wide range of possibilities for function f(),
based on the fact that neural networks are universal function
approximators, we propose to use a neural network to map from
ANN activations to predicted neural recordings.

Neural Response Prediction Method
Our work proposes a new method for quantifying the neural
predictivity of an ANN that is based on the overall approach
proposed in section “Quantifying Brain Similarity Through
Neural Predictivity.” The first key idea we propose is to explicitly
map ANN activations into predicted neural recordings. A non-
linear function is used for this mapping in order to overcome the
limitations of previous work (Schrimpf et al., 2018). A second key
idea is to use a neural network to approximate this non-linear
mapping from ANN activations to predicted neural responses.

Figures 1A,B present the proposed method to quantify the
neural predictivity for a given ANN, and given a set of neural
recordings. The method consists of the following steps:

Add NRP Network to Decode ANN Activations
The NRP network is an auxiliary structure that decodes the
ANN’s activations into neural response predictions that can be
directly compared to neural recordings in order to compute
brain similarity. The structure of the NRP network is detailed in
Figure 1B. First, activations (layer outputs) from selected layers
of the ANN are passed through a layer of neurons that we call
NRP-L1. Thus, the size of the input to the NRP network is
defined by the number of activations in the chosen layers from the
original ANN. The layer NRP-L1 has locally dense connectivity,
i.e., the activations from each layer of the ANN are processed
separately. This decision was made in order to keep the number

of parameters in NRP-L1 and the overall NRP network small.
We then concatenate the outputs of NRP-L1 and pass them
through a dense layer (NRP-L2). To enable the NRP network to
model non-linear relationships, we add ReLU layers at the end of
NRP-L1 and NRP-L2. The final layer in the NRP network (NRP-
out) produces the predicted neural recordings. Therefore, the
number of outputs of the NRP-out layer is set to be equal to the
number of neural recording sites for which data is available. We
evaluated the use of additional layers in the NRP network, but our
experiments suggest that they do not provide improved accuracy.
Overall, the NRP network forms a regression network that maps
ANN activations into predicted neural responses, specifically the
firing rates of the neurons at the recording sites.

Train the NRP Network
The composite network (the original ANN with added NRP
layers) is trained while locking down the original ANN’s
weights. The training data for this composite network consists
of stimuli (images) along with corresponding neural recordings
from the visual cortex when the primate was presented with
these stimuli. The loss function for this training is the mean
squared error between the actual and predicted neural recordings.
Standard gradient-based optimizers are used for this step [in our
experiments, the Adam optimizer (Kingma and Ba, 2014) was
found to give the best results]. A held-out set of data is used to
validate the NRP network.

Network Architecture Search for the NRP Network
A key challenge faced by the proposed method arises from
the limited number of neural recordings, which translates to
limited training data for the NRP network. Although it is
reasonable to expect this limitation to be gradually relaxed as
additional experiments are performed, it is nevertheless one that
must be considered in our effort. Thus, it becomes extremely
important to determine an optimized configuration for the NRP
network so that it has sufficient modeling capacity to predict
the neural recordings, but can also be trained with the limited
training data available. We address this challenge by performing
a network architecture search (Elsken et al., 2019) on the NRP
network. Specifically, we performed a grid search on the following
hyperparameters for the NRP network: (i) ANN layers used as
input to the NRP network, (ii) sizes of the NRP network layers
(except NRP-out, whose outputs must match the number of
neural recording sites), and (iii) learning rate.

We would like to underscore that the NRP network is not
simply a part of the original ANN (e.g., more layers added to it).
Instead, it should be viewed as a decoder that maps from ANN
activations to a representation that can be directly compared
with neural recordings. This overcomes the limitation of previous
methods in scenarios where ANN representations and brain
representations are not linearly related, and thus correlation
metrics that assume a linear relationship are not able to accurately
quantify the similarity.

Experimental Setup
The proposed method to compute the neural predictivity
of an ANN was implemented using the Tensorflow
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FIGURE 1 | (A) Overview of the proposed method for quantifying neural predictivity, and (B) augmenting an ANN with Neural Response Prediction network.

(Tensorflow, 2015) machine learning framework. NRP-errors
were calculated for 8 popular image recognition ANNs that have
been proposed in recent years for the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) (Russakovsky et al.,
2015). The characteristics of these networks are described in
Table 1.

The dataset used to train the NRP network and compute
NRP-error consists of recordings from 168 neurons in the IT sub-
region and 88 neurons in the V4 sub-region of the primate visual
cortex (Schrimpf et al., 2018). These responses were measured
when visual stimuli (3,200 images) were presented to the primates
(Rhesus macaques) for 100 ms each immediately before these
measurements were made (Schrimpf et al., 2018). Specifically,
these neural recordings consist of the average neuronal firing
rate for each neuron between 70 and 170 ms after the image
was presented. Neuronal firing rates were normalized to the
firing rates resulting from a blank gray stimulus. Note that the
proposed method is generic and can be applied to recordings
from additional sites or brain regions as such recordings become
available. The NRP network for each ANN takes as input
selected layer activations from the ANN, and produces as output

TABLE 1 | Accuracies and NRP-errors of image recognition ANNs.

Network Parameters Top-5 accuracy Top-1 accuracy NRP-error

MobileNet 4,253,864 0.895 0.704 0.237

MobileNetV2 3,538,984 0.901 0.713 0.249

NASNetMobile 5,326,716 0.919 0.744 0.247

ResNet50 25,636,712 0.921 0.749 0.290

Xception 22,910,480 0.945 0.79 0.257

DenseNetl21 8,062,504 0.923 0.75 0.249

DenseNetl69 14,307,880 0.932 0.762 0.249

AlexNet 60,954,656 0.803 0.57 0.226

predicted firing rates for each of the recording sites. The NRP-
error is the mean absolute error between the predicted firing rates
and neural measurements.

NRP-errors were calculated separately for the V4 and IT
regions of the visual cortex. In addition to the non-linear model
used to generate predicted neural recordings for the calculation
of NRP-error, we also implemented a linear regression model to
predict neural recordings as a representative of previous efforts.

RESULTS

In this section, we discuss the results of implementing the
proposed method to quantify neural predictivity of ANNs.

Table 1 presents the NRP-errors of eight different ImageNet
classification ANNs. These NRP-errors were computed as the
averages of the errors on the V4 and IT regions. As can be
seen from the table, some of the more recent ANNs such as
ResNet50 (NRP-error of 0.290) are associated with NRP-errors
that are higher than older networks such as AlexNet (NRP-errors
of 0.226). In fact, AlexNet achieved the lowest NRP-error, while
having the lowest Top-1 accuracy, among all networks evaluated.
In other words, improvements in application performance (Top-
1 accuracy) have not been accompanied by increases in neural
predictivity. Another observation is that deeper networks do
not necessarily lead to higher neural predictivity. For example,
comparing DesneNet121 and DenseNet169, we can see that the
additional layers improve Top-1 accuracy but not the neural
predictivity. This overall trend, illustrated in Figure 2A, is
consistent with observations from recent efforts on quantifying
brain similarity (Schrimpf et al., 2018). This is perhaps because,
deeper ANNs have enabled improvements in accuracy, but have
done so by adopting internal representations that are beyond and
less like those used in biological systems.
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FIGURE 2 | (A) NRP-error vs. Top-1 accuracy for image recognition ANNs listed in Table 1, (B) mean absolute prediction error of proposed (non-linear) and baseline
(linear) methods, and (C) prediction error for V4 and IT regions.

Necessity of Non-linear Mapping
Function
A key feature of our work is the use of a non-linear mapping
function (approximated by a neural network) to map ANN
activations to predicted neural recordings in the calculation
of NRP-error. This is in contrast to prior efforts, which use
the Pearson correlation coefficient, effectively assuming a linear
relationship between ANN activations and neural responses. In
order to demonstrate the necessity of a non-linear mapping
function, we also implemented a linear regression model to
predict neural recordings from ANN layer activations. Figure 2B
compares the mean absolute errors obtained from the proposed
method as well as the linear regression model for the IT region.
As can be seen from Figure 2B, our results show that a non-linear
mapping function from ANN activations to predicted neural
recordings significantly decreases the error of neural prediction
and can hence be considered a superior predictor of an ANN’s
neural predictivity. The results for V4 also lead to the same
conclusion. For example, in the case of ResNet-50, the mean
absolute error of the linear and non-linear models are 0.379 and
0.265, respectively. This is explained by the facts that ANN layers
are non-linear transformations and there is no layer-to-layer
correspondence between most ANN and brain layers, making a
non-linear function more suitable to model the mapping between
ANN activations and neural recordings.

To further establish the inability of a linear model to capture
the relationship between ANN activations and neural recordings,
we computed the R2 values of the linear regression models. We
found the R2 values to be less than 0.2 in all cases, which indicates
that a linear model is unable to capture the relationship between
ANN activations and neural recordings.

NRP-Errors for V4 and IT Sub-Regions
In order to compare the neural predictivities for the V4 and
IT sub-regions of the visual cortex, NRP-errors were computed
separately for both sub-regions. From the results, we observe
that ANN activations predict IT neural recordings with a higher
accuracy than V4 neural recordings (Figure 2C). This suggests
that ANNs use representations that have a higher level of
similarity with later visual cortex sub-regions (such as IT).

Relationship Between Neural Predictivity
and Layer Sizes of NRP Network
To overcome the small amount of training data (neural
recordings) available for the NRP network, a suitable
configuration must be determined so that it has sufficient
modeling capacity to predict the neural recordings but can also
be trained with the limited training data available. In order to
address this, we performed a network architecture search on the
NRP network by varying the sizes and number of intermediate
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FIGURE 3 | (A) Impact of NRP network layer sizes on prediction error, (B) impact of network pruning on NRP-error.

layers to find a suitable configuration. Representative results
obtained for the MobileNet ANN are presented in Figure 3A.
We found that using two intermediate layers in the NRP network
before the output layer is sufficient to model the mapping from
ANN activations to predicted neural recordings. We also found
that there is a sweet-spot of layer sizes for the NRP network
that minimizes the average mean absolute error of mapping
across all networks.

Impact of Network Pruning on Neural
Predictivity
Finally, we investigate the impact of a popular ANN optimization
technique, namely network pruning, on neural predictivity. We
consider the ResNet50 ANN and applied state-of-the-art pruning
algorithms (Zmora et al., 2019) to derive pruned models with
varying levels of sparsity. We define sparsity as the percentage
of weights that are zero-valued. We generated pruned models
of the ResNet50 ANN with sparsity varying from 0 to 80%.
We then applied the proposed method to the pruned models
to compute the corresponding NRP-errors, and the results are
presented in Figure 3B. The results suggest that pruning leads
to a clear decrease in NRP-error, indicating a positive effect on
neural predictivity. We believe this is due to the fact that pruning
removes “extraneous” information from the ANN, making it
easier to map its activations to the neural recordings.

DISCUSSION

Despite the rapid advances made in the field of deep learning
over the past decade, biological brains still have much to teach
us in the quest to build more energy-efficient and robust
artificial intelligence. A key step toward drawing inspiration from
biological brains is to quantify the similarity between them and
their artificial counterparts. Our work takes the approach of
quantifying similarity through neural predictivity, or the ability
to predict neural responses from a biological brain given the
internal information of ANNs. Since this is the goal of our work,
we discuss closely related efforts and place our own effort in their
context. We also discuss possible future directions, both in terms
of improving our work and its applications.

Related Work
A recent effort that quantifies neural predictivity is Brain-
Score (Schrimpf et al., 2018). Brain-Score specifically focuses
on evaluating ANNs that perform core object recognition
tasks, and provides a quantitative framework to compare image
classification ANNs with measurements from the visual cortex
of primates (firing rates for specific neurons when the primate
is presented with the stimulus). It consists of a behavior sub-
score and neural predictivity sub-scores for various regions of
the visual cortex (V1, V2, V4, and IT). The behavior sub-score
quantifies how similar the ANN’s predictions are to those made
by the primate when both are presented with the same stimulus.
The neural predictivity sub-scores capture how well the ANN’s
activations correlate to the neural recordings from each region of
the visual cortex. These sub-scores are computed as the Pearson
correlation coefficient between ANN layer outputs and neural
firing rates for that region.

Through the use of the Pearson correlation coefficient, Brain-
Score implicitly assumes a linear relationship between ANN
activations and neural firing rates. However, since ANN layers are
non-linear transformations, there is no evidence to support this
assumption. Moreover, there is no layer-to-layer correspondence
between most ANN and brain layers, making the likelihood of a
linear relationship even less likely.

Our work extends the state-of-the-art through two key ideas.
First, it advocates the use of an explicit (non-linear) mapping
function to predict neural responses from ANN activations in
order to quantify neural predictivity. A second key idea is the
use of a neural network (known to be a universal function
approximator) to approximate the mapping function itself. Our
experiments clearly support the merit of these proposals by
demonstrating an improved ability to predict neural responses.

Future Work
One possible direction to build upon our effort would be to
collect and incorporate additional neural recordings into the
dataset used. A dataset with additional recording locations and
more input images would allow us to train larger (and potentially
more accurate) NRP networks without the risk of over-fitting.
Since internal representations are greatly influenced by training,
it would also be interesting to study whether networks trained
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with bio-plausible learning rules (e.g., STDP) yield higher neural
predictivity than ANNs trained with gradient-descent. Finally,
building upon a recent result that using brain-like representations
in the early layers of an ANN can lead to higher robustness,
it would be interesting to study whether there is a relationship
between an ANN’s neural predictivity and its robustness to noise
and adversarial perturbations.
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