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Human not only can effortlessly recognize objects, but also characterize object

categories into semantic concepts with a nested hierarchical structure. One dominant

view is that top-down conceptual guidance is necessary to form such hierarchy. Here

we challenged this idea by examining whether deep convolutional neural networks

(DCNNs) could learn relations among objects purely based on bottom-up perceptual

experience of objects through training for object categorization. Specifically, we explored

representational similarity among objects in a typical DCNN (e.g., AlexNet), and found that

representations of object categories were organized in a hierarchical fashion, suggesting

that the relatedness among objects emerged automatically when learning to recognize

them. Critically, the emerged relatedness of objects in the DCNN was highly similar

to the WordNet in human, implying that top-down conceptual guidance may not be

a prerequisite for human learning the relatedness among objects. In addition, the

developmental trajectory of the relatedness among objects during training revealed that

the hierarchical structure was constructed in a coarse-to-fine fashion, and evolved into

maturity before the establishment of object recognition ability. Finally, the fineness of the

relatedness was greatly shaped by the demand of tasks that the DCNN performed, as

the higher superordinate level of object classification was, the coarser the hierarchical

structure of the relatedness emerged. Taken together, our study provides the first

empirical evidence that semantic relatedness of objects emerged as a by-product of

object recognition in DCNNs, implying that human may acquire semantic knowledge on

objects without explicit top-down conceptual guidance.

Keywords: deep convolutional neural network, semantic relatedness,WordNet, perceptual experience, conceptual

guidance

SIGNIFICANCE

The origin of semantic concepts is in a long-standing debate, where top-down conceptual guidance
is thought necessary to form the hierarchy structure of objects. However, an alternative hypothesis
argues that semantic concepts derive from the perception of natural environments. Here, we
addressed these hypotheses by examining whether deep convolutional neural networks (DCNNs),
which only have abundant perceptual experience of objects, can emerge the semantic relatedness
of objects with no conceptual relation information was provided. We found that in the DCNNs
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representations of objects were organized in a hierarchical
fashion, which was highly similar to WordNet in human. This
finding suggests that top-down conceptual guidance may not be
a prerequisite for human learning the relatedness among objects;
rather, semantic relatedness of objects may emerge from the
perception of visual experiences for object recognition.

INTRODUCTION

Objects in this world are complicated. Variations of objects
(e.g., orientation, size, shape and color) create challenges for
human to flexibly recognize and categorize them (Logothetis
and Sheinberg, 1996). To survive in such difficult and diverse
environments, humans learn to characterize objects into a rich
and nested hierarchical structure, which finally evolves into
semantic concepts (Tanaka, 1996; Yamins et al., 2014). However,
how the hierarchically-structured semantic concepts are formed
is still hotly debated.

Two hypotheses have been proposed. One hypothesis
(Mahon and Caramazza, 2009; Leshinskaya and Caramazza,
2016) suggests that semantic concepts are only formed and
accessed through abstract symbols that are independent of
perceptual experiences. Supporting evidence comes from studies
on congenitally blind people, whose core semantic retrieval
system in the frontal-temporal cortex can still be activated for
retrieving visually-experienced semantic information (Noppeney
et al., 2003; Noppeney, 2007). In addition, functional brain
imaging studies find that supramodal regions in the ventral
temporal occipital cortex (e.g., superior occipital, inferior and
superior parietal areas) are also involved in processing objects
in blind individuals (Lambert et al., 2004; Ricciardi et al., 2014).
Therefore, perceptual experiences seemed not necessary for the
emergence of semantic concepts.

An alternative hypothesis argues that the development
of semantic concepts derives from perception of natural
environments (Sloutsky, 2003; Roy, 2005; Barsalou, 2008). For
example, in a word/no word match-to-sample task, Imai et al.
(1994) decouple taxonomic and perceptual similarity of words,
and find that younger children rely on the visual property of
objects, rather than taxonomic concepts, in response to novel
words. More direct evidence comes from a study on 10-month-
old infants who learn new words by the perceptual salience of an
object rather than social cues provided by the caregivers (Pruden
et al., 2006). That is, perceptual features are needed to form
semantic concepts.

One inevitable limitation of these studies is that perceptual
experiences and conceptual guidance are tightly intermingled
during the development; therefore, it is impossible to examine
one factor with the other controlled. In contrast, the advance of
deep convolutional neural networks (DCNNs) provides a perfect
model to examine how semantic relatedness is formed (Khaligh-
Razavi and Kriegeskorte, 2014; Jozwik et al., 2017; Peterson et al.,
2018). On one hand, DCNNs have abundant visual experiences
on objects, as with the presence of millions of natural images, the
DCNNs learn to extract critical visual features to classify objects
into categories as perfectly as human. On the other hand, during

the training, the relation among object categories is not provided
in the training task or in the supervised feedback. Therefore,
conceptual guidance is completely absent in the DCNNs. With
such characteristics of the DCNNs, here we asked whether
semantic relatedness among object categories was able to emerge
with no top-down conceptual guidance.

To address this question, we used a typical DCNN, AlexNet,
which is designed for classifying objects into 1,000 categories
in ImageNet. Specifically, we first measured whether the
representations of some object categories were more similar than
their relation to others, which formed a hierarchical structure of
object categories as a whole.We reasoned that if a stable and well-
organized hierarchical structure was observed, the hypothesis of
the necessity of conceptual guidance in forming the semantic
relatedness was challenged.

MATERIALS AND METHODS

The ImageNet Dataset
We used the ILSVRC2012 dataset (Russakovsky et al., 2015)
as the image stimulus (http://image-net.org/challenges/LSVRC/
2012/). Both training and validation datasets were used in this
study. The ILSVRC2012 training dataset contains about 1.2
million images with labels from 1,000 categories. The validation
dataset contains 50,000 unduplicated images that belong to the
same 1,000 categories as the training dataset.

Each object category from ILSVRC2012 dataset corresponds
to one semantic concept in the WordNet (Deng et al., 2009).
Semantic concepts are described with multiple words or phrases,
coined as “synonym sets” or “synset” in abbreviation. The synsets
used in the ILSVRC2012 are selected from WordNet, and none
has a parent-child relation with others. All 1,000 synsets have the
same ontology root (i.e., entity) and most of them are subsets of
the superordinate synset of physical entity. Specifically, 3 synsets
belong to abstract entity (e.g., bubble, street sign, and traffic light),
39 synsets belong to matter (e.g., menu), 9 synsets belong to
geological formation (e.g., cliff), 517 synsets belong to artifact
(e.g., abacus), 407 synsets belong to living things (e.g., tench),
and 16 synsets belong to fruits (e.g., strawberry). As shown
in Figure 1A, the 1,000 synsets are organized in a hierarchical
structure based on the WordNet.

Deep Convolutional Neural Networks
(DCNNs)
Six fully-pretrained DCNNs from three DCNN families were
used to examine whether the emergence of semantic relatedness
was a general feature of DCNNs. All DCNNs were pretrained on
ImageNet with 1.2 million images for the classification of 1,000
object categories. The models were downloaded from PyTorch
model Zoo (https://pytorch.org/docs/stable/torchvision/models.
html).

AlexNet

AlexNet consists of 8 layers of computational units stacked into
a hierarchical architecture, with the first 5 convolutional layers
and the last 3 fully-connected layers for category classification.
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FIGURE 1 | (A) The hierarchical structure of 1,000 object categories in the WordNet. All categories were derived from an ontology root (e.g., entity), and most of them

are the subsets of the physical entity. The 1,000 categories cover a wide range of physical objects, making it suitable to study the emerge of object relatedness.

Numerals after each word are the number of categories belonging to this superordinate category. (B) The architecture of AlexNet. The AlexNet includes 8 layers of

computational units stacked into a hierarchical architecture: the first 5 are convolutional layers, and the last 3 layers are fully connected for category classification.

Rectification (ReLU) non-linearity is applied after all layers
except for the last fully-connected layer (Figure 1B).

VGG

Two VGG networks, including VGG11 and VGG19, were used
to examine whether the number of layers was critical for the
emergence of semantic relatedness. VGG11 and VGG19 include
11 and 19 weight layers, respectively, with the first 8 and 16
convolutional layers and the last 3 fully-connected layers. All
hidden layers are equipped with the ReLU non-linearity.

ResNet

Three ResNet, including ResNet18, ResNet50, and ResNet101
were used to examine the effect of residue blocks on the
emergence of semantic relatedness. ResNet18, ResNet50,
and ResNet101 include 18, 50, and 101 weight layers,
respectively, with all convolutional layers except for the last
fully-connected layer. For every two convolutional layers,
a residue block is constructed by inserting a shortcut
connection. ReLU nonlinearity is applied within these
residue blocks.
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The Semantic Similarity of Category in
WordNet
The semantic similarity of the 1,000 object categories was
evaluated by the WordNet 3.0 (Miller, 1995), which is one
of the most popularly-used and largest lexical databases of
English. In WordNet, the lexical hierarchy is connected by
several superordinate synsets in semantic relations, providing a
hierarchical tree-like structure for the 1,000 synsets.

We measured the semantic similarity between each pair of the
1,000 synsets using Wu and Palmer’s similarity (Wu and Palmer,
1994), which computed the similarities between concepts in an
ontology restricted to taxonomic links. This measure is given by:

SimWP(X,Y) =
2N

N1 + N2

Where N1 and N2 are the depth between the concepts X, Y and
the ontology root (i.e., “entity” in WordNet) and N is the depth
between the least common subsume (i.e., most specific ancestor
node) and the ontology root.

Representation Similarity of Categories in
DCNNs
Responses to each image were extracted from all of the
convolutional layers and the last fully-connected layer using
the ILSVRC2012 validation dataset with the DNNBrain toolbox
(Chen et al., 2020) (https://github.com/BNUCNL/dnnbrain). No
ReLU was performed for the responses. Responses of stimulus
from the same category were averaged to make a response
pattern for this category. The category similarity of a layer was
measured as correlations of response patterns between each of
two categories. In addition, correspondence between the category
representational similarity from the DCNNs and the WordNet
semantic similarity was calculated to measure the extent to which
the relatedness of objects in the DCNNs was similar to that
in humans.

The Development of the Relatedness in
DCNNs
To investigate how the hierarchical structure of objects emerged
in the AlexNet, we retrained it from scratch with about 1.2
million images that belong to the 1,000 categories from the
ImageNet training dataset (Deng et al., 2009) using the PyTorch
toolbox (Paszke et al., 2019). The network was trained for 50
epochs, with the initial learning rate as 0.01 and a step multiple
of 0.1 every 15 epochs. The parameters of each model were
optimized using stochastic gradient descent with the momentum
and weight decay was fixed at 0.9 and 0.0005, respectively. Each
input image was transformed by random crop, horizontal flip,
and normalization to improve the training effect of the network.
During the training progression, object classification accuracy
was evaluated in predicting the category of 50,000 images from
the ILSVRC2012 validation dataset in each epoch. In the end,
the top-1 and top-5 accuracies for the AlexNet were 51.0%
and 74.5%.

During the training progression, we input images from the
ILSVRC2012 validation dataset by simply feedforwarding in

each epoch to get the activation responses, and then averaged
responses within each category and computed the similarity
between each pair of categories for the category similarity.
Correspondence between the category similarity from the
AlexNet and the WordNet semantic similarity in each training
stage was measured to evaluate how similar the relatedness of
objects was between the AlexNet and human.

To reveal at which semantic level the category similarity
from the AlexNet showed better correspondence to the
WordNet semantic similarity, the category similarity from
the AlexNet was measured at a coarse level and a fine-
grained level, respectively. In particular, we first manually
selected 19 superordinate concepts (i.e., food, fungus, fish,
bird, amphibian, reptile, mammal, invertebrate, conveyance,
device, container, equipment, implement, furnishing, toiletry,
covering, commodity, structure, and geological formation)
that covered most of the 1,000 categories by referring to the
WordNet hierarchical relationship, then grouped categories
into these superordinate concepts. The coarse-grained
correspondence was measured as the correlation between
the AlexNet category similarity and the WordNet semantic
similarity in 19 superordinate concepts. In turn, the similarity
among superordinate concepts was calculated by averaging
the category representation similarities from each pair of
superordinate concepts. The fine-grained correspondence was
measured as the averaged correspondence between the AlexNet
category similarity and the WordNet semantic similarity within
each superordinate concept.

Effect of Object Co-occurrence to the
Formation of Semantic Relatedness
We examined the effect of object co-occurrence in images on the
emergence of semantic relatedness. To do this, annotations of
object bounding boxes were collected from http://image-net.org/
download-bboxes, which were annotated and verified through
Amazon Mechanical Turk. To match results from the previous
section, bounding boxes of the same 1,000 categories from the
ILSVRC2012 dataset were selected, including 544,546 images and
corresponding bounding boxes from the ILSVRC2012 training
dataset, plus 50,000 images and corresponding bounding boxes
from the ILSVRC2012 validation dataset.

Object bounding boxes provide information to distinguish
objects from the background in each image. Pixels outside the
object bounding boxes in each image were labeled as background,
which was removed by setting to 255 (i.e., white color). In
addition, for images containing multiple object bounding boxes
(i.e., multiple objects), we randomly selected one of the object
bounding boxes from these images, and retained the object
within the box. Taken together, only one single object of an image
remained, excluding the possibility of object co-occurrence as a
source for the emergence of semantic relatedness.

We retrained an AlexNet with these single-object images
using the Pytorch toolbox for 50 epochs. The top-1 and top-
5 accuracies for the single-object AlexNet were 46.7% and
72.0%. Lower prediction accuracy was likely due to fewer images
were used for training. Representational similarity of categories
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in the single-object AlexNet was measured with responses
from the last fully-connected layer, and then compared with
representation similarity of categories in the pre-trained AlexNet.
The developmental trajectory of the single-object AlexNet was
also evaluated in each training stage.

Effect of Task Demands on Semantic
Relatedness
The effect of task demands on semantic relatedness was examined
by re-training AlexNet to classify objects at superordinate levels
(e.g., the living thing vs. artifact) as compared to the original
AlexNet mainly at the basic level (e.g., traffic light, crane).

One superordinate classification occurred at the highest
level of the WordNet: the living thing and the artifact, which
consisted of 958 object categories from the ILSVRC2012
dataset. The other superordinate classification occurred at
an intermediate level, which consisted of 19 superordinate
categories (fungus, fish, bird, amphibian, reptile, canine, primate,

feline, ungulate, invertebrate, conveyance, device, container,
equipment, implement, furnishing, covering, commodity, and
structure). They together consisted of 866 object categories,
which were the subset of the 958 categories contained in
the superordinate categories of living thing and the artifact.
To match the number of object categories, here we used
866 object categories in both superordinate classification
tasks, which included 1,108,643 images from the ILSVRC2012
training dataset and 43,301 images from the ILSVRC2012
validation dataset.

The AlexNet for superordinate classification shared the
identical architecture as the original AlexNet, except that one
extra FC layer was appended to the FC3 layer (i.e., the last
FC layer of the original AlexNet). The extra FC layer was
designated for different superordinate classification tasks, as
the AlexNet for two superordinate categories (AlexNet-Cate2)
had two output units, and the AlexNet for 19 intermediate
categories (AlexNet-Cate19) had 19 output units. Besides, since

FIGURE 2 | The category representational similarity of the AlexNet (A) and the semantic similarity of WordNet hierarchy (B). Categories were ordered according to the

WordNet semantic hierarchy. A simplified hierarchical structure was shown as an indicator of superordinate categories in WordNet semantic similarity. For the ease of

comparison between AlexNet’s category similarity and WordNet semantic similarity, categories belong to the same superordinate category were marked with a black

box. The AlexNet category similarity showed good correspondence to the WordNet semantic similarity. Asterisk denotes p < 0.001.
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a new FC layer was appended to the original AlexNet that
may change the dynamics of the network, we also built an
AlexNet with an extra FC layer that included 1,000 output units
(AlexNet-Cate1000) as the original one. The AlexNet-Cate1000
was designated for validation and for comparison with the
AlexNet-Cate2 and AlexNet-Cate19.

The new AlexNets (i.e., AlexNet-Cate2/Cate19/Cate1000)
were trained using the Pytorch toolbox for 50 epochs. The
top-1 accuracy (top-5 accuracy) were 94.7% (100.0%), 68.7%
(95.6%) and 49.0% (73.6%), respectively. Representational
similarities of categories in the new AlexNets were measured
with responses from all of their layers. Category similarity
from the AlexNet-Cate1000 was compared with that of the
original AlexNet to validate if they shared a similar hierarchy of
semantic relatedness.

Data Availability
All data and code underlying our study and necessary to
reproduce our results are available on Github: https://github.
com/helloTC/SemanticRelation.

RESULTS

We first evaluated whether there was a hierarchical structure
among object categories in the AlexNet, which was trained
to classify object categories from the ImageNet containing no
relation information among objects. For this, responses from
the last fully-connected layer of the AlexNet (i.e., FC3) were
averaged across images of each category as the response pattern
for this category, and the similarity between two categories was
calculated as the correlation between their response patterns.
A great variance in similarity was observed, with the highest
similarity between object toy poodle and object miniature
poodle (r = 0.99), the lowest between object snail and object
fur coat (r = −0.62), and the mean similarity of r =

0.21. The variance in similarity observed was significantly
larger than variance from a randomized structure (permutation
analysis, p < 0.001), suggesting that objects were structurally
organized (Figure 2A, left). A close inspection of Figure 2A

revealed two large clusters, one is living things and the other
artifacts. Within each cluster, there are sub-clusters, as within-
cluster variance was smaller than that of neighboring sub-
clusters. The nested structure in similarity suggests that a

FIGURE 3 | Category representations in the DCNNs were stabled across architectures. (A) Categorical representations from AlexNet, two VGGs (i.e., VGG11 and

VGG19), and three ResNets (i.e., ResNet18, ResNet50, and ResNet101) showed consistent hierarchical relation of object categories. (B) The hierarchical relations

that emerged in these DCNNs were almost identical among each other. (C) Correspondences between the hierarchical relation among objects in the DCNNs and

semantic similarity of WordNet in humans were significant.
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FIGURE 4 | The category representational similarity in different convolutional layers of the AlexNet. Hierarchical relations of objects in the AlexNet gradually emerged

as a function of convolutional layers, so was the correspondence between the representational similarity in the AlexNet and WordNet semantic similarity in human.

Coarse structure first emerged in lower layers, while the fine-grained structure was prominent only in higher layers.

hierarchical relation among objects emerged in the AlexNet
without conceptual guidance.

Similar nested structures of objects were also observed in
DCNNs with different architectures (e.g., layer number and
kernel size), including two VGGs and three ResNets, which
are designed for the same task (Figure 3A). Importantly, the
hierarchical relations of the object categories that emerged from
the VGG family and ResNet family were almost identical to that
from the AlexNet (r > 0.89 for all DCNNs tested, Figure 3B),
implying that the emerged hierarchical relation among object
categories was invariant to implementations, but rather resulted
from inherent properties of the stimulus and the task that
DCNNs received and performed. Because human brains used
images from the same physical world to perform the same task,
one intuitive thought is that the hierarchical relation observed in
the DCNNs may be similar to the semantic relatedness of objects
in human.

To test this conjecture, the names of the object categories
were put into WordNet derived from human, and their semantic
similarity was calculated with the Wu and Palmer’s similarity
approach (Figure 2B). We found that there was a significant
correlation between semantic similarity of WordNet in human
and the hierarchical relation among objects in the AlexNet (r =
0.56, p < 0.001), and correlation also reached significance for
both the living thing (r = 0.70, p < 0.001) and artifact (r = 0.41,
p < 0.001). Similar correspondence to the semantic similarity
of WordNet in human was also observed in DCNNs from the
VGG family and ResNet family (Figure 3C). In addition, the
correspondence of the AlexNet increased as a function of layers
(Figure 4), with lower correlations observed in first two layers

(layer 1: r = 0.21, layer 2: r = 0.15) and higher correlations in
the third (r = 0.41), forth (r = 0.51), and fifth (r = 0.53) layers.
A close inspection on the increases of hierarchy among layers
revealed that coarse structure (e.g., the living thing vs. artifact)
first emerged in lower layers, and a fine-grained structure was
prominent only in higher layers.

How did the hierarchical relatedness of object categories
emerge from unstructured image dataset in the DCNNs? To
address this question, we explored the developmental trajectory
of the relatedness when the AlexNet was trained to recognize
objects. Two findings were observed. First, correspondence in
the hierarchical relatedness of object categories between the
AlexNet and the WordNet was established within the first
epoch (r = 0.60, Figure 5A), whereas the performance for
object recognition (top-1 accuracy: 8.9%) was far below that
of the fully trained one (top 1 accuracy: 51%). Instead, at
least 40 training epochs were needed to attain the matched
performance to the fully trained model. The asynchronous
development illuminated that the relatedness of object categories
in the AlexNet was formed before it was capable of performing
the task. Second, within the development of the hierarchical
relatedness, there was a progression from a coarse structure
to a fine-grained structure. That is, the coarse structure based
on the 19 concepts (e.g., bird and device) merged from 1,000
object categories reached a plateau within the first epoch
(Figure 5B), with a correlation of 0.65 to the WordNet. In
contrast, the fine-grained structure within the 19 concepts (e.g.,
crane and flamingo in bird) did not approach a plateau until
40 epochs’ training, with an averaged correlation of 0.38 to
WordNet in humans. Therefore, the hierarchical relatedness of
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FIGURE 5 | Developmental trajectory of the relatedness. (A) The developmental trajectory of the correspondence in the hierarchical relatedness of object categories

between the AlexNet and WordNet (red line). The classification accuracy of the AlexNet was shown in blue. The hierarchical structure evolved into maturity far before

the establishment of object recognition ability. To illuminate results within the first epoch, correspondence to the WordNet semantic similarity for every 100,000 images

was plotted. Dash line indicates epoch 1 and epoch 40, respectively. (B) A coarse to fine shift during training progression. The coarse structure based on the 19

superordinate categories reached a plateau within the first epoch (red line), while the fine-grained structure reached a plateau after 40 epochs’ training (blue line). Dash

line indicates epoch 1 and epoch 40, respectively. (C) The category similarities of the AlexNet in different training stages for comparison. From left to right, category

similarities of the AlexNet without training, AlexNet trained with 500,000 images within the first epoch, AlexNet trained after the first epoch and AlexNet trained after

the 40th epoch. Color bar indicates correlation coefficients.

object categories was formed in a coarse-to-fine fashion, with
the coarse structure formed before the fine-grained structure
(Figure 5C).

In natural environments, objects are seldom alone; further,
semantically-related ones are often present together. This object
co-occurrence may be preserved in images for training DCNNs,
and thus contribute to the emergence of semantic relatedness
in a DCNN. To rule out this possibility, we trained an AlexNet
with images containing a single object without any background
(i.e., the single-object AlexNet, see Materials and Methods)
(Figure 6A). We found that the hierarchical relation of object
categories from the single-object AlexNet was highly correlated
with that in the pre-trained AlexNet (r = 0.83) (Figure 6B),
suggesting that the object co-occurrence was not critical for the
emergency of semantic relatedness in DCNNs. In addition, a
similar developmental trajectory was also observed (Figure 6C).

Another probable factor that may shape the hierarchy is
the task demand, as recent studies suggest behavior-related
representations of DCNNs are largely shaped by tasks that
DCNNs performed (Song et al., 2020), rather than the physical
properties of stimuli (Xu et al., 2020). To test this possibility,
we directly compared AlexNet-Cate2 and AlexNet-Cate19 that

were designated to classify objects into 2 or 19 superordinate
categories, respectively (Figure 7A). The newly added FC layer
did not significantly change the internal dynamics of the original
AlexNet, as the semantic hierarchy observed in the AlexNet-
Cate1000 was almost identical to that of the original AlexNet (r
> 0.90 for all layers).

We examined the semantic relatedness of the FC3 layer in
AlexNet-Cate2 and AlexNet-Cate19, which corresponds to the
last layer of the original AlexNet. First, the coarse structure was
reserved, as the semantic relatedness emerged in the Alexnet-
Cate2 (r = 0.65, p < 0.001) and AlexNet-Cate19 (r = 0.89, p
< 0.001) was significantly correlated with that in the AlexNet-
Cate1000 (Figure 7B). However, the degree of the fineness
of the structures differed greatly, as the higher superordinate
level of object classification was, the coarser the structure
of the relatedness emerged. Importantly, such difference was
prominent only at the later layers of the networks (Figure 7C).
That is, the relatedness of object categories in the first four
layers of AlexNet-Cate2 and AlexNet-Cate19 was similar to
that in the AlexNet-Cate1000 (rs > 0.89), possibly driven by
the physical properties of stimuli. Then, after the fourth layer,
their correspondence to AlexNet-Cate1000 decreased gradually,
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FIGURE 6 | Effect of object co-occurrence on the emergence of semantic relatedness in AlexNet. (A) Original images used for training AlexNet contain objects

present in the background, which may contribute to the emergence of semantic relatedness in AlexNet. After removing the background, only one object remained. (B)

Category similarity of the single-object AlexNet, which was trained with images containing only one object. Hierarchical relation is prominent. (C) The developmental

trajectory of the single-object AlexNet (red) was drawn against that of the original AlexNet (blue). Note that to match the number of images used to train the

single-object AlexNet, stages for training the original AlexNet with 600,000 to 1,200,000 images within the first epoch were not plotted.

with that of AlexNet-Cate2 decreasing more dramatically. The
divergence in correspondence likely reflected the difference in
task demands. In short, the stimulus-behavior dissociation that
gradually formed along the hierarchy of the networks reflects
the joint efforts of stimuli and tasks in shaping the semantic
relatedness of object categories.

DISCUSSIONS

In this study, we used DCNNs as a model for human
cognition to examine whether the semantic relatedness of
object categories can automatically emerge without top-down
conceptual guidance. First, we found that almost identical
hierarchical structures of object categorizes emerged in AlexNet,
VGG family, and ResNet family, which were highly similar to
the WordNet derived in humans. This result suggests that the
relation among object categories can be automatically formed
without a prior conceptual relationship and independent of
implementation hardware. Interestingly, the level of fineness of
the semantic relatedness was attributed to the task demands of
networks, as the stimulus-behavior dissociation was observed
along the hierarchy of network layers. In sum, our study
provided the first empirical evidence that even without top-down
conceptual guidance, the semantic relatedness of objects can be

formed from the joint effort of physical properties of stimuli and
task demands of networks.

Unlike studies on humans where perceptual experiences are
always intermingled with conceptual guidance, the DCNNs
provide a perfect model to demonstrate how perceptual
experiences contribute to the construction of relatedness among
objects (Peterson et al., 2018). This finding is in line with
developmental studies where children prefer to naming objects
by referring to their perceptual features, suggesting that the
perceptual property of objects play an important role in early
accessing lexical knowledge (Imai et al., 1994; Gershkoffstowe
and Smith, 2004; Samuelson and Smith, 2005). Further,
the emerged semantic relatedness is likely independent of
implementation, because the DCNNs and human brain, which
differ significantly in hardware, show highly similar hierarchical
structures of objects.

The similarity in the semantic structure may result from
the similarity in architecture that DCNNs are designed with an
architecture similar to the human sensory cortex. Accordingly,
similar anatomy may lead to similar functions that give rise
to similar structures of the relatedness among objects. For
example, the top level of the hierarchy was the living things
vs. artifacts, mirroring the axis of the mid-fusiform sulcus that
separates the coding of animate objects and artifacts in the brain
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FIGURE 7 | Effect of task demands on semantic relatedness in AlexNet. (A) The architectures of AlexNet-Cate19 and AlexNet-Cate2, both of which inherited the

same architecture as the original AlexNet, except that one extra FC layer was appended to the FC3 layer. (B) Category similarities of AlexNet-Cate19 and

AlexNet-Cate2 from the FC3 layer. The hierarchical structures were less prominent in AlexNet-Cate19 as compared to the original AlexNet, and almost absent in

AlexNet-Cate2. (C) Stimulus-behavior dissociation was formed along the hierarchy of the networks, with the similarity in representation diverging after the fourth

convolutional layers. Error bars indicate the standard deviation of the AlexNet-Cate2 and AlexNet-Cate19 after the training was repeated eight times.

(Grill-Spector and Weiner, 2014), echoing the proposal that
DCNNs are feasible models to understand visual cortex (Yamins
et al., 2014; Yamins and DiCarlo, 2016). Indeed, Bao et al.
(2020) have found that category-selective regions in the primate
inferior temporal cortex are organized to encode the object space
constructed by dimensions extracted from DCNNs.

Another and more plausible possibility may be the way by
which objects are coded in representational space. In DCNNs,
an object is firstly decomposed into multiple features, and
mapped to a representational space (Xu et al., 2020). Then,
the object is reconstructed from the feature repertoire of the
representational space based on the demand of tasks (Xiang et al.,
2019; Yang et al., 2019; Song et al., 2020). The representational
space allows DCNNs to use the efficient coding scheme (Barlow,
1961; Liu et al., 2020) to reduce the redundancy of the natural
stimuli, which is also widely observed in neuroscience studies
(Dan et al., 1996; Kastner et al., 2015). Further, features of the
representational space are distributedly represented by different
units (Liu et al., 2020; Yang and Wang, 2020); therefore, if
two objects are perceptually similar because of shared features,
they are likely represented by the same set of units. In this

way, the relation between two objects is then derived from the
connections among units. This intuition is consistent with the
hypothesis of parallel distributed processing (McClelland and
Rogers, 2003; Saxe et al., 2019), where knowledge arises from
the interactions of units through connections. Accordingly, the
knowledge stored in the strengths of the connections finally
becomes the building blocks of the hierarchical structure of
object categories.

Importantly, such hierarchical structure emerged in a coarse-
to-fine fashion. That is, at the initial stage of learning, DCNNs
may encode global features to identify relations among objects
when only a small number of exemplars are available. For
example, dogs and cats are the same, but they are not trees
based on general appearance. When more exemplars are learned,
features in the repertoire are greatly enriched, and thus are
capable of providing fine-grained representations for objects
to establish the hierarchical structure of relationships among
objects. This coarse-to-fine representation is also observed in
infants, as infants are able to distinguish animals and vehicles
at 7 months old, but fail to differentiate dogs from cats until 11
months old (Mandler andMcdonough, 1993, 1998; Pauen, 2002).
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Interestingly, we also found that the hierarchical structure
evolved into maturity before the establishment of object
recognition ability. This is not surprising because the enriched
and structured feature repertoire is necessary for DCNNs to
successfully recognize novel objects never seen before. For
example, in a recent study where DCNN’s experience on
faces is selectively deprived, the DCNN is still capable of
accomplishing a variety of face tasks behaviorally and evolving
face-specific modules internally (Xu et al., 2020). Therefore,
a mature representational space of objects will greatly benefit
DCNNs’ performance. This mechanism has already widely used
in computer science, as transfer learning, for example, utilizes it
to harness a pretrained network to work in another domain with
a small number of exemplars but still with high accuracy (Olivas
et al., 2009).

Besides the physical properties of stimuli, the demand of tasks
also played an important role in shaping the representational
space of objects especially when it needs to be read out for
behavioral performance (Peterson et al., 2018; Turner et al.,
2019). When the DCNN was designated to classify objects
at superordinate levels rather than at the basic level, the
representational space became coarser and the nested structure
of the semantic relatedness was less prominent. However, at
the earlier layers of the network, the representational space
was less likely affected by task demands; rather it was mainly
driven by the physical properties of stimuli. As the information
flew into later layers, the stimulus-behavior dissociation was
observed, as the representational space was mainly shaped by the
demand of tasks. Therefore, it is possible that DCNNs extracted
images’ features based on image statistics into a repertoire to
construct a representational space in lower layers, and then only
selected features necessary for tasks that the network performed
to constructed a new representational space in higher layers. Note
that the demand of tasks did not provide any information on the
hierachical stucture of objects, and therefore it only shaped the
level of fineness of semantic relatedness. Given the similarity in
anatomy between DCNNs and primates’ systems, future studies
are advocated to examine whether primates’ visual cortex also
follows similar rules to transfer sensation to perception and
finally to concepts that lead to behaviors.

In sum, our study demonstrated that perceptual similarity
among object categories and the demand of tasks jointly shaped

the hierarchical structure among objects. However, there are

several limitations to this study. First, this finding did not
necessarily rule out the role of conceptual guidance in forming
the semantic relatedness, which was clearly illustrated by a
moderate correlation between the DCNNs and humans in the
hierarchical structure among objects. In addition, the DCNNs
used in this study are purely feedforward, andmay not be suitable
for studies on conceptual guidance. Therefore, other deep neural
networks with feedback connections, such as Feedback-CNN or
predictive coding network (Lotter et al., 2016; Cao et al., 2018),
or networks directly trained with lexical and semantic relations
(Bayer and Riccardi, 2016), shall be used to understand how
relations between concepts modulate the semantic relatedness of
objects without the influence of perceptual experiences. Second, it
is counter-intuitive that the semantic relatedness was not derived
from object co-occurrence in natural images. That is, it may result
from features, rather than co-appearance frequencies, shared by
objects. Further studies are needed to examine this hypothesis
to unveil the bottom-up mechanism in forming the semantic
relatedness of objects.
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