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Extrastriate visual neurons show no firing rate change during a working memory (WM)

task in the absence of sensory input, but both αβ oscillations and spike phase locking

are enhanced, as is the gain of sensory responses. This lack of change in firing rate is

at odds with many models of WM, or attentional modulation of sensory networks. In this

article we devised a computational model in which this constellation of results can be

accounted for via selective activation of inhibitory subnetworks by a top-down working

memory signal. We confirmed the model prediction of selective inhibitory activation by

segmenting cells in the experimental neural data into putative excitatory and inhibitory

cells. We further found that this inhibitory activation plays a dual role in influencing

excitatory cells: it both modulates the inhibitory tone of the network, which underlies

the enhanced sensory gain, and also produces strong spike-phase entrainment to

emergent network oscillations. Using a phase oscillator model we were able to show that

inhibitory tone is principally modulated through inhibitory network gain saturation, while

the phase-dependent efficacy of inhibitory currents drives the phase locking modulation.

The dual contributions of the inhibitory subnetwork to oscillatory and non-oscillatory

modulations of neural activity provides two distinct ways for WM to recruit sensory areas,

and has relevance to theories of cortical communication.

Keywords: working memory, phase locking, local field oscillations, excitatory-inhibitory balance, visual responses

1. INTRODUCTION

Top-down signals modulate responses to incoming sensory stimuli (Desimone and Duncan, 1995;
Humphreys et al., 1998; Lee et al., 2005; Mitchell et al., 2007; Fries, 2009, 2015; Churchland et al.,
2010; Bosman et al., 2012; Vinck et al., 2013; van Kerkoerle et al., 2014; Womelsdorf and Everling,
2015; Engel et al., 2016; Michalareas et al., 2016; Moore and Zirnsak, 2017), and have been explored
in computational models (Brunel and Wang, 2001; Ardid et al., 2007; Lakatos et al., 2008; Kopell
et al., 2011; Lee et al., 2013; Kanashiro et al., 2017). It has been shown that the firing rates of
extrastriate cortical neurons are not modulated by working memory (WM) (Lee et al., 2005; Zaksas
and Pasternak, 2006; Mendoza-Halliday et al., 2014). However, in the presence of a sensory signal,
firing rates of neurons in these areas are enhanced when the stimulus in their receptive field is the
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target of top-down attention or WM (Moran and Desimone,
1985; Treue and Maunsell, 1996; Treue and Martínez Trujillo,
1999; Zhou and Desimone, 2011; Merrikhi et al., 2018). The
goal of this study is to provide insight into the neural
mechanisms giving rise to this non-linear interaction between
sensory stimulus and top-down signal: to explain how extrastriate
responses to sensory stimuli are modulated, without changes
in baseline firing, to account for WM- and attention-induced
changes in spiking behavior. Both attention andWM also induce
oscillations in local field potentials (LFPs) (Fries et al., 2008;
Siegel et al., 2008; Gregoriou et al., 2009; Liebe et al., 2012; Daume
et al., 2017) and the timing of spikes relative to these oscillations
(Lee et al., 2005; Vinck et al., 2013; Bahmani et al., 2018; Drebitz
et al., 2018; Fiebelkorn and Kastner, 2020). These oscillations are
believed to contribute to enhanced sensory processing (Bahmani
et al., 2018). Thus, to achieve our goal, we developed a minimal
dynamical model mimicking oscillatory behavior in the network
and investigated how top-down and bottom-up signals interact
to enhance representations of sensory information.

Previous work by our group established that extrastriate areas
(such as V4 or MT) receive direct input reflecting the content of
WM from prefrontal cortex (Merrikhi et al., 2018). In another
recent article (Bahmani et al., 2018), we found that in the absence
of any bottom-up sensory input, WM increased LFP αβ-band
power, and neurons were more likely to fire at specific ranges
of phase angles of the αβ-band LFP oscillation—phase locking.
However, these changes were not accompanied by a change in
the overall firing rate, although firing rate response gain was
enhanced with the inclusion of sensory input at the receptive field
(RF) location held in WM. Importantly, effect sizes depended on
the degree of overlap between the remembered location and the
visual neuron’s RF, suggesting this phenomenon was restricted to
a local network with common RF input.

To understand how local network mechanisms could produce
the newly-observed WM effects in Bahmani et al. (2018), we
simulated a conductance-based network model consisting
of small-scale excitatory and inhibitory subpopulations. We
employed a simple model capable of generating oscillations,
without incorporating layer-specific subpopulations; this
minimal model was sufficient to replicate the pattern of neural
results and allow us to interrogate the relationship between
oscillatory changes and spiking responses. We found that
WM-dependent elevated activity in the inhibitory subnetwork
produces emergent oscillatory behavior, and reproduces the
observed the gain modulation and phase locking effects in
excitatory neurons. This is consistent with established links
between inhibitory neurons and attention (Mitchell et al.,
2007; Kanashiro et al., 2017), and modeling studies linking
inhibition to network oscillations (Van Vreeswijk et al., 1994;
Chow et al., 1998; White et al., 1998; Brunel and Hakim,
1999; Whittington et al., 2000), like that of the ING-oscillation
(Tiesinga and Sejnowski, 2009). Note that the dynamical origins
of the persistent WM input were not studied here, instead we
focus on the effects of this input on sensory networks (for the
former, see for instance Wang, 2001). Our model predicted
differential effects of WM input on firing rate and phase locking
for excitatory vs. inhibitory neurons, and a re-analysis of the data

from Bahmani et al. (2018) based on spike width (Mitchell et al.,
2007) confirmed that firing rate is modulated only for putative
inhibitory neurons, while phase locking is only modulated for
the excitatory neurons.

To understand how the gain and phase locking effects
emerged in the network model, we developed a spiking phase-
oscillator model (Glass and Mackey, 1988) that accepts top-
down, bottom-up, and oscillatory input generated from the
network model. This phase model allowed the independent
manipulation of two factors that affect network behavior. The
first factor affects the inhibitory to excitatory balance due
to inhibitory gain saturation, resulting in enhanced excitatory
responses to bottom-up input (Kapfer et al., 2007; Vogels and
Abbott, 2009; Kanashiro et al., 2017). The second factor relates
to inhibition’s effect on phase-coupling that shapes the trajectory
to spiking in response to oscillating network input, and strongly
affects spike phase locking. Our findings suggest that inhibitory
subnetworks that are selectively activated by WM play a dual
role in influencing excitatory cells, modulating both the sensory
gain and phase locking to network oscillations. These WM-
mediated changes underly two principal hypotheses for top-
down control of interareal cortical communication (Diesmann
et al., 1999; Womelsdorf et al., 2007; Kumar et al., 2008; Fries,
2015; Moldakarimov et al., 2015; Kanashiro et al., 2017; Hahn
et al., 2019; Kohn et al., 2020), where both spike count, as well
as the degree of spike synchronization within an oscillation cycle,
each contribute to communication efficacy.

2. METHODS

2.1. Experimental Methods and Neural
Data Analysis
Two adult male rhesus monkeys (Macaca mulatta) were used
in this study. All experimental procedures were in accordance
with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals, the Society for Neuroscience
Guidelines and Policies. The protocols for all experimental,
surgical, and behavioral procedures were approved by the
Montana State University Institutional Animal Care and Use
Committee. All surgical procedures were carried out under
Isoflourane anesthesia and strict aseptic conditions.

Cortical neurons in the middle temporal area (MT) of
macaque monkeys were recorded during a memory guided
saccade (MGS) task. Experimental techniques and details of the
behavioral task are detailed in Bahmani et al. (2018); however we
provide a brief sketch here. An MGS task trial consisted of a time
to gain eye fixation on a marker at the center of a black screen,
followed by a location cue presentation period at one of several
peripheral locations, one of which was located within the RF of
recordedMT neurons–the IN condition—or outside of the RFs—
the OUT condition. After the cue disappeared, a 1-s delay period
was presented in which no visual input was given. Following the
delay period a saccade was initiated to the remembered location.
Data from the delay period of correct trials were reanalyzed here
to assess the influence of WM, either IN or OUT of the receptive
field, on cell spiking, local fields, and phase locking.
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Spike phase locking SPL is a quantity between zero and unity
that measures the degree of spiking regularity with respect to
an oscillating signal. Let ℓ(t) be the LFP signal and ℓαβ (t) be
the αβ bandpass filtered LFP. The angle argument (arg) of the
analytic continuation of ℓ, via the Hilbert transform H, defines
the oscillation phase φ(t) of the LFP signal:

φ(t) = arg
(

ℓαβ (t)+ iH[ℓαβ (t)]
)

∈ (−π ,π]. (1)

If tn are the spike times in a simulation or recording session
n = 1, 2, . . . ,N, then φn = φ(tn) are the spike phases. The SPL
for that session is then defined as

SPL =
∣

∣

∣

1

N

N
∑

n=1

exp(iφn)
∣

∣

∣
, (2)

Where i =
√
−1 is the imaginary unit and the | · | is the complex

modulus. Therefore, the SPL is the mean vector strength of the of
spike phase angle sample, which represents how concentrated the
phases are around the mean phase.

The modulation index (MI) was calculated as follows: if Xi

is a measured quantity (firing rate or SPL) in condition i of the
experiment, then theMI of condition i relative to condition j is

MI =
Xi − Xj

Xi + Xj
. (3)

To identify differential modulation of narrow and broad wave
forms subpopulations to SPL and firing rate modulations, we
segmented the spike waveform data used in our prior study
(Bahmani et al., 2018) with different segmenting cutoff points.
We computed the MI for SPL as well as firing rate (FR)
for each segmenting cutoff. We looked for cutoff values that
exhibited strong levels of Wilcoxon Rank-Sum significance in the
respective measures of SPL and firing rate.

2.2. Computational Network Model
We created a minimal model of a cortical circuit composed of
recurrent connections between and within two subpopulations,
each composed of N = 10 model neurons. One subpopulation
consisted of inhibitory interneurons (i-cells), while the other
consisted of excitatory (e-cell) model neurons. This minimal
network model is formulated to describe dynamics of a local
network in extrastriate visual cortex, such as V4 or MT
comprising cells tuned to the same receptive field like those
reported in prior studies from in our lab (Merrikhi et al., 2017;
Bahmani et al., 2018).

In addition to the recurrent connections, the populations
received tonic excitatory input currents labeled as “top-down”
WM input and “bottom-up” sensory input. The key distinction
between WM and sensory inputs is in the relative strength of
that input onto the i-cell and e-cell populations. The WM input
is more strongly weighted to the i-cell population, whereas the
sensory input is weighted more to the e-cell population. The
mixing of WM and sensory inputs was designed to produce a
range of firing patterns through adjusting the relative activity of
i- and e-cell populations.

Each neuron was modeled as a leaky integrate-and-fire (LIF)
of membrane voltage v(t). When v < vT , the threshold voltage
for firing, the voltage was modeled by the standard capacitative
current balanced with synaptic and other membrane currents

τv
dv

dt
= vm − v+ wjisi(vi − v)+ wjese(ve − v)+ Ij + γ , (4)

where j = i, e depending on the type of neuron. A spike occurs at
time tk when limt→t−

k
v(t) = vT , and then the voltage is reset to

the reset voltage limt→t+
k
v(t) = vR. Note the membrane currents

as written above are not true currents, but instead expressed
in units of mV. In order of appearance from left to right, the
currents are the capacitative current equal to the sum of a passive
leak current vm−v, inhibitorywjisi(vi−v) and excitatory synaptic
currents wjese(ve − v), and extrinsic current Ij (comprising both
top-down and bottom-up influences), and independent noise
current γ , respectively.

The network was recurrently connected all-to-all with fixed-
value synaptic weights wee, wii, wie, and wei in (4) (see Table 1 for
specific values). The time-dependent inhibitory and excitatory
synapse variables si(t) and se(t), respectively, are governed by a
standard two-variable system of DEs:

τj
dη

dt
= −η +

1

N

∑

k,j

δ(t − t
j

k
),

τj
dsj

dt
= −sj + η,

(5)

where t
j

k
are the spike times from the network from the jth

population–e or i–and δ is the Dirac pulse functional. In the
synaptic model (5), each N = 10 subpopulation exploits
the linearity of the synaptic DE, in which all spikes in the
subpopulation are summed together in the input to the η-
equation. This summation means that each cell is self-coupled,
however with N = 10 the effect of self-coupling is minimal.

The excitatory synapses were chosen to have a standard
fast AMPA-type kinetics. The inhibitory synapses, we chose a
timescale τi = 75 ms and reversal potential Vi = 100 mV
consistent with a GABAB-type synapse. This choice enabled
us to replicate the α-β-band (8–25 Hz) oscillation, that was
observed to exhibitWM-dependentmodulation in Bahmani et al.
(2018), and is consistent with numerous modeling studies that
identify inhibitory kinetics as the principal factor in determining
oscillation period in reciprocally connected inhibitory networks
(Van Vreeswijk et al., 1994; Chow et al., 1998; White et al., 1998;
Brunel and Hakim, 1999; Whittington et al., 2000).

The input current Ij in (4) is composed of WM and sensory
inputs: Ij = Ij,m(m) + Ij,s(s), where m and s are the memory and
sensory control variables, respectively. The input current to each
subpopulation is as follows

Ij = αjs+ βjm+ I0,j, (6)

where the coefficients αj and βj set the input gain of sensory-
and memory-input currents to each jth subpopulation. The

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2021 | Volume 15 | Article 632730

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Nesse et al. Inhibitory Subnetworks Drive WM Modulation

TABLE 1 | Parameter values for the LIF network model.

Parameter Value Parameter Value

vT −50 mV vR −60 mV

ve 0 mV vi −100 mV

τv 10 ms τi 75 ms

τe 5 ms τc 1000 ms

σ 0.05 mV σc 0.001 mV

I0,e 0.42 + 0.0089 (n − 1) mV I0,i 0.28 + 0.0089 (n − 1) mV

αe 0.8 mV αi 0.38 mV

βe 0.625 mV βi 0.73 mV

wee 0.002 wii 0.02

wie 0.04 wei 0.02

parameters s ranged over increments—24 in total—of the interval
[0, 1], and m was set at 0 or 1 for memory OUT and IN
conditions, respectively. Based on experimental evidence that
top down inputs to extrastriate areas preferentially activate
inhibitory cells (Mitchell et al., 2007), we have set βe < βi and
αe > αi, so that theWM input elicits greater gain for i-cells, while
e-cells have greater current gain to bottom-up input s. The offset
I0,j was set over a range of values to introduce heterogeneity to
each cell in each subpopulation, as well as to ensure that e-cell
population average baseline firing in the absence of bottom-up
stimulus s = 0 is near 4–5 Hz for each condition. Specifically, we
express I0,j as

I0,j = Ibase,j + 1Ibase,j(n− 1), (7)

for n = 1, 2, 3, . . . ,N (see Table 1).
The time-dependent noise current γ (t) to each cell is

independent of all other cells, and is comprised of both
uncorrelated Gaussian white noise ξ1(t) and Ornstein-Uhlenbeck
correlated noise ζ (t)

γ (t) = σwξ1(t)+ ζ (t), (8)

τc
dζ

dt
= −ζ + τcσcξ2(t), (9)

where ξ2(t) is another independent realization of Gaussian white
noise. Ito stochastic integration dictates that both ξ1(t)dt and
ξ2(t)dt are Wiener process differentials (Gardiner, 2009). The
noise level was tuned to be large enough so that cells in the
network exhibited smooth firing rate changes in response to
input changes rather than stair-step jumps due to extreme phase
locking (Chacron et al., 2000; Nesse et al., 2007).

The parameter settings for the model are listed in Table 1.

2.2.1. LFP Proxy
The local field potential (LFP) proxy was composed of a linear
combination of all excitatory and inhibitory currents in the
network, similar to the approach detailed inMazzoni et al. (2015).
In our realization of the LFP proxy, we multiplied by a voltage
factor of equal to the near rest potential v = −55 Mv, minus the

reversal potentials for each type of synapse to properly weight the
relative contribution to the return current LFP:

LFPproxy(t) =(wee + wei)(−55− 0)se(t)

+ (wee + wei)(−55+ 100)si(t).
(10)

2.2.2. Phase Oscillator Model
Essential features of LIF model neuron v(t) oscillatory dynamics
can be described by a relatively simple phase oscillator model.
The phase model describes a cell in terms of an angle quantity
θ(t) that passes through from zero to unity and so on to zero
again in each oscillation cycle, but the phase can also be perturbed
through synaptic inputs (Glass and Mackey, 1988). We consider
this a “toy model” that captures only essential behavior of
interest in this study and only resembles the qualitative behaviors
observed in the network model. The simplified phase model
is a feed forward only single cell model; and the advantage
afforded by this approach is that we are able to isolate and
independently manipulate factors that we could not study within
the network model in an independent manner. A great deal
of work in phase coupled oscillator theory aims for rigorous
reduction of higher-dimensional dynamical models into lower-
dimensional phase-based models, particularly in the weak-
coupling regime (Kuramoto, 1984; Hoppensteadt and Eugene
M. Izhikevich, 1997; Brown et al., 2004), and extensions into
the strong coupling regime (Cui et al., 2009; Castejón et al.,
2013; Wedgwood et al., 2013; Cannon and Kopell, 2015). In this
article we approach the phase model not as a rigorous reduction
of our conductance-based network model; but simply from a
phenomenological perspective.

The simple phase model we use is given by the following
stochastic differential equation

dθ

dt
= ω + R(θ)sLFP(t)+ χ(t), (11)

where θ ∈ [0, 1) describes the state of an oscillating neuron, ω

is the intrinsic spike rate, R(θ) is the phase response function
(Brown et al., 2004), sLFP(t) is the oscillating input, and
χ(t) is a noise term. The input sLFP(t) is the LFP (synaptic
conductance) that was recorded from the conductance-based
network simulations. The phase model spikes at a rate ω for a
given fixed baseline input that represents the effect of bottom-up
and top-down input. Whenever θ → 1−, the phase angle resets
to zero thereafter, and so on to spike on the next cycle.

If unperturbed by any inputs, the oscillator cell fires with
rate ω. Oscillator spiking is determined by the confluence of
top-down and bottom-up input represented by the parameter
ω, and the non-linear phase-dependent effect of network input
via the R(θ)sLFP(t) term. The phase response function represents
this phase-dependent modulation of input that produces this
variable delay. In our model, R(θ) is given by a negatively sloped
linear function

R(θ) = mθ + b, (12)

where m < 0 that determines the efficacy of input in this non-
linear phase-dependent manner. Note that in the phase model,
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TABLE 2 | Parameter values for the phase oscillator model.

Parameter Value Parameter Value

m −0.058 b −0.0325

M −0.075 ω0,IN 0.0985

ω0,OUT 0.0035 ω0,NPC,IN 0.096

ω0,NPC,OUT 0.0064 ω0,INeq,NPC,IN 0.096

ω0,INeq,NPC,OUT 0.097 ω0,INeq,OUT 0.0064

1ω 0.126 1ωn 0.006 + 0.0013 (n − 1), n=1…10

this linear phase response function (12) is non-linear in the phase
model DE (11), because on the periodic domain θ ∈ [0, 1) due to
the jump discontinuity at 1.

The negatively-sloped linear phase response function (12) is
a reasonable, but simplified representation LIF model coupling.
The negative slope m of (12) represents the similar voltage-
dependence of the inhibitory synaptic current in the LIF model
of Equation (4). In the LIF model, increasing voltage nearer to
spike threshold increases inhibitory synaptic efficacy. Similarly,
increasing phase nearer to spike threshold increases phase delay
due to the negative phase-dependence in (12).

The noise term χ in (11) is an additive noise signal consisting
of two components χ(t) = σθη(t) + ν(t), where σθη(t)dt is the
Wiener process with standard deviation parameter σθ and ν(t) is
an Ornstein-Uhlenbeck process defined by

τc
dν

dt
= −ν + τcσνξ3(t), (13)

where ξ3(t)dt is another Wiener process. The phase model
parameters are listed in Table 2.

Computation: All simulations of the stochastic DEs were
computed in custom built MATLAB code (Natick, MA) using
a first-order explicit stochastic Euler’s method. We chose a time
step1t = 0.0305ms, which was used in order that 1-s simulation
time intervals possessed a power of two—215—number of points
enabling efficient computation of the fast Fourier transform.
Source code will be made available upon request from the
corresponding author.

3. RESULTS

Our goal was to develop a computational network model of
extrastriate neurons sharing the same receptive field (likely
corresponding to a cortical column) that combined top-down
WM and bottom-up sensory signals, and captured the following
four key aspects of the neuronal responses observed during a
WM task (Bahmani et al., 2018). First, in the absence of sensory
input, the WM signal alone does not modulate excitatory unit
firing rates, which we term the Parity aspect. Second, despite this
lack of excitatory unit firing rate modulation, a WM signal alone
modulates oscillatory power in the αβ-band of the LFP, but not
in other bands, termed the Power aspect. Third, WM modulates
the timing of spikes relative to the αβ oscillation (SPL), the Phase
aspect. Finally, in the presence of bottom-up sensory input, a

WM signal increases the gain of sensory responses, termed the
Gain aspect.

Our model reproduces these four aspects of the experimental
data (Parity, Power, Phase, and Gain), as shown in Figure 1.
The basic network model structure, along with example spiking
and LFP-proxy output, are shown in Figures 1A,B. The neuronal
network model consisted of N = 20 leaky integrate and fire
(LIF) cells, 10 excitatory and 10 inhibitory, as depicted in
Figure 1A (not all connections shown, see section 2.2). Inputs to
the network consist of top-down working memory input (green
lines) and bottom-up sensory input (orange lines). The two
network inputs are both excitatory and non-oscillatory, but differ
in the relative strength of their connections to the e- and i-cells;
e-cells are more strongly driven by bottom-up inputs, whereas
i-cells are more sensitive to top-down inputs, as suggested
from prior experimental work (Mitchell et al., 2007). Example
voltage traces of e-cells (blue) and i-cells (red), including spikes,
are shown in Figure 1B. A proxy of the local field potential
(LFP-proxy) was also generated from the network (black), using
a weighted sum of all synaptic conductances in the network
(Mazzoni et al., 2015). Despite the lack of oscillatory input to
the network, there are quasi-regular oscillatory fluctuations in
the LFP-proxy, indicative of the emergent rhythmic behavior of
the network, similar to prior computational studies involving
reciprocal i-cell connections (Van Vreeswijk et al., 1994; Brunel
and Hakim, 1999; Whittington et al., 2000; Brunel and Wang,
2001). Thus, this simple network architecture is able to generate
oscillatory activity, which we can compare to the experimental
LFP data under various combinations of top-down and bottom-
up input.

First we examined the firing rate and LFP power spectrum
of the model with and without top-down input, in the absence
of sensory input; in the experimental data, top-down input
alone altered αβ LFP power but not firing rates. The network
conditions with and without top-down input are referred to
as memory IN and OUT, respectively (corresponding to the
experimental conditions when the remembered location was
in the neuron’s RF or outside it). We examined the behavior
of the network for memory IN and OUT in the absence of
bottom-up sensory inputs. In the absence of top-down input
(OUT condition), the e-cells spiked at low rates (mean near
5 Hz, see B) and there were quasi oscillatory patterns present
in the LFP-proxy that were chiefly in the θ-band (4–7 Hz,
Figure 1C). During the memory IN condition, e-cell firing rates
were similarly low, but the LFP-proxy power spectrum peaked in
the αβ-band (8–25 Hz), as well as integer-multiples (harmonics)
of that frequency. This top-down modulation of αβ LFP power
but not firing rates replicates the Parity and Power aspects from
the experimental data discussed above (Bahmani et al., 2018).

We next asked how spikes from cells in the network were
timed relative to the LFP proxy oscillation; in the experimental
data, top-down input increased SPL in the αβ band. The IN
condition shows strong phase locking of all multi-unit spikes
in the network, in the α-band (10–12 Hz) and its harmonics,
while the OUT condition shows much weaker phase locking
over the same frequency windows (Figure 1D). The strong phase
locking of IN-condition spikes to the αβ component of the
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FIGURE 1 | A recurrently connected spiking network model yields WM-dependent oscillations and spike timing, WM-independent baseline firing rates, and

WM-dependent gain in sensory responses. (A) A schematic of the e- and i-cell network (blue triangles and red circles, respectively) with excitatory top-down (green)

and bottom-up inputs (orange). (B) Example spike traces for an e-cell (blue), i-cell (red), and LFP proxy (black). Spike appearance modified for visual clarity. (C) Power

spectrum of the LFP proxy for the memory IN and OUT conditions, in the absence of bottom-up input. (D) Spike phase locking (SPL) of all cells in the network to the

phase of the bandpass filtered LFP oscillations across frequencies, for memory IN and OUT. (E) An example of the LFP proxy (black), αβ-band oscillations (solid blue),

and high frequency oscillations (dashed blue) over time, along with the timing of spikes (blue circles), for memory IN (top) and OUT (bottom). (F) Spike-phase

distributions (polar plots) for the αβ (left) and γ -band (right) LFP in the IN (top) and OUT conditions (bottom). (G) Mean firing rates of e-cells (top) and i-cells (bottom) as

a function of bottom-up input strength, for memory IN (triangles) and OUT (circles). Here and in H, larger icons indicate the values used to compute the change in

FR/SPL. (H) SPL for e-cells (top) and i-cells (bottom) as a function of bottom-up input strength.

LFP is illustrated in Figure 1E (top): spikes are preferentially
emitted at or just before the crests of the αβ LFP proxy. In
contrast, the OUT condition and the >25Hz LFP showed less
systematic relationships between spike timing and oscillations.
That is, only in the αβ-band and the memory IN condition
was there a strong relationship between the spike times and the
phase of the LFP-proxy, as shown by the spike phase distributions
in Figure 1F. These WM modulations of spike timing relative
to local oscillations are consistent with the Phase aspect of
Bahmani et al. (2018).

To test whether the network model showed greater sensory
responses in the presence of top-down input, as seen in the
experimental data, we examined the behavior of the network
when adding bottom-up input of varying strength, with or
without a top-down signal. The top-down input was excitatory,
but tuned so that the e-cells in the network exhibited equal

firing rates between the IN and OUT conditions. The mean
firing rates of e-cells of the network (Figure 1G top, blue) were
therefore equivalent for the IN and OUT conditions when no
bottom-up stimulus was present (zero on the abscissa). We also
performed simulations with a bottom-up stimulus of increasing
strength; over a broad range of bottom-up input strengths, e-
cells in the IN condition exhibited elevated firing rates relative
to OUT (Figure 1G), reproducing the Gain aspect of Bahmani
et al. (2018). In contrast, i-cell firing rates (Figure 1G bottom,
red) were greater for the IN condition regardless of the strength
of bottom-up input.

This model’s change of tone in the inhibitory subnetwork
appeared to be the key factor in generating both the oscillatory
(Power and Phase) and non-oscillatory (Parity and Gain) aspects
of the e-cell responses. The model suggests that the content
of top-down WM-input should be reflected in the spiking
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FIGURE 2 | Broad- and narrow-waveform spikes are differently modulated by top-down input. (A) P-value for significance of population modulation (IN vs. OUT) of

firing rate (gray) and SPL (black), as a function of waveform width (ordinate scale is 1/P). Vertical dashed line indicates width used to divide narrow and broad

waveforms. (B) Distribution of firing rate modulation index values (IN vs. OUT) across the populations of broad (red) and narrow (blue) waveforms. (C) Distribution of

SPL modulation index values (IN vs. OUT) across the populations of broad (red) and narrow (blue) waveforms.

activity of the inhibitory subnetwork, even in the absence of
bottom-up sensory input. However, in the experimental data,
we did not separately examine the responses of excitatory
and inhibitory neurons, and so cannot say whether inhibitory
neurons reflected the content of WM in the absence of sensory
input. The model results motivated us to divide our data set
into putative excitatory (broad spiking) and putative inhibitory
(narrow spiking) units, and investigate whether inhibitory
neurons exhibit WM-dependent changes in firing rate.

3.1. Distinct WM Modulation of Excitatory
vs. Inhibitory Extrastriate Neurons
The model network simulations were set up so that WM input
strongly modulated inhibitory neuron firing while not affecting
excitatory firing. That is, in the absence of bottom-up input, e-cell
firing rates were the same in the IN andOUT conditions, whereas
i-cell firing rates were higher for the IN condition. Conversely, in
the absence of bottom-up input, e-cell SPL was elevated for IN vs.
OUT, while i-cell SPL was essentially unchanged. The e-cells in
our model network replicate the results in Bahmani et al. (2018),
but in this study we did not segment cells into e- or i-categories;
however, past studies have observed elevated recruitment of
inhibitory cells during periods of attention (Mitchell et al., 2007).

To reconcile our model results with our prior experimental
results, we reexamined that data set to determine if there were
differing e- and i-cell modulations firing rate and SPLmodulation
due to WM. We divided the recorded MT spike waveforms
into putative excitatory and inhibitory groups based on temporal
widths of action potential waveforms, where narrow and broad
waveforms correspond primarily to inhibitory and excitatory
cells, respectively (Mitchell et al., 2007). To find a cutoff point
between narrow and wide waveforms, we computed the sign-
rank significance level of the modulation index (MI) for firing
rate and SPL, IN vs. OUT (see section 2.1). For very narrow
waveforms, i.e., putative inhibitory cells, there was a substantial
firing rate modulation by WM in the absence of sensory input.
In contrast, the MI for SPL was strongly significant only for
broad waveforms (putative excitatory cells). From this analysis

a partition of 0.2 ms spike width was chosen to distinguish
narrow and broad spiking neurons (n = 26 narrow and n =
81 broad spiking neurons; Figure 2A). Putative excitatory cells
showed no significant firing rate modulation, whereas inhibitory
cells showed higher firing rates for the memory IN condition
(Figure 2B, Wilcoxon sign-rank tests, p = 0.878 and p =
0.009, respectively). Putative excitatory cells showed enhanced
αβ SPL during memory IN, whereas inhibitory cells showed
no significant difference in αβ SPL between the IN and OUT
conditions (Figure 2C; Wilcoxon sign-rank tests, p = 0.010 and
p = 0.15, respectively). This new analysis of the previous dataset
matched the model’s predictions: WM modulation of firing rate
only for inhibitory neurons, and SPL only for excitatory neurons.

The model replicated our prior experimental findings through
WM-dependent changes in the inhibitory tone of the network,
and upon reanalysis of our data we further confirmed that
WM-dependent changes in inhibitory tone are present, which is
consistent with studies of the effects of attention by other groups
(Mitchell et al., 2007). These findings support a similar cellular-
and circuit-level mechanism underlying bothWM and attention,
further establishing the interdependence of these two cognitive
processes (van Kerkoerle et al., 2017).

3.2. Stimulus and Frequency Dependence
of LFP, Spike Variability, and SPL
The model was designed to reproduce the four key experimental
findings discussed above. Its success in predicting the differences
in excitatory and inhibitory modulations not previously
examined in the data suggests that it can provide further
mechanistic insights as well. The experimental data had
limitations, for example, we were not able systematically
examine the influence of changes in bottom-up input on the
network behavior. Using the computational model enables
us to predict the behavior of the network in response to
changes in bottom-up input, and compare the results to
previous literature.

By examining the network model response to bottom up
input, for both the IN and OUT conditions, we can compare
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FIGURE 3 | LFP proxy, cell firing rate, SPL, and spike variability show stronger frequency dependence for IN relative to OUT. (A) Frequency with peak LFP power

(black) and the firing rate of individual cells (blue) as a function of bottom-up input strength, for the memory IN condition. Throughout this figure the model units are

ranked based on intrinsic baseline firing rate, with dark blue to light blue indicating low to high firing rate model neurons. (B) Frequency with peak LFP power (black)

and the firing rate of individual cells (blue) as a function of bottom-up input strength, for the memory OUT condition. (C) Amplitude of the LFP proxy oscillation at the

peak frequency, as a function of bottom-up input strength, for memory IN (black) and OUT (gray). (D) Mean component of the LFP proxy oscillation at the peak

frequency, as a function of bottom-up input strength, for memory IN (black) and OUT (gray). (E) Fano Factor for IN vs. OUT for 10 e-cells and three bottom-up input

levels. (F) Fano Factor for memory IN as a function of the ratio between the peak LFP frequency and the cell’s firing rate, for 10 e-cells and three bottom-up input

levels. (G) Fano Factor for memory OUT as a function of the ratio between the peak LFP frequency and the cell’s firing rate, for 10 e-cells and three bottom-up input

levels. (H) SPL for memory IN as a function of the ratio between the peak LFP frequency and the cell’s firing rate, for 10 e-cells and three bottom-up input levels.

(I) SPL for memory OUT as a function of the ratio between the peak LFP frequency and the cell’s firing rate, for 10 e-cells and three bottom-up input levels.

the model results to other identified signatures of WM and
attention in the literature. We found in our model that oscillation
frequency and power of the network LFP exhibited input-
dependence that was consistent with prior studies (Bosman et al.,
2012; Roberts et al., 2013). The model showed the frequency with
the most power in the LFP proxy (�) increased with increasing
bottom-up input. In the IN condition, the frequency � went
from the α-range (10 Hz), up to the mid-β-range (16 Hz) as the
bottom-up input increased (Figure 3A). This increase in peak
LFP frequency is consistent with prior experimental findings
(Roberts et al., 2013) and modeling studies (Chow et al., 1998;
Whittington et al., 2000; Brunel andWang, 2003). In the memory
OUT condition similar increases in� as a function of bottom-up
input occurred, except � progressed from the θ to low-α band (4
Hz up to 10Hz) (Figure 3B). This resembles the reported effect of
top-down input in the form of attention, which increases the peak
frequency of oscillations; however in that case the shift occurred
within the gamma band (Bosman et al., 2012). The oscillation
amplitude at the� frequency (i.e., the dominant power spectrum
mode of the LFP) also shows a clear dependence on the top-
downWM input signal (Figure 3C). The IN condition has strong
αβ oscillations in the absence of bottom-up input, but their
amplitude declines as bottom-up input increases. In contrast, the

OUT condition starts at near zero amplitude, first growing and
then declining with increased bottom-up input. These patterns
of oscillation amplitude as a function of bottom-up input are a
novel prediction that has yet to be addressed in the literature.

Beyond the oscillatory aspects of the network, we also
examined non-oscillatory properties of the network in terms
of the influence of WM on its input-output relationship. We
considered the LFP mean component (i.e., the DC component,
see section 2.2.1) as a measure of average network output,
and the slope of the input-output curve as a measure of the
synaptic efficacy. The LFP mean component exhibits monotonic
growth with increased bottom-up input, but the degree of growth
(synaptic efficacy) differs between the IN and OUT conditions
(Figure 3D). In the OUT condition the mean starts near zero,
and the growth is slightly non-linear and saturating in nature.
This non-linearity has on average an elevated slope relative
to the IN condition, and this yields a slightly greater mean
change over the bottom-up input range: 1 = 1.266 OUT vs.
1 = 1.198 IN. There is a 3.6% greater overall mean change for
OUT relative to IN, meaning the OUT condition has a greater
change in inhibitory activity (compared to the IN condition) for
the same change in bottom-up excitatory input. This difference
in inhibition may account for the comparatively smaller firing
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FIGURE 4 | The phase oscillator model and parameters. (A) Schematic of the network model. The LFP proxy sLFP (t), recorded from the network, is inputted to the

phase model. The mean or baseline level of the LFP can vary (dashed). The phase model receives inhibitory input from the LFP proxy signal combined with intrinsic

excitability through ω, the proxy of the top-down and bottom-up input in the network model. (B) Spike delay as a function of input timing. ω dictates unperturbed

spiking frequency (top). If input is timed early in the oscillatory cycle there is a moderate delay in spiking (middle); however a later input produces a longer delay

(bottom), resulting from greater efficacy of inhibition when a cell is more depolarized. (C) Change in firing rate as a function of input phase. The phase response curve

R(θ ) (bright red) is negatively sloped to produce the variable delay effect depicted in D. A flat phase response curve R = M (dark red) was used to test the

consequences of this phase dependence. (D) ω values as a function of bottom-up input for IN (black) and OUT (gray). (E) The LFP mean component mean(sLFP (t)) as

a function of bottom-up input for IN (black) and OUT (gray). The mean-linearized version (dashed) was used to test the consequences of inhibitory saturation.

rates observed in the OUT condition in response to bottom-up
input (see Figure 1G and Vogels and Abbott, 2009; Kanashiro
et al., 2017; Merrikhi et al., 2017). Thus, the non-oscillatory
component of the network behavior (i.e., WM-dependent change
in response gain) seems to depend on a separate mechanism from
its oscillatory behaviors, a hypothesis that we will directly test in
Figures 4, 5.

Both attention and WM have been shown to modulate the

variability of neuronal responses (Fano factor) (Mitchell et al.,
2007; Steinmetz and Moore, 2010; Merrikhi et al., 2017). As
shown Figure 3E, we also observed a reduction of Fano factor

for IN relative to OUT (OUT − IN = 0.426, p = 0.0439, one-
sided paired Wilcoxon sign-rank). Our analysis of Fano and SPL
in Figures 3E–I is limited to data generated when bottom-up
input was low. Changes in Fano factor have been speculatively
linked to changes in oscillations (Mitchell et al., 2007). Assessing
the Fano values as a function of Fr/� in Figure 3F, we observed
that the e-cells that exhibited the most substantial reductions
in Fano factor have firing rates close to the LFP proxy peak
frequency (Fr ∼ �). This pattern did not hold for the OUT

condition (Figure 3G). Note that Fr/� ∼ 1 means that a model
cell generates about one spike per oscillation cycle. As many
theoretical studies have identified, phase locking is stronger when
there are integer frequency ratios Fr/�, suggested by regions of
stability (i.e., Arnold tongues) in phase oscillator models (Glass
and Mackey, 1988; Shimokawa et al., 2000; Nesse and Clark,
2010). Therefore, as Fr/� values approach 1 in Figure 3F, a
greater SPL is expected to accompany the reduced Fano factor.
Indeed, in Figures 3H,I we directly assessed SPL as a function of
Fr/� and confirmed that this reduced Fano factor is associated
with greater SPL in the IN condition. Thus, both reductions in
Fano factor and increases in SPL are more prominent in neurons
with firing rates near that of the network oscillation frequency.

3.3. Assessing Mechanisms Underlying
Changes in Spike Rate and Timing With the
Phase Oscillator Model
Our network model of e- and i-cells receiving a top-down WM
signal replicated both the oscillatory (Power and Phase) and non-
oscillatory (Parity and Gain) aspects of the neural data. The
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FIGURE 5 | Modified phase oscillator models demonstrate distinct drivers of firing rate and SPL modulation. Each row shows a different model, labeled on the left.

(A) Firing rate for 10 cells/simulations (colors) and the � frequency (black) as a function of bottom-up input for the memory IN condition. (B) Same for memory OUT.

(C) Mean firing rate as a function of bottom-up input, for memory IN and OUT. (D) Mean SPL as a function of bottom-up input, for memory IN and OUT.

degree to which these oscillatory and non-oscillatory aspects
share overlapping mechanisms is not clear. Further insight into
how the various modulations co-emerge requires a paradigm in
which we can independently manipulate cellular- and network-
level components of the system to test their effect on spiking
behavior. The needed paradigm is phase coupled oscillator
theory, which describes how cell and network oscillatory phase
interactions influence the input-output relationship and phase
locking behavior of individual cells (Glass and Mackey, 1988).
Here, we created a series of phase oscillator models, one for
each excitatory cell in the network model, in both top-down and
bottom-up input conditions, and receiving oscillatory synaptic
input (Figure 4A). The phase models were not dynamically
coupled together in a network, but each cell received the same
pre-recorded network model input to simulate the effect of
network oscillations. The phase models differed in baseline
excitability to mimic the cell heterogeneity found in the network
model cells.

This simplified phase oscillator model can recreate the four
aspects of the network model behavior, with the added benefit of
allowing us to modify features of both the input as well as input
coupling, in order to selectively modulate the oscillatory and
non-oscillatory aspects of the e-cell response. Note our analysis
focuses on identifying the factors relevant for controlling the
Gain and Phase aspects, which are specific to the excitatory

cells we wish to describe with the phase oscillator model. The
phase models were all subject to the Parity constraint, which
was achieved by parameter tuning to equalize average firing rate
between the IN and OUT conditions when bottom-up input was
low. The Power aspect was preserved in the oscillations generated
by the full network model, which served as pre-recorded input to
each phase model.

Each phase model’s state is defined by a phase angle variable
θ(t) which cycles from zero to unity as a function of its inputs,
with spikes occurring when the phase angle reaches unity. Each
phase model’s spiking is determined by the combination of two
inputs: an excitatory intrinsic spike frequency ω, which is a
proxy of the sum of bottom-up and top-down tonic input in
the network model, and an inhibitory oscillating input sLFP(t)
recorded from the network model (Figure 4A). Note that sLFP(t)
can be broken down into a mean (non-oscillating) component
(dashed lines Figure 4A) that exhibits varying baseline levels,
and an oscillating component, both of which depend on network
activity (see Figures 3A–D).

The two inputs to the model, ω and sLFP(t), differ in that
ω determines a tonic baseline rate of spiking, while the effect
of the oscillating network input sLFP(t), owing to it being
dominated by inhibitory synaptic currents, depends strongly
on the depolarization state of the cell. This state-dependence
translates to the phase model as a phase-dependent effect: the
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efficacy of input is modulated by a multiplicative factor R(θ)—
the phase response function—that depends on the phase θ of the
post-synaptic cell (dashed box in Figure 4A). Note that sLFP(t)
input is positive-valued (see Equation 10) but has an inhibitory
effect resulting in a delayed spike because the phase response
function R(θ) is negative-valued.

The phase-dependent coupling in the model alters the timing
of spikes as a function of the timing of an input relative to the
previous spike. This is shown schematically in Figure 4B. In the
absence of inputs, the cell fires at frequency ω (top subpanel).
If a transient input is given early in the cell’s oscillation cycle,
then there is a moderate delay in firing (or possibly an advance
in some cases; see Nesse and Clark, 2010, for example), but
the same input later in the cycle will produce a longer delay
(middle and bottom panels). The phase-dependent influence
of input on the frequency of neuronal firing is illustrated in
Figure 4C. Without phase dependence (dark red line), a pulse
input would generate the same delay (−0.075 ms−1 frequency
change), regardless of when it arrives. With the phase-response
function (light red), the phase at which the pulse input arrives
influences the change in the frequency of neural firing. The inputs
from the network model to the phase oscillator model are shown
in Figures 4D,E. The tonic input reflects a linear combination
of bottom-up and top-down input. The mean component of
the oscillatory input, however, shows a non-linear response to
bottom-up input in the OUT condition. Thus, the change in
the LFP mean component (IN-OUT) is greater at higher bottom
up input, presumably a mechanism for greater gain in the IN
condition. The advantage of the phase model is the ability to
selectively modify its components: the mean linearized version
of the model removes this non-linearity. Alternatively, as shown
in Figure 4C, we are also able to remove phase-dependence of the
phase model. Our hypothesis is that the mean component non-
linearity drives Gain modulation, while the phase-dependence is
responsible for SPL modulation.

Theories of cortical communication have proposed that a
local network’s quantity of spikes as well as their degree of
synchronization are independent factors that affect the signal
efficacy or propagation (Diesmann et al., 1999;Womelsdorf et al.,
2007; Kumar et al., 2008, 2010; Fries, 2015; Moldakarimov et al.,
2015; Kanashiro et al., 2017; Hahn et al., 2019; Kohn et al., 2020).
In the oscillatory context, these quantities can be measured,
respectively, by the firing rate and the degree of SPL in each
oscillation cycle. To test the effect of phase dependence and
inhibitory tone on firing rate and SPL, we ran four experimental
conditions of each phase model cell simulation for both IN and
OUT conditions—the full model, and versions with the phase
dependence removed and/or mean-linearized. As stated above,
we simulated these models over a range of N = 10 intrinsic
baseline firing rates (to approximate the different responses in
the N = 10-e-cell network), and over a range of bottom-
up input levels defined by the ω parameter (see Figure 4D),
for long-time-window simulations, and computed average firing
rate and SPL statistics. That is, there were 10 × 2 × 24 × 4
distinct phase models simulations, respectively, for the ten cells
with varying baseline rates, a factor with two levels to reflect
IN vs. OUT, 24 bottom-up input levels, and four versions of

the phase model with or without phase dependence and mean-
linearization (see section 2.2.2). Figure 5 shows model output
for the network model (top row), the phase oscillator model
(2nd row), the non-phase-dependent model (3rd row), the mean-
linearizedmodel (4th row), and finally, the non-phase-dependent
and mean-linearized model (bottom row). Columns A and B
show individual cell firing rates (color gradation indicating
distinct cells) over the range of bottom-up input for the IN and
OUT conditions, respectively. Column C shows the mean firing
rate across the 10 cells. Column D shows the mean SPL across
the 10 cells.

The phase oscillator simulations (green, 2nd row) closely
replicate the results of the conductance-based network model
output (blue, top row) over all measures. Next, we evaluate
the role of phase dependence and mean saturation in WM-
modulations of firing rate and SPL. Phase-dependent coupling
R(θ) means that output depends on both the input sLFP(t) and
the current phase of the oscillator through the phase response
curve R(θ). When this phase dependence is eliminated (Figure 5
orange, 3rd row), the SPL measures are dramatically reduced
in both the IN and OUT conditions relative to the full phase
model. In contrast, the difference in firing rate for IN vs.
OUT is preserved. That is, the Parity and Gain aspects were
preserved, while SPLwasmarkedly reduced for both IN andOUT
conditions. When the slope of the OUT mean LFP component
input is linearized (mean-linearized model), the IN and OUT
mean firing rate curves invert (Figure 5 slate-blue, 4th row)
relative to the full model, with a higher firing rate during OUT
than IN. SPL is higher for IN than OUT across the range of
bottom-up inputs. Here, Parity at low inputs is preserved but
the Gain aspect is entirely inverted, while the SPL aspect is
largely unperturbed.When both manipulations (Figure 5 purple,
5th row) are introduced together—non-phase-dependence and
mean-linearization—the mean firing rates no longer exhibit any
difference between IN andOUT for any level of bottom-up input.
The SPL values are low relative to the default model (2nd row),
similar to that of the non-phase-dependent model (3rd row).
Therefore, the combined effect of both manipulations eliminates
both the Gain and SPL aspects together. The four combinations
of manipulations constitute a double-dissociation, where the
Gain aspect is attributed, in large part, to the differences in the
mean component of the input sLFP to cells. Thus, firing rate
modulation depended primarily on saturation of the inhibitory
response. In contrast, SPL modulation was primarily determined
by the phase-dependence of the excitatory cell’s sensitivity to
inhibitory input.

4. DISCUSSION

Our network model provides mechanistic level insight into
how top-down input can modulate oscillatory power, spike
timing, and sensory gain, without changes in baseline firing
rates, as recently observed in Bahmani et al. (2018). This
mechanism involves WM-dependent modulation of the
inhibitory subnetwork, which enhances both non-oscillatory
mean activity and oscillatory dynamics of the network, which in
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turn affects excitatory units, modifying their sensory gain and
spike timing.

The WM input to the excitatory and inhibitory subnetworks
were tuned so that the elevated inhibitory activity fully offsets
the WM input to excitatory units in the absence of sensory input,
leaving the firing rate of excitatory units unchanged relative to
when no WM input is present. This differential input strength
is consistent with prior observations (Mitchell et al., 2007), and
is confirmed upon reanalysis of our data here; however, we do
not speculate about any specific connection architecture that
delivers this input. This accounts for the Parity aspect of the
experimental results. However, this offsetting influence of the
inhibitory subnetwork on the excitatory subnetwork has a limit
due to the lower gain of the i-cells’ response, and with additional
bottom-up sensory input on top of the WM input, the activity of
the inhibitory subnetwork does not keep pace with the excitatory
drive, yielding an enhanced excitatory network response. This
saturation phenomenon accounts for the Gain aspect of our
experimental findings. This type of response saturation has been
proposed as a mechanism for attentional (or WM-mediated)
enhancement of excitatory unit responses in previous studies
(Kapfer et al., 2007; Vogels and Abbott, 2009; Kanashiro et al.,
2017).

Anatomical data indicates that FEF projections to extrastriate
visual cortex (V4) terminate primarily on pyramidal (putatively
excitatory) cells (Anderson et al., 2011). In our model we
have not explicitly incorporated this asymmetry in top-down
projection targets; however, firing rate modulation by top-down
input is observed in the inhibitory, rather than excitatory,
extrastriate neurons. There are at least two possible ways to
resolve this superficial conflict between the existing anatomical
data and our model: first, that the relatively small proportion
of synapses directly onto inhibitory neurons are nevertheless
able to drive these recipient neurons strongly, or second, that
inhibitory neurons receive this modulation indirectly through
a subpopulation of excitatory cells. Moreover, experimental
(Mitchell et al., 2007) and model-based (Kapfer et al., 2007;
Vogels and Abbott, 2009; Kanashiro et al., 2017) studies of top-
down modulation have consistently identified the importance
of preferential activation of inhibitory cells for attention and
WM modulation, and the present work is consistent with
this literature.

Our modeling results involving WM modulations are at odds
with models that postulate supra-linear—i.e., non-saturating—
responses in inhibitory networks (Hennequin et al., 2018). In
such a situation, when the inhibitory network activity is elevated
in a supra-linear fashion, it would produce saturating, not
enhancing, excitatory responses, and reduced variability through
the stabilizing influence of high-gain inhibitory responses. In
our model results, the situation is reversed and we observe
saturating inhibition in which gain is higher at low baseline rates,
and lower at higher baseline rates. This saturating inhibition
enhanced excitatory responses, and also reduced e-cell variability,
but only for e-cells that exhibit phase locking. This yields another
testable prediction of our model: that spike variability exhibits a
dependence on relative frequency between LFP and spike rate,
and degree of phase locking of the cell, and is wholly distinct

from the variance reduction mechanism proposed in the mean
field rate-based model of Hennequin et al. (2018). Note, however,
we have not analyzed the role of recurrent excitatory connections
as a potential intervening factor, both for effects on variability and
also gain modulation.

As stated above, WM-input is associated with enhanced
network oscillations in the αβ band, replicating the Power
aspect of our experimental results. The emergent network
oscillations are due to reciprocal connections within the
inhibitory subnetwork, as in numerous computational studies
(Van Vreeswijk et al., 1994; Chow et al., 1998; White et al., 1998;
Brunel and Hakim, 1999; Whittington et al., 2000; Brunel and
Wang, 2001; Lee et al., 2013). In our model, this oscillatory
signal shapes the timing of excitatory units’ spikes relative
to the oscillations, and accounts for the Phase aspect of our
results. We further captured both the Gain and Phase aspects
of the network model using our phase oscillator model, which
confirmed our understanding that inhibitory gain saturation and
phase dependence independently contribute to excitatory cell
gain and SPL modulation by WM input. Specifically, the phase
model explicitly captured the effect of inhibitory input timing on
SPL. Inhibition timed to occur just before a cell is nearing spike
threshold is more effective than inhibition timed just after spike
emission; this is because inhibitory currents rely on ionic currents
with membrane reversal potentials below the spiking threshold,
and so will be stronger when the cell is closer to threshold. This
relationship was captured by a negatively sloped phase response
function, representing a phase- or oscillation-dependent
modulation of inhibitory input efficacy. This oscillation-
dependence greatly enhanced spike phase locking (compared to
when the phase response function was not phase-dependent).

Some prior modeling studies use different mechanisms to
generate α and β-range oscillations (Spitzer and Haegens,
2017). In vitro investigations of somatosensory cortex identified
intrinsic bursting triggered through the M-current as a possible
driver of faster-frequency β2 rhythms, in which gap-junction
coupling is necessary for coherent rhythm generation (Roopun
et al., 2006). Such bursting-based oscillatory dynamics have
been incorporated into more complex multi-layer models
(Kramer et al., 2008; Kopell et al., 2011; Lee et al., 2013).
An intralaminar mechanism has been proposed to account
for how superficial-layer γ rhythms, arising from fast-spiking
interneurons and regular spiking excitatory cells, are interleaved
(termed period concatenation) with deep-layer intrinsic bursters
that are reciprocally coupled to superficial cells. These burst-
based models (Kopell et al., 2011; Lee et al., 2013) have been
used to account for a selective WM enhancement effect based
on biased competitive inhibition between different oscillator
assemblies (Desimone and Duncan, 1995; Humphreys et al.,
1998; Ardid et al., 2007). In these burst-based models, the
interleaved γ spiking cycles within β cycles are also enhanced
by the WM signal. Moreover, β spike phase locking appears in
a bi- or tri-modal pattern, where spikes are aligned at two or
three phases centered equidistant from crest of the β cycle (see
Figure 4C of Kopell et al., 2011). In contrast, our experimental
and modeling results show no γ -band LFP enhancement or
phase locking, nor γ phase locking modulation by WM. Also,

Frontiers in Computational Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 632730

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Nesse et al. Inhibitory Subnetworks Drive WM Modulation

in our model and experimental data, spikes occur in a unimodal
distribution of phases in the rising phase of the β cycle, cresting
prior to peak inhibition onset (see Figure 1). Thus, the frequency
and pattern of SPL modulation observed in our data is better
explained by the model presented here.

The model we have developed here possesses reciprocally-
connected interneurons mediated by relatively slow-timescale
synaptic inhibition (compared to that of GABAA, see also
Lee et al., 2013). Interneuron activity is enhanced in visual
areas during attention tasks (Mitchell et al., 2007); and a
modeling study by Jensen et al. (2005) identified a possible
role for reciprocally connected interneurons in αβ oscillations
via GABA-type inhibitory currents. Here, the dynamic origin
of oscillation frequency modulation is inhibitory cell baseline
excitability, where spontaneous spiking becomes emergently
synchronized (Van Vreeswijk et al., 1994; Chow et al., 1998;
White et al., 1998; Brunel and Hakim, 1999; Whittington et al.,
2000; Brunel and Wang, 2001). Also, our model is entirely
intracolumnar, and the WM or attentional effect does not rely
on biased competition between columns that necessarily involve
elevated firing rates in the absence of inputs—the opposite of our
Parity result—(Desimone and Duncan, 1995; Humphreys et al.,
1998; Ardid et al., 2007).

Note also that our model input included extrinsic noise, both
broadband white-noise as well as slower-timescale fluctuations,
which generated variability in cell behavior. The noise level
was tuned to be large enough so that cells in the network
exhibited smooth, monotonic firing rate changes in response to
input changes rather than stair-step jumps due to broad regions
of phase locking stability observed in the low-noise regime
(Chacron et al., 2000; Nesse et al., 2007). Here, we assumed
the extrinsic noise came from the cortical milieu that was not
explicitly modeled; however other modeling investigations have
examined networks that self generate chaotic variability without
the need for extrinsic noise (Deco et al., 2011; Huang et al.,
2019). These studies also establish that activation of inhibitory
subnetworks, with slow-timescale inhibitory synapses—either
due to synaptic delays, or simply slow rise-times—is a critical
mechanism for inducing chaotic network variability. Moreover,
attentional modulation also occurs through further activation of
inhibitory networks that serve to stabilize network behavior by
eliminating slow-timescale chaotic fluctuations between multiple
attractors (see also Hennequin et al., 2018 for single attractors).
Our model here does not address the source of noise and putative
chaotic network fluctuations; however our results are broadly

consistent in their emphasis on inhibitory subnetworks as the
key underlying modulation that covaries with the attentional
or WM signal.

An article by van Elswijk et al. (2010) identifies β-oscillation-
based gain modulation arising from the synchronization of many
neurons, producing summation in output spikes. While such
summation and downstream gain could result from the SPL
modulations in our model, we also observe direct modulation
of spike rate and variability. The phase-dependent efficacy of
inhibition in our model does have great import for coding
proposals that rely on the summation of spikes (see also CTC
theory, Fries, 2015). Because ourmodel modulates SPL in concert
with firing rates, this may serve to enhance the efficacy in
driving downstream areas through multiple mechanisms–both
increasing the number of spikes, and clustering them in a
narrow range of phases of the αβ oscillation (i.e., increased SPL)
(Diesmann et al., 1999; Womelsdorf et al., 2007; Kumar et al.,
2008, 2010; Fries, 2015; Moldakarimov et al., 2015; Hahn et al.,
2019).
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