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In modern computational modeling, neuroscientists need to reproduce long-lasting

activity of large-scale networks, where neurons are described by highly complex

mathematical models. These aspects strongly increase the computational load of

the simulations, which can be efficiently performed by exploiting parallel systems to

reduce the processing times. Graphics Processing Unit (GPU) devices meet this need

providing on desktop High Performance Computing. In this work, authors describe

a novel Granular layEr Simulator development implemented on a multi-GPU system

capable of reconstructing the cerebellar granular layer in a 3D space and reproducing

its neuronal activity. The reconstruction is characterized by a high level of novelty and

realism considering axonal/dendritic field geometries, oriented in the 3D space, and

following convergence/divergence rates provided in literature. Neurons are modeled

using Hodgkin and Huxley representations. The network is validated by reproducing

typical behaviors which are well-documented in the literature, such as the center-

surround organization. The reconstruction of a network, whose volume is 600 × 150 ×

1,200 µm3 with 432,000 granules, 972 Golgi cells, 32,399 glomeruli, and 4,051 mossy

fibers, takes 235 s on an Intel i9 processor. The 10 s activity reproduction takes only 4.34

and 3.37 h exploiting a single and multi-GPU desktop system (with one or two NVIDIA

RTX 2080 GPU, respectively). Moreover, the code takes only 3.52 and 2.44 h if run on

one or two NVIDIA V100 GPU, respectively. The relevant speedups reached (up to∼38×

in the single-GPU version, and∼55× in the multi-GPU) clearly demonstrate that the GPU

technology is highly suitable for realistic large network simulations.

Keywords: computational modeling, neuroscience, granular layer simulator, graphics processing unit, high

performance computing, parallel processing

INTRODUCTION

The challenge to understand, reproduce and simulate the human brain activities needs more and
more High-Performance Computing (HPC) support, in particular, where heterogeneous elements,
described by complex mathematical models, have to be simulated as fast as possible (Bouchard
et al., 2016). For example, computational modeling in neuroscience has to perform large-scale
simulations to reproduce complex physiological behaviors of neuronal networks. Among the
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different aspects that ask for HPC in neuroscience, some have a
more relevant impact as the network dimension, i.e., the number
of neurons, and the connections to model. Nowadays, several
research groups work on reproducing the functionalities of very
large areas of the brain (Beyeler et al., 2014; Cremonesi and
Schürmann, 2020). To this aim, they need multicore and/or
manycore technologies capable of reducing the processing time
and of ensuring the power, memory, and storage capabilities
offered by HPC solutions (Fidjeland et al., 2013). Another aspect
to consider is the model to use for the neuron representation
and the detailed morphologies introduced in the network.
Starting from the simple Leaky Integrate and Fire (LIF) model
up to the more complex Hodgkin Huxley (HH) one, all the
mathematical representations are characterized by a variable
number of differential equations, which strongly increases
the computational load of the simulations (Izhikevich, 2004).
Moreover, the detailed morphologies provide information about
how to perform the signal exchange between neurons in the
network and how the potential evolves inside the single element.
If not properly managed, those aspects can easily increase the
computational load of the simulation. A further issue to consider
is the duration of the neuronal activity to reproduce. Particular
attention should be given to the time integration step that directly
determines the number of times that the differential equations
have to be solved.

Recently, the number of research neuroscience groups using
multicore and/or manycore architectures has indeed increased
due to the need of high computing power to simulate complex
and realistic neuronal models. Among HPC architectures, the
Graphics Processing Unit (GPU) technology is becoming one
of the most popular since it is capable of processing in parallel
the neuronal activity of a huge number of cells. One important
aspect that can make the GPUs useful in this research field
is that they can be hosted in desktop systems as well as
in supercomputers.

In this work, authors present the Granular layEr Simulator
(GES), a system capable of reconstructing in detail the granular
layer network of the cerebellum (a major cortical structure of the
vertebrate brain) in a 3D space and of reproducing its neuronal
activity. This code has been written in C language and using the
OpenMP API together with the CUDA framework to efficiently
exploit desktop architectures characterized by multicore CPUs
connected to single and multi-GPUs. The simulator consists
of three modules: the network design displaces the neurons
and the glomeruli in a volume and connects them considering
axonal/dendritic field geometries, oriented in the 3D space, and
following the convergence/divergence rates that, to the best of the
authors’ knowledge, are the most relevant in the literature. Once
the neurons displacement and connections have been elaborated,
the simulation module can reproduce the network neuronal
activity. The neurons are modeled using the Hodgkin andHuxley
representation (Hodgkin and Huxley, 1990). The third module
is the graphical interface that allows the user to generate several
network configurations, to simulate and to graphically visualize
them in a 3D space. In fact, the aim is to build a parametric
network that can reproduce different configurations only by
changing the values of suitable variables. This parametric system

is also scalable allowing the reproduction of networks with
different sizes.

Section Materials and Methods presents the granular layer
model and the optimized codes developed for the network
reconstruction. Moreover, the serial and parallel codes of the
simulation module will be detailed. Then, the graphical user
interface will be described. Section Results and Discussion
presents the results and an exhaustive analysis of the neurons
placement with relative connections, of the processing times and
of the system memory occupancy. A comparison with the state
of the art and possible future works are shown. Finally, section
Conclusions draws the main conclusions and the possible future
directions of the work.

MATERIALS AND METHODS

In the previous works, authors developed the simulators for
the single cells hosted in the cerebellar granular layer. The
neurons have been modeled exploiting the Hodgkin and
Huxley representation and their simulators have been developed
targeting parallel devices. This activity had a crucial importance
to validate the neuronal behaviors and to evaluate the best parallel
technologies to use in the network implementation (Florimbi
et al., 2016, 2019).

The development of the GES required three main phases that
represent a further step-on in the conducted research. At first, an
efficient algorithm to reconstruct the granular layer network in
a 3D space was developed. It places and connects different types
of neurons as realistically as possible, taking into account their
cellular morphology and their axonal/dendritic field geometries,
oriented in the 3D space. The cells connections are the input
of the second step, which concerns the neuronal activity
reproduction of the layer. The network activity simulation has
been carried out on one of the most recent multi-GPUs systems,
in order to reduce the computational time. In the last phase of
the work, a graphical interface has been developed to visualize
the displacement, the connections and the activation patterns
of the different neurons providing to the scientists a useful and
easy tool that allows to setup the simulation and to monitor its
own behavior.

Overview of the Cerebellar Granular Layer
Model
The Neurons Models
The Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1990)
is one of the most accurate and complex representations to
reproduce the neuronal activity. The model describes the cellular
membrane as a capacitor Cm since it keeps the ions separated
on its sides. The capacitor is connected in parallel with different
branches, each one including a resistor and a voltage generator
connected in series. The resistors stand for the ionic channels,
contained in the membrane, which allow the ions crossing. The
voltage generators represent the active transport mechanisms
that characterized the cellular activity. The current I flowing
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through the membrane is described as in Equation (1):

I = Cm
dVm

dt
+ Isyn+ Iions (1)

where Vm is the membrane potential, Isyn the synaptic current,
and Iions is the sum of the ionic currents. Each ionic current (Iion)
is defined as the product between the channel conductance gion
and the difference between the membrane potential Vm and the
equilibrium potential of the specific ion Eion (Equation 2):

Iion = gion(Vm − Eion) (2)

The ionic channels are characterized by the presence of gating
particles, whose position inside the channel allows its opening or
closure. The HH model reproduces how they dynamically affect
the channel conductance as in Equation (3):

gion = gion × xzion × ykion (3)

where gionis the maximum conductance of the channel, xion and
yion are the probabilities that the gating particles occupy a certain
position in the membrane. z and k represent the number of
activation and inactivation particles for each channel (Florimbi
et al., 2017). The probability of a particle of being in a permissive
state depends from two coefficients αn and βn related to the
velocity of transition (D’Angelo et al., 2001). The relation is
given by:

dn

dt
= αn (1− n)− βnn (4)

where the probability of being in a permissive state is n. Equation
(4) can be simplified using these two relations:

n∞ =
αn

αn + βn
(5)

τn =
1

αn + βn
(6)

where n∞ and τn are the stationary part and the activation time
of the channel. Equation (4) can then be rewritten as:

dn

dt
=

n∞ − n

τn
(7)

which is solved by:

n (t) = n∞ − (n∞ − n0)e
−

t
τn (8)

where n0 is the initial value of n.
The final model is obtained considering the gating particles for

each ionic channel and including these relations in Equation (1):

I = Cm
dVm

dt
+ Isyn + gkn

4 (Vm − Vk)+ gNam
3h (Vm − VNa)

+ gL (Vm − VL) (9)

where n is the gating particle of the potassium channel andm and
h are the ones of the sodium channel.

Concerning the soma of the granule (GRCs), the model
described in D’Angelo et al. (2001), takes into account some
particular mechanisms related to ions. The sodium channel is
represented by three currents: a fast Na+ (INa−f), a persistent
Na+ (INa−p), and a resurgent Na+ (INa−r) currents. The
potassium channel is represented by five currents that reproduce
different dynamics: a current for rectified delayed channels
(IK−V), one depending on intracellular calcium concentration
(IK−Ca), one for inward rectified channels (IK−IR), one for type-
A channels (IK−A) and a current for slow kinetic channels
(IK−slow). The reversal or Nernst potential of the sodium and
of the potassium channels are constant during the neuronal
activity evaluation. The calcium channel is characterized by a
variable intracellular calcium concentration. The Ca2+ dynamic
is described by the following differential equation (Florimbi et al.,
2016) (Equation 10):

d[Ca2+]

dt
=
−ICa

2FAd
− (βCa

([

Ca2+
]

−
[

Ca2+
]

0

)

) (10)

where d is the depth of the vesicle linked to the cellular
membrane, whose area is indicated with A. βCa determines the
calcium ions leakage from the cell, F is the Faraday constant,
[Ca2+]0 is the calcium concentration at rest. Once [Ca2+] is
computed, Eca can be determined and used in the calcium current
evaluation. The kinetic of these ionic channels is described using
the HH model and the gating particle mechanism described
above. Each channel is characterized by a different number of
activation and inactivation particles.

Also for the Golgi (GOC), the model adopted to reproduce
its activity considers several ionic currents (Solinas et al., 2008;
D’Angelo et al., 2013). The ones that reproduce the regular
pacemaking of the cell are the sodium persistent current (INa−p),
the h current (Ih), the SK-type small conductance calcium-
dependent potassium current (IK−AHP) and the slow M-like
potassium current (IK−SLOW). These currents together with the
sodium resurgent one (INa−r) and the A-current (IK−A) regulate
the response frequency and delay the fast phase of a spike, which
is present after the hyperpolarization. The ICa−LVA reinforces
the rebound depolarization. The rebound excitation is caused by
the currents ICa−LVA and Ih. All these currents are described by
the gating particles model explained before. Instead, the IK−AHP

current is simulated with a Markov gating scheme characterized
by six states, four closed and two open (Solinas et al., 2008;
Florimbi et al., 2019).

The Synapses Models
The term Isyn in Equation (4) represents the synaptic currents,
i.e., the currents injected to the cell by their connected neurons
through excitatory and inhibitory synapses. To compute the
synaptic current, it is important to provide a model that
reproduces the presynaptic and the post-synaptic terminals. In
the first case, a three-state kinetic scheme has to be solved to
compute the amount of neurotransmitter (T) released by the
presynaptic terminal (Nieus et al., 2006). This neurotransmitter
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reaches the receptors hosted in the post-synaptic terminal,
reproduced by a model that allows to compute the currents
that flow in the receptors channels. The excitatory synapses is
characterized by the N-methyl-D-aspartate (NMDA) and the α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
receptors in the post-synaptic terminal (Nieus et al., 2006), while
the inhibitory synapses present the gamma-Aminobutyric acid
(GABA) one (Nieus et al., 2014). The current flowing in each
receptor channel is computed solving a kinetic scheme of first-
order reactions, with five (NMDA), three (AMPA) and eight
(GABA) states. A detailed description of the dynamic of these
receptors can be found in Nieus et al. (2006) for NMDA and
AMPA, and in Nieus et al. (2014) for GABA.

Concerning AMPA receptors, there are three possible channel
states: open (O), closed (C), and desensitized (D). Therefore, the
current contribution is given by:

IAMPA = gmax,AMPA

(

Vm − Vrev,AMPA

)

O(T) (11)

where gmax,AMPA is the maximum conductance of the AMPA
receptor (1,200 pS), Vm is the membrane potential, Vrev,AMPA

is the ionic reversal potential and O(T) is the probability of
being in the open state, which depends from the concentration
of neurotransmitter T.

The NMDA receptor is more complex since it has five possible
states: three closed states (C1, C2, and C3), an open state (O), and
a desensitized state (D). The current contribution is given by:

INMDA = gmax,NMDA

(

Vm − Vrev,NMDA

)

O(T)B (12)

where gmax,NMDA is the maximum conductance of the NMDA
receptor (18,800 pS), Vm is the membrane potential, Vrev,NMDA is
the ionic reversal potential,O(T) is the probability of being in the
open state and B is a term to take into account the concentration
of the Mg2+ ion.

The GABA inhibitory receptors are made up of two parts,
called α1-GABA and α6-GABA. These two parts can be modeled
using the same Markov chain, which is made up of two open
states (OA1 and OA2), three closed states (C, CA1, and CA2) and
three desensitized states (DA1, DA2, and DA2f).

The current of each part of the GABA receptor is given by

IGABA = gmax,GABA(Vm − Vrev)(OA1 (T)+ OA2(T)) (13)

where gmax,GABA is the maximum conductance (918 pS for
α1-GABA and 132 pS for α6-GABA), Vm is the membrane
potential, Vrev,GABA is the ionic reversal potential and the sum
OA1(T)+OA2(T) represents the probability of being in an
open state.

Finally, Isyn is given by receptor currents (Equation 14):

Isyn = INMDA + IAMPA + IGABA (14)

A deeper description of the GRC, GOC, and synaptic models can
be found in Florimbi et al. (2016, 2019).

The Network Connectivity
The cerebellar cortex is composed of three layers (the granular,
the Purkinje, and the molecular layers), each one including
different types of neurons. The granular layer hosts GRC and
GOC cells that connect their dendrites and axons in structures
called glomeruli (GLOs), reached also by the mossy fibers (MFs).
These elements are connected in the so called feedforward and
feedback loops (Figures 1A,B) (Mapelli et al., 2014). In the first
case, the MFs excite the GRCs and GOCs dendrites and these
latter inhibit the GRCs; in the second case, the MFs excite the
GRCs and, then, the parallel fibers (PFs) excite the GOCs that
inhibit the GRCs.

All the elements (GOC, GRC, GLO, MF, and PF) are
connected following convergence/divergence rules present in
literature. According to Solinas et al. (2010) and D’Angelo et al.
(2016), the convergence rate between GLOs and GRCs is 4:1,
which means that 3–5 GRC’s dendrites are connected to each
GLO. The GRCs dendrites cannot reach GLOs located more than
40µm away (the mean dendritic length is 13.6µm) and a single
GRC cannot send more than one dendrite into the same GLO
(D’Angelo et al., 2013). Moreover, each GRC must project its
dendrites to four different GLOs (Solinas et al., 2010). Each GLO
has about 50 connections available for the GRCs dendrites since
the divergence rule between GLOs and GRCs dendrites is 1:53
(D’Angelo et al., 2016).

The GOCs axons are placed in the granular layer spreading
longitudinally. They enter in the GLOs to inhibit the GRCs. The
convergence rate between GLOs and the GOCs is 50:1 (Solinas
et al., 2010; D’Angelo et al., 2016). A GOC axon can enter only in
GLOs without GRCs in common: a GRC is not inhibited twice
by the same GOC (Solinas et al., 2010). Moreover, each GOC
axon can reach and inhibit a maximum of 40 different GLOs (i.e.,
reaching ∼2,000 GRCs following the ratio GOCs:GRCs equal to
1:430) (Korbo et al., 1993; D’Angelo et al., 2013).

The GOCs basal dendrites spread around the soma on the
same plane. They reach the GLOs where they make excitatory
synapses with theMFs. EachGOC receives excitatory inputs from
about 40 MFs on basal dendrites (Kanichay and Silver, 2008;
D’Angelo et al., 2013).

The GRCs axons cross vertically the cerebellar Purkinje
layer (i.e., ascending axon), which contains the Purkinje soma,
and reach the molecular layer where it branches into PFs
running transversally. It has been observed that GRCs form their
connections through PFs and also along the ascending axon
(D’Angelo et al., 2013). Moreover, D’Angelo et al. (2016) report
that the convergence rate between the ascending axon and the
GOCs is 400:1 and between the PFs and the GOCs is 1,000:1.
GOCs are connected through gap-junctions present in the basal
and apical dendrites (D’Angelo et al., 2013, 2016).

The Granular layEr Simulator
The basic idea followed in the network development has been
to construct a non-fixed parametric structure. This means that
even though the network is defined by specific structural
and connections rules, it is still possible to modify its size,
reproducing different configurations. The volume that will be
reproduced in this work is 600 (length) × 150 (height) × 1,200
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FIGURE 1 | Cerebellar granular layer. (A) The granular layer circuit receives the input from the mossy fibers (MFs) that reach the glomeruli (GLOs). Here, they reach

and excite the Golgi cells (GOCs) and granules (GRCs) dendrites. Once the GRCs are stimulated, the signal travels along the GRCs ascending axon and parallel fibers

(PFs) and, then, can reach the GOCs apical dendrites (feedback loop). (B) On the other hand, the MFs signals reach the GOCs cells that inhibit the GRCs (feedforward

loop). The black arrows indicate the direction of the signals in the loops. The image is taken from Mapelli et al. (2014).

TABLE 1 | GOCs, GRCs, and GLOs density values and the number of elements

that a volume of 600 × 150 × 1,200 µm3 can host.

Cell or element ID Density (mm–3) Cells (or

element)

number

Soma diameter

[µm]

GOCs 9,000 (Korbo

et al., 1993)

972 15 (Dieudonné,

1998; Houston

et al., 2017)

GRCs 4,000,000

(Korbo et al.,

1993)

432,000 5 (Solinas et al.,

2010)

GLOs 300,000 (Korbo

et al., 1993)

32,400 5 (Rossi and

Hamann, 1998)

Moreover, soma diameters are considered.

(depth) µm3. This flexibility should be intended only in terms of
parameters variability rather than new constraints introduction.
The serial algorithm developed to reconstruct the granular layer
is written in C language, which allows direct and efficient
dynamic memory management.

Network Design
The network design module performs two main operations: the
elements displacement and connection in a 3D volume.

In this case, the serial algorithm starts computing the number
of GOCs, GRCs, and GLOs, referring to typical rat densities
as shown in Table 1. It also shows the number of elements
considered in the network configuration under study. Finally,
since the neurons soma is modeled as a sphere, the correspondent
diameter is reported.

Once the elements number is known, the algorithm computes

the GOCs, GRCs and GLOs coordinates that are stored in
three arrays (c_goc, c_grc, and c_glo, respectively), dynamically

allocated through the malloc routine in the initial phase of
the code. The algorithm inserts the elements in the space

in a partially random way, considering specific physiological

requirements (Korbo et al., 1993; Dieudonné, 1998; Rossi and
Hamann, 1998; Solinas et al., 2010). The height of the volume

(z-axis) is divided into several layers, whose number is related

to the dimensions of the GOCs since they are the first type of

elements introduced in the volume. Each layer includes several
boxes, organized in rows (shown by the arrows in Figure 2),

which dimensions are related to the GOCs ones. The basis of the

box is a square, whose side is equal to the GOC diameter. On the

other hand, the height of the box is higher than the diameter so
that the algorithm can randomly compute the z coordinate of the

cell inside the box. In this way, all the GOCs inside a layer are not
placed at the same height. The algorithm has to insert a defined

number of GOCs in each layer, selecting a box for each cell.
The algorithm chooses the suitable box following morphological

constraints (i.e., dendrites length and depth) and avoiding boxes
already occupied by other neurons. When a cell is placed in a
box, its x and y coordinates are defined. Once all the GOCs have
been placed in the volume, the algorithm inserts the GLOs and,
then, the GRCs, both represented by spheres with 5µm diameter
(Table 1). The strategy adopted to place GLOs and GRCs is the
same as for GOCs. During the GLOs and GRCs displacement, a
further constraint is added to avoid that these elements overlap
the GOCs. Finally, the correspondent coordinates are written in
the c_goc, c_glo, and c_grc arrays.
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FIGURE 2 | Volume division for the displacement of the GOCs. The volume is divided into z-layers (five in this image). Each z-layer (x-y plane) is divided into rows

along the y-axis (indicated with the arrows), where rectangular parallelepipeds are placed to host the cells. The algorithm starts placing the neurons from the blue row

to the red one. The procedure is repeated for each z-layer.

Once the elements have been placed in the volume, the
algorithm starts to connect them, generating the connection
matrices. They are linear arrays containing the information on
how elements are connected following convergence/divergence
rules. The connection matrices reproducing the feedforward and
feedback loops (D’Angelo et al., 2016) contain the links among
the following elements (the name of the connection matrices is
reported between brackets):

• GRCs and GLOs (link_grc_glo);
• GOCs axon and GLOs (link_goca_glo);
• GOCs basal dendrites and GLOs (link_gocdb_glom);
• GRCs (ascending axon and PFs) and GOCs

(aa_goc_link, pf_goc_link);
• MFs and GLOs (mf_glom_clustering);
• GOCs and GOCs (gap_junction).

For each type of connection, the authors developed a suitable
algorithm capable of connecting the elements following the
morphological rules and the convergence/divergence ratios.

As an example, the algorithm that links the GRCs to the GOCs
through ascending axon and PFs is detailed in the following.

As said in section Overview of the Cerebellar Granular Layer
Model, the GRCs axons cross vertically the cerebellar Purkinje
layer and reach the molecular one where it branches into PFs
running transversally, i.e., along the y-axis (Figure 3). Even if
this work aims to reproduce the granular layer, it is important
to take into account these connection schemes, in order to
reproduce the feedback and feedforward loops, simulating all
the connections between neurons. As previously said, the GRCs
form their connections with GOCs through PFs and also along
the ascending axon with a convergence rate of 1,000:1 and
400:1, respectively (D’Angelo et al., 2016) (D’Angelo et al., 2013).
Firstly, the algorithm computes the connections between the

ascending axons and the GOCs. When the algorithm has to find
those GRCs to connect to, it builds an elliptical cylinder (in
red in Figure 3) around the GOC soma, whose major axis is
the maximum length of the apical dendrites, while the minor
axis is given by their depth. For each GOC, the algorithm
selects 400 GRCs inside the red cylinder avoiding the area
under the GOC soma, denoted by a blue cylinder in Figure 3,
where it is less probable to have connections. The algorithm
randomly selects a GRC among the 400, and checks if it is
inside the red cylinder. If yes, the connection is performed (AA
CONNECTION in Figure 3) and the GRC index is stored in
the linear matrix aa_goc_link. Considering the PFs, the GOC
receives 400 connections through the PFs of local GRCs and
1,200 distal connections (D’Angelo et al., 2013). The algorithm
selects the GOCs to link to the GRCs, checking if in the red
cylinder there are GRCs, whose PF crosses the apical dendrites
area (as in the purple case in Figure 3): if yes, the connection
is made (LOCAL PF CONNECTION). If the PF that crosses
the apical dendrite area belongs to a GRC far from the GOC
soma (orange parallel fiber), a distal connection (DISTAL PF
CONNECTION) is implemented. These connections are stored
in the linear matrix pf_goc_link.

Another interesting part of the system performs the
connections between MFs and GLOs. In this case, authors
developed a custom clustering algorithm to meet physiological
constraints. Authors in Sultan and Heck (2003) described how
the MFs branch in the cerebellum. They form clusters of
presynaptic enlargements called rosettes, which represent the
presynaptic part in the GLOs. EachMF can formmultiple clusters
of rosettes arranged with a characteristic spatial organization.
In particular, authors in Sultan and Heck (2003) demonstrate
that the clusters belonging to the same MF are separated from
each other. For this reason, given the dimension of the network
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FIGURE 3 | GRC ascending axon and PF connections with GOC. The figure

shows the different layers of the cerebellum cortex: granular layer (GL),

Purkinje layer (PL), and molecular layer (ML). In the GL, GRC soma, and GOC

soma are represented with red and blue spheres, respectively. The yellow

trapezoid represents a schematization of the area occupied by the GOC apical

dendrites (partially shown inside the area). The image shows three examples of

connection. Firstly, the algorithm connects the GOC apical dendrites with the

GRC ascending axon (AA CONNECTION). Then, it performs the connections

through PFs (LOCAL PF CONNECTION and DISTAL PF CONNECTION).

Notice that in the image, the sizes do not scale proportionally to improve the

graphical view.

considered in this work, it is not reasonable to find two clusters
belonging to the same MF.

They demonstrate that each cluster accumulates 7.7 (±4.1)
rosettes and, thus, GLOs. Finally, always in Sultan and Heck
(2003), the authors show that elements in a cluster are located
within 350µm from the cluster mean location. Taking into
account this physiological information, a clustering algorithm
capable of generating clusters with a defined dimension is
needed. The elements inside the cluster must comply with
the distance constraint. Authors developed an algorithm whose
goal is to divide several points (inserted in a 3D volume,
characterized by spatial coordinates) into N clusters with a
fixed, properly set dimension. The number of clusters N is
one of the algorithm inputs. Let us assume that the clusters
dimension is NUM_POINT_CLUSTER (±DELTA): in this case,
NUM_POINT_CLUSTER is set to 8 and DELTA is set to 4
according to Sultan and Heck (2003). In the initialization phase,
the algorithm computes the centroids in a pseudo-random way.
Once the coordinates are initialized, the algorithm computes
the Euclidean distances between the GLOs and the centroids

to identify the nearest centroid for each GLO. The algorithm
computes the K-nearest centroids for each GLO (in this work,
K = 100) and sorts them in ascending order, on the basis of the
GLO-centroid distance. At the end, all these data are stored in the
data_clusters structure, including these fields:

• GLO ID (IDglo);
• Nearest centroid ID (IDprimary);
• Distance GLO IDglo and centroid IDprimary;
• Structure that contains ID and distances of the K-nearest

centroids of the GLO IDglo.

Each GLO is temporarily assigned to its nearest cluster. At
this point, the algorithm computes the dimensions of each
cluster (i.e., how many GLOs have that specific centroid as
the nearest). If the cluster dimension is out of the range
NUM_POINT_CLUSTER (± DELTA), its ID is stored in one of
the following arrays:

• buffer_low, which contains the IDs of the centroids with a
dimension lower than NUM_POINT_CLUSTER – DELTA;
• buffer_high, which contains the IDs of the centroids with a

dimension higher than NUM_POINT_CLUSTER+ DELTA.

The next step aims to reduce the centroids present in the
buffer_high, so that its dimension can be within the range
presented above. A for loop removes the extra elements
in the clusters present in the buffer_high array and assigns
them to other clusters with lower dimensions. The algorithm
tries to select a cluster that has a dimension lower than
NUM_POINT_CLUSTER – DELTA and, at the same time, is
one of the nearest for the GLO that will be moved. Otherwise,
it searches for another cluster in the volume giving priority to
the ones with a dimension lower than NUM_POINT_CLUSTER
+ (DELTA/2).

Serial and Parallel Network Simulation
This section illustrates the serial and parallel codes developed to
simulate the granular layer activity. In previous works (Florimbi
et al., 2016, 2019), authors developed the GOCs and GRCs
simulators where the neurons were not connected and their
activities were evaluated in parallel. These works validated
the GOCs and GRCs behaviors reproduced by the simulators.
Moreover, this phase was of crucial importance to evaluate the
GPU technology in this kind of applications. The significant
speed-up obtained comparing the serial and parallel simulators
demonstrates that the GPU is a suitable technology for neuronal
simulations. For this reason, authors developed also a CUDA
version of the granular layer simulator to exploit single and
multi-GPU systems.

Once the connection matrices have been generated in the
network design step, the GRC and GOC simulators can
be integrated to reproduce the activity of the cerebellar
granular layer.

In the Initialization phase, all the variables related to all
the cells and their synapses are declared and initialized in a
structure called grc_cell for the GRCs, and goc_cell for the GOCs.
Moreover, each structure contains two further structures (one
for the excitatory and one for the inhibitory connections), the
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Algorithm 1 | Network simulation.

1 Connection matrices reading;

2 Initialization;

3 MF signal Initialization;

4 for t←0 to tend
5 for n←0 to ngoc
6 GOC Synaptic activity computation;

7 GOC Cellular activity computation (solve Equation 2 for each ion);

8 GOC sum currents and conductances;

9 GOC membrane potential update (solve Equation 9);

10 Send signals to granule cells;

11 end

12 Gap junctions currents update;

13 for n←0 to ngrc
14 GRC Synaptic activity computation;

15 GRC Cellular activity computation (solve Equation 2 for each ion);

16 GRC sum currents and conductances;

17 GRC membrane potential update (solve Equation 9);

18 Send signals to Golgi cells;

19 end

20 end

21 Write results;

22 end

membrane potential Vm, the synaptic current Isyn, the ionic
channel current Iion and conductance gion, all the gating particles
for each ionic channel, and the calcium Nernst potential. Each
structure related to the connections contains an array storing
the spikes that occur in the synapses. Then, in the MF signal
initialization phase, the configuration of the simulation protocol,
described in section Computational Results, has to be initialized,
deciding how the MFs provide inputs to the network. At this
point, the algorithm can start evaluating the network activity.
For each t-th time step, the algorithm evaluates the synaptic and
cellular activities of the GOCs and of the GRCs. The for loop
that iterates over the simulation time is shown in Algorithm 1

at line 4.
Inside this loop, lines 5 and 13 indicate the loops iterating on

the GOCs and GRCs. For the t-th time step, the algorithm starts
evaluating the GOCs synaptic activity (line 6), by solving the
pre-synaptic and post-synaptic terminal models. In particular,
the algorithm checks if some inputs have occurred in the GOCs
basal and apical dendrites. To model this aspect, three buffers
(spike queues) have been allocated in each goc_cell structure
storing the inputs from the basal dendrites, the apical dendrites
and the inhibitory synapses. The GOC dendrites are modeled
as passive components characterized only by an axial resistance,
which causes a delay in the signal transmission. This kind of
representation allows analyzing, at each time step, if one or more
inputs occurred in the different dendrites of the cell.Algorithm 2

shows this process.
The for loops that iterate on the time steps and on the GOCs

number are in lines 1–2 of Algorithm 2. Then, the algorithm
checks if, in each buffer (Algorithm 2, line 3), a spike has
occurred in the current time t (Algorithm 2, line 4). If the
spike occurs, the algorithm solves the three-state kinetic scheme,
cited above, to compute the neurotransmitter concentration (line
5). Once the input has been evaluated, the spike is removed
from the spike queue. Once all the inputs have been evaluated,

Algorithm 2 | Synaptic activity computation.

1 for t← 1 to tend do

2 for i← 1 to ngoc do

3 for j← 1 to buffers do

4 if spike then

5 compute neurotransmitter concentration;

6 remove the spike from the queue;

7 end

8 end

9 solve the AMPA, NMDA and GABA kinetic schemes;

10 compute the currents that flow in the receptors;

11 Isyn = IAMPA + INMDA + IGABA;

12 …

13 end

14 …

15 end

the algorithm solves the receptors schemes to compute the
currents that flow in the channels present in AMPA, NMDA,
and GABA receptors (lines 9–10). Finally, the synaptic current
Isyn is updated and the GOC Synaptic activity computation phase
ends. The flow of Algorithm 1 continues evaluating the GOCs
cellular activity (line 7): the value of the gating particles of each
ionic channel is updated and, then, the channel conductances
and currents are computed. At this point, the current and
conductance contributions are summed and included in the
membrane potential update. Moreover, in this last phase of the
GOCs activity, the gap junctions currents are also considered.
In the first iteration (t = 0), their value is initialized to zero
since all the cells have the same membrane potential. Then, their
values will be updated on the basis of the membrane potential
difference between the cells linked through gap junctions. The
last phase of the GOCs activity (Send signals to granule cells)
manages the signals exchange between the GOCs and the GRCs.
In fact, as said before, the signals travel along the GOCs axons
that enter the GLOs, where the GRCs dendrites receive the
signals from the GOC. At this point, the algorithm evaluates
if the considered GOC generates a spike: if yes, the algorithm
searches the GRCs linked to that cell through the connection
matrix. Then, it stores the spike time in the suitable GRC spike
queue. Here, two considerations are necessary: the first is that the
GOC axon is modeled as a passive component. For this reason,
the spike time is computed by adding a delay caused by the
axonal resistance. The second is about how the GRCs dendrites
have been modeled. As said before, the convergence rate between
GLOs and GRCs is lower than the GOCs one (Solinas et al., 2010;
D’Angelo et al., 2016), thus GRCs have 3–5 dendrites that enter
the GLOs. For this reason, the four GRC dendrites have been
represented with the same number of buffers for the excitatory
and inhibitory connections.

Once all the GOCs signals have been stored in the suitable
GRCs buffers, the for loop that iterates on the GOCs ends. At this
point, the algorithm computed a new membrane potential value
for all the GOCs and, then, the gap junctions currents are updated
(Gap junctions current update). Then, for the same t-th iteration,
the algorithm continues analyzing the GRCs synaptic and cellular
activities. In the for loop that iterates on the GRCs, the algorithm
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starts to evaluate the synaptic activity as shown in Algorithm 2

for the GOCs: the only difference is that, in this case, each GRC
has four buffers for the excitatory connections and four for the
inhibitory ones. Clearly, the spikes generated by the GOCs in the
t-th time step are not considered by the GRCs in this iteration.
Once the membrane potentials have been updated, the action
potentials generated by the GRCs are sent to the GOCs (Send
signals to Golgi cells phase). In particular, as said before, the GOC
receives excitation from the GRC through their ascending axons

and/or through their PFs. Once all the GRC have been evaluated,
the code can continue with the next time step (t+1t).

The serial version of the granular layer network has been used
as a basis for the development of two parallel codes, written in
C/CUDA language. Figure 4 shows the flow of the first parallel
version, which runs in a single-GPU system.

The code starts on the host where the connection matrices
are read (Connection matrices reading) and the variables are
initialized. In addition to the initialization of the variables, in the

FIGURE 4 | Parallel flow for single-GPU system. The flow starts on the host where the for loop iterates on the time steps. The signals exchange is performed on the

host, while the neurons activity computation is performed on the device (yellow box). The black arrows indicate the flow, while the red dashed arrows indicate the data

transfers between host and device, and vice versa.
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second phase, the algorithm prepares the data to be transferred
from the host to the device memory. This phase is crucial to
reach high performance and to reduce the computational times.
In fact, if not properly managed, the data transfer could be
the bottleneck of the process. In order to prevent this potential
slow-down, all the data related to the cells have been stored
at contiguous memory addresses, trying to minimize the bus
activations during the transfers. The idea is to create a 1D array
and to join the data according to their physiological meaning. In
this phase (Initialization and Array packaging), the data related
to the cellular activity and to the initialization of the pre-synaptic
and post-synaptic models are prepared. On the other hand, the
input signals will be set for the transfer after the configuration
of the simulation protocol in the successive phase. In fact, inMF
signals initialization, a protocol is chosen and the spike queues
for each MF are generated. In this case, the authors chose to
not transfer all the spikes queues of all the MFs from the host
to the GPU global memory in order to not increase the memory
usage. Once the protocol is generated, the for loop that iterates on
the time steps begins. The MF spike queues evaluation phase has
been introduced to properly manage the data transfers of theMFs
queues. Since it is not efficient to transfer all the queues in the
global memory, at each time step the algorithm evaluates if the
MFs have generated an input signal. If yes, that input is stored
in a temporary queue of the cell linked to that MF. Notice that
each queue of all the MFs is evaluated in parallel exploiting a
multicore strategy with the Application Programming Interface
(API) OpenMP. It is a parallel programming model for shared-
memory multiprocessors that provides a wide set of directives
and strategies for the parallelization of loops and program
sections through the #pragma directive. This statement is placed
before the loop that should be parallelized. Moreover, in this
directive, the variables or array are expressed as private to a single
thread or shared among all the threads. In this case, at each
current time, the MFs for loop is parallelized to simultaneously
check the GRCs and GOCs linked to the MFs that have generated
a spike. Finally, the algorithm generates two arrays of flags (one
for GOCs, goc_spikeMF and one for the GRCs, grc_spikeMF) that
contain the value 1 if the corresponding GOC or GRC received
an input from the linked MFs. The flags are equal to zero if the
corresponding cell is not stimulated. In this way, at each time
step, the algorithm will transfer from the host to the device global
memory, only two arrays of dimension ngoc × sizeof(int) and ngrc
× sizeof(int), instead of all the MFs queues. In the Other queues
evaluation phase, other arrays are prepared for the transfer. In
this code, the queues/buffers, already defined in the serial code,
are present together with their related arrays of flags, exploited
to transfer data to the global memory at each time step. For this
reason, the GOCs have a buffer and an array of flags for the apical,
basal and inhibitory connections (goc_spikeAPIC, goc_spikeMF,
and goc_spikeINH, respectively). The GRCs have two flag arrays:
one for the excitatory and one for the inhibitory connections.
These two arrays are properly managed to transfer the signals
stored in the four excitatory and inhibitory buffers present in the
host. On the device global memory, space has been allocated to
store the synaptic buffers and the gap junctions currents, i.e., an
array whose dimension is ngoc × ngap × sizeof(float), where ngap

is the number of connections through gap junctions for each cell.
All the flag arrays are transferred to the GPU global memory (red
dashed arrows in Figure 4). At this point, the activity of all the
GOCs, at the t-th time step, can be evaluated simultaneously on
the device. This part (GOC Activity phase) represents a kernel,
thus a function performed by parallel threads. For this reason,
the device generates a number of threads equal to the number of
GOCs, so that each thread can compute the activity of a specific
GOC. Threads are organized in blocks that, in turn, constitute
a grid. The block dimension (i.e., how many threads a block
contains) is set as multiple of 32, according to thewarp definition,
to optimize the scheduling carried out by the NVIDIA Giga
Thread scheduler (NVIDIA, 2019).

Before the kernel invocation, the code computes the grid
dimension (i.e., the blocks number) as [ngoc/nthread_block], where
ngoc is the GOCs number (i.e., the total number of threads
needed), and nthread_block is the number of threads in a block,
set to 32. If the remainder of the division is not equal to zero,
the grid dimension is incremented by one. In this case, the
last block contains more threads than necessary: this turns out
in inactive threads assigned to the last block. Despite this, the
inactive threads cannot be avoided because each block must
have the same number of threads. Once all these parameters
have been defined, the kernel can be activated. The first step
of this phase is the data transfer from the global to the local
memory of the device. All the threads within a block can access
the same portion of the local memory and, for this reason, the
goal is to copy the parts of the arrays that are needed by the
threads in the block in this memory. In this way, the memory
access latency diminishes. On the other hand, the local memory
has a reduced size (dozens of KB) and, for this reason, not
all the data can be transferred. In this way, only the arrays
and variables that are the most used in the kernel are stored
in the local memory. Moreover, these variables are accessed
multiple times by all the threads in the block. When this first
set of memory transfers has been concluded, all the threads start
evaluating in parallel the GOCs activity. The evaluated phases are
those shown for the serial code and represented in Algorithm 1

lines 6–9. Once the GOCs activity is computed, all the updated
data (i.e., membrane potential, kinetic scheme variables, gating
particles, Nernst potentials, calcium concentration, and so on)
are stored in the global memory because they will be used in
the next iteration. Once this kernel has finished, another one
starts computing the gap junctions currents. This kernel has the
same number of threads and blocks previously defined since each
thread evaluates the gap junctions connections of each GOC. The
currents are stored in the device global memory and evaluated
in the next GOCs activity evaluation. Once the kernels finished,
two arrays are transferred from the device to host: the former
stores the membrane potential of all the GOCs; the latter, called
flag_golgi_spike, has size ngoc and, for each cell, stores a flag whose
value is 1 if the corresponding GOC has generated a spike. The
first arrays is then used to record the potentials in the mass
memory of the system. As described above, this spike travels
along the GOC axon, which enters in the GLOs, where the GRCs
dendrites are hosted. At this point, exploiting the connections
matrices, the code evaluates on the host which are the GRCs
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linked to the GOCs that have generated a spike. For these GRCs,
the spike time is computed and stored in their buffers for the
inhibitory connections, since the GOCs provide an inhibition.
In this way, all the GRCs inhibitory buffers are updated and,
then, analyzed in order to see if they contain inputs that have
to be evaluated by the GRCs in the current time t. This means
that the flags of the array grc_spikeINH assume the value 1 if
the corresponding GRC received an inhibitory signal to evaluate
in t. Clearly, also in this case, the GRCs do not evaluate the
GOCs spikes generated at the same time iteration. The flag array
is then transferred from host to device, where a new kernel is
invocated (GRC activity in Figure 4) to evaluate the activity of
all the GRCs, for the t-th time step, simultaneously. In fact,
the device generates a number of threads equal to the GRCs
number. As for the GOCs activity, also in this case parts of data
are transferred from the global to the local memory. Then, each
thread computes the activity of one GRC, performing all the
functions indicated in Algorithm 1 lines 14–17. At the end, all
the updated variables are transferred back from the local to the
global memory, in order to be used in the next time iteration.
For the GRCs, two arrays are also transferred from the device
to the host: the first stores the neurons membrane potentials,
and the second (flag_grc_spike) stores flags that indicate if the
corresponding GRC has generated a spike. At this point, the
code is processed on the host, where the array flag_grc_spike
is analyzed. In this case, the code checks which are the GOCs
linked to the GRCs (that have generated a spike) through the
ascending axon and the PFs. For all these GOCs, the spike
time is computed and stored in the apical connections buffer,
which is then evaluated to update the goc_spikeAPIC array.
The flags values will be set to 1 if the corresponding GOC is
linked to a GRC that has sent a signal. The Send signals to
Golgi cells phase is the last and the code can proceed with the
next iteration.

The flow of the multi-GPU parallel version is shown in
Figure 5. It starts on the host where data are initialized and
prepared for the transfer. Despite the previous version, data have
to be transferred from the host to two different devices. In fact,
the neuronal activity evaluation is split between the two boards
and, in particular, each one processes the activity of half of the
neurons. Therefore, data related to the first half part of the
cells are transferred to the device 0 global memory, the others
to the device 1 one. For each simulation time step, the queues
evaluation is the same done in the single-GPU version. The only
difference is how data are prepared and split to be transferred
to two devices. In order to invocate the GOC Activity kernel
on two boards, firstly the kernel parameters have to be set. The
number of threads in each kernel is given by (ngoc/2)/nthread_block,
where nthread_blockis always set to 32. If the number of cells is
not an even number, the threads number in one of the two
devices is incremented by one. In order to perform two kernels
simultaneously, CUDA provides the streams to concurrently
execute and overlap kernels and data transfers (Rennich and
NVIDIA, 2014). The streams carry out the transfers (indicated
with red dashed lines in Figure 5) and activate the kernels on
both the devices. All the previous considerations related to the

transfers from the global to the local memory can be also done in
this case for each board. Once the GOC Activity of all the GOCs
is evaluated, the kernels end, and the flow is synchronized. At
this point, the arrays that store the GOCs membrane potentials
and flags (which indicate if each a GOC has generated a spike
or not) are transferred from the device to the host memory.
Moreover, a data transfer between the two boards is performed
(light blue dashed line in Figure 5). In fact, the kernel related
to the gap junctions currents computation is entirely performed
on the device 0 since the code needs the membrane potential
values of all the GOCs to update these currents. Indeed, each
GOC is connected through gap junctions to other GOC which
might not be located on the same device. For this reason, the
membrane potentials evaluated by the device 1 are transferred
to the device 0 through a cudaMemcpyPeerAsync function, which
allows to directly transfer data between GPUs on the same PCI
Express bus bypassing the CPU host memory.1 Once the gap
junctions currents have been updated and stored in the device
0 global memory, the flow returns on the host where the signals
are exchanged and the flags arrays updated, as explained before.
Then, the arrays are transferred on the two boards in order
to activate the GRC Activity kernel on the two devices. As for
the GOCs, each kernel evaluates on each board the activity
of half part of the GRCs. Once the flow is synchronized, the
arrays containing the GRCs membrane potentials and the flags,
indicating the spike presence, are transferred from the devices
to the host. At the end, the signals are exchanged between
GRCs and GOCs and stored in the GOCs buffers for the apical
connections. At this point, the flow can continue with the
next iteration.

Graphical User Interface
The results of the design and of the network neuronal simulations
can be graphically and quantitatively analyzed through a
graphical interface, developed with the OpenGL API in order to
achieve a GPU-accelerated rendering (Sellers et al., 2015). The
main task of this graphical interface is to display the elements
in a 3D volume, considering the spatial coordinates computed
in the network design stage. In Figure 6, the main panel shows
the granular layer network, with the dimension considered in this
work (i.e., 600 × 150 × 1,200 µm3). In particular, the GLOs are
represented in green, the GRCs in red and the GOCs in blue. The
interface is also useful to analyse the connections between GLOs
and neurons, the MFs clustering and to watch the simulation
output. As an example, two tasks have been shown in Figure 7.
In particular, Figure 7A shows how the MFs branch in the
cerebellum forming clusters of GLOs, represented with different
colors. Figure 7B shows an example of connections between
GRCs and GOCs through PFs. All the GRCs in red are the ones
selected by the algorithm following the rules presented in section
NetworkDesign. Only the ascending axon and the PF of one GRC
are represented to show how the PF crosses the space dedicated
to the GOC apical dendrites, generating a connection. As far as

1NVIDIA GPU Direct. Available online at: https://developer.nvidia.com/gpudirect

(accessed October 1, 2020).
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FIGURE 5 | Flow parallel version for the multi-GPUs system. The flow starts on the host, where the variables are initialized, and data are prepared for the transfers to

the global memory of the devices. The GOC Activity and GRC Activity is managed by the two devices. The black lines indicate the flow, the red dashed lines indicated

the host–device (and vice versa) transfers, and the blue dashed line indicates the transfer between devices.

the simulation tasks are concerned, the algorithm evaluates the
membrane potential of each element in all the time steps of the
simulation. In each time step, it changes the color of the elements
that are generating a spike. In this way, the user can graphically
analyse how neurons react to particular stimuli. In the center-
surround simulation (Figure 7C), which will be described in
section Computational Results, a particular technique is adopted
to show the spiking neurons: at the beginning, all the neurons are
not visible in the volume. As soon as a cell generates a spike, it will
be shown with a color whose tone becomes darker as the spikes
number increases.

RESULTS AND DISCUSSION

Neuron Placement and Connection
Analysis
The first validation concerns the evaluation of how many
elements can be correctly placed by the proposed network design
algorithm. The analysis presented below is performed after
running the design algorithm 20 times with different random
seeds. Authors find that the algorithm always places the 100%
of GOCs and GLOs, and 98% of the GRCs. This amount of
not placed cells is negligible in terms of the correct evaluation
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FIGURE 6 | Complete view of the network. Main panel where the complete network (with dimension 600 × 150 × 1,200 µm3 ) is shown. Only the GRCs (red) and

GOCs (blue) soma have been displayed. The GLOs have been represented as green spheres.

of the network activity. Moreover, authors carefully analyzed
the connection matrices to evaluate the percentage of links
established during the network design step. The analysis of the
link_grc_glo matrix reveals that the algorithm completely fills
the 50 available places of the 89.75% of the GLOs (Figure 8A).
In only the 5.07% of cases, the GLOs are not linked to the
GRCs dendrites and, in the other cases, the number of dendrites
that reach the GLOs is between 1 and 49. Moreover, the
evaluation of this connection matrix highlights that 82.30% of
the GRCs sends its dendrites to four different GLOs, satisfying
the convergence constraint (Solinas et al., 2010; D’Angelo et al.,
2016) (Figure 8B). Moreover, this means that this percentage
of GRCs is excited by four different MFs. In other cases, the
GRCs are partially linked to 3 (3.90%), 2 (4.46%), and 1 (3.21%)
GLOs/GLO. Only in the 6.20% of the cases, the GRCs are not
connected to GLOs. The fact that not all the GLOs and GRCs
are entirely linked is not a limit of the algorithm that is based
on convergence/divergence average values (or ranges) taken from
the literature. For this reason, performing the connections not
reaching the maximum number of the expected elements is not
an error. Instead, it provides more variability and realism to
the network. These considerations are also valid concerning the
connections presented below. Figure 8C shows the results of
the analysis conducted on the link_gocdb_glo matrix, containing
the GLOs where the GOCs spread their basal dendrites. The
algorithm is capable of fully connecting the 90.95% of GOCs
to 40 MFs. In the 9.06% of the cases, the GOCs are linked
to <40 GLOs, but all the GOCs receive at least the signal
from one MF. Figures 8D–F also show the count of connection
for GLOs, GRCs and GOCs. Considering the inhibition that
the GRCs receive from the GOCs through their axon, the
matrix link_goca_glo evaluation highlights that the developed
function generates the 94.97% of these connections. Moreover,
considering the GRCs–GOCs connection through ascending
axon and PFs, the algorithm fully connects the GOCs to the

GRCs, following the convergence/divergence rates presented
in section Overview of the Cerebellar Granular Layer Model.
Finally, the gap junctions connections evaluation highlights that
the 96.60% of GOCs are connected to two other cells (Vervaeke
et al., 2010), while only the 1.85% shows one link and the 1.54%
is not connected since those cells are located in the borders of
the volume. The algorithm that reproduces the MFs branching
creates all the clusters with a number of GLOs in the range of
7.7 (±4.1), satisfying the constraint proposed in Sultan and Heck
(2003). The number ofMFs present in this network configuration
is 4051. Figure 9A presents a graph showing the percentages
of clusters with a different number of GLOs. It is possible to
notice that the algorithm creates the 22.72% of clusters with 4
elements, 20.15% with 10 and 19.28% with 12. Moreover, the
distances between the elements within the clusters satisfy the
constraint of 350µm. Therefore, the procedure described in
section Network Design does not alter the distances distribution
inside a cluster. The distances distribution is shown in Figure 9B.
Figure 9C shows all the GLOs belonging to a cluster in the
same color.

Computational Results
Simulations have been carried out on a system equipped with
an Intel i9-9900X CPU, working at 3.50 GHz, and with 128
GB of DDR4 RAM memory. The system is also equipped with
two NVIDIA RTX 2080 GPU (Turing architecture), each one
with 2944 CUDA cores, 8 GB of DDR6 memory and working at
1.8 GHz. The boards are connected to the host through a PCI
Express 3.0.

The simulations have been also carried out on a single node of
an EOS cluster hosted at our University. The node is equipped
with two NVIDIA Tesla V100 GPU (Volta architecture), each
one with 5120 CUDA cores, 32 GB of HBM2 RAMmemory, and
working at 1.38 GHz. Each node has an Intel Xeon Silver 4110
CPU, working at 2.1 GHz. Considering the network design stage,
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FIGURE 7 | Three tasks of the network. (A) MFs branch in the cerebellum forming clusters of GLOs. All the GLOs that belong to a cluster are shown in the same

color; (B) example of connection between the GRCs (red) and the GOC (blue) through PFs: the GRC ascending axon branches in PF (yellow) that crosses the space

dedicated to the GOC apical dendrites (light blue cylinder); (C) Four frames of the center-surround organization: (C1) only the GOCs have already generated a

spontaneous spike; (C2) some GRCs and GOCs are stimulated by the active MFs; (C3) the core of the center-surround organization is more visible. The GOCs

connected through PFs are more excited than the others; (C4) final frame of the center-surround.

the developed algorithm places and connects all the elements
in only 235 s on an Intel i9 CPU. In particular, the elements
placement takes 31.84 s, while their connections and the matrices
generation take 203.16 s.

Considering the layer activity simulation, the differential
equations in the neurons models have been solved adopting a
first-order Euler method, with a time step equals to 0.025ms.
During the single-cells simulators development, the authors
performed several tests to set the optimal time step in order to
validate the results against the ones produced by the NEURON
simulator (Florimbi et al., 2016, 2019).

To evaluate different neuronal behaviors of the network,
several protocols have been developed. Table 2 shows
their characteristics.

The first protocol (Prot1) aims at evaluating the network
response to a background signal of 1Hz over all the MFs. These
inputs start after a delta of 350ms from the beginning of the
simulation and last for the whole activity time (Tend). On the
other hand, to evaluate the network behavior in response to
bursts, 10% of theMFs are activated (Prot2). They generate bursts
lasting 50ms and whose initial time is randomly selected. Their
frequency is 100Hz. Prot3 combines background and bursts in

Frontiers in Computational Neuroscience | www.frontiersin.org 14 March 2021 | Volume 15 | Article 630795

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Florimbi et al. Granular layEr Simulator

FIGURE 8 | Percentage of connection and connections count of GLOs, GRCs, and GOCs. (A) Percentage of GLOs fully (COUNT = 50), partially (25 ≤ COUNT < 50,

0 ≤ COUNT < 25) and not linked (COUNT = 0) to the GRCs; (B) percentage of independent connections between GRCs and MFs (through GLOs). Each GRC can be

linked to four different GLOs at most; (C) percentage of GOCs basal dendrites linked to the MFs (through GLOs). (D) Connections count of GLOs. (E) Connections

count of GRCs. (F) Connections count of GOCs.

only one protocol. In particular, each MF presents a background
stimulus and a burst. This scenario is not realistic from the
physiological point of view since it is very improbable that all
the fibers are characterized by both these stimuli in these kinds
of simulations. However, this protocol has been introduced as a
stress test to analyse the performance with a huge computational
load. Finally, Prot4 represents a realistic version of Prot3. In
fact, all the MFs are characterized by a background stimulus but
only 1% of them generates a burst during the simulation. Each
protocol has been used as input of three different simulations,
where 1, 3, and 10 s of neuronal activity have been evaluated.
Figure 11 shows three graphs presenting the processing time (in
logarithmic scale) of each simulation on the different test systems.
In particular, the Serial version has been processed on the Intel i9
CPU. The single and multi-GPU versions have been processed
exploiting the NVIDIA RTX 2080 GPUs, and the NVIDIA V100
GPUs. Similarly, Figures 10A–C present the processing times
for 1, 3, and 10 s of activity reproduction, respectively. All the
elaborations refer to a network with size 600× 150× 1,200 µm3,
hosting a number of neurons equal to ∼423,066 and of 32,400

GLOs. This network dimension has been chosen to consider a
relevant number of elements and to reproduce the characteristic
network behaviors. When analyzing the graphs in Figure 11, we
can firstly observe that, as expected, Prot3 is the slowest among
the four tests. In fact, this protocol provides to the network a huge
number of inputs, which increases the times that the algorithm
has to evaluate the presynaptic model. Taking into account the
number of stimuli that are introduced in the network, it can
be concluded that the computational time of the serial versions
strongly depends on the number of inputs of the protocol.
Both in the 1, 3, and 10 s simulations, the highest number of
inputs is provided by the Prot3 (∼24,300, ∼32,400, and ∼60,750
signals on the whole network, respectively), followed by the
Prot4 (∼4,250, ∼12,350, and ∼40,700, respectively), the Prot1
(∼4,050, ∼12,150, and ∼40,500, respectively), and the Prot2
(always ∼2025). As can be seen from these data, in Prot1 and
Prot4 the number of inputs is similar, and this small difference
does not guarantee that Prot 4 is always the fastest solution
among the two. In these serial simulations, Prot2 takes always the
lowest computational time, as expected. The considerationsmade
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FIGURE 9 | MFs clustering. (A) The graph shows the percentage of clusters with a different number of GLOs (4 ÷ 12); (B) the graph shows the distances distribution;

(C) the GLOs within the same cluster are displayed in the same color. By way of example some clusters have been highlighted.

on the link between the number of inputs and the processing
time cannot be repeated for the parallel versions since different
aspects have to be introduced. For example, the data transfers
and the access to the device global memory can introduce delays
that increase the processing time. Comparing the parallel and
serial versions, all the parallel elaborations perform better than
the serial ones. In fact, the serial versions of the 1, 3, and 10 s
simulations last from 10 to 14 h, from 30 to 35 h, and from 103
to 321 h (i.e., from 4 to 13 days), respectively. These processing
times are strongly decreased considering that, in the worst case,
the parallel simulation takes about 6 h (considering the 10 s
simulation, with one RTX, Prot3). Comparing the single-GPU

versions (RTX and EOS in Figure 10), it can be noticed that
there are no substantial differences between the processing times,
considering the three simulations and the four protocols. This is
due to the fact that, even if the EOS GPU (i.e., NVIDIA V100)
is equipped with a higher number of CUDA cores than the
NVIDIA RTX, this last one features a higher working frequency
and a more recent architecture. These characteristics make the
difference between the processing times negligible as expected.
All the single-GPU parallel versions provide a speedup compared
to the serial code processing time. For example, considering the
10 s simulation of Prot4, the serial code takes 484999.77 s (i.e.,
∼5.61 days), to elaborate the network activity. The parallel code
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TABLE 2 | Protocols details.

Protocol ID Background

(Hz)

TIback (s) TFback (s) Burst (Hz) TIburst (s) TFburst (s) #MF burst

Prot1 1 0 + delta Tend – – – –

Prot2 – – – 100 Trand Trand +

0.05

10%

Prot3 1 0 + delta Tend 100 Trand Trand +

0.05

100%

Prot4 1 0 + delta Tend 100 Trand Trand +

0.05

1%

The table shows the protocol ID, the background frequency, the instant times when the background starts and ends. Moreover, it shows the burst frequency, the instant times when

the burst starts and ends, and the number of MFs activated with the bursts.

on one RTX 2080 GPU takes 15650.66 s (∼4.34 h) while the one
on the V100 GPU (EOS) takes 12693.46 s (∼3.52 h), obtaining
a speedup of ∼31× and ∼38×, respectively. Also in the stress
test case (Prot3), the single-GPU parallel versions perform better
than the serial code, providing a speedup up to ∼72×. The
multi-GPU versions always improve the performances compared
to the corresponding single-GPU code. For example, always
considering the 10 s simulation of Prot4, the processing time is
12120.83 s (∼3.37 h) considering two RTX 2080, and 8773.99 s
(∼2.44 h) considering the two boards in the EOS system. In these
cases, the speedup compared to the serial version increases to
∼40× and∼55×, respectively. It is worth noticing that the usage
of a dual-GPU system does not halve the processing time. This
is because some elaborations are performed on a single GPU,
moreover, the initialization and the results writing are performed
in serial. Finally, not all the memory transfers from the host to
the devices can be perfectly overlapped.

Authors also analyzed the code in order to highlight the
computational weight of each part of the main for loop. The code
profiling highlights that about the 95% of the time is taken by the
CUDA kernels, the memory transfer account for the 4.6% and
only the 0.4% is taken by the host functions. Therefore, there is no
reason to implement the spike propagation on GPU. Moreover,
the spike propagation could degrade the GPU performance since
some parts are strictly sequential.

These results demonstrate that this kind of technology,
together with an efficient code development, allows reducing
the serial processing times. In this respect, authors decided
to perform a very long simulation (50 s) of the neuronal
activity using the GES system adopting the Prot4. The choice
of this protocol has been made since it is the most realistic
one, combining the background signals with the bursts. The
simulation has been run on the EOS cluster exploiting two
NVIDIA V100 GPUs. To reproduce 50 s of neuronal activity, the
system takes 49839.68 s (∼13 h). This result demonstrates that
this system is suitable to reproduce very long neuronal activity,
giving the opportunity to study particular behaviors that are
not reproducible with other kinds of simulators due to their
slower processing times. The GPU technology, together with the
optimization developed to efficiently perform the data transfers
and the memory accesses and to process the neuronal activity,
constitutes an appropriate solution for the network simulation.

In particular, this system is capable of fast reproducing a
considerable portion of the granular layer, characterized by a high
number of neurons, described by complex mathematical models.

Figure 11 shows the raster plots to graphically visualize the
network activity in response to Prot2. In Figure 11A, it is possible
to evaluate the GOCs activity. In particular, these cells generate
spontaneous firing and, when stimulated by MFs, they increase
their firing frequency. Only some cells are shown (id 50–80)
and in a reduced time-window (0–450ms). On the other hand,
the GRCs do not show spontaneous firing and they generate
spikes only when stimulated (Figure 11B). In fact, as it is possible
to notice from the raster plot, the cell generates a spike after
receiving 3–4 stimuli by the MFs.

Finally, a further validation of the proposed network has been
achieved reproducing the typical center-surround organization
of the granular layer (Mapelli and D’Angelo, 2007; Solinas et al.,
2010; Gandolfi et al., 2014). In fact, several electrophysiological
experiments (Mapelli and D’Angelo, 2007; Mapelli et al., 2010a,b)
showed that a MFs bundle can stimulate a specific area of the
granular layer, generating a central area of excitation and a
surrounding one of inhibition. To reproduce this organization,
the protocol adopted as input is characterized by the activation
of the MFs present in a selected area whose diameter is 50µm.
It is important to highlight that the GLOs, and thus the GRCs
and GOCs, excited by these MFs can be also outside this area.
In fact, as explained before, each MF stimulates all the GLOs
within a cluster and, even if all the elements within a cluster are
not so far, it could be possible that they are outside the selected
area. Also in this case, it is possible to correctly reproduce the
center-surround organization using as input the branched MFs.
In particular, in this simulation, the MFs within the selected
area are 9 and each one stimulates the GLOs with a burst of
50ms and a frequency of 150Hz. Moreover, the entire network
is considered (i.e., all the elements can react to an eventual
stimulus) and all the connections are switched-on while, in
the reference papers, only the area of interest is switched-on.
The response of the center-surround shown in Figure 12 is the
result of a single simulation run. The burst stimulation causes
a central area with a stronger excitation (red area) than the
surrounding one (blue area), where the GOCs inhibition limits
the rate of GRCs output, overcoming the excitation around
the core.
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FIGURE 10 | Processing times. 1 s (A), 3 s (B), and 10 s (C) neuronal activity simulations on the different test systems. The serial simulation ran on Intel i9 CPU, RTX

and Dual RTX refer to the NVIDIA RTX 2080 boards, and EOS and Dual EOS refer to the NVIDIA V100 boards. The graphs show the results of the simulations where

the four protocols have been tested (Prot1, Prot2, Prot3, and Prot4). The graphs are in logarithmic scale. The legend refers the three graphs.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 March 2021 | Volume 15 | Article 630795

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Florimbi et al. Granular layEr Simulator

FIGURE 11 | Raster plots. (A) The activity of the GOCs (id 50–80) is shown. The cells show a spontaneous firing until they are stimulated (green lines) by MFs. In

these cases, their firing frequency is increased; (B) the activity of the GRCs (id 405911–405976) is shown. Some GRCs are stimulated with bursts by MFs. It is

possible to notice that GRCs generate a spike only after 3–4 stimuli. The red lines refer to the cells with an even id, while the blue lines refer to the cells with an odd id.

Memory Occupancy
One of the most important aspects of the simulator is that it
is parametric. The user can vary several parameters, such as
the volume of the network, to simulate different granular layer
configurations. This characteristic makes the system very flexible
for what concerns the network construction. Concerning the
network design stage, running on the CPU, the code allocates 600
B for parameters used in the network construction and elements

connections, whose number is not proportional to the number
of neurons or elements. Moreover, the code allocates a memory
space proportional to the number of GOCs, GRCs, GLOs and
MFs, as shown in Equation (15):

MEMdesign = 600+ 15432 ngoc + 32 ngrc + 1292 nglo

+ 296 nMF (15)
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FIGURE 12 | Center surround organization. The MFs stimulate the GLOs with a burst of 50ms and 150Hz. The network response is characterized by an excited core

caused by the GRC firing (red area). This center is surrounded by an area, where the GRCs response is inhibited by the GOCs. (A) Center-surround lateral view. (B)

Center-surround top view.

where MEMdesign is the amount of memory expressed in byte.
In the case of the present configuration, this value is equal to
∼70MB. If the second stage, i.e., the network simulation, runs
on the CPU, the code allocates a total amount of memory given
by Equation (16):

MEMcpusim = 42542 ngoc + 12220 ngrc + 204 nglo + 8004 nMF

(16)

In the simulation of the present network configuration, the
allocated amount of RAM is∼5 GB.

If the network simulation is performed on the GPU, the major
constraint is represented by the available RAM provided on the
device. In order to evaluate the maximum volume that can be
reproduced with a specific board, it is important to compute
the amount of global memory device to be allocated using the
cudaMalloc function. Considering the network configuration
simulated, the code allocates 580 B for parameters used both
for the GOCs and GRCs activities, whose allocation is not
proportional to the number of reproduced cells. On the other
hand, it is necessary to allocate space for the variables used in the
neuronal activity computation. This memory size is proportional
to the GOCs and GRCs number and, for this reason, 2788× ngoc
B and 7172 × ngrc B are allocated, respectively. Therefore, the
total amount of memory needed to reproduce a generic network
configuration is given by Equation (17).

RAMGPU = 580+ 2788 ngoc + 7172 ngrc (17)

It is worth noticing that the RAM occupancy on the GPU is lower
than on the CPU. The reason is that part of the connectivity is
processed on the CPU; therefore, these data are not allocated
on the GPU memory. Moreover, this memory amount can be
generalized if two or more GPUs are used: in this case the

values of ngoc and ngrc should be divided by the number of
available devices.

If the number of cells is expressed as a function of cellular
densities, it is possible to estimate if the volume of a certain
network configuration can be stored using a specific GPU board.
Equation (18) expresses the bound of the volume in function of
the neurons densities and the available RAMmemory.

V ≤
RAMGPU − 580

2788 ngoc + 7172 ngrc
(18)

In Equation (11), V is the volume expressed in mm3 and the
memory occupancy is measured in byte. In the configuration
adopted in this work, the total amount of allocated memory
is ∼2.88 GB, which represents the ∼24% of the RAM of the
NVIDIA RTX 2080 board. It is possible to conclude that the
amount of memory allocated for the network design stage is
negligible compared to the simulation stage performed both on
the CPU and on the GPU. Finally, the memory requirements of
the two stages are compatible with a standard desktop system.
Therefore, it is not mandatory to use a cluster or supercomputer
to run a realistic simulation with the proposed system.

Scalability Analysis
The scalability of the proposed system has been evaluated
considering two network with x and y dimensions halved
(Network2) and doubled (Network3) with respect to the network
described in the previous sections (Network1). The performance
has been evaluated both in terms of elements placed and
connected and of processing times. In terms of elements
placement and connections, the considerations are the same
made for the original network. Concerning the processing times,
Network2 takes approximatively four times less than Network1.
This is an expected value since the volume simulated in Network1
is four time the one simulated in Network2. Similarly, network3
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runs four times slower than network1 as it has a quarter of
the volume.

Comparison With the State of the Art
The main differences between this work and the literature are
related to the neuronal models chosen to reproduce the activity
of the neurons, the simulation duration and the integration time
step. Here, some of the most relevant and similar works at the
state of the art are reported and compared with this work. In
Naveros et al. (2015), authors developed an event- and time-
driven spiking neural network simulator for a hybrid CPU-GPU
platform. It consists of a very dense granular layer and a Purkinje
layer with a small number of cells, where neurons are reproduced
using LIF models and characterization tables (computed offline)
containing the dynamic of each cell. To reproduce 10 s of
neuronal activity, the simulation of 3 million neurons and 274
million synapses takes 987.44 s on an Intel i7 CPU equipped with
32 GB RAM and an NVIDIA GTX 470 GPU equipped with 1.28
GB RAM. This result cannot be directly compared to this work
for two main reasons: the most important is the different model
chosen and the other is related to the integration step, which
varies from 0.1 to 1ms that is higher than the one used in this
work (0.025 ms).

Another interesting work that reproduces the cat cerebellum
network containing more than a billion spiking neurons, is
described in Yamazaki et al. (2019). Authors do not exploit
the GPU technology but an HPC special purpose computer
equipped with 1280 PEZY-SC processors. This system elaborates
in real-time 1 s of neuronal activity, with an integration step of
1ms. Also in this case, cells are described by LIF models and
the connectivity rules are not updated. Moreover, the synapses
are characterized only by the AMPA receptors. Finally, this
architecture represents a completely different philosophy that
from one side benefits the application specificity, from another
one follows a not fairly comparable approach in terms of
programmability, size/performance ratio and technological life of
the employed components.

Authors of Gleeson et al. (2007) provide a tool to build,
visualize and analyse network models in a 3D space. The
network design reproduces very realistic and complex neuron
morphologies exploiting the Hodgkin and Huxley model.
Nevertheless, they run simulations of up to only 5,000 neurons on
a single-processor machine that takes 1–2 h for 4 s of activity. In
this case, even if the morphology is very detailed, the simulation
part is not so efficient as the one proposed in this work. On
the other hand, the cerebellar granular layer network developed
in Solinas et al. (2010) is the one considered as reference for
the present work. In fact, these networks present the same
mathematical models (even if their models are written for the
NEURON simulator) and connection rules. The main difference
concerns the cellularmorphology and the elements displacement.
In this case, the cellular soma is represented by a point (not
sphere) and this means that two soma can be overlapped.
Moreover, during the cells displacement, the algorithm does not
take into account the minimum distances between cells. They
create a network inside a 3D space (i.e., a cube with 100µm
edge length) and that includes 315 MFs and 4,393 neurons (4,096

GRCs, 27 GOCs, 270 basket, and stellate cells). The reproduction
of 3 s neuronal activity requires about 20 h on a Pentium-5 dual-
core and 30min using 80 CPUs on the CASPUR parallel cluster.

The work in Van Der Vlag et al. (2019) reports a multi-GPU
implementation of a neuronal network based on the Hodgkin
and Huxley model. The connectivity is based on the uniform or
on the Gaussian distribution. Therefore, no realistic connection
rules are considered. Moreover, the simulated time is only 100ms
with a time step of 0.05 ms.

Authors of Yavuz et al. (2016) proposed a systems to
automatically generate CUDA kernels and runtime codes
according to a user-defined network model. The work only
supports single GPU systems.

A multi-GPU framework is proposed in Chou et al. (2018).
However, this framework only includes the four and nine
parameters Izhikevich models. Moreover, the authors evaluated
the performance on a random spiking network. Thus, a direct
comparison with our work would not be fair.

In Casali et al. (2019), authors present the whole cerebellar
network reconstruction (i.e., granular, Purkinje, and molecular
layers) based on the morphological details and connection rules
used also in this work. Considering the design part of the
system, the main differences with GES are the absence of the gap
junctions and of the organization of the MFs in rosettes. Another
important aspect to highlight is that in Casali et al. (2019)
neurons are represented with single-point LIF models since the
work is focused on a detailed network construction. Another
difference between the systems is that the network in Casali et al.
(2019) is simulated on pyNEST and pyNEURON while, in GES,
optimized codes for the network design and simulation have been
developed in C/CUDA languages. Authors in Casali et al. (2019)
simulated a cerebellar cortex volume of 400 × 400 × 330 µm3

with a total amount of 96,734 cells even if the system is scalable.
Authors do not provide information about the simulation time
and the technical features of the HPC system used for the code
elaboration. The integration step is set to 0.1ms, so four times
bigger than the one used in this work. Even if this network and
the one described in the present work are based on the same
physiological data exploited in the network reconstruction, it is
not possible to make a comparison on the efficiency of the two
systems since some data are missing.

Limits and Future Works
Even if the GES system reconstructs the granular layer and
reproduces its behavior, some aspects can still be improved.
One of the main features of this simulator is that it is possible
to change the models representing the neurons, without any
modifications in the network design module. For this reason, one
of the aspects that can be improved is the introduction of multi-
compartment models with active compartments. This aspect
will lead also to include more detailed morphologies, which
will be also graphically shown through the graphical interface.
Another aspect that could be improved in the design module
is the introduction of a more specific constraint in the way the
gap junctions are generated. Moreover, it will be interesting to
reproduce a larger area of the granular layer where the MFs will
stimulate more than one cluster of GLOs. Finally, since authors
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have already developed the Purkinje cells simulator on GPU
(Torti et al., 2019), an efficient way to include these cells in the
network will be studied. In this way, also the molecular and
Purkinje cell layers will be reconstructed to obtain a complete
cerebellar cortex network.

CONCLUSIONS

The use of HPC technologies in computational modeling
in neuroscience is becoming more and more attractive and
widespread. In particular, the GPUs play a critical role in the
large-scale networks elaboration where the activity of a huge
number of connected neurons is reproduced.

This paper presented the GES system capable of
reconstructing, simulating and visualizing the cerebellar
granular layer, exploiting a desktop system with the GPU device.

The algorithm reconstructs the cerebellar granular layer
following detailed rules and data aligned with the state of
the art, targeting a high level of realism. The granular layer
reconstruction in a 3D space is performed by an efficient serial
code that takes <4min to place and connect the neurons in a
600× 150× 1,200 µm3 volume (with 432,000 GRCs, 972 GOCs,
32,399 GLOs, and 4,051 MFs).

The simulator is also characterized by two parallel codes
elaborating the network neuronal activity. The GPU device
has proved to be vital to strongly reduce the computational
time of the serial elaboration. Different protocols considering
background, bursts and the combination of them have been
tested. In particular, Prot4 provided the most realistic scenario
performing both background and bursts. In this case, the system
reproduces 10 s of neuronal activity in 4.34 and 3.37 h exploiting
a single and multi-GPU desktop system (equipped with one
or two NVIDIA RTX 2080 GPU, respectively). Moreover, if

the code runs on one node of the EOS system the processing
time further decreases to 3.52 and 2.44 h exploiting one or two

NVIDIA V100 GPU, respectively. The processing time of the
related serial code takes ∼135 h (∼5.61 days) on an Intel i9 CPU
and this means that the parallel versions reach a speedup up
to ∼38× in the single-GPU version, and up to ∼55× in the
multi-GPU code. This kind of technology and the development
of an efficient code allowed to perform very long simulations,
useful to study particular network behaviors reproducible only
analyzing long time frames. In this work, authors presented a first
long-lasting simulation (Prot4), reproducing 50 s of the network
activity in∼13 h on one node of the EOS system. A crucial aspect
to highlight is that the code is flexible and allows the user to
reconstruct and simulate networks with different dimensions.
Finally, a graphical interface has been developed to graphically
analyse the results.
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