
ORIGINAL RESEARCH
published: 12 April 2021

doi: 10.3389/fncom.2021.617862

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2021 | Volume 15 | Article 617862

Edited by:

Guenther Palm,

University of Ulm, Germany

Reviewed by:

Thomas Wennekers,

University of Plymouth,

United Kingdom

Steve B. Furber,

The University of Manchester,

United Kingdom

*Correspondence:

Brian Gardner

b.gardner@surrey.ac.uk

Received: 15 October 2020

Accepted: 08 March 2021

Published: 12 April 2021

Citation:

Gardner B and Grüning A (2021)

Supervised Learning With

First-to-Spike Decoding in Multilayer

Spiking Neural Networks.

Front. Comput. Neurosci. 15:617862.

doi: 10.3389/fncom.2021.617862

Supervised Learning With
First-to-Spike Decoding in Multilayer
Spiking Neural Networks

Brian Gardner 1* and André Grüning 2

1Department of Computer Science, University of Surrey, Guildford, United Kingdom, 2 Faculty of Electrical Engineering and

Computer Science, University of Applied Sciences, Stralsund, Germany

Experimental studies support the notion of spike-based neuronal information processing

in the brain, with neural circuits exhibiting a wide range of temporally-based coding

strategies to rapidly and efficiently represent sensory stimuli. Accordingly, it would be

desirable to apply spike-based computation to tackling real-world challenges, and in

particular transferring such theory to neuromorphic systems for low-power embedded

applications. Motivated by this, we propose a new supervised learning method that can

train multilayer spiking neural networks to solve classification problems based on a rapid,

first-to-spike decoding strategy. The proposed learning rule supports multiple spikes

fired by stochastic hidden neurons, and yet is stable by relying on first-spike responses

generated by a deterministic output layer. In addition to this, we also explore several

distinct, spike-based encoding strategies in order to form compact representations of

presented input data. We demonstrate the classification performance of the learning rule

as applied to several benchmark datasets, including MNIST. The learning rule is capable

of generalizing from the data, and is successful even when usedwith constrained network

architectures containing few input and hidden layer neurons. Furthermore, we highlight

a novel encoding strategy, termed “scanline encoding,” that can transform image data

into compact spatiotemporal patterns for subsequent network processing. Designing

constrained, but optimized, network structures and performing input dimensionality

reduction has strong implications for neuromorphic applications.

Keywords: spiking neural networks, multilayer SNN, supervised learning, backpropagation, temporal coding,

classification, MNIST

1. INTRODUCTION

Neurons constitute complex biological circuits, and work to convey information via rapid, spike-
based signaling. These neural circuits interconnect with one another, forming the basis of large
scale networks in the brain, and are often organized as consecutive processing layers operating at
increasing levels of abstraction. For example, within the visual system, information regarding object
features can be temporally encoded as spikes in little over just 10 ms, and its identity determined
through feedforward processing pathways within 200 ms of pattern onset (Hung et al., 2005; Kiani
et al., 2005; Gollisch and Meister, 2008). There is also evidence indicating that first spike times
relative to stimulus onset, rather than comparatively long neural firing rate estimates, are utilized
in the human somatosensory system to enable rapid behavioral responses (VanRullen et al., 2005).

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.617862
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.617862&domain=pdf&date_stamp=2021-04-12
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:b.gardner@surrey.ac.uk
https://doi.org/10.3389/fncom.2021.617862
https://www.frontiersin.org/articles/10.3389/fncom.2021.617862/full

Gardner and Grüning First-to-Spike Decoding in SNNs

Interestingly, such temporal-based coding strategies are thought
to describe a rank order code (Thorpe et al., 2001), whereby the
order in which groups of encoding neurons generate first-spike
responses corresponds to the importance of the information they
signal. In terms of forming such representations, the adaptation
of synaptic connections between neurons is hypothesized to
underlie the learning process: principally based on correlated
neuronal activity patterns and regulatory, homeostatic plasticity
mechanisms (Morrison et al., 2008). In particular, a Hebbian-
like learning scheme, termed spike-timing-dependent plasticity
(STDP), is considered to play a prominent role (Gerstner and
Kistler, 2002), whereby the strength of a synaptic connection
is modified according to the relative timing difference between
paired pre- and postsynaptic firing events (Bi and Poo, 1998).
Drawing on these principles, theoretical work has sought to
model goal-directed learning in the brain using spiking neural
networks (SNNs): typically incorporating concepts frommachine
learning such as supervised and reinforcement learning for this
purpose (Grüning and Bohte, 2014). Despite progress in this
respect, a more comprehensive theoretical description of learning
that also aims to more fully exploit the rapidity and precision of
spike-based temporal coding is still largely lacking; consequently,
finding real-world applications for spike-based learning and
computing techniques, including their transfer to neuromorphic
platforms, remains an open issue.

For themost part, theoretical studies into spike-based learning
in neural networks have been devised based on the dynamics
of the leaky integrate-and-fire (LIF) neuron model, typically
when formalized as the simplified spike response model (SRM0)
(Gerstner and Kistler, 2002), owing to its convenient trade-
off between analytical tractability and model realism in run
simulations. Additionally, the application of gradient descent in
order to minimize the value of some predefined cost function,
as taken for supervised learning, is a useful starting point in
order to obtain weight update rules for SNNs (Gütig, 2014). A
common learning objective has been to train neurons to precisely
fire at one or more prescribed target firing times; to this end,
the cost function of an SNN is usually defined in terms of the
separation between target and actual firing times with respect to
one or more of its readout neurons. Hence, by applying gradient
descent, weight update rules for the network can be derived, and
accordingly implemented during training in order to support
neuronal firing at these target timings (Bohte et al., 2002; Florian,
2012; Sporea and Grüning, 2013; Gardner et al., 2015; Zenke and
Ganguli, 2018). Furthermore, some supervised approaches have
incorporated a trained neuron’s subthreshold voltage into the
network cost function: for example to support a more efficient
mode of operation in addition to learning target firing times
(Albers et al., 2016). In a similar effort, the minimum distance
between a neuron’s voltage and its firing threshold, as measured
over some predetermined observation period, has been selected
as the point at which a neuron should be driven to fire, in order
to provide a highly efficient spike-based classifier rule (Gütig
and Sompolinsky, 2006; Urbanczik and Senn, 2009). Aside from
setting up an initial cost function, some studies have instead
taken a statistical approach to learning; for instance, based on
a maximum-likelihood principle that works to maximize the

likelihood of an SNN generating desired target firing times
(Pfister et al., 2006; Gardner and Grüning, 2016), or similarly
by minimizing an upper bound on the KL-divergence between
the actual and target firing distribution for more complex, spike-
based, recurrent neural network (RNN) architectures (Brea et al.,
2013). A variational, online learning rule for training recurrent
SNNs has also recently been proposed in Jang et al. (2020); a
detailed review of probabilistic learning methods can be found in
Jang et al. (2019). Otherwise, the procedure used to learn target
firing times may bemapped from Perceptron-like learning, as has
originally been used to train the readout weights of spike-based
RNNs, also known as liquid state machines (Maass et al., 2002).
Perceptron-like learning has also been used to learn targets with
high precision in feedforward SNNs (Memmesheimer et al.,
2014), or more heuristically by modifying weights according to
a spike-based adaptation of the Widrow-Hoff rule (Ponulak and
Kasiński, 2010; Mohemmed et al., 2012; Yu et al., 2013).

A large part of the studies described so far have been
concerned with training SNNs to learn target output firing times,
which in most cases tend to be arbitrarily selected; this usually
follows from focusing on a proof-of-concept of a derived learning
procedure, rather than measuring its technical performance
on benchmark datasets. Moreover, biological plausibility is a
common concern with spike-based learning approaches, which
can place further constraints on a model and detract from its
performance. Although there is likely to be strong potential
in utilizing spike-based computation for data classification
purposes, it remains unclear which temporal coding strategy
is best suited for this purpose. For instance, learning multiple,
temporally-precise sequences of spikes in order to categorize
input patterns into different classes might inadvertently lead to
model overfitting, and hinder generalization to previously unseen
samples; this is more likely to be an issue with high precision
rules, for example the E-learning variant of the Chronotron
(Florian, 2012) or the HTP algorithm (Memmesheimer et al.,
2014). Therefore, a preferable coding strategy for a spike-based
classifier might instead rely on selecting output responses which
place the least constraint on the trained parameters: for example
as demonstrated by the single-layer Tempotron rule (Gütig and
Sompolinsky, 2006).

Although the minimally-constrained Tempotron has
proven capable of high performance with respect to certain
problem domains, such as vocabulary recognition (Gütig and
Sompolinsky, 2009), there may arise limitations in terms of its
flexibility as applied to increasingly challenging datasets such
as MNIST, for which networks containing hidden neurons
are indicated for its solution; interestingly, however, recently
submitted work has addressed this issue by implementing a
Tempotron-inspired cost function combined with a multilayer
learning procedure, and to good effect (Zenke and Vogels,
2020). Despite such progress, there still exist comparatively few
learning rules for multilayer SNNs compared with single-layer
ones, owing to the complexity in solving ill-defined gradients
of hidden layer spike trains when applying the technique
of backpropagation. A number of approaches have relied
on approximating such gradients: for example by taking a
linear approximation of a neuron’s response close to its firing

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

threshold (Bohte et al., 2002), estimating a spike train by its
underlying firing density (Sporea and Grüning, 2013), or using
a surrogate gradient to substitute a neuron’s spike-gradient
with an analytically tractable one (Zenke and Ganguli, 2018;
Neftci et al., 2019). Furthermore, some studies have taken a
statistical approach which instead consider the likelihood of a
neuron’s firing response, as applied to feedforward (Gardner
et al., 2015) and recurrent (Brea et al., 2013; Jimenez Rezende and
Gerstner, 2014) network structures. In these cases, however, the
networks have been constrained to learning predefined, target
firing patterns, with less of a focus on utilizing efficient temporal
encoding and decoding strategies for data classification purposes.
Of the studies which have focused on applying multilayer or deep
SNNs to more challenging datasets, some have demonstrated
that training rate-based artificial neural networks (ANNs) and
transferring the learned weights to similarly designed SNNs
for test inference can provide performance competitive with
state-of-the-art systems (O’Connor et al., 2013; Diehl et al.,
2015). A main limitation of this approach, however, is that
these equivalent ANNs must be trained offline before being
mapped to an online system, making this technique somewhat
restrictive in terms of its application to adaptive learning tasks.
A further study exploring deep SNN architectures considered a
scheme which involved low-pass filtering spike events in order
to establish smooth gradients for backpropagation, although
this came with the caveat of introducing auxiliary variables
which needed to be computed separately (Lee et al., 2016).
Intriguingly, one study took a semi-supervised approach to
training deep SNNs containing convolutional and pooling
layers, by applying STDP to modify weights at each layer
based on first spike responses (Kheradpisheh et al., 2018): in
this way, the hidden layers learned the features of objects
in an unsupervised manner, appropriate for subsequent
classification by a linear SVM classifier. Otherwise, some
studies have arrived at alternative solutions by approximating
simulated LIF neurons as rectified linear units (ReLUs)
(Tavanaei and Maida, 2019; Kheradpisheh and Masquelier, 2020),
or instead simulating non-leaky integrate-and-fire neurons for
analytical tractability (Mostafa, 2017), thereby establishing
closed-form expressions for the weight updates. These methods
have resulted in competitive performance on the MNIST dataset,
and the first-to-spike decoding methods implemented by
Mostafa (2017) and Kheradpisheh and Masquelier (2020), which
classify data samples according to which output neuron is the
first to respond with a spike, have proven to be particularly rapid
at forming predictions. Interestingly, the recent work of Bagheri
et al. (2018), which examined training probabilistic, single-layer
SNNs as applied to MNIST, has also indicated at the merits of
utilizing a rapid, first-to-spike decoding scheme.

In this article, we introduce a new supervised learning
algorithm to train multilayer SNNs for data classification
purposes, based on a first-to-spike decoding strategy. This
algorithm extends on our previous MultilayerSpiker rule
described in Gardner et al. (2015), by redefining the network’s
objective function as a cost over first spike arrival times in the
output layer, and instead implementing deterministic output
neurons for more robust network responses. Our method also

supports multiple spikes generated by hidden layer neurons:
conferring an additional level of processing capability compared
with other, single-spike based, learning methods. We test our
new first-to-spike multilayer classifier rule on several benchmark
classification tasks, including the ubiquitous MNIST dataset of
handwritten digits, in order to provide an indication of its
technical capability. Additionally, we explore several different
spike-based encoding strategies to efficiently represent the input
data, including one novel technique that can transform visual
patterns into compact spatio-temporal patterns via “scanline
encoding.” We determine that such an encoding strategy
holds strong potential when applied to constrained network
architectures, as might exist with a neuromorphic hardware
platform. In the next section we start our analysis by describing
the specifics of our first-to-spike neural classifier model.

2. MATERIALS AND METHODS

2.1. Neuron Model
We consider the simplified SRM0, as defined in Gerstner and
Kistler (2002), to describe the dynamics of a postsynaptic
neuron’s membrane potential with time t:

ui(t) : =
∑

j∈Ŵi

wij

(

ǫ ∗ Sj
)

(t)+ (κ ∗ Si) (t) , (1)

where the neuron is indexed i, and its membrane potential is
measured relative to a resting potential arbitrarily set to 0mV
The first term on the RHS of the above equation describes a
weighted sum over the neuron’s received presynaptic spikes,
where Ŵi denotes the set of direct neural predecessors of neuron
i, or its presynaptic neurons, and the parameter wij refers to the
synaptic weight projecting from presynaptic neuron j. The term
(

ǫ ∗ Sj
)

(t) ≡
∫ t
0 ǫ(s)Sj(t − s)ds refers to a convolution of the

postsynaptic potential (PSP) kernel ǫ and the j-th presynaptic
spike train Sj, where a spike train is formalized as a sum of Dirac-

delta functions, Sj(t) =
∑

f δD(t − t
f
j), over a list of presynaptic

firing times Fj = {t
1
j , t

2
j , . . . }. The second term on the RHS of

Equation (1) signifies the dependence of the postsynaptic neuron
on its own firing history, where κ is the reset kernel and Si
is the neuron’s spike train for postsynaptic firing times Fi =

{t1i , t
2
i , . . . }. A postsynaptic spike is considered to be fired at time

t
f
i when ui crosses the neuron’s fixed firing threshold ϑ from
below. The PSP and reset kernels are, respectively, given by:

ǫ(s) = ǫ0

[

exp

(

−
s

τm

)

− exp

(

−
s

τs

)]

2(s) , (2)

κ(s) = κ0 exp

(

−
s

τm

)

2(s) . (3)

With respect to Equation (2), ǫ0 = 4mV is a scaling constant,
τm = 10ms the membrane time constant, τs = 5ms a synaptic
time constant and 2(s) the Heaviside step function. With respect
to Equation (3), the reset strength is given by κ0 = −(ϑ − ur),
where ur = 0mV is the value the neuron’s membrane potential
is reset to immediately after a postsynaptic spike is fired upon

Frontiers in Computational Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

crossing the threshold ϑ = 15mV. From Equation (1) it follows
that the neuron’s resting potential is equal to its reset value, i.e.,
urest = ur = 0mV.

2.2. Learning Rule
2.2.1. Notation
The technique of backpropagation is applied to a feedforward
multilayer SNN containing hidden layers of neurons, where
the objective of the network is to perform pattern recognition
on multiple input classes by learning error-minimizing weights.
Network layers are indexed by l, with l ∈ {1, 2, . . . , L −
1, L}, where l = 1, L correspond to the input and last layers,
respectively. The number of neurons in the l-th layer is denoted
Nl. In our analysis, each input class corresponds to a distinct
output neuron: hence, if the total number of classes is equal to
c then the number of output neurons is given by NL = c. Using
this notation, the SRM0 defined by Equation (4) is rewritten as

uli(t) : =
∑

j∈Ŵl
i

wl
ij

(

ǫ ∗ Sl−1j

)

(t)+
(

κ ∗ Sli

)

(t) , (4)

for a postsynaptic neuron in the l-th layer receiving its input from
previous layer neurons belonging to the set Ŵl

i . The spike train of

a neuron i in layer l is now denoted by Sli(t) =
∑

f δD(t− t
f
i), and

its associated list of firing times, Fl
i = {t

1
i , t

2
i , . . . }.

2.2.2. Cost Function
The objective is to train a multilayer SNN to efficiently
classify input patterns based on a temporal decoding scheme.
To this end, a first-to-spike code seems appropriate, since it
encourages rapidity of neural processing (Thorpe et al., 2001)
and avoids arbitrarily constraining the network to generate
spikes with specific timings. There is also experimental evidence
supporting the notion of a latency code in relation to visual
and neural processing pathways (Hung et al., 2005; VanRullen
et al., 2005; Gollisch and Meister, 2008). Hence, we focus on
implementing a minimally-constrained, competitive learning
scheme: such that the output neuron with the earliest and
strongest activation, resulting in a first-spike response, decides
the class of input pattern.

Taking the above points into consideration, a suitable choice
for the i-th output layer neuron’s activation is a softmax, given by

aLi =
exp (−ντi)

∑

i′ exp (−ντi′)
, (5)

where ν is a scale parameter controlling the sharpness of the
distribution, i′ indexes each output neuron, 1 ≤ i′ ≤ c, and
τi′ is the first firing time of neuron i′. If a neuron i′ fails to fire
any spike, then it is assumed τi′ → ∞. The set of activations
can be interpreted as a conditional probability distribution over
the predicted class labels. A natural choice of cost function using
softmax activation is the cross-entropy, given by

C(y, aL) = −
∑

i

yi log a
L
i , (6)

where y ∈ R
c is a c-dimensional target activation vector of

the network, associated with the presented input pattern, and
aL ∈ R

NL is the vector of output layer neuron activations.
Since we are concerned with a classification problem a one-hot
encoding scheme is used to describe a target vector, such that all
components of y are set to zero except for the one corresponding
to the pattern class. For example, if a dataset were comprised of
three input pattern classes, then patterns belonging to the second
class would be associated with y = (0, 1, 0). Hence, using this
coding strategy, and using y to denote the index of the target class
label, Equation (6) reduces to

C(y, aL) = − log aLy , (7)

where aLy now denotes the activation of the single output neuron
corresponding to the correct class. The above choices of cost
and activation functions is inspired by the approach taken in
Mostafa (2017), although here we instead consider LIF neurons
and extend our analysis to include entire spike trains generated
by input and hidden layer neurons.

2.2.3. Error Signal
The technique of backpropagation is applied in order to train
weights within the multilayer network, by minimizing the cross-
entropy loss defined by Equation (7). We begin by taking the
gradient of Equation (7) with respect to the membrane potential
of a neuron i in the final layer, a term which will be useful later:

∂C(y, aL)

∂uLi
= −

∂ log aLy

∂uLi
, (8)

which can be rewritten, using the chain rule, as

∂C(y, aL)

∂uLi
= −

1

aLy

∂aLy

∂uLi
. (9)

Furthermore, the gradient of the neuron’s activation can be
expanded using the chain rule as follows:

∂aLy

∂uLi
=

∂aLy

∂τi

τi

∂uLi
. (10)

Using Equation (5), the first gradient on the RHS of the above can
be solved to provide one of two cases:

∂aLy

∂τi
=

{

aLy (a
L
i − 1) if i = y ,

aLi a
L
y if i 6= y .

(11)

The second gradient on the RHS of Equation (10) is ill-
defined, but can be approximated by making certain assumptions
regarding the neuron’s dynamics close to its firing threshold.
Specifically, for a deterministic LIF neuron it follows that the
gradient of the neuron’s membrane potential must be positive at
its firing threshold when a spike is fired, such that ∂uLi /∂t(τi) >

0. Hence, following Bohte et al. (2002), we make a first order
approximation of uLi for a small region about t = τi, giving rise to

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

the relation δτi = −δuLi /α, where the local gradient is given by
α = ∂uLi /∂t(τi). Taken together, the gradient of the neuron’s first
firing time is approximated by

τi

∂uLi
≈

∂τi(uLi)

∂uLi (t)

∣

∣

∣

∣

uLi =θ

≈ −
1

∂uLi /∂t

∣

∣

∣

∣

t=τi

= −
1

α
, (12)

where for numerical stability reasons α is considered to be a
positive, constant value. For the sake of brevity this constant is set
to unity in the remainder of this analysis, and gives no qualitative
change in the final result. Thus, Equations (9)–(12) are combined
to give one of two possible output neuron error signals:

∂C(y, aL)

∂uLi
=

{

aLi − 1 if i = y ,

aLi if i 6= y ,
(13)

depending on whether the i-th neuron corresponds to the target
label y. Using our earlier notation for the network’s target
activation vector y = (y1, y2, . . . , yc) as used in Equation (6), the
above can be written more compactly as

δLi : =
∂C(y, aL)

∂uLi

: = aLi − yi , (14)

where we define δLi to be the error signal due to the i-th neuron
in the final layer.

2.2.4. Output Weight Updates
We apply gradient descent to Equation (7) with respect to final
layer weights, such that the weight between the i-th output
neuron and j-th previous layer, hidden neuron is modified
according to

1wL
ij = −η

∂C(y, aL)

∂wL
ij

, (15)

where η > 0 is the learning rate. The second term on the RHS is
expanded using the chain rule to give

∂C(y, aL)

∂wL
ij

=
∂C(y, aL)

∂uLi

∂uLi (t)

∂wL
ij

∣

∣

∣

∣

t=τi

, (16)

where the gradient of the output neuron’s membrane potential is
evaluated at the time of its first spike. The first gradient term on
the RHS of this equation corresponds to the neuron’s error signal,
as provided by Equation (14), hence the above can be rewritten as

∂C(y, aL)

∂wL
ij

= δLi
∂uLi (t)

∂wL
ij

∣

∣

∣

∣

t=τi

. (17)

Using the definition of the neuron’s membrane potential given by
Equation (4), and neglecting the contribution due to refractory

effects which is valid for sufficiently low output firing rates, the
above becomes

1wL
ij = −ηδLi

(

ǫ ∗ SL−1j

)

(τi) , (18)

where the constant α, as introduced by Equation (12), is folded
into η for simplicity. By inspecting each of the terms of the above

equation, we note that the synaptic factor,
(

ǫ ∗ SL−1j

)

(τi), acts as

a correlation trace: capturing the causal contribution of the set
of previous layer firing events from neuron j to the generation of
the first spike fired by output neuron i. Additionally, the term δLi
signals the degree of network error contributed due to this output
spike; hence, this rule works to minimize the network error by
changing the weight in the opposite direction, and proportionate
to these two terms. An example of the above weight update rule
taking place in a simulated SNN is visualized in Figure 1.

Integrated formula. Integrating out the spike train in
Equation (18) gives

1wL
ij = −ηδLi

∑

t
f
j ∈F

L−1
j

ǫ(τi − t
f
j) , (19)

where FL−1
j is used to denote the list of spike times contributed

by the j-th neuron in the previous layer, L− 1.

2.2.5. Hidden Weight Updates
With respect to hidden layer weight updates, gradient descent is
taken on Equation (7) according to

1wL−1
ij = −η

∂C(y, aL)

∂wL−1
ij

, (20)

where the weight update between the i-th hidden neuron in layer
L − 1 and the j-th presynaptic neuron in layer L − 2 is derived.
Hence, using the chain rule, the gradient on the RHS is expanded
as follows:

∂C(y, aL)

∂wL−1
ij

=
∑

k∈Ŵi,L−1

∂C(y, aL)

∂uL
k

∂uL
k
(t)

∂wL−1
ij

∣

∣

∣

∣

t=τk

=
∑

k∈Ŵi,L−1

δLk

∂uL
k
(t)

∂wL−1
ij

∣

∣

∣

∣

t=τk

, (21)

where Ŵi,L−1 denotes the immediate set of neural successors of
neuron i in layer L − 1, or the set of output layer neurons,
and having used the identity of the output error signal given
by Equation (14). Using Equation (4), the gradient of the K-th
membrane potential becomes

∂uL
k
(t)

∂wL−1
ij

∣

∣

∣

∣

t=τk

= wL
ki

∂

∂wL−1
ij

(

ǫ ∗ SL−1i

)

(τk)

= wL
ki

(

ǫ ∗
∂SL−1i

∂wL−1
ij

)

(τk) , (22)

Frontiers in Computational Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 1 | Example of the weight update process with respect to the output layer, l = L, of a multilayer SNN, according to Equation (18). (Top) The left panel shows

the membrane potential of an excited presynaptic neuron j in the second-to-last layer, l = L− 1, over a small observation time T (arbitrary units). The vertical lines

indicate the neuron’s firing times, and ϑ its firing threshold. The right panel shows the response of a postsynaptic neuron i in the network’s output layer, which is

stimulated in part by neuron j. (Bottom) The left panel shows the PSP evoked due to neuron j. The first output spike fired by neuron i is indicated by the green dotted

line. Hence, as shown in the right panel, the magnitude of the weight change between neurons j and i is proportional to the value of the PSP at the moment neuron i

fires its first spike. In this example the output neuron does not correspond to the class of the input pattern, therefore the direction of the weight change is negative to

discourage early spiking.

where we neglect the contribution from the refractory term.
Evaluating the gradient of a spike train poses a challenge given
its discontinuous nature when generated by LIF neurons. One
approach to resolving this might instead just consider the
first spike contributed by hidden layer neurons, as used for
SpikeProp (Bohte et al., 2002), although this loses information
about neural firing frequency and typically requires the addition
of multiple subconnections with the next layer to support
sufficient downstream activation. There have been extensions of
SpikeProp to allow for multiple spikes in the hidden layers (Booij
and Nguyen, 2005; Ghosh-Dastidar and Adeli, 2009), although
these methods rely on small learning rates and constrained
weight gradients to allow for convergence. To circumvent this
issue, we treat hidden layer neurons as being probabilistic in
order to provide smoother gradients (Gardner et al., 2015).
Specifically, we introduce stochastic spike generation for hidden
neurons using the Escape Noise model (Gerstner et al., 2014).
By this mechanism, hidden neuron firing events are distributed
according to an inhomogeneous Poisson process with a time-
dependent rate parameter that is a function of the neuron’s
membrane potential: ρ l

i(t) = g(uli(t)). This can be interpreted

as the neuron’s instantaneous firing rate, or firing density, where
the probability of the neuron firing a spike over an infinitesimal
time window δt is given by ρ l

i(t)δt. Here we take an exponential
dependence of the firing density on the distance between the
neuron’s membrane potential and threshold (Gerstner et al.,
2014):

g(uli(t)) = ρ0 exp

(

uli(t)− ϑ

1u

)

, (23)

where ρ0 = 0.01ms−1 is the instantaneous rate at threshold, and
1u = 1mV controls the variability of generated spikes. Hence,
following our previous method in Gardner et al. (2015), we can
substitute the gradient of the spike train in Equation (22) with the
gradient of its expected value, conditioned on spike trains in the
previous layer of the network, such that

∂SL−1i (t)

∂wL−1
ij

→

∂

〈

SL−1i (t)
〉

SL−1i |{SL−2j }

∂wL−1
ij

. (24)

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

If we also condition the expected spike train on the neuron’s most
recently fired spike, t̂i < t, then we can express Equation (24)
as the gradient of the instantaneous value of the spike train,
distributed according to its firing density (Frémaux et al., 2013):

∂

〈

SL−1i (t)
〉

SL−1i |{SL−2j },t̂i

∂wL−1
ij

=
∂

∂wL−1
ij

∑

q∈{0,δ(t)}

q(t)ρL−1
i (t|{SL−2j }, t̂i)

= δD(t − t̂)
∂ρL−1

i (t|{SL−2j }, t̂i)

∂wL−1
ij

, (25)

where δD(t− t̂) is the Dirac-delta function centered on somemost
recent spike time t̂. Using Equations (4) and (23), and denoting
“|{SL−2j }, t̂i” as “|L− 2, i” for brevity, we obtain

∂

〈

SL−1i (t)
〉

SL−1i |L−2,i

∂wL−1
ij

=
1

1u
δD(t − t̂)ρL−1

i (t|L− 2, i)
(

ǫ ∗ SL−2j

)

(t)

=
1

1u

〈

SL−1i (t)
(

ǫ ∗ SL−2j

)

(t)
〉

SL−1i |L−2,i
.

(26)

We can estimate the expected value of the spike train’s gradient
through samples generated by the network during simulations,
hence the above can be approximated as

∂

〈

SL−1i (t)
〉

SL−1i |L−2,i

∂wL−1
ij

≈
1

1u
SL−1i (t)

(

ǫ ∗ SL−2j

)

(t) . (27)

Combining Equations (22), (24), and (27) provides an estimate
for the gradient of the k-th output neuron’s membrane potential,
evaluated at the time of its first fired spike:

∂uL
k
(t)

∂wL−1
ij

∣

∣

∣

∣

t=τk

=
1

1u
wL
ki

(

ǫ ∗
[

SL−1i

(

ǫ ∗ SL−2j

)])

(τk) . (28)

Hence, combining the above with Equations (20) and (21) gives
the second-last layer weight update rule:

1wL−1
ij = −

η

1u

∑

k∈Ŵi,L−1

δLkw
L
ki

(

ǫ ∗
[

SL−1i

(

ǫ ∗ SL−2j

)])

(τk) .

(29)
From examining the terms in the above equation, we note that the

double convolution term,
(

ǫ ∗
[

SL−1i

(

ǫ ∗ SL−2j

)])

(τk), captures

the correlation between sequences of spikes fired by neurons
i and j in layers L − 1 and L − 2, respectively. Furthermore,
this correlation trace is evaluated at the moment of an output
neuron k generating its first spike, τk, thereby signifying the joint
contribution of these upstream layer neurons in supporting this
final layer response. Similarly to Equation (18), this correlation
term is combined with the resulting error signal due to output
neuron k, but additionally summed over all output error signals
in order to obtain the total contribution to the network error;

as part of this summation, each weight value wL
ki

takes into
account whether this upstream activity elicits either an excitatory
or inhibitory effect on the corresponding downstream response.
Hence, the weight wL−1

ij is changed in the opposite direction

to these summed terms, according to the gradient descent
procedure. For a visualization of this process, an example of a
weight update taking place between the input and hidden layers
of an SNN containing a single hidden layer is shown in Figure 2.

Integrated formula. Integrating out the spike trains in
Equation (29) gives

1wL−1
ij = −

η

1u

∑

k∈Ŵi,L−1

δLkw
L
ki

∑

t
f
i ∈F

L−1
i

ǫ(τk−t
f
i)

∑

t
g
j ∈F

L−2
j

ǫ(t
f
i−t

g
j) ,

(30)
where FL−1

i and F
L−2
j are the list of spike times from neurons i

and j in layers L − 1 and L − 2, respectively. The weight update
formulae described by Equations (19) and (30) determine the
supervised learning process of our first-to-spike neural classifier
rule, as applied to multilayer SNNs containing a single hidden
layer of stochastic neurons. The above procedure is not restricted
to SNNs containing one hidden layer, however: as demonstrated
in the Supplementary Material, it is also possible to extend this
approach to networks containing more than one hidden layer.

2.3. Temporal Encoding
For demonstrative purposes, this article studies the performance
of the proposed multilayer learning rule as applied to a selection
of benchmark classification datasets. To this end, it was necessary
to first convert input features into spike-based representations:
to be conveyed by the input layer of an SNN for downstream
processing. Therefore, we made use of three distinct encoding
strategies to achieve this, including: latency-based, receptive
fields and scanline encoding. An overview of each strategy is
described as follows.

2.3.1. Latency Encoding
A straightforwardmeans to forming a temporal representation of
an input feature is to signal its intensity based on the latency of
a spike. Specifically, if we consider an encoding LIF neuron that
is injected with a fixed input current, then the time taken for it
to respond with a spike can be determined as a function of the
current’s intensity: by interpreting the feature’s value as a current,
it is therefore possible for it to be mapped to a unique firing time.
For an encoding LIF neuron i with a fixed firing threshold that
only receives a constant current Ii, its first response time is given
by (Gerstner and Kistler, 2002):

t1i =

{

τm log
(

RIi
RIi−ϑ

)

if RIi > ϑ ,

∞ otherwise ,
(31)

where we use the same parameter selections for τm and ϑ as used
in section 2.1, and the resistance is set to R = 4M�. In terms of
relating feature values to current intensities, we take one of two
different approaches. In the first approach we arbitrarily associate
each feature value with a unique intensity value, which is ideally
suited to the case where features are limited to a small number of

Frontiers in Computational Neuroscience | www.frontiersin.org 7 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 2 | Example of the weight update process with respect to a hidden layer, l = L− 1, of a multilayer SNN, according to Equation (29). (Top) The left panel

shows the spike train of a presynaptic neuron j in the first layer, l = L− 2, observed over time T (arbitrary units). As shown in the middle panel, a postsynaptic neuron i

in layer l = L− 1 receives this input spike, among others, and responds by firing a sequence of hidden spikes. The right panel shows the response of all output

neurons in the network, each of which are stimulated in part by neuron i. (Bottom) The left panel shows the PSP evoked by input neuron j at its postsynaptic target i.

The red dotted lines indicate the firing times of i, which capture input-to-hidden spike correlations as shown in the middle panel. Since the first hidden spike occurs

before the input spike, this spike makes no contribution to the input-hidden correlation. The middle panel also indicates the first firing times of all neurons in the output

layer, marked by the magenta (first output to respond) and green dotted lines. The values of the input-hidden correlation trace at these two moments are used to

inform the candidate weight change between input and hidden neurons j and i, as shown in the right panel. In this example, the output neuron corresponding to the

correct class label (magenta) is the first to fire a spike, as desired. The hidden neuron i projects positive- and negative-valued synaptic weights to the magenta and

green output neurons, respectively, hence this translates into a positive change in wL−1
ij at each moment.

discrete values. In the second approach, and in the case where
features take real values, we devise a more direct association;
specifically, each value xi belonging to a feature vector x is
normalized to fall within the unit range before being scaled by a
factor Imax, providing the current intensity Ii. The specific choice
of Imax used depends on the studied dataset. Regardless of the
approach we take, and in order to maintain a tight distribution
of early spike arrivals, we disregard spikes with timings >9ms by
setting them to infinity.

2.3.2. Receptive Fields
An alternative, population-based approach to encoding real-
valued variables relies on the concept of receptive fields. This
biologically-inspired strategy describes a type of rank-order
code (Thorpe et al., 2001), whereby each encoding neuron is
constrained to fire at most one spike in response to presented
input values. In the context of SNNs, a method has been
described by Bohte et al. (2002) which involves setting up a
population of neurons with overlapping, graded response curves
which are individually sensitive to a certain subset of values an
encoded feature can take. Typically, a Gaussian-shaped response

curve (or receptive field) is assumed, where an early (late) spike
fired by a neuron corresponds to strong (weak) overlap with
its encoded feature. For the datasets that are encoded in this
way, we assign q neurons with Gaussian receptive fields to each
feature. For the i-th feature, with values existing in the range
[xmin

i , . . . , xmax
i], its encoding neural fields are centered according

to xmin
i + (2j− 3)/2 · (xmax

i − xmin
i)/(q− 2), for encoder indices

1 ≤ j ≤ q, and using the width parameter σi = 2/3 · (xmax
i −

xmin
i)/(q−2) (Bohte et al., 2002). Hence, a data sample consisting
of nf features results in a matrix of first-layer neural activations:

a1 ∈ R
nf×q, with values in the range (0, 1). As in Bohte et al.

(2002), these activations are then mapped to a matrix of single
spike time encodings according to t1 = 10 · (1−a1), where values
>9 are discarded since they are deemed insufficiently activated.
For the datasets transformed by receptive fields in this article,
we used a different number of encoding neurons to give the
best performance.

2.3.3. Scanline Encoding
A promising strategy for transforming visual data into spike
patterns is to apply “scanline encoding,” a technique that has

Frontiers in Computational Neuroscience | www.frontiersin.org 8 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

been described in Lin et al. (2018). Scanline encoding is a method
inspired by human saccadic eye movements, and works to detect
object edges within images when scanned across multiple line
projections; when an increase in pixel intensity is detected along
one of these scanlines, an associated, encoding spike is generated.
The efficiency of this method derives from its subsampling of
image pixels using a limited number of scanlines, as well as its
invariance to small, local image distortions; in this way, it is
possible to perform dimensionality reduction on images with
spatial redundancy. There are several ways in which scanline
encoding can be implemented, and the specific approach taken
by Lin et al. (2018) represents just one possible choice. In general,
the first step involves setting up a number of scanlines with
certain orientations that are fixed with respect to all training and
test images; ideally, the directions of these scanlines should be
selected to capture the most informative pixels, as determined
through preliminary parameter sweeps. The next step is to then
preprocess the images by reading the values of pixels along these
directions. In Lin et al. (2018), these scanlines are additionally
split into several segments, where each segment maps to a
channel that injects spikes into an SNN: if a contrast shift is
detected anywhere along one of these segments, then a repeating
spike train is generated for the corresponding channel. Although
using segmented-scanlines provided the authors with a test
accuracy of 96.4% on MNIST, a large number of neurons was
required to encode the images in this way and the significance of
individual spike timings was disregarded.

In our approach we wish to fully utilize the timings of
individual spikes to maintain sparse image representations, and
also to avoid artificially segmenting scanlines in the first instance.
To this end, we modify the spike generation process by instead
interpreting the read-in pixel values underneath each line as a
series of sequentially-occurring current stimulus values. Hence,
if we assume these values are injected over some duration to an
encoding LIF neuron, then we arrive at a sequence of precisely-
timed spikes representing each scanline. In terms of parameter
selection, the encoding LIF neurons are designed to be relatively
fast responders: with their membrane time constants set to 3ms.
The resistance of each neuron is set to R = 10M �, with a
firing threshold of just one millivolt to elicit a rapid response.
Immediately after firing a spike an encoding neuron’s membrane
potential is reset to 0mV, and the neuron is forced to remain
quiescent for 1ms. With respect to the scanlines, we first decide
on a number ns according to the experimental design. Each
scanline is then setup as follows. First, the orientation of each
line is selected according to a uniform distribution over the
range [0,π). Each line is then set to intercept through a position
that is normally-distributed about the image center, where the
scale parameter of this distribution is a quarter of the image
width. These scanlines remain fixed across all training and test
images. Hence, when an image is encoded, the pixels lying
underneath a scanline are injected as current stimulus values
into a corresponding LIF encoder, after first normalizing pixels
to exist in the unit range. Pixels are always scanned-in from the
bottom of an image upwards, over a duration of 9ms. An example
of this encoding strategy is illustrated in Figure 3.

2.4. Network Structure
In all of the experiments we considered fully-connected,
feedforward SNNs containing a single hidden layer of spiking
neurons, such that L = 3. Data samples presented to a network
were encoded by the collective firing activity of input layer
neurons, according to one of the temporal encoding strategies
described above; hidden layer neurons were free to perform
computations on these input patterns, and learn features useful
for downstream processing. Neurons in the last, or output, layer
of a network were tasked with forming class predictions on these
data samples according to a first-to-spike mechanism, where the
predicted class label was determined according to which one
of Nl=3 = c output neurons was the first to respond with
an output spike. The number of neurons implemented in the
input and hidden layers, N1 and N2, respectively, depended on
the type of input data and the run experiment, although we
generally aimed to design a minimalistic setup for efficiency
reasons. As described in section 2.2, stochastic and deterministic
SRM0 neurons were simulated in the hidden and output layers,
respectively, and, unless otherwise stated, all neurons within a
layer shared the same cellular parameters. For all experiments,
the internal simulation time step was set to δt = 0.1ms.

In terms of network connections, we initialized hidden and
output weights to drive the initial firing rates of neurons to
approximately one spike in response to presented data samples.
Initial weight values were drawn from a uniform distribution, as
detailed in the description of each experiment. Unless otherwise
stated, each pre- and post-synaptic neuron pair had a single
connection with no conduction delay in spike propagation.

2.5. Synaptic Plasticity
Synaptic weights projecting onto the hidden and output layers
of multilayer SNNs were modified during training via a
combination of synaptic plasticity rules, while subject to certain
constraints. This process is described in detail as follows.

2.5.1. Learning Procedure
During training, data samples were presented to a network
iteratively as mini-batches, where computed weight gradients
were accumulated over individual samples before actually being
applied at the end of eachmini-batch; this procedure was selected
in order to reduce the variance of weight changes in a network to
provide smoother convergence, as well as to obtain more reliable
estimates of network activity as needed for regularization. The
order in which data samples were assigned as mini-batches was
random, and, unless otherwise specified, the number of samples
in each batch was 150. Furthermore, weight gradients were only
computed after observing the entire response of a network when
stimulated by a data sample, which in most cases was completed
after duration T = 40ms given input spikes arriving within
10ms of pattern onset. Hence, if the network was presented with
a data sample described by an input vector x and a one-hot
encoded class label y, then, after applying a suitable temporal
encoding strategy, a synaptic weight gradient in the l-th layer was

Frontiers in Computational Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 3 | Example of an MNIST digit being transformed into five spike trains using “scanline encoders.” In this case, the orientations of the scanlines were randomly

predetermined, and pixel intensities lying underneath each line were read-in working from the bottom upwards over 9 ms. Encoder 4 (purple line) overlapped the digit

for the longest duration, thereby prompting the highest number of encoding spikes, whereas encoder 2 (green line) did not cross any part of the digit, and therefore

resulted in no spikes.

determined as

1wl
ij = −η

(

∂C(y, aL)

∂wl
ij

+ λ(Sli)− γ (Sli)

)

, (32)

where the first term in brackets on the RHS is the gradient
of the cost function, which is evaluated following the steps
of Equations (15) or (20) for the output and hidden layers,
respectively. The second term, λ(Sli), is a regularization function
which depends on the postsynaptic neuron’s firing activity, and
the final term, γ (Sli), is a synaptic scaling function. These two
functions are defined as follows.

2.5.2. Regularization Term
As a means to encourage network generalization we enforced
an L2 penalty term with respect to hidden and output layer
weight gradients during training. Additionally, we also included
a factor penalizing high neuronal firing rates: a strategy that
has been demonstrated in Zenke and Ganguli (2018) to provide
increased network stability as well as boosted performance. The
regularization term is defined by

λ(Sli) = λ0w
l
ijζ (S

l
i) , (33)

where λ0 is a scaling factor that is optimized for each experiment

and the function ζ (Sli) =
[

∫ T
t=0 S

l
i(t)dt

]2
is an activity-dependent

penalty term that depends on the number of spikes fired by a
neuron i in layer l. Since data samples were iteratively presented
to the network, and the observation period T was set sufficiently
large, integrating over a spike train accurately reflected a neuron’s
firing rate. Through preliminary simulations we found that
selecting an exponent greater than one with respect to the
dependence of ζ on a neuron’s firing rate gave the best results,
consistent with that found in Zenke and Ganguli (2018).

2.5.3. Synaptic Scaling Term
It was necessary to include a synaptic scaling term as part of
the weight gradient computation in order to sustain at least a
minimum of activity in the network during training. This is
because the weight update formulae described by Equations (18)
and (29) both depend on presynaptic spikes in order to compute
output and hidden weight gradients, which would result in non-
convergent learning if no spikes could be acted upon. Adapting
the synaptic scaling rule described in our previous work (Gardner
et al., 2015), as well as taking inspiration from the scaling
procedure used in Mostafa (2017), we define the synaptic scaling
term as follows:

γ (Sli) =

{

γ0|w
l
ij| if

∫ T
t=0 S

l
i(t)dt = 0 ,

0 otherwise ,
(34)

where γ0 = 0.1 is a scaling parameter. From a biological
perspective, synaptic scaling can be interpreted as a homoeostatic
learning factor that assists withmaintaining desired activity levels
(van Rossum et al., 2000).

2.5.4. Learning Schedule
The learning procedure used to compute weight gradients,
defined by Equation (32), was accumulated over all data
samples assigned to a mini-batch before weights were actually
updated in a trained network. However, rather than directly
using these computed gradients, we took the additional step of
applying synapse-specific, adaptive learning rates to modulate
the magnitude of the weight updates. As found in Zenke and
Ganguli (2018), and through preliminary simulations, we found
that a technique referred to as RMSProp (Hinton et al., 2012)
was more effective in providing convergent performance than
applying a global, non-adaptive learning rate, and proved less
sensitive to the experimental design. Specifically, an accumulated

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

weight gradient 1wl
ij, as determined using Equation (32), was

used to inform a weight update via RMSProp according to

wl
ij ← wl

ij +
η0

√

ml
ij + ε

1wl
ij

ml
ij ← βml

ij + (1− β)
(

1wl
ij

)2
, (35)

where η0 > 0 is a constant coefficient that was specific to each
experiment, ml

ij is an auxiliary variable that keeps track of the

recent weight gradient magnitudes, ε = 1× 10−8 is a small offset
that was included for numerical stability and β = 0.9 is a decay
factor. The initial value ofml

ij was taken to be zero. Additionally,

weights were constrained to a range, wl
ij ∈ [wmin,wmax], in order

to prevent overlearning during training. The weight limits were
specific to each of the studied experiments.

3. RESULTS

3.1. Solving the XOR Task
As a first step in assessing the performance of the first-to-spike
multilayer classifier, we tested its ability to classify data samples
that were linearly non-separable. A classic benchmark for this is
the exclusive-or (XOR) classification task, a non-trivial problem
for which a hidden layer of spiking neurons is indicated to be
necessary for its solution (Grüning and Sporea, 2012; Gardner
et al., 2015).

An XOR computation takes as its input two binary-valued
input variables, and maps them to a single binary target output
in the following way: {0, 0} → 0, {0, 1} → 1, {1, 0} → 1, and
{1, 1} → 0, where 1 and 0 correspond to Boolean True and
False, respectively. To make this scheme compatible with SNN
processing, we first transformed the input values into spike-based
representations using an appropriate temporal encoding strategy.
In this case, each binary value was encoded by the latency of an
input spike, such that values of 1 and 0 corresponded to early and
late spike timings, respectively. For simplicity, we selected the
associated current intensities, as defined by Equation (31), such
that an input value of 1 resulted in a spike latency of 0ms, and an
input value of 0 resulted in a spike latency of 6ms. Furthermore,
in order to make the task non-trivial to solve, and to allow the
network to discriminate between input patterns presenting both
True or False values, we also included an input bias neuron
that always fired a spike at 0ms to signal pattern onset (Bohte
et al., 2002). Hence, as illustrated in Figure 4A, we setup an
SNN which contained three input neurons (one bias and two
encoders), five hidden neurons and two output neurons to signal
the two possible class labels (True/False). At the start of each
experiment run, hidden and output weights were initialized by
drawing their values from uniform distributions over the ranges:
[0, 16] and [0, 6.4], respectively. The softmax scale parameter
defining output activations was set to ν = 2. In terms of network
training, results were gathered from runs lasting 500 epochs,
where each epoch corresponded to the presentation of all four
input patterns. Regularization was not required on this task, so
we set λ0 = 0. The RMSProp coefficient was set to η0 = 0.5, and

throughout training hidden and output weights were constrained
between [−30, 30].

As shown in Figure 4B, the network was successful in learning
the XOR task: reaching a final training loss of 0.02± 0.01 as
obtained from 100 independent runs [error reported as standard
error of the mean (SEM)]. This reflected a final classification
accuracy of 99.8± 0.2%, which didn’t reach precisely 100% due
to the stochastic nature of hidden layer spike generation. In terms
of the final weight distributions of the network (Figures 4C,D),
systematic trends were observed for certain connections in the
hidden and output layers. With respect to the hidden layer,
incoming connections received from the encoder neurons were
widely distributed, with just over 70% being excitatory. By
comparison, the bias neuron tended to project positively-skewed
weights, with almost 90% being excitatory; the relatively large
fraction of excitatory connections indicated its role in sustaining
hidden layer activity, irrespective of the input pattern statistics.
With respect to the final distribution of output layer weights,
the False- and True-signaling neurons differed from each other
by assuming a greater proportion of weight values saturating
toward their lower and upper limits, respectively. The result of
this distribution was to suppress the erroneous output neuron
until the desired one received sufficient input activation to fire;
this process can be inferred from the spike rasters depicted in
Figure 5, showing the hidden and output layer responses of a
post-trained network when presented with each of the four input
patterns. For example, when presented with patterns labeled as
“False” the output neuron signaling “True” responded with a
small number of delayed spikes, whereas the correct neuron
promptly responded with multiple, rapid spikes.

3.2. Classifying the Iris and Wisconsin
Datasets
A key determinant of a classifier system’s performance is its
ability to generalize from training data to previously unseen
test samples. In order to assess the generalization ability of the
proposed learning rule we applied it to classifying two benchmark
datasets: Iris and Wisconsin.

The Iris dataset (Fisher, 1936) presents a multi-class
classification problem, containing 150 data samples evenly split
between three different classes: two of which are not linearly
separable from each other. Each sample is described by four real-
valued features measuring some of the attributes of three types
of Iris flower. The Wisconsin breast cancer dataset (Wolberg
and Mangasarian, 1990) is a binary classification problem,
containing 699 samples split between two different classes. Each
sample consists of nine discrete-valued features measuring the
likelihood of malignancy based on their intensity, and is labeled
as either benign or malignant. We note that of these 699 original
samples 16 contained missing values, which we discarded to
provide a revised total of 683. In terms of our strategy for
transforming these two datasets into spike-based representations,
we followed the approach of Bohte et al. (2002); specifically,
Gaussian receptive fields were applied as a means to converting
the input features into first-layer spike latencies, resulting in
spike-timings distributed between 0 and 9ms (see section 2.3).

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 4 | Solving the XOR computation in a multilayer SNN using first-to-spike decoding. (A) Network setup: consisting of three, five, and two neurons in the input,

hidden and output layers, respectively. Input patterns were encoded by the latencies of spikes in the input layer, and their class labels were predicted based on which

one of the two output neurons was the first to respond with a spike. (B) Network loss as a function of the number of training epochs, averaged over 100 independent

runs. The loss is defined as the cross-entropy, given by Equation (6), and is taken as the average value with respect to all of training samples per epoch. The units of

loss is measured in nats. The shaded region shows the standard deviation. (C) Post-training hidden layer weight distributions. This panel breaks down the overall

distribution of hidden weights into two components: one with respect to connections projecting from the input bias neuron, and the other due to input encoder

neurons. The shaded width corresponds to the probability density of weights. (D) Post-training output layer weight distributions. This panel shows the distribution of

output weights with respect to connections projecting from the hidden layer onto False- or True-signaling output neurons.

For Iris, consisting of nf = 4 features, we assigned a population of
q = 12 input neurons to encode each feature, resulting in a total
input layer size N1 = 48. For Wisconsin, with nf = 9 features, a
population of q = 7 neurons per feature was assigned, resulting
in N1 = 63 input neurons. As usual, one output neuron was
assigned to each input class, and for both Iris and Wisconsin we
implemented a hidden layer size of 20. Hence, the SNN structures
were described by 48 × 20 × 3 and 63 × 20 × 2 for Iris and
Wisconsin, respectively. At the start of each experimental run for
Iris and Wisconsin, output weights were initialized with values
drawn from a uniform distribution over [0, 2]. Hidden weights
were initialized according to uniform distributions over [0, 4] and
[0, 2.2] for Iris and Wisconsin, respectively. For both datasets the
softmax scale parameter of Equation (5) was set to ν = 2. With
respect to network training, stratified three-fold cross-validation
was used to obtain more accurate estimates for the network
performance. Data samples were presented to the network as
mini-batches, and one epoch of training corresponded to a

complete sweep over all unique training samples presented in this
way. The regularization parameter was set to λ0 = 10−3 and the
RMSProp coefficient: η0 = 0.1. In all cases, hidden and output
weights were constrained to values in the range [−15, 15].

For both Iris and Wisconsin the trained SNNs demonstrated
success in fitting the data (Figures 6A,B), with final training
accuracies of 99.88± 0.04 and 98.04± 0.04% after 100 epochs,
respectively. In terms of their generalization to test data, it
was necessary to impose early-stopping to prevent overfitting.
From multiple runs of the experiment, we determined the ideal
training cut-off points to be approximately 30 and 6 epochs for
Iris and Wisconsin, respectively. Since the number of weight
update iterations/mini-batches per epoch was just one for Iris
and four for Wisconsin, the equivalent number of iterations
to early-stopping were 30 and 24, respectively. From the
networks’ confusion matrices (Figures 6C,D), evaluated at the
point of early-stopping, the test accuracies were 95.2± 0.2 and
97.12± 0.08% for Iris and Wisconsin, respectively. As expected,

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 5 | Spike rasters depicting network activity on the XOR task, with the same setup as in Figure 4, after 200 epochs of training. Each of these four main panels

depicts network activity in response to one of the four possible XOR input patterns, where the associated class label is indicated as either “True” or “False.” Each main

panel consists of three subplots: the top and middle subplots correspond to input and hidden spike patterns, respectively, where vertical lines indicate spikes. The

bottom subplot displays the output layer voltage traces, where firing times are indicated by sharp discontinuities in these traces. Of the two output neurons, the first

(blue trace) signals the class label “False,” and the second (green trace) signals “True.” In this example, all of the input patterns were correctly identified.

the matrix for Iris indicated the relative challenge in separating
the latter two, linearly non-separable classes. Furthermore, and
as desired, the incidence of null predictions formed by the trained
networks was kept to a minimum; in most cases a null prediction
corresponded to a lack of firing activity in the network, typically
preventing weight gradient computations, however this issue was
mitigated by the addition of synaptic scaling in order to drive
sufficient neuronal activation.

For comparison purposes, we also evaluated the performance
of shallow multilayer perceptrons (MLPs) on these two datasets
using the Python package Scikit-Learn (Pedregosa et al., 2011):
containing the same number of hidden and output layer
neurons as the corresponding SNNs, but instead four and nine
input neurons to represent standardized Iris and Wisconsin
features, respectively. Hence, using logistic hidden activations
and minimizing cross-entropy loss via the “adam” adaptive
learning procedure, the resulting MLP test accuracies were
95.9± 0.2 and 97.0± 0.1% for Iris and Wisconsin, respectively,
on par with our first-to-spike classifiermodel. TheMLP classifiers
were trained for amaximumof 1,600 epochs, and results averaged

from 40 repetitions of stratified three-fold cross-validation. The
number of epochs required for convergence were around 1,000
and 100 for Iris andWisconsin, respectively. By comparison with
existing spike-based learning algorithms, our test accuracies are
competitive: falling within 1% of several reported in the literature
(Bohte et al., 2002; Sporea and Grüning, 2013; Tavanaei and
Maida, 2019) but achieved in a fewer number of epochs.

In terms of the dynamics of our first-to-spike model, the
spiking activity of the SNNs in response to selected data samples
from the two datasets, upon early-stopping during training,
is shown in Figure 7. It is clear for each of the presented
samples that input spikes were confined to the first 10ms, which
prompted phasic activity in the hidden layer. With respect to the
Iris samples (Figure 7A), the network formed rapid, and correct
first-spike responses in the output layer: in this case within just
10ms. Due to the parameterization of the learning rule, firing
responses generated by the remaining neurons in the output
layer were not completely eliminated: since these other neurons
fired with sufficiently delayed onset, their resulting contribution
to the output error signals used to inform weight updates were

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 6 | Training multilayer SNNs to classify the Iris and Wisconsin datasets using first-to-spike decoding. Iris and Wisconsin contain three and two pattern

classes, respectively, with associated network structures: 48× 20× 3 and 63× 20× 2. (A,B) Evolution of the average training/test loss of the network on the two

datasets, where the shaded region indicates the standard deviation. The vertical dashed line in each panel indicates the point at which early-stopping was applied,

corresponding to the minimum recorded value in the test loss. Early-stopping was taken at 30 and 6 epochs for Iris and Wisconsin, respectively, which is equivalent to

30 and 24 (weight update) iterations. These results were obtained from 40 independent runs. (C,D) Confusion matrices of the SNNs, post-training on Iris (C) and

Wisconsin (D). The values report the percentage test accuracy, evaluated at the moment when early-stopping was applied. Iris data samples belonging to classes

labeled “1” and “2” are linearly non-separable from each other, and for Wisconsin the labels “0” and “1” correspond to “benign” and “malignant,” respectively. The null

symbol, φ, indicates that no clear prediction was formed by the network, being a consequence of either no output spiking or more than one output neuron sharing the

same first spike response time (within the time resolution, δt).

minimal. This behavior was encouraged, given that it minimized
data overfitting and prevented unstable dynamics arising due to
competition between the backpropagation and synaptic scaling
components of the learning rule (c.f. Equation 32). As with
Iris, the network generated desired, rapid first-spike responses
in the output layer when responding to Wisconsin data samples
(Figure 7B). In this example the Wisconsin-trained network
formed correct predictions on the two selected samples, and
interestingly a ramp-up in both hidden and output layer activity
was observed for the malignant-labeled sample in order to shift
the desired first-spike response earlier.

3.3. Sensitivity to the Learning Schedule
The previous experiments have demonstrated the performance
of the first-to-spike classifier rule using optimal parameter
selections of the learning coefficient η0, used as part of the
definition of RMSProp (see Equation 35). The sensitivity of

the rule to its learning schedule is an important consideration
regarding its versatility and application to unfamiliar data,
therefore we tested its robustness when swept over a wide range
of η0 values.

As the test case we used the Iris dataset, with the same
temporal encoding procedure and network setup as described in
the previous section. As previously, stratified three-fold cross-
validation was used to estimate the test loss during training.
The regularization parameter was set to λ0 = 10−3, and
weights were constrained to values between [−15, 15]. Each
epoch corresponded to one iterative weight update procedure,
using a mini-batch size of 100. The network was trained for a
total of 150 epochs for each η0 selection, where at the end of each
run we identified the minimum value in the recorded test loss
and its associated number of epochs. The minimum number of
epochs was determined by finding the first point at which the
average test loss fell within 1% of its lowest value, and its error

Frontiers in Computational Neuroscience | www.frontiersin.org 14 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 7 | Spike rasters depicting network activity in response to selected Iris and Wisconsin data samples, corresponding to the experiment in Figure 6 for

networks trained with early-stopping applied. (A) The left and right main panels depict typical network responses to Iris samples belonging to the first and last classes,

respectively. Both panels show spiking activity in the input, hidden and output layers of a trained network. (B) The left and right main panels depict network responses

to benign (class id: 0) and malignant (class id: 1) Wisconsin samples, respectively. For both (A,B) desired first-spike responses in the output layer were observed,

resulting in correct input classifications.

was estimated based on themargin from falling within 10% of the
lowest value.

The minimum test loss attained, including the associated
number of training epochs, is shown in Figure 8 for selections
of η0 between 10−2 and 101. From these results, it follows that
a learning coefficient with a value of around 10−1 provided a
reasonable trade-off between network performance and learning
speed: larger η0 values returned sub-optimal test loss minima,
while smaller values led to an exponential increase in the

training time with little change in the performance. Extended
parameter sweeps also indicated similar behavior with respect to
the Wisconsin dataset as the test case. For these reasons we were
motivated to select an optimal value of η0 = 10−1 for both Iris
and Wisconsin.

These observations support our selection of RMSProp, as
opposed to a fixed learning rate which demonstrated greater
sensitivity to its parameter choice. In addition to the above,
we found that RMSProp’s learning coefficient exhibited a

Frontiers in Computational Neuroscience | www.frontiersin.org 15 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 8 | Parameter sweep over the RMSProp learning coefficient η0, evaluated for an SNN trained on Iris with the same network structure and training procedure

as in Figure 6. (A) Minimum recorded test loss as a function of η0, taken as the median value, where error bars indicate the SEM. (B) The associated number of

training epochs needed to reach the minimum test loss. These results were gathered from 20 independent runs.

dependence on the number of input synapses per network layer,
such that more optimal performance was attained by adjusting
η0 proportional to 1/Nl. This was used to inform our choice of η0
used for the MNIST dataset.

3.4. Classifying MNIST: Latency Encoding
The MNIST dataset of handwritten digits (LeCun et al.,
1998) is commonly used to benchmark a classifier system’s
performance, owing to the relatively high structural complexity
of the data and the large number of training and test samples.
Although this problem is largely solved using deep convolutional
neural networks, MNIST still poses a challenge to solve using
spike-based computational approaches. For this reason, we
apply our first-to-spike classifier rule to solving MNIST in
order to get an indication of its potential for real world
data classification.

MNIST consists of 60 and 10k training and test samples,
respectively, where each sample corresponds to a 28 × 28, 8-
bit grayscale image depicting a handwritten digit between 0 and
9. In order to make these real-valued images compatible with
spike-based processing we applied a latency encoding strategy:
forming a one-one association between each input pixel and
an encoding LIF neuron. In this way, each image, consisting
of 784 pixels, was transformed into 784 single-spike latencies
presented by the first layer of a multilayer SNN. Specifically, and
as described in section 2.3, the pixel values were transformed
into current intensities using the scaling factor Imax = 20 nA,
resulting in the following pixel-to-latency mapping: [84, 256] 7→
[9, 2]ms, where pixel values less than 84 were insufficient to
elicit an encoded response. In terms of network structure, the
simulated SNNs consisted of 784 × N2 × 10 neurons, where the
number of hidden neurons, N2, was varied, and the number of
output neurons was matched to the 10 digit classes. According
to the first-to-spike decoding strategy, the first output neuron
to respond with a spike predicted the input sample’s class. The

network weights were initialized by drawing hidden and output
values from uniform distributions over the ranges: [0, 0.4] and
[0, 32/N2], respectively. The softmax scale parameter was set to
ν = 4 in order to tighten the conditional probability distribution
of class label predictions formed by the output layer: this choice
was supported by preliminary simulations, where it was found
to boost the discriminative power of the SNN when handling a
larger number of input classes. In terms of network training, at
the start of each run 600 of the MNIST training samples were
set aside in a stratified manner for validation. The remaining
training samples were then iteratively presented to the network
as mini-batches, with a total of 4,000 iterations. To get an
indication of the network’s performance during training the loss
on the validation data was computed every 20 iterations. The
regularization parameter and RMSProp coefficient were set to
λ0 = 10−4 and η0 = 0.01, respectively. Throughout training,
all weights were constrained to values in the range [−2, 2] to
avoid overfitting.

As shown by Figure 9, the trained SNNs were capable of
generalizing from the MNIST training samples to the withheld
test samples, with a highest recorded test accuracy of 89.4± 0.4%
for a network containing 160 hidden layer neurons. With
the given selection of regularization parameters and weight
constraints, model overfitting was minimized and smooth
convergence was observed within the maximum number of
training iterations (Figure 9A). Moreover, as the hidden layer
size was increased, a speedup in the learning rate became
apparent. As indicated by Figure 9B, the accuracy of the network
approached an asymptotic value of just under 90% when
containing up to 160 neurons. The confusion matrix depicted
in Figure 9C corresponds to a network containing 160 neurons,
and provides some insight into the robustness of network
classifications with respect to each of the presented MNIST test
digits. As expected, digits “zero” and “one” were least challenging
for the network to identify by virtue of their distinctive features,

Frontiers in Computational Neuroscience | www.frontiersin.org 16 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 9 | Multilayer SNNs trained on the MNIST dataset, using a latency encoding strategy to transform pixels into single, precisely-timed input spikes. (A) Network

loss as a function of the number of training iterations, evaluated using a validation set. Each curve corresponds to a different number of hidden layer neurons, N2, from

between 10 (lightest color) and 160 (darkest color). (B) The final accuracy of the network after 4,000 training iterations, as evaluated on the 10 k test samples. (C)

Confusion matrix of an SNN containing 160 hidden neurons, as evaluated on the test samples at the end of training. Values <1% are not indicated. These results were

averaged from 10 independent runs.

whereas the digit “five,” for example, tended to share a greater
feature overlap with several other digits, making it somewhat
more difficult to discriminate. Furthermore, in the event of a
digit not being recognized by the network there was a tendency
toward a null prediction (no output spikes) being returned
rather than an erroneous digit; technically this is a preferable

outcome, since it reduces the likelihood of false-positives by
the network.

In summary, the first-to-spike classifier rule has demonstrated
generalization capability on the MNIST dataset to a reasonable
degree of accuracy. Although the best performing shallow MLP,
containing 800 hidden units, is capable of 98.4% accuracy

Frontiers in Computational Neuroscience | www.frontiersin.org 17 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

(Simard et al., 2003), MNIST presents more of a challenge with
spike-based implementations. Despite not reaching a level that
is state-of-the-art, our accuracy nevertheless approaches that
obtained by another probabilistic, spike-based formulation that
achieved around 92% accuracy (Neftci et al., 2014). We also
indicate that the results reported here do not reflect an upper
bound on the classifier’s MNIST performance, and with further
parameter tuning and feature preprocessing further accuracy
gains would be expected; as demonstrated by Mostafa (2017)
and Kheradpisheh and Masquelier (2020), it is possible to attain
high accuracies of around 97% using a first-to-spike decoding
scheme, although currently this comes with the caveat of only
considering single spike responses of hidden neurons. For
simplicity, this experiment considered a straightforward one-one
mapping between each input pixel and encoding neuron in order
to transform the data, although such a scheme is computationally
prohibitive for spike-based processing and fails to fully exploit
the precise timings of individual spikes. Utilizing a fully temporal
encoding strategy presents the next challenge, and is addressed in
the following section.

3.5. Classifying MNIST: Scanline Encoding
So far, the technical capability of the first-to-spike classifier rule
has been demonstrated on MNIST when encoded using a one-
one association between input pixels and single-spike latencies.
This encoding strategy is somewhat simplistic, however, and fails
to take full advantage of the precise timings of multiple spikes
as a means to perform dimensionality reduction on the data. To
address this we consider an alternative encoding strategy, termed
scanline encoding, that extends on the work of Lin et al. (2018),
and enables more compact feature representations of the MNIST
digits using substantially fewer encoding neurons.

In order to transform the real-valued features of MNIST
into sequences of precisely-timed spikes, we applied the scanline
encoding strategy as described in 2.3. In summary, at the start
of each simulation run we implemented a variable number
of scanlines, ns, ranging between 8 and 64. Each of these
scanlines had an arbitrarily determined orientation, independent
of the others, and was constrained to intersect through a point
close to the center of the image space. For the duration of
each run these scanlines were held fixed, and in response to
each presented sample a scanline read-in its sequence of input
pixels and returned a time-varying current; this current in
turn acted as the stimulus for an encoding LIF neuron in the
first layer of an SNN, driving a spike train response (Figure 3
illustrates this scanning process for an example image). Hence,
the strategy we employed here was capable of transforming high-
dimensional images into compact spatiotemporal spike patterns,
whilst still retaining characteristics of their spatial organization.
With respect to the network structure, SNNs consisting of
N1 × N2 × 10 neurons were simulated, where the number of
input neurons was matched to the number of scanlines used,
N1 = ns, and the number of hidden neurons N2 was varied.
As previously, the number of output neurons was matched
to the 10 different digit classes of MNIST, and first-to-spike
decoding was used to classify the data samples. In terms of
network connections, two distinct modeling approaches were

considered regarding input-to-hidden layer spike propagation:
“delayless” and “delayed.” In the delayless case, spikes were
instantaneously transmitted from input to hidden neurons, as
has been implemented so far for all the previous experiments.
In the delayed case, however, spikes transmitted from input
to hidden neurons were subject to propagation delay: ranging
from between 1 and 10ms, rounded to the nearest millisecond.
At the start of each experimental run, these propagation, or
conduction, delays were randomly drawn from a uniform
distribution for each input-to-hidden connection, and held fixed
thereafter. In all cases hidden-to-output layer spike conduction
was delayless. The purpose of simulating conduction delays was
to determine if this could assist a network in linking early/late
spike arrival times arising from scanline-encoded digits. With
respect to weight initialization, hidden and output weights were
initialized according to uniform distributions with values ranging
between [0, 40/N1] and [0, 32/N2], respectively. The softmax
scale parameter was set to ν = 4. For each run, a network was
trained and validated in a similar way to the latency encoding
experiment: 600 MNIST training samples were set aside for
validation every 20th iteration, and the remaining samples were
iteratively presented as mini-batches for 1,600 iterations. The
regularization parameter and RMSProp coefficient were set to
λ0 = 10−4 and η0 = 0.05, respectively. All of the network
weights were constrained to values in the range [−6, 6].

Shown in Figure 10 are results obtained from trained SNNs,
with and without conduction delays between the input and
hidden layers, for scanline-encoded MNIST samples. It can be
seen that in all cases the trained networks converged in learning
within the maximum 1,600 iterations, with an additional small
speedup as the number of hidden neurons was increased from
10 to 160 (Figures 10A,B). It is also apparent that the inclusion
of conduction delays reduced the final loss values, enabling the
network to approach the same values as reported for latency-
encodedMNIST (compare with Figure 9A). In terms of the post-
training performance on the withheld test samples, the highest
attained accuracies were 76± 6% and 87± 2% for delayless and
delayed networks, respectively, as evaluated using 160 hidden
neurons and between 32 and 64 scanlines (Figures 10C,D). From
the gathered results, there was diminishing returns in the final
test accuracy as the number of neurons and scanlines were
increased beyond 160 and 32, respectively. Comparatively, the
test accuracy returned by the best performing network with
conduction delays fell within just 3% of that obtained based on
a latency encoding strategy, but with the advantage of using an
order of magnitude fewer input neurons.

The confusion matrix of a post-trained 32 × 160 × 10
network with conduction delays, as evaluated on the withheld
MNIST test samples, is depicted in Figure 11. These results
correspond to a high performing case from Figure 10. As
expected, the network demonstrated the least difficulty in
recognizing the digits “zero” and “one,” closely followed by
“six.” However, the network tended to confuse the digits “four”
and “nine” with relatively high frequency, owing to their
closer similarities. By comparison with the confusion matrix
from Figure 9C, the overall percentage of null predictions by
the networks for both encoding strategies were consistent.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 10 | Multilayer SNNs, with or without input-to-hidden layer spike-propagation (conduction) delays, trained on the MNIST dataset. Scanline encoding was

used to transform images into compact spatiotemporal spike patterns. (A,B) Network losses for 32 scanlines as a function of the number of training iterations,

evaluated using a validation set. (A,B) Correspond to “delayless” and “delayed” networks, respectively: referring to the inclusion of conduction delays between the

input and hidden layers. For each panel, the curve color corresponds to a certain number of hidden layer neurons, N2: from between 10 (lightest color) and 160

(darkest color). (C,D) The final accuracies of the network after 1,600 training iterations, as evaluated on the 10k test samples. (C,D) Correspond to delayless and

delayed networks, respectively. These results were averaged from 10 independent runs.

Despite this, networks utilizing scanline encoding gave rise
to more variable predictions between experiment runs: the
coefficients of variation with respect to correct predictions
was 0.08± 0.03 and 0.02± 0.01 for scanline- and latency-
based encoding, respectively; this discrepancy was attributed
to the random selection of scanline orientations between runs,
whereas latency-based representations of the same input samples
remained fixed.

For illustrative purposes, an example of a scanline-encoded
digit and the response it elicited in a post-trained SNN is shown
in Figure 12. A sample of the digit “one,” which was withheld
during network training, was transformed into sequences of
precisely-timed spikes, and represented by the first layer of
neurons in a minimal 32×40×10 network with input-to-hidden
layer conduction delays. In this example, the network correctly
identified the input sample by driving the corresponding output

neuron to respond first with a spike. As indicated by Figure 12A,
most of the feature space was covered by the 32 scanlines: an
increase in this number resulted in diminishing returns, relating
to feature redundancy. In terms of the spike raster subplots in
Figure 12B, there is a relatively large offset in the emergence
of hidden spiking with respect to the onset of input spikes,
whereas there is a large degree of overlap between hidden-and-
output spiking. This reflects the delayed propagation of input-to-
hidden spikes, but which affords the network time to link early
and late input spikes in order to inform its final decision. The
activity of neurons in the output layer tended to be greater than
that observed with the other datasets (compare with Figure 7),
indicative of the increased complexity in learning to discriminate
between a larger number of classes with more feature overlap.

To summarize, this section has demonstrated a novel
methodology to training SNNs on MNIST that are more

Frontiers in Computational Neuroscience | www.frontiersin.org 19 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

FIGURE 11 | Confusion matrix of an SNNs with input-to-hidden layer conduction delays, after 1,600 training iteration on MNIST encoded using 32 scanlines. This

was evaluated on the withheld test samples. The network contained 160 hidden neurons. Values <1% are not indicated. These results were averaged from 10

independent runs.

FIGURE 12 | Illustration of the encoding and subsequent classification of the MNIST digit “one” based on scanlines. In this example, the digit is first transformed into

spike trains via scanline encoding, before being processed by a previously trained SNN containing 40 hidden neurons and input-to-hidden layer conduction delays.

(A) The 32 scanlines encoding the digit “one” (red lines). (B) Spike raster of the network’s response to the encoded digit. The top, middle, and bottom subplots

correspond to input, hidden and output spike patterns, respectively. In this case, the first neuron to respond with a spike (indicated by the blue arrow) corresponds to

the desired class label, resulting in a correct classification.

Frontiers in Computational Neuroscience | www.frontiersin.org 20 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

constrained in their size, and yet more efficient in terms of their
spike-based processing. This has been realized by the application
of scanline encoding: a feature preprocessing method that can
transform high dimensional images into compact spatiotemporal
spike patterns. In particular, the results obtained using this
method provided a test accuracy of almost 90%: close to
what we obtained for the more computationally expensive one-
one encoding scheme. Relying more on the precise timings of
individual spikes for data classification massively reduces the
number of encoding neurons required, and could find important
applications in constrained network architectures, for example
in neuromorphic systems like Heidelberg’s HICANN-DLS device
(Friedmann et al., 2017). It is expected that the performance
of this method could be improved upon by making scanline
encoding more domain specific: for example by optimizing
scanline orientations prior to network training, rather than
setting them arbitrarily. Our choice of a random initialization,
however, indicates the potential in transferring this method to
unfamiliar problem domains.

4. DISCUSSION

In this article we have introduced a new supervised approach
to training multilayer spiking neural networks, using a first-
to-spike decoding strategy, with the proposed learning rule
capable of providing robust performance on several benchmark
classification datasets. The learning rule extends on our previous
formulation in Gardner et al. (2015) by redefining the network’s
cost function to depend on the distribution of first spike
arrival times in the output layer, rather than entire spike
trains, and specifying the target signal according to which
one of c output neurons should be driven to fire first; this
redefinition of the cost function is particularly advantageous
for data classification purposes since it places much less of a
constraint on the network’s parameters during training, thereby
avoiding overfitting of the data. Furthermore, restricting our
focus to just first-spike arrival times in the output layer has
allowed us to largely reduce the runtime of simulations: an
important consideration when taking into account the relatively
high computational cost in simulating spike-based models.
Based on first-to-spike decoding, pattern classification was rapid:
with predictions in some cases made within just 10ms of
pattern onset. Such a decoding strategy has similarly been used
to good effect in Mostafa (2017), Bagheri et al. (2018), and
Kheradpisheh and Masquelier (2020), and moreover avoids the
ambiguity of decision making based on comparisons between
entire target and actual output spike trains as used in Bohte
et al. (2002), Florian (2012), Sporea and Grüning (2013), and
Gardner et al. (2015). We highlight the novel, hybrid nature
of our learning model: which implements both deterministic,
LIF-type output neurons for more reliable network responses,
and stochastic hidden layer neurons that should aid with
its regularization.

The formulation of our learning rule combines several
different techniques, as found in Bohte et al. (2002), Pfister
et al. (2006), Gardner et al. (2015), and Mostafa (2017). As

our first step, we selected the network’s cost function as the
cross-entropy, dependent on the distribution of first-spike arrival
times in the output layer, and set the target signal according to the
index of the neuron associated with the correct class (Mostafa,
2017). Subsequently, and in order to apply the technique of
spike-based backpropagation, we estimated the gradients of
deterministically-generated output firing times by following the
linear approximation used in Bohte et al. (2002); our choice here
wasmotivated by simplicity reasons, since only single, first-spikes
in the output layer were required for parameter optimization.
We then applied our previously described probabilistic method
to solving hidden layer spike gradients for stochastic neurons
(Gardner et al., 2015), which supports multiple firing times and
is analytically tractable (Pfister et al., 2006). Our decision to
combine first-to-spike decoding with probabilistic, multi-spike
trains was chiefly driven by the novelty of this approach; by
comparison, other first-to-spike multilayer learning algorithms
have sacrificed full sequences of hidden spikes and selected
simplified neuron models in order to establish backpropagation
rules which can be applied recursively for deep learning purposes
(Mostafa, 2017; Kheradpisheh and Masquelier, 2020). Although
our choice of increased complexity comes at a performance cost
on the more challenging MNIST dataset, we still indicated the
merits of our approach when implemented using a constrained
network architecture, which has potential application for low-
energy neuromorphic processing tasks.

In terms of the considered experiments, we first demonstrated
the learning rule to be capable of solving the non-trivial XOR
classification task: establishing its ability to classify linearly
non-separable data, for which a hidden layer is required.
Subsequently, the rule was found to be highly accurate in
classifying more challenging data samples belonging to the Iris
and Wisconsin datasets, and for which two of the Iris classes are
linearly non-separable. In particular, we found that implementing
the RMSProp learning schedule (Hinton et al., 2012) made the
network less sensitive to the choice of learning coefficient η0,
suggesting it as an effectivemechanism tominimizing the process
of parameter fine-tuning; this in turn increased the flexibility
of the rule as applied to different datasets. Additionally, we
found in general that regularizing the network by penalizing
high neuronal firing rates resulted in improved generalization
ability and accuracy, confirming the observations of Zenke and
Ganguli (2018). Suppressing high firing rates also reduced the
number of computational operations in the run simulations,
since fewer hidden spikes were integrated over when computing
the iterative weight updates, thereby enabling a large speedup in
runtime. With respect to the rule’s performance on MNIST, the
test accuracy didn’t reach state-of-the art: with our rule achieving
around 90%. It is noted, however, that attaining high accuracy
on MNIST, including other structurally complex datasets such
as Fashion-MNIST and ImageNET (Deng et al., 2009; Xiao
et al., 2017), via spike-based processing still poses more of a
challenge compared with traditional ANN approaches. Many
existing spike-based supervised learning methods have achieved
accuracies ranging between 90 and almost 99% on MNIST,
with the highest levels relating to deeper SNN architectures
and convolutional filtering optimized for image processing tasks

Frontiers in Computational Neuroscience | www.frontiersin.org 21 April 2021 | Volume 15 | Article 617862

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

(O’Connor et al., 2013; Neftci et al., 2014; Diehl et al., 2015;
Lee et al., 2016; Mostafa, 2017; Tavanaei and Maida, 2019;
Kheradpisheh and Masquelier, 2020; Zenke and Vogels, 2020).
In our approach, we tested minimal SNN architectures with
their flexibility and transferability to constrained neuromorphic
hardware platforms such as HICANN-DLS (Friedmann et al.,
2017) in mind. Intriguingly, however, we found that our rule
was still capable of achieving almost 90% accuracy on MNIST
when using our novel scanline encoding method, as inspired by
Lin et al. (2018), and relying on as little as 32 encoding input
neurons. We also note that these results represent a lower bound
on what is achievable using our learning method: with model
refinement in the form of extended hyper-parameter fine-tuning
and deeper network architectures, it is expected that the final
accuracies could be further increased.

We note that learning in recurrent SNN architectures is
emerging as an active focus of research, and recent work
has managed to achieve high performance on a challenging
phoneme recognition task based on spiking computations
with state-holding behavior (Bellec et al., 2020). This work
introduced the e-prop learning algorithm for recurrent SNNs,
and approximates backpropagation through time (BPTT) by
modulating local, candidate weight changes with top-down
learning signals in order to efficiently learn temporal processing
tasks; BPTT refers to the typical process by which a recurrent
network is trained, and involves “unrolling” the network into
an equivalent feedforward one for the purposes of determining
the gradients at each time step. Potentially, the learning
rule we proposed here might be extended to work with
recurrent network structures: for instance by combining BPTT
with our weight-gradient calculations for hidden neurons,
but using a simplified approximation of these gradients, or
pseudo-gradients, for analytical tractability. This would be an
interesting challenge to address, and might indicate a role
for first-to-spike decoding in the context of learning sequence
classification tasks.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The code and examples of our implementation
are available on GitHub at https://github.com/BCGardner/snn-
classifier. The datasets analyzed in this article are accessible
from https://archive.ics.uci.edu and http://yann.lecun.com/exdb/
mnist.

AUTHOR CONTRIBUTIONS

BG and AG conceptualized the study, developed the
theoretical formalism, planned the experiments, and analyzed
the results. BG wrote the software and carried out the
experiments. BG wrote the article in consultation with AG.
All authors contributed to the article and approved the
submitted version.

FUNDING

This research has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreement No. 785907
(Human Brain Project SGA2).

ACKNOWLEDGMENTS

This article has been released as a preprint at: https://arxiv.org/
(Gardner and Grüning, 2020).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2021.617862/full#supplementary-material

REFERENCES

Albers, C., Westkott, M., and Pawelzik, K. (2016). Learning of precise
spike times with homeostatic membrane potential dependent
synaptic plasticity. PLoS ONE 11:e0148948. doi: 10.1371/journal.pone.
0148948

Bagheri, A., Simeone, O., and Rajendran, B. (2018). “Training probabilistic spiking
neural networks with first-to-spike decoding,” in 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) (Calgary:
IEEE), 2986–2990. doi: 10.1109/ICASSP.2018.8462410

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.
(2020). A solution to the learning dilemma for recurrent networks of spiking
neurons. Nat. Commun. 11:3625. doi: 10.1038/s41467-020-17236-y

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic
strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.
doi: 10.1523/JNEUROSCI.18-24-10464.1998

Bohte, S. M., Kok, J. N., and Poutré, H. L. (2002). Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing 48, 17–37.
doi: 10.1016/S0925-2312(01)00658-0

Booij, O., and Nguyen, H. T. (2005). A gradient descent rule for spiking
neurons emitting multiple spikes. Inform. Process. Lett. 95, 552–558.
doi: 10.1016/j.ipl.2005.05.023

Brea, J., Senn, W., and Pfister, J.-P. (2013). Matching recall and storage in
sequence learning with spiking neural networks. J. Neurosci. 33, 9565–9575.
doi: 10.1523/JNEUROSCI.4098-12.2013

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).
“ImageNet: a large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL: IEEE), 248–255.
doi: 10.1109/CVPR.2009.5206848

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015). “Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN),
(Killarney: IEEE), 1–8. doi: 10.1109/IJCNN.2015.7280696

Fisher, R. A. (1936). The use of multiple measurements in taxonomic
problems. Ann. Eugen. 7, 179–188. doi: 10.1111/j.1469-1809.1936.tb
02137.x

Florian, R. V. (2012). The chronotron: a neuron that learns to fire temporally
precise spike patterns. PLoS ONE 7:e40233. doi: 10.1371/journal.pone.
0040233

Frontiers in Computational Neuroscience | www.frontiersin.org 22 April 2021 | Volume 15 | Article 617862

https://github.com/BCGardner/snn-classifier
https://github.com/BCGardner/snn-classifier
https://archive.ics.uci.edu
http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://arxiv.org/
https://www.frontiersin.org/articles/10.3389/fncom.2021.617862/full#supplementary-material
https://doi.org/10.1371/journal.pone.0148948
https://doi.org/10.1109/ICASSP.2018.8462410
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1016/j.ipl.2005.05.023
https://doi.org/10.1523/JNEUROSCI.4098-12.2013
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1371/journal.pone.0040233
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

Frémaux, N., Sprekeler, H., and Gerstner, W. (2013). Reinforcement learning using
a continuous time actor-critic framework with spiking neurons. PLoS Comput.

Biol. 9:e1003024. doi: 10.1371/journal.pcbi.1003024
Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier, K. (2017).

Demonstrating hybrid learning in a flexible neuromorphic hardware system.
IEEE Trans. Biomed. Circ. Syst. 11, 128–142. doi: 10.1109/TBCAS.2016.2579164

Gardner, B., and Grüning, A. (2016). Supervised learning in spiking
neural networks for precise temporal encoding. PLoS ONE 11:e0161335.
doi: 10.1371/journal.pone.0161335

Gardner, B., and Grüning, A. (2020). Supervised learning with first-to-
spike decoding in multilayer spiking neural networks. arXiv [preprint].

arXiv:2008.06937.
Gardner, B., Sporea, I., andGrüning, A. (2015). Learning spatiotemporally encoded

pattern transformations in structured spiking neural networks.Neural Comput.
27, 2548–2586. doi: 10.1162/NECO_a_00790

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge: Cambridge University Press.
doi: 10.1017/CBO9780511815706

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9781107447615

Ghosh-Dastidar, S., and Adeli, H. (2009). A new supervised learning algorithm
for multiple spiking neural networks with application in epilepsy and seizure
detection. Neural Netw. 22, 1419–1431. doi: 10.1016/j.neunet.2009.04.003

Gollisch, T., andMeister, M. (2008). Rapid neural coding in the retina with relative
spike latencies. Science 319, 1108–1111. doi: 10.1126/science.1149639

Grüning, A., and Bohte, S. M. (2014). “Spiking neural networks: principles and
challenges,” in Proceedings of the 22nd European Symposium on Artificial Neural

Networks (ESANN 2014). Computational Intelligence and Machine Learning

(Bruges: ESANN).
Grüning, A., and Sporea, I. (2012). Supervised learning of logical operations in

layered spiking neural networks with spike train encoding.Neural Process. Lett.
36, 117–134. doi: 10.1007/s11063-012-9225-1

Gütig, R. (2014). To spike, or when to spike? Curr. Opin. Neurobiol. 25, 134–139.
doi: 10.1016/j.conb.2014.01.004

Gütig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns
spike timing-based decisions. Nat. Neurosci. 9, 420–428. doi: 10.1038/
nn1643

Gütig, R., and Sompolinsky, H. (2009). Time-warp-invariant neuronal processing.
PLoS Biol. 7:e1000141. doi: 10.1371/journal.pbio.1000141

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neural Networks for Machine

Learning. Coursera, video lectures.
Hung, C. P., Kreiman, G., Poggio, T., and DiCarlo, J. J. (2005). Fast readout of

object identity from macaque inferior temporal cortex. Science 310, 863–866.
doi: 10.1126/science.1117593

Jang, H., Simeone, O., Gardner, B., and Gruning, A. (2019). An introduction
to probabilistic spiking neural networks: probabilistic models,
learning rules, and applications. IEEE Signal Process. Mag. 36, 64–77.
doi: 10.1109/MSP.2019.2935234

Jang, H., Skatchkovsky, N., and Simeone, O. (2020). VOWEL: A local online
learning rule for recurrent networks of probabilistic spiking winner-take-all
circuits. arXiv [preprint]. arXiv:2004.09416.

Jimenez Rezende, D., and Gerstner, W. (2014). Stochastic variational
learning in recurrent spiking networks. Front. Comput. Neurosci. 8:38.
doi: 10.3389/fncom.2014.00038

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T.
(2018). STDP-based spiking deep convolutional neural networks for
object recognition. Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.
12.005

Kheradpisheh, S. R., and Masquelier, T. (2020). S4NN: Temporal backpropagation
for spiking neural networks with one spike per neuron. Int. J. Neural Syst.
30:2050027. doi: 10.1142/S0129065720500276

Kiani, R., Esteky, H., and Tanaka, K. (2005). Differences in onset latency of
macaque inferotemporal neural responses to primate and non-primate faces.
J. Neurophysiol. 94, 1587–1596. doi: 10.1152/jn.00540.2004

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proc. IEEE 86, 2278–2324.
doi: 10.1109/5.726791

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking
neural networks using backpropagation. Front. Neurosci. 10:508.
doi: 10.3389/fnins.2016.00508

Lin, C.-K., Wild, A., Chinya, G. N., Cao, Y., Davies, M., Lavery, D. M., et al. (2018).
Programming spiking neural networks on Intel92s Loihi. Computer 51, 52–61.
doi: 10.1109/MC.2018.157113521

Maass,W., Natschläger, T., andMarkram, H. (2002). Real-time computing without
stable states: a new framework for neural computation based on perturbations.
Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760407955

Memmesheimer, R.-M., Rubin, R., Ölveczky, B. P., and Sompolinsky,
H. (2014). Learning precisely timed spikes. Neuron 82, 925–938.
doi: 10.1016/j.neuron.2014.03.026

Mohemmed, A., Schliebs, S., Matsuda, S., and Kasabov, N. (2012). SPAN: spike
pattern association neuron for learning spatio-temporal spike patterns. Int. J.
Neural Syst. 22:1250012. doi: 10.1142/S0129065712500128

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models
of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Mostafa, H. (2017). Supervised learning based on temporal coding in spiking
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.
doi: 10.1109/TNNLS.2017.2726060

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014).
Event-driven contrastive divergence for spiking neuromorphic systems. Front.
Neurosci. 7:272. doi: 10.3389/fnins.2013.00272

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning
in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag. 36,
51–63. doi: 10.1109/MSP.2019.2931595

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830. Available online at: http://jmlr.org/papers/v12/pedregosa11a.html

Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006). Optimal
spike-timing-dependent plasticity for precise action potential firing in
supervised learning. Neural Comput. 18, 1318–1348. doi: 10.1162/neco.2006.1
8.6.1318

Ponulak, F., and Kasiński, A. (2010). Supervised learning in spiking neural
networks with ReSuMe: sequence learning, classification, and spike shifting.
Neural Comput. 22, 467–510. doi: 10.1162/neco.2009.11-08-901

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). “Best practices for
convolutional neural networks applied to visual document analysis,” in
International Conference on Document Analysis and Recognition (ICDAR), Vol.
2 (Edinburgh: IEEE), 958. doi: 10.1109/ICDAR.2003.1227801

Sporea, I., andGrüning, A. (2013). Supervised learning inmultilayer spiking neural
networks. Neural Comput. 25, 473–509. doi: 10.1162/NECO_a_00396

Tavanaei, A., and Maida, A. (2019). BP-STDP: approximating backpropagation
using spike timing dependent plasticity. Neurocomputing 330, 39–47.
doi: 10.1016/j.neucom.2018.11.014

Thorpe, S., Delorme, A., and Van Rullen, R. (2001). Spike-based strategies for rapid
processing. Neural Netw. 14, 715–725. doi: 10.1016/S0893-6080(01)00083-1

Urbanczik, R., and Senn, W. (2009). A gradient learning rule for the tempotron.
Neural Comput. 21, 340–352. doi: 10.1162/neco.2008.09-07-605

van Rossum, M. C., Bi, G. Q., and Turrigiano, G. G. (2000). Stable Hebbian
learning from spike timing-dependent plasticity. J. Neurosci. 20, 8812–8821.
doi: 10.1523/JNEUROSCI.20-23-08812.2000

VanRullen, R., Guyonneau, R., and Thorpe, S. J. (2005). Spike times make sense.
Trends Neurosci. 28, 1–4. doi: 10.1016/j.tins.2004.10.010

Wolberg, W. H., and Mangasarian, O. L. (1990). Multisurface method of pattern
separation for medical diagnosis applied to breast cytology. Proc. Natl. Acad.
Sci. U.S.A. 87, 9193–9196. doi: 10.1073/pnas.87.23.9193

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms. arXiv [preprint].

arXiv:1708.07747.
Yu, Q., Tang, H., Tan, K. C., and Li, H. (2013). Precise-spike-driven synaptic

plasticity: Learning hetero-association of spatiotemporal spike patterns. PLoS
ONE 8:e78318. doi: 10.1371/journal.pone.0078318

Frontiers in Computational Neuroscience | www.frontiersin.org 23 April 2021 | Volume 15 | Article 617862

https://doi.org/10.1371/journal.pcbi.1003024
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1371/journal.pone.0161335
https://doi.org/10.1162/NECO_a_00790
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1016/j.neunet.2009.04.003
https://doi.org/10.1126/science.1149639
https://doi.org/10.1007/s11063-012-9225-1
https://doi.org/10.1016/j.conb.2014.01.004
https://doi.org/10.1038/nn1643
https://doi.org/10.1371/journal.pbio.1000141
https://doi.org/10.1126/science.1117593
https://doi.org/10.1109/MSP.2019.2935234
https://doi.org/10.3389/fncom.2014.00038
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1152/jn.00540.2004
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/MC.2018.157113521
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.neuron.2014.03.026
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2013.00178
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1162/neco.2006.18.6.1318
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1162/NECO_a_00396
https://doi.org/10.1016/j.neucom.2018.11.014
https://doi.org/10.1016/S0893-6080(01)00083-1
https://doi.org/10.1162/neco.2008.09-07-605
https://doi.org/10.1523/JNEUROSCI.20-23-08812.2000
https://doi.org/10.1016/j.tins.2004.10.010
https://doi.org/10.1073/pnas.87.23.9193
https://doi.org/10.1371/journal.pone.0078318
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Gardner and Grüning First-to-Spike Decoding in SNNs

Zenke, F., and Ganguli, S. (2018). Superspike: Supervised learning in
multilayer spiking neural networks. Neural Comput. 30, 1514–1541.
doi: 10.1162/neco_a_01086

Zenke, F., and Vogels, T. P. (2020). The remarkable robustness of surrogate
gradient learning for instilling complex function in spiking neural networks.
bioRxiv. doi: 10.1101/2020.06.29.176925

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer SBF declared a past collaboration with one of the authors AG to the
handling Editor.

Copyright © 2021 Gardner and Grüning. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 24 April 2021 | Volume 15 | Article 617862

https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1101/2020.06.29.176925
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks
	1. Introduction
	2. Materials and Methods
	2.1. Neuron Model
	2.2. Learning Rule
	2.2.1. Notation
	2.2.2. Cost Function
	2.2.3. Error Signal
	2.2.4. Output Weight Updates
	2.2.5. Hidden Weight Updates

	2.3. Temporal Encoding
	2.3.1. Latency Encoding
	2.3.2. Receptive Fields
	2.3.3. Scanline Encoding

	2.4. Network Structure
	2.5. Synaptic Plasticity
	2.5.1. Learning Procedure
	2.5.2. Regularization Term
	2.5.3. Synaptic Scaling Term
	2.5.4. Learning Schedule

	3. Results
	3.1. Solving the XOR Task
	3.2. Classifying the Iris and Wisconsin Datasets
	3.3. Sensitivity to the Learning Schedule
	3.4. Classifying MNIST: Latency Encoding
	3.5. Classifying MNIST: Scanline Encoding

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

