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Neurovascular coupling is typically considered as a master-slave relationship between
the neurons and the cerebral vessels: the neurons demand energy which the vessels
supply in the form of glucose and oxygen. In the recent past, both theoretical and
experimental studies have suggested that the neurovascular coupling is a bidirectional
system, a loop that includes a feedback signal from the vessels influencing neural
firing and plasticity. An integrated model of bidirectionally connected neural network
and the vascular network is hence required to understand the relationship between
the informational and metabolic aspects of neural dynamics. In this study, we present
a computational model of the bidirectional neurovascular system in the whisker barrel
cortex and study the effect of such coupling on neural activity and plasticity as manifest
in the whisker barrel map formation. In this model, a biologically plausible self-organizing
network model of rate coded, dynamic neurons is nourished by a network of vessels
modeled using the biophysical properties of blood vessels. The neural layer which is
designed to simulate the whisker barrel cortex of rat transmits vasodilatory signals to the
vessels. The feedback from the vessels is in the form of available oxygen for oxidative
metabolism whose end result is the adenosine triphosphate (ATP) necessary to fuel
neural firing. The model captures the effect of the feedback from the vascular network on
the neuronal map formation in the whisker barrel model under normal and pathological
(Hypoxia and Hypoxia-lschemia) conditions.

Keywords: bidirectional network model, hypoxia-ischemia, neurovascular coupling, plasticity, whisker barrel
cortex

INTRODUCTION

The brain is one of the most energy-intensive organs in the human body, consuming around
20% of the total cardiac output even though it constitutes just 2% of the total body weight
(Sokoloff et al., 1955; Clark and Sokoloft, 1999; Raichle and Gusnard, 2002). Despite the high
energy demands of this organ, there seems to be no significant energy reservoir in the neural
tissue and energy is provided in an “on demand” fashion by an increase in blood flow in proximal
blood vessels (functional hyperemia) (Raichle and Shepherd, 2014) as a response to neural activity.
Classical accounts of neurovascular coupling describe the interaction between neurons and cerebral
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micro-vessels as a unidirectional influence from neurons to
vessels (Buxton and Frank, 1997; Buxton et al., 2004). However,
the dependence of the neurons on the energy substrates delivered
by the vessels raises the possibility of a reverse signal emanating
from the vessels and influencing neural dynamics.

The possibility of a retrograde signal from the vessels
to the neurons was first discussed under the name of the
hemoneural hypothesis by Moore and Cao (2008). Sirotin and
Das (2009) showed that under certain conditions the vascular
response precedes the neural response. Leithner and Royl (2014)
demonstrated a decorrelation between blood volume changes and
neural oxygen demand. Such studies strengthen the case for a
revision of the notion of a master-slave relationship between
neurons and cerebral vessels. The study by Filosa and colleagues
(Filosa et al., 2006; Kim et al., 2016) suggested that vessels can
have a direct influence on the neurons not necessarily by releasing
energy substrates, but by other mechanisms like, for example,
the mechanical pressure exerted by the vessels transduced into
electrical signals in the neurons.

Even though the explicit vascular signal feedback to neurons
is debated, it is well understood that the metabolic feedback
from the cerebral vessels is crucial in sustaining neural
activity (Laughlin, 2001; Niven and Laughlin, 2008; Hasenstaub
et al, 2010; Yu and Yu, 2017; Vergara et al, 2019). This
motivated an intriguing question: “What are the vascular
influences, if any, on neural performance?” The possibility of
a retrograde influence of the cerebral vessels on the neurons
was also explored from a computational modeling perspective.
Gandrakota et al. (2010) presented a model of the neuro-glio-
vascular network as a bidirectional associative memory with
information flowing both in neurovascular and vasculoneural
directions. A detailed biophysical model of a single neuron-
astrocyte- vessel system by Chander and Chakravarthy (2012)
showed how the slow vasomotor rhythms can modulate neural
firing, thereby reinforcing the idea of a retrograde signal. This
model was later simplified and extended to a network level in
Chhabria and Chakravarthy (2016), where the vascular and glial
structures were clubbed into a single gliovascular unit whose
output determines the energy level of neurons. In a neurovascular
network model proposed by Philips et al. (2016), desynchronized
vascular rhythms were found to improve the efficiency of
learning in a neural network trained like an autoencoder. Among
the aforementioned set of models, there are either detailed
biophysical models at the single unit level or abstract models at
a network level. There is a need to create detailed neurovascular
models, incorporating key biophysical elements and exploring,
preferably at a network level, the consequences of a retrograde
signal from the vessels to the neurons on neuronal activity and
plasticity. This last objective forms the motivation of the present
study. In this paper, we develop a network level architecture for
neurovascular interaction where the activity of neurons not only
influences the vascular activity in the forward direction but also
depends on the feedback from the proximal vessels based on their
volume and oxygen saturation. We explore how to establish a
bidirectional coupling between a network of laterally connected
rate coded neuronal units and a network of vascular units
inspired from the vascular anatomical network (VAN) model

(Boas et al., 2008). On establishing a bidirectional neurovascular
coupling, the characteristics of vascular network like inlet oxygen
saturation and diameter of the Pial artery are altered to simulate
conditions of hypoxia and ischemia. Since the neural network
receives continuous feedback from vascular network, any training
or retraining which happens in the neural network in this model
is influenced by the vascular feedback. This enables the model
to bring out the possible variations in the characteristics of the
neural network such as neural plasticity under altered vascular
feedback. It is almost impossible to carry out such an exploration
using detailed biophysical neurovascular network. Since there is
a growing awareness in the recent years that neurodegenerative
diseases owe their origin to disrupted neurovascular coupling
(Tadecola, 2017; Muddapu et al., 2020), there is a great need to
understand the influence of vascular feedback at a network level.

Neurovascular coupling is believed to be made possible
through direct neuron-vessel communication (Tong and Hamel,
2000) and also through a pathway involving astrocytes (Attwell
et al., 2010; Mishra et al., 2016). Astrocytes are also believed to
play a role in providing metabolic feedback to the neurons along
with direct metabolic feedback from the vessels (Magistretti,
2011; Magistretti and Allaman, 2018). In order to simplify
the various neurovascular coupling pathways, we assume a
unified variable to represent all the vasodilatory signals that
reach the vessel via various pathways. Similarly, the entire
metabolic feedback received by the neurons via various pathways
is represented by one single variable which largely depends on
oxidative phosphorylation (Hall et al., 2012; Yellen, 2018) to yield
energy substrates.

We have selected the rat whisker barrel cortex as the model
system for which we develop a neurovascular network model.
In order to simulate the vascular influence on neural activity
and plasticity, a network level model of neural layer and a
network of vascular structure that perfuses this neural layer at
the level of capillaries are required. The vascular network which
perfuses the whisker barrel cortex layer L4 is modeled using a
three-dimensional vascular tree architecture that branches and
penetrates the neural layer at the level of capillaries. The anatomy
of the vascular network is inspired from the studies of Tsai
et al. (2009) and Blinder et al. (2013) and the vascular dynamics
are similar to that of the VAN model of Boas et al. (2008).
The pressure-volume relationship in the blood vessel is assumed
to be linear with the linearity coefficient modifiable by neural
activity. The activity of a neuron influences the vessels in its
neighborhood, while the neuron, in turn, is nourished by the
vessels in a neighborhood thereby making the neurovascular
network bidirectional (Figure 1A).

The model allows control of arteriolar dilation and capillary
dilation independently which would help to incorporate the
studies that show that while the arteriolar dilation is mediated by
direct neural influence, the capillary dilation is mostly mediated
by astrocytes (Biesecker et al., 2016; Mishra et al., 2016). The
concept of arteriolar dilation, rather than venous dilation, being
the primary response to short duration neural stimulation has
been explored before in modeling studies (Kim et al., 2013;
Kim and Ress, 2016). Since the pathways involved in capillary
dilation (Biesecker et al., 2016; Mishra et al., 2016) differ from

Frontiers in Computational Neuroscience | www.frontiersin.org

June 2021 | Volume 15 | Article 638700


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

Kumar et al.

Network Model of Bidirectional Neurovascular Coupling

Vasodilatory
Signal T

Elasticity
(Beta)

Vessel Layer

Dilation

Capillaries

Oxygen
required for
synthesis
of ATP

e

Neural Layer

Neurons

\] Flow

l—'1 Saturation N

L =q

Neural
" activity

o]
f "1

FIGURE 1 | (A) Bidirectional connection between neural and vascular layers. Neurons send afferent vasodilatory signals to vessels and vessels send oxygen back to
the neural layer for oxidative phosphorylation. (B) A schematic of the interactions among various quantities involved in neurovascular coupling. Beta (compliance
factor of the vessel, ). P, pressure; V, volume; S, saturation of oxygen in the blood; POs, partial pressure of oxygen; OE, oxygen extraction; CMRO», cerebral
metabolic rate of oxygen; W and W™, Gaussian weights; ATP, adenosine triphosphate.

those involved in arteriolar dilation (Nizar et al., 2013; Bonder
and McCarthy, 2014), it is important that the model provides
provision to control them independently.

The major question concerning neurovascular coupling is:
what does the neural activity alter at the vessels, or how does the
neurovascular coupling manifest? A few neurovascular coupling
models incorporate the neural activity in the function that defines
the cerebral blood flow, thereby regulating the cerebral blood
flow directly (Drysdale et al., 2010; Kim et al., 2013; Kim and
Ress, 2016). A few others directly change the resistance of the
vascular unit to reflect vasodilation (Boas et al., 2008). But we
believe that neural activation can be thought to alter pressure—
volume relationship of the vessel. This is in line with models of
neural activation of even the skeletal muscle. According to the

classic Hill’s model of the skeletal muscle (Hill, 1938), the main
difference between a passive and an active (activated by neural
inputs) muscle is an altered tension-length relationship. (Under
non-steady state conditions, the relation between Tension-
length-velocity is described.) In an active muscle, a greater
tension is created at the same muscle length. Tension-length
relationship is basically a manifestation of elasticity and therefore
any change in that relationship can be treated as a change in
effective elasticity. Furthermore, since muscle is viscoelastic, in its
lumped models, it is modeled using a combination of spring(s)
and a damper. The Hill’s modeling approach was also extended
to models of smooth muscle (Warshaw and Fay, 1983; Warshaw,
1987). The same principles are applied in modified form even
when modeling the vascular smooth muscle. In this case, one does
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not talk about length-tension relationship but about the pressure-
volume relationship. In the current model, the vessel activation
changes the relationship between volume and pressure, which is
quantified in terms of compliance factor instead of elasticity.

In most of the vascular models, the pressure-volume
relationship is considered non-linear (Mandeville et al., 1999;
Drysdale et al,, 2010). But for simplicity, we assume that the
pressure and volume follow a linear relationship defined by
a proportionality constant, (B), which we term as compliance
factor in this model. We incorporate the influence of the neural
activity in the vessel such that it causes a transient change
in this compliance factor (B) of the vessel. This disturbs the
pressure-volume equilibrium and results in vasodilation and
increased cerebral blood flow. Once the neural activity subsides,
the compliance factor () returns to the resting state value.

Hemodynamic response to neural activity is manifested in a
number of different ways: as an increase in the local cerebral
blood flow (rCBF), local cerebral blood volume (rCBV), and also
as significant change in the oxygen saturation and concentration
of glucose along with an increase of the metabolic rate of oxygen
and glucose in the local neural tissues. All these changes reflect
the neurovascular coupling between the neurons and blood
vessels in that area. With the proposed model, the changes
in cerebral blood flow, cerebral blood volume, saturation of
oxygen and cerebral metabolic rate of oxygen can be observed.
We explicitly plot only the hemoglobin concentration since
we optimize the model to match the hemodynamic response
observed in rat whisker barrel cortex in the experimental studies
by Devor et al. (2005), where they observed the hemodynamic
response by studying the change in concentration of total
hemoglobin and oxygenated/deoxygenated hemoglobin.

Neural dynamics in the model is captured by the Laterally
Interconnected Synergistically Self-Organizing Map (LISSOM)
model which is a simple yet biologically plausible model to
simulate cortical neural activity (Miikkulainen et al., 2005).
The LISSOM model basically does feature extraction similar to
the principal component analysis, thereby capable of forming
topographic maps. In the current study, we train the LISSOM
network to simulate the maps of the rat whisker barrel cortex. The
parameters of the model are optimized to simulate experiments
on neurovascular coupling under normal (Devor et al., 2005)
and pathological (Ranasinghe et al., 2015) conditions. Spatial and
temporal characteristics of the hemodynamic response in terms
of the volume and oxygen saturation agree with experimental
observations. The model is also able to capture the non-linearity
of hemodynamic response. To explore the possibility of studying
the vascular influence on neural layer properties, retraining of the
neural layer is carried out under various conditions of vascular
pathology. The model results are in agreement with experimental
observations (Ranasinghe et al., 2015).

MATERIALS AND METHODS

The proposed model for bidirectional neurovascular interaction
consists of a three- dimensional vascular network which branches
from a large pial artery into smaller arterioles and capillaries to

perfuse the two-dimensional neural sheet at the level of capillaries
(Figure 2A). The whisker stimulations act as input stimuli to the
neural layer and its response is conveyed to the vascular layer in
the form of vasoactive signals causing vessel dilation/contraction.
The vascular response determines the release of “energy” to the
neural layer, which controls the threshold of neural activation.

Modeling the Input Layer

The input to LISSOM is the activity of a network that represents
the whisker pad of the rat. The whisker pad on the snout
of rats is modeled as an array of 24 whiskers (Figure 3A;
Chen-Bee et al., 2012). Each blue dot represents one whisker
and is identified using the row and column coordinates with
numerals 0-4 representing columns and A-E representing the
rows. Stimulation of a single whisker is modeled as a two-
dimensional Gaussian function with peak at the location of
the whisker being stimulated. The amplitude of the peak of
the Gaussian function defines the amplitude of the whisker
stimulation (Supplementary Figure 1). The equation for two-
dimensional Gaussian function (Supplementary Equation 1)
and the images of input stimulus at different amplitudes are given
in Supplementary Material.

Modeling the Neural Layer

The neural layer, which represents the V4 layer of rat whisker
barrel cortex (Petersen, 2007), is modeled using a LISSOM, a
biologically plausible model of cortical activity. The LISSOM
is a two-dimensional network of neural units arranged on a
grid as shown in Figure 2B. Each neural unit is connected to
a small region of the input known as a receptive field using
trainable afferent weights. Each neural unit receives an afferent
signal which is a weighted sum of the intensity values in the
receptive field. The neural units are also laterally interconnected
using trainable lateral weights in such a way that the neighboring
units within a specified radius (excitatory radius) of any given
neural unit supply excitatory input and those units which lie
outside the excitatory radius but within a specified outer radius
(inhibitory radius) of provide inhibitory input to it. All the input
signals are summed up and passed through a sigmoidal activation
function. This center-surround pattern of lateral connections
induces competition and helps in the formation of topographic
maps as seen in the rat whisker barrel cortex.

The neural substrate for the LISSOM architecture is
constrained so that the entire barrel cortex has a parabolic
outline mimicking a real barrel cortex. The parabolic constraint
is essential to produce barrels with an organization that
is similar to the real barrel cortex. Interestingly, a similar
curvilinear boundary constraint was found to be critical to model
retinotopic map formation (Philips and Chakravarthy, 2017). The
constrained LISSOM, when trained on the whisker stimulation
input, forms topographic maps similar to the whisker barrel map
seen experimentally (Petersen, 2007).

Modeling the Vascular Layer

The vascular layer is modeled as a 3-dimensional tree structure
with arteries branching first into penetrating arterioles and
the arterioles branching into capillaries. The big pial artery
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FIGURE 2 | (A) A schematic of the model. The big pial artery branches to arterioles and they again branch to capillaries to perfuse the neurons. The neurons and
vessels interact at the level of these capillaries. (B) LISSOM architecture. The neural unit receives weighted input from an area in the whisker pad (blue dots). It
receives excitatory input from the immediate neighboring neural units (green dots) and inhibitory input from long range neural units (red dots). (C) The neurovascular
connectivity. Each vessel receives vasodilatory information from an area of neural units (violet dotted circle). Each neural unit receives oxygen from a group of
proximal vessels (blue dotted circle). (D) A schematic for complete interactions among the three layers, Input layer (whisker pad), Neural layer (whisker barrel cortex),
and blood vessels (capillaries). The only trained weights are from input layer to whisker barrel cortex (dark blue dotted circle).
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gives rise to 16 smaller arteries and each of the arteries
further branches into 16 arterioles giving rise to a layer of 256
penetrating arterioles. Each of the penetrating arterioles gives
rise to 16 capillaries altogether forming a capillary bed with
4,096 capillaries. The capillary bed aligns itself with the neural
layer. Like in the case of neural layer, each capillary is indexed
by its location on the two-dimensional grid (Figure 2C). The
assumption is that for every neural unit, there exists a capillary. It
is at the level of capillaries that the oxygen exchange takes place.
In this model, we assume that the capillaries, as well as arterioles,
dilate in response to the neural activity. Each capillary is
connected to a small receptive field (perfusion field) in the neural
layer bidirectionally by an untrained weight matrix defined by
two-dimensional Gaussian functions (Figure 2C). The Gaussian
weight distribution ensures that the neurons influence the nearest
capillaries and in turn get maximum nourishment from the
nearest vessels. One assumption that we make here is that each
vessel (capillary) is influenced by a neighborhood of neural units
and the radius of this neighborhood (receptive field/perfusion
field) is taken as approximately half of the perfusion field
observed for penetrating arterioles (400 pmX400 pm) (O’'Herron
etal., 2016) since we do not have exact biological values identified
for the perfusion field of capillaries. The standard deviation of
the Gaussian weight distribution is fixed such that each capillary
perfuses roughly 200 m x 200 pm.

Figure 1B shows the complete schematic of the interaction
between the neural and vascular layers. The neural activity
modifies the compliance factor (8) which changes the pressure-
volume relationship in the vessel. This causes a redistribution
of the blood flow resulting in dilation of some vessels and
constriction of others. The change in flow rate and the volume (V)
influences the amount of oxygen saturation (S) in the blood. The
amount of oxygen that diffuses out of the capillaries (OE) would
be dependent on the gradient of partial pressure of oxygen (PO,)
in the vessels and the neural tissues. This oxygen which reaches
the tissues influences the production of Adenosine Triphosphate
(ATP) by oxidative phosphorylation indicated by the cerebral
metabolic rate of oxygen (CMRO;). The available Adenosine
Triphosphate (represented by the variable ATP in this model) at
the tissues in turn influences the threshold of neural firing.

The variables, B, volume, saturation, ATP, CMRO,, PO,, are
described using a set of ordinary differential equations (ODEs).
The method followed in order to integrate the set of ODEs with
the neural network is explained in the Supplementary Material.

Modeling the Neural Response

The LISSOM sheet consists of nxn neural units each of which
is indexed using the row and column information in the grid.
The net input of each neural unit is determined by a weighted
contribution of afferent input, total excitatory input from the
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FIGURE 3 | (A) The whisker pad of the rat. Each whisker is addressed using the row (A-E) and the column (0-4). (B) The topographic map formed in whisker barrel
cortex. The whiskers are given numbers 1-24 such that, column 0 has whiskers 1-4; column 1 (5-9); column 2 (10-14); column 3 (15-19); column 4 (20-24). In this
sheet of 64 x 64 neurons, each neuron is color coded to the index of the whisker to which it responds maximally. The nearby neurons respond to the same whisker
forming barrels as can be seen in the figure. (C) The whiskers which are being considered for pathological study is shown in red circle (C1-C3 and D1-D3).

neural units in the excitatory radius, and the inhibitory input
from the neural unit in the inhibitory radius. The equations and
parameters used to generate input whisker stimulation using two-
dimensional Gaussian function (Supplementary Equation 1),
along with a few sample images of input stimuli (Supplementary
Figure 1) are detailed in the Supplementary Material. The
output of each neural unit is defined using Equations 1-3:

N (t) = G[P(Z W;‘lgmlpq (t))
pq

+ Q(EXCy)—R (INHij)—wy} (1)

EXCjj(t) = >~ WiNu (-=1) 2)
Kkl

INHj; (1) = > Wil N (-=1) (3)
Kl

where P, Q, and R are constants; W;’I is the afferent weight stage
from the input layer I to neural layer; W is the excitatory weight

stage; W' is the inhibitory weight stage; (i, j) denotes the index
of a neural unit in the two-dimensional grid; (k, [) denotes the
index of a neural unit in the neighborhood which gives excitatory
or inhibitory projections to neural unit at location (i,j) depending
on their proximity. o is the activation function defined as,

0 s < 0L
o(s) = % 0 < s < Oy (4)
1 s > Oy

where 0 and Oy are the lower and upper thresholds of the
sigmoid function. In Equation 1, ¢; j is a threshold variable whose
value depends on the available ATP in the neural tissue. In this
model, the notation ATP represents the concentration of ATP. At
rest, ATP is ATP .

mL ATP;j > ATPy,
Qij = (5)
WH ATP,',]' < ATPth,
where ATPy,, is the minimum ATP required for the proper
functioning of neurons. ATPy,, is defined in terms of percentage
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drop in resting state ATP (ATP ). i and py are set in such a
way that the uyy > 1.

All weights are trained using Hebbian learning as shown in
Equation 6 for training lateral connections using asymmetric
learning and Equation 7 for afferent weight training:

Wkl,pq (t_l) + T]qu(t—l)Ykl(t)
2w Wity (t=1) 4+ nXpq(t=1)Ya(2)

where Wy ,4is the lateral connection (excitatory or inhibitory)
from neural unit (p, g) to neural unit (k, [), n is the learning
rate, Xp4(t—1) is the settled presynaptic neural unit activity at
instance t—1 and Yy (¢) is the settled activity of the neural unit
(k, l) at time t.

Wiipg () = (6)

Wij,pq (t-1) + T]qu(t)Ytj(t)
Zuv Wij,uv (t_l) + nqu(t)Ytj(t)

where Wi; 5, is the afferent connection weight from input pixel
(p, @) to neural unit (4, ), n is the learning rate, Xp,;(¢) is the input
at instance ¢ and Y;;(¢) is the settled activity of the neural unit
(i,j) at time t.

™)

Wijpq (£) =

Modeling the Vascular Response
Each blood vessel is considered to be a cylinder with diameter
(d) and length (1) depending on the level of branching from the
pial artery. The values of diameter and length are adopted from
Boas et al. (2008). The other important variables that define the
vessel characteristics are the Resistance (R), Volume (V), Pressure
at the center of each vessel (P.), Pressure at the node (P,) from
which branching of vessels takes place, the compliance factor of
the vessel (8), and Saturation of oxygen in blood (S). A capillary at
the grid location (i,j) is characterized by its length (I; ;), resistance
(R;,j) and diameter (d; ;).

The resistance of each vessel can then be calculated using
Poiseuille’s law,

12881,"]'
o= nd?.
Lj

(8)

where ¢ is the fluid viscosity. The neurovascular coupling arises
from the compliance factor f which is a function of neural
activity. This factor results in the vasodilation of the proximal
vessels. The various pathways that contribute to the vasodilation
are considered by incorporating a time delay for the neural
influence on the compliance factor.

dﬂi,j(t) _ B _neti,j(t—'t)
SO~ i) + (1 p ) ©)

T

where net € [0, 1] is the weighted sum of neural activity (N) over
an area in the LISSOM, By is p at resting state and k; is a constant.

_ vn
neti,j = ZWij,kl Nk,l
k.l

(10)

where Wz;‘nkl is the weight of the connection from the neural unit
at a location (k, [) in the neural layer to the vessel at the location

(#,j) in the vascular layer. The strength of the weight from a
neural unit (k, [) to a vessel (7, j) drops exponentially with the
square of its distance from the vessel. Hence the weight matrix
projecting to a vessel from an area in the neural layer is defined
by a Gaussian weight distribution centered at the coordinate of
that vessel. The weight of connection from a neural unit (k, [), to
a vessel (i, j) is defined by:

(- G2 2
2 o2y

v o
ik = Awe

(11)
where A,, is the amplitude of the Gaussian, and oy, and oy,
are the standard deviations. We allowed the dilation of a given
penetrating arteriole to depend on an average of the effective
neural activity felt by the branching capillaries originating
from that arteriole.

The pressure at the center of the vessel (P,) and volume (V) of
the vessel are assumed to be related linearly as follows,

Pe,; = Bij Vij (12)

An increase in the neural activity causes a pressure drop in
the proximal vessels enabled by a reduction in the compliance
factor B. The pressure drop caused at the edge(s) due to the
neural activity causes a redistribution of nodal pressures. The
redistributed pressure is calculated by rewriting flow balance at
anode in terms of nodal pressures and edge pressures.

The change in pressure, in turn, redistributes the flow of blood
into the vessel and out of the vessel, building up the volume
in some vessels. The flow of blood in and out of the vessels is
calculated as follows (Boas et al., 2008).

Pnl,- -_Pe,
Fin, = ;{ij j (13)
Pe,‘ '_PHZ,'
Fout,-,j = ’JR. - . (14)
)

where P, is the nodal pressure at the mother node of a branch
and Py is the nodal pressure at the child node of the branch.
Atrest, Fj, = F,y. Neural activity induced changes in pressure
disturbs this equality causing vasodilation or constriction. This
causes a change in the volume (Boas et al., 2008) given by,

dV;”j
dt

This change in volume and flow rate causes a change in oxygen
saturation in the vessels. The rate of change of oxygen saturation
depends on the difference in flow rate at the inlet and outlet
at each vessel, the amount of oxygen extracted from the vessel
(OEY), and the volume of the vessel. The saturation at the inlet
(Sin) of any vessel is assumed to be the saturation at the node
from which it branches. The saturation at the outlet (Sy;) is again
assumed to be the same as the saturation at the node to which it
is connected at the bottom. The nodal saturations are calculated
using the oxygen flow balance equation. At any node, the mass
is conserved: the products of flow and saturation terms should
add up to zero. The saturation of blood depends on the direction

= Fin,‘,j _Fout,-,j (15)
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of the current flow. It is crucial to identify the immediate source
point of flow to get a balanced mass-flow condition at each node.

Z FinSin = Z Foutsout
in

out
The rate of change of saturation is given by the following
relationship derived from Boas et al. (2008).

(16)

dS,"j OEV
dt

Vl,]

(17)

where y is a constant representing the concentration of

hemoglobin. Once the saturation of hemoglobin (S) and the

volume (V) are estimated, the concentration of total hemoglobin

(HbT), oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (Hb) an be calculated as follows.

HhT,"]' = 2.3 V,',j (18)
HbO,-,j =23V Sij (19)
Hbij = 2.3 Vij (1-S;;) (20)

The change in oxygen saturation in a vessel brings about a
change in the partial pressure of oxygen (PO,) in that vessel.
The empirical relation (Kelman, 1966; Severinghaus, 1979; Boas
etal., 2008) between the oxygen saturation and partial pressure of
oxygen is given below:

6

PO 3.85 (log | (= 1)_1 sap L
..o = €X . (0} —_— . — —
%ij P 81's,; 725 6

21)
At the same time, the neural activity consumes oxygen in the
tissues in order to avail energy via oxidative phosphorylation.
The change in the metabolic rate of oxygen (CMRO,) at the
tissue is normally estimated as a function of flow rate, oxygen
extraction fraction, and the hemoglobin concentration (Buxton
and Frank, 1997). But from the discussions in Thompson et al.
(2003) and Chong et al. (2015), neural activity appears to be
a more direct correlate of CMRO,. Considering the fact that
the total oxygen flux also has an equal significance, CMRO is
influenced by neural signal and vascular signal equally. Thus,
it appears to be the key variable in modulating the feedback
from vessels. In order to independently incorporate the effect of
feedback from the vessel to the tissues, based on the available
oxygen at its neighborhood, we suggest the following equation
for the metabolic rate.

dCMRO,,

2T

= (CMROuy,, Avor, —CMROy,,) + OEL; Nii K (22)

where k is a constant and Avp, represents a fraction of available
oxygen in the tissues, which is calculated as a fraction of POy

(partial pressure of oxygen) available at the tissues to the resting
value of PO, at the tissue (POyjss max)-

P OZ tiss

—_— (23)
P OZtiss_max

Avor =

Equation 22 describes CMRO; changes in a manner similar to
the several existing models (Jones et al., 2001; Boas et al., 2003;
Mathias et al., 2017b).

The increased oxygen metabolism results in a dip in the partial
pressure of oxygen at the tissues. The rate of change of partial
pressure of oxygen at the tissues depends on the total oxygen
flux to the tissues (OE") from the vessels and the rate of oxygen
metabolism (CMRO,).

dPOs;; 1
2tissy _ (OEZI—CMROZk,l)

(24)
dt OLVCMROZk .

where aVepproz is a constant which represents the volume of
tissue where the extracted oxygen is consumed. A reduction
in the partial pressure of oxygen at the tissue leads to an
increase in the extraction of oxygen from the vessels. The
partial pressure of oxygen at the tissues as felt by each vessel is
taken as a weighted sum of the partial pressure of oxygen at a
small neural area around each capillary, corresponding to the
receptive field of the capillary. The weight matrix used is the same
Gaussian weight matrix used for calculating the effective neural
activity at each vessel.

POsiss, ey, = D Wiy POuisy, (25)
k,1

where POyiss yessel; }denotes the partial pressure of oxygen at the
tissues as seen by the vessel at (i, j). The gradient between the
partial pressure of oxygen at the capillaries and the tissues leads
to diffusion of oxygen from the capillaries to the tissues and is
defined by the following equation.

POZ,-,}- _POZtiss_vessel,'wj

Wk

OE}:j = k3 (26)
where k3 is constant. The oxygen extracted from the vessels (OE,)
diffuses to the tissues. The oxygen flux into each neural unit is
calculated as the weighted sum of the oxygen extracted from
an area of proximal capillaries which cater to the neurons. We
assume here that most of the oxygen required by the neurons is
being exchanged at the level of capillaries. The oxygen extracted
by the neural unit at (k,]) is given by,
OF;, = :E: vafy
L]

OE!, (27)

where W;}'a Gaussian weight distribution centered on the neural
unitat (k, I) similar to W;" defined in Equation 11.

Adenosine triphosphate is required to fuel neural firing
activity. Most of the ATP available at the neural tissues is a result
of oxidative metabolism (Lin et al., 2010). The cerebral metabolic
rate (CMROQO,), therefore, could be taken as an indication of
ATP generation and the neural activity could be taken as a
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measure of ATP consumption. The relation between generation
and consumption of ATP is assumed to be as shown below.
ATP,,s is the resting state level of ATP at the tissues, and the
CMRO,,f is the cerebral metabolic rate during the resting state.

dATPy
Bl
T

CMROZ,(,,—CMROMM) .
—R4 INK ]

— (ATP,—ATP,
(ATErs "’l)( CMRO,, |

(28)

where k4 is a constant. The first term ensures that the ATP
values return to their resting values when there is no production
and consumption. The second term indicates the net increase
in ATP by considering the production of ATP proportional to
the percentage of increase in CMRO,. The third term indicates
the consumption of ATP proportional to the neural activity. The
values of the parameters are given in Table 1.

The above equations are solved using DDE23 and Euler
method in MATLAB to find the hemodynamic responses to
neural activity.

The Training Paradigm

The neurovascular network is used to validate two experimental
paradigms. The first one is the validation of the network under
normal conditions. For this, the neurovascular network is trained
on the whisker stimulation and the corresponding vascular
response is compared to the experimentally observed vascular

TABLE 1 | Values of parameters and constants used in the model.

Constants Values (*The parameters of training LISSOM network are given in

Supplementary Material)

k1 10 for capillaries
1 for arterioles
T 0.5 s for capillaries
1 s for arteries
ko 0.7
T2 2s
ks, 5 1078 IG,j)) d(,)) mm mol/mmHg/s

| — Length of the vessel
d — Diameter of the vessel

ke 05
%) 4s

W 2 um

aVemroz 3.6050 | mol/mmHg
y 2.3 x 10-9 mol/ul

T 500 ms

Aw 1

(Owx> owy) 2.2

L 0

WH 5

ATPef 25

P 2

Q 14

R 8

O 10

0, &

response (Devor et al., 2005). The second part is the study of
how vascular pathology influences the neural network plasticity.
This part of the work is verified using the experimental studies
done on neonatal rats. The LISSOM network is trained using
the whisker stimulation input (Gaussian activation centered at
each whisker location) for 50 epochs. The trained LISSOM is
then connected to the vascular network forming three-layered
structure with input as the first layer, LISSOM as the second
layer and Vascular bed as the third layer as shown in Figure 2D.
In order to check the hemodynamic response, the stimulus is
given at time t = 0 and retained for 1 s. The duration of the
input stimulus is fixed to be 1 s just as in the experimental
study of Devor et al. (2005) and the hemodynamic response is
observed for 4 s.

Simulating the network with all 24 whiskers is
computationally expensive. Hence for modeling pathological
conditions, we consider a smaller network where the input
layer is a portion of whisker pad with just six whiskers. The
neural layer with dimension 8 x 8 represents three barrels
each of C and D row whiskers (Figure 3C). This is fed by a
capillary bed of size 8 x 8. Once the pathology is introduced, the
afferent connections from the input layer to the neural layer are
retrained to observe the influence of the pathological condition
in topographic map formation.

The retraining of the LISSOM network is carried out in
the presence of vascular feedback under four conditions: (i)
Control, (ii) Lesion, (iii) Hypoxia —Lesion, and (iv) Hypoxia-
Ischemia. In the control condition, the network is retrained in
the presence of healthy vascular feedback using the input stimuli
from all the six whiskers. In the lesioned condition, one row of
the whisker is assumed to be lesioned and hence retraining is
carried out with just the stimuli from intact whiskers. Vascular
feedback is healthy in this condition. In the model, we assume
that the C whiskers are lesioned (the whiskers C1, C2 and C3
in Figure 3C). Hence, we train the network only by stimulating
the D whiskers. The hypoxic condition is simulated by limiting
the inlet oxygen saturation to 70% as compared to 94% in the
healthy controls (Sicard and Duong, 2005). The study is also
carried out under a range of oxygen saturation from 30% inlet
oxygen saturation to 94% inlet oxygen saturation. The retraining
of the LISSOM layer is carried out using input stimulations of
D whiskers, under the assumption that C whiskers are lesioned.
The final condition is that the arterial ligation is carried out
to simulate ischemia along with hypoxia. We simulate it by
reducing the diameter of the pial artery along with reducing the
inlet oxygen saturation to 70%. The retraining of the LISSOM
network is carried out using only D whisker stimulation input.
The stimulation is given for 2 s preceded and succeeded by 1 s
of rest period before giving the next stimulus. The training is
run for four epochs for all four conditions. One epoch accounts
the simulation of the network for the entire duration of T =4 s.
The training happens at every 0.1 s interval. Hence four epochs
would account to 160 iterations. In order to plot the response
map for all the four conditions, the response of each neural unit
is observed before passing through the sigmoid function. The
neural unit is assigned the label of that input to which it shows
the maximal response.
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RESULTS

Simulation of the Neural layer

The neural layer was trained using whisker stimulations of
various amplitudes (Supplementary Figure 1). The trained
LISSOM network resulted in a response map as shown in
Figure 3B. Each colored blob represents the area in the rat barrel
cortex that responds to one particular whisker. The colormap
has values from 1 to 24 (representing all 24 whiskers shown in
Figure 3A) which indicates the neurons that respond maximally
when the corresponding whisker is stimulated. For example, the
neural units coded with number 1 correspond to whisker located
at row A and column 0. Hence when this whisker is stimulated,
the neurons identified with number 1 respond maximally. Studies
on the whisker barrel cortex show a parabolic arrangement of
barrels (Chen-Bee et al., 2012). By imposing an area constraint
on the LISSOM sheet, we were able to reproduce the parabolic
whisker barrel map seen experimentally. The calibration of the
neural network to represent the whisker barrel cortex is detailed
in the Supplementary Material (section 2.a).

Simulation of the Hemodynamic

Response to Whisker Stimulation

The hemodynamic response was observed after giving a stimulus
of 1 s duration to the C3 whisker. It is characterized by the
change in total hemoglobin (HbT) which is analogous to the
change in volume, change in oxygenated hemoglobin (HbO)
and change in deoxygenated hemoglobin (Hb). The variation
of HbT with time is shown in Figure 4A. The red arrow on
the figure indicates the time of presentation of stimulus. As
expected, the capillary area corresponding to C3 whisker barrel
area showed a response to the input stimulus by increase in
HbT which also indicated an increase in volume or vasodilation.
Vasodilation occurred after a delay of 0.5 s and this delay was
optimized to match the experimental observation (Devor et al.,
2005). The change in HbT reached a maximum at around 1.8 s
post stimulus presentation (Buxton et al., 2004) and decayed
slowly depending on the compliance factor. Since the duration
of input stimulus is only 1 s, the compliance factor returned to
the resting state according to Equation 9 once the input was
removed. Our model was also able to capture the initial dip of
HbO (Figure 4B) at around 0.6 s post-stimulus presentation as
observed by Devor et al. (2005) and Berwick et al. (2008). HbO
reached its peak at around 1.8-2 s post-stimulus presentation.
Hb being complementary to HbO also showed an initial increase
around 0.6 s after the presentation of the stimulus followed by
a steady decrease (Figure 4C). HbO then slowly increased when
HbDT started to increase and Hb slowly decreased reflecting the
hemodynamic response observed in rat whisker barrel cortex
(Devor et al., 2005). Similar results were observed when input
stimulus was given to any other whisker. Any whisker stimulation
would result in a similar hemodynamic response pattern around
an area in the capillary bed corresponding to the neural area
in the whisker barrel cortex that responds to the whisker which
is stimulated. The temporal variation of average hemodynamic
response at the center of the principal barrel was compared with

the experimental observation (Devor et al., 2005) as shown in
Figure 5A. The variation of rCBF, rCBV, and CMRO?2 in response
to the input stimulation followed a pattern as shown in Figure 5B.
The variation followed a similar trend as observed by earlier
modeling studies (Aubert and Costalat, 2002).

The comparison of the model results with both spatial and
temporal aspects of experimental observations is detailed in the
Supplementary Material.

Hemodynamic Response to a Whisker
Stimulation at Various Locations in the
Whisker Barrel Cortex

The hemodynamic response to a whisker stimulus varies
throughout the capillary sheet depending on which whisker
is stimulated. We considered the total area of the sheet as
4 mm X 4 mm. The response of the entire sheet was observed
after giving input stimulus at C3 whisker. The whisker barrel
corresponding to the stimulated whisker is known as the
principal barrel. Three points were identified in the capillary
sheet, which is aligned to the whisker barrel cortex, one at the
center of C3, another point at the boundary of C3 and D3, and
one point at a long distance from center of C3, at the center of
capillary area corresponding to Al barrel. An area of dimensions
300 pm x 300 wm around the center of the principal barrel
was considered as the region of interest (ROI). Figure 6A shows
the average hemodynamic response (HbT) over approximately
300 pm x 300 wm area surrounding each of the three points.
The response to the stimulus occurred after a delay of 0.5 s.
This accounts for the delay caused by the various vasodilatory
pathways and is quantified here by the variable t in Equation
9. Peaking of HbT response in the principal barrel occurred
around 1.8-2 s after the presentation of input stimulus just as in
the experimental study (Devor et al., 2005). A decrease in HbT
outside the ROI was observed in the model, but it did not match
the experimental results suggesting additional vasoconstriction in
the nearby vessels.

Hemodynamic Response Increases
Beyond the Saturation of Neural Activity

With increasing input stimulus amplitude, the increase in neural
response and hemodynamic response do not follow a similar
pattern. Devor et al. (2005) observed that when the stimulus
amplitude was increased continuously, the neural activity over
an area saturated very soon, whereas the hemodynamic response
continued to increase monotonically. We presented the network
with input stimulations of various strengths defined by the
amplitude of the Gaussian activity in the whisker pad. In
Figure 6B, the X-axis denotes the amplitude of the input
stimulus. The peak HbT was observed over an area surrounding
the principal barrel, and the average of this peak HbT over
that area was noted for each stimulus amplitude. The average
neural activity was also noted around the same area for each
stimulus amplitude. It was observed that the neural activity (blue)
quickly reached saturation whereas HbT (red) increased slowly
with stimulus amplitude. The model was able to capture the
saturation of the neural activity and the monotonic increase of
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FIGURE 4 | Each plot shows the time profile of different hemodynamic variables. The red arrow shows the time of presentation of stimulus. The color bar on the right
shows the percentage change in value. (A) The time profile of HbT in the whisker barrel cortex—HbT is maximum at 1.6 s post stimulus presentation. (B) The time
profile of HbO in the whisker barrel cortex. Soon after the stimulus, a dip in HbO can be observed at 0.6 s; HbO peaks around 1.6-2 s. (C) The time profile of Hb in
the whisker barrel cortex. Soon after the stimulus, a slight peak in Hb can be observed at 0.6 s. Hb follows a continuous dip following that initial peak.

hemodynamic response over an area when presented with stimuli
of increasing amplitudes.

Change in ATP Variable Near the Neural
Tissue in Response to Whisker

Stimulation

The ATP variable in our model is not the biophysical ATP,
but an abstract dimensionless variable that represents the

concentration of the chemical. It is similar to the abstract
ATP variable in Chhabria and Chakravarthy (2016). It is this

variable that links the set of ODEs that define the vascular
variables to the neural network variables. Since the variable
ATP is an abstract term, we cannot compare the magnitude
of its variation to the biological values, but we can see that
its pattern of variation (Figure 6D) is quite similar with
previous computational models (Aubert and Costalat, 2002;
Ching et al., 2012) that plot the variation of ATP concentration.
Our model was designed on an assumption that, under normal
conditions, at the end of 1 s simulation, the ATP variable
drops to around 3%- 4% of resting state value. This assumption
was informed by the study of Aubert and Costalat (2002),
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FIGURE 5 | (A) Comparison of estimated hemodynamic response at the
center of the activated barrel using the model with the experimental results.
The dotted line plots the experimental values observed by Devor et al. (2005)
and the solid line plots the values obtained from the model. (B) The
percentage change in rCBF (red), rCBV (Blue), and CMRO2 (green) when the
input of 1 s duration is presented at t = 0.

where they compute the drop of ATP concentration for a
sustained simulation that lasts around 360 s. To the best of
our knowledge, there is no study that mentions the amount of
drop in ATP following short whisker simulations, hence such an
assumption is unavoidable.

The threshold of firing of a neuron depends on the available
energy which is in turn determined by the concentration of ATP.
In the current model, the threshold value was chosen depending
on the percentage dip in ATP variable. If the ATP variable
dropped more than 10% of its resting state value (ATP,), the
threshold was increased, lowering the firing probability of the
neurons (Equation 1). The critical value was chosen as 10% of the
resting state value of ATP variable, to fit the model to the studies
of Ranasinghe et al. (2015). The dependency of threshold on ATP
variable (Equation 5) is shown in Figure 6C. The idea of varying

neural activation threshold as a function of ATP was consistent
with prior modeling studies (Chhabria and Chakravarthy, 2016).
Both the threshold and ATP are dimensionless variables, and they
are the critical link between the vascular network and the neural
network. The drop in the ATP variable starts soon after the input
stimulus is given (at ¢ = 0 s). The initial dip, followed by the
slow rise is also in agreement with the study of Chhabria and
Chakravarthy (2016).

The Role of Vascular Pathology in
Influencing the Plasticity of the Whisker

Barrel Cortex

In order to observe the influence of vascular pathology on
whisker barrel map reorganization, the LISSOM network was
retrained in the presence of the vascular feedback. Since
retraining the whole whisker barrel network was computationally
intensive, a small area of whisker barrel cortex representing six
whiskers, three whiskers each of C and D rows, was considered
(indicated by the red circle in Figure 3C). The retraining in
LISSOM is justified by considering the rats to be in the early
stages of development where plasticity is high. During retraining,
the map reorganizes if any metabolic mismatch causes a change in
the neuronal response to the stimuli. The protocol used to study
plasticity in the model was similar to the experimental protocol
(Ranasinghe et al., 2015). The whisker barrel map reorganization
was observed under four conditions: (1) Control, (2) Lesion, (3)
Hypoxia -Lesion, and (4) Hypoxia-Ischemia, as explained in the
“Materials and Methods” section. In Figure 7, a small area of
whisker barrel cortex consisting of the neural units representing
the C and D row whiskers are considered. In Figures 7A-D, each
whisker barrel is identified by a color. The neural units which
respond maximally when C1 whisker is stimulated identify the C1
barrel and are represented in orange color. Similarly, the neural
units that form the C2 barrel are in yellow color, and those which
form the C3 barrel are in white color. The neural units which
identify the D1 barrel are represented in black color, those which
form the D2 barrel are in dark maroon color, and the neural
units which form the D3 barrel are in red color). The plasticity
of the network in whisker lesion conditions was observed by
the increase in the ratio of the total area, which represents
D row (barrels D1, D2 and D3) to an area that represents C
row (barrels C1, C2, and C3). This ratio is called theD/C ratio.
Figures 7A-D shows the whisker barrel reorganization under
conditions 1-4. It was observed that the areas of the C whiskers
and D whiskers in the neural layer were almost equal when the
retraining was done with healthy vascular feedback (Figure 7A),
denoting equal representation for both the C and D whiskers.
The lesioning of the C whisker led to the reduction in area
representing C whiskers and increase in the area representing
D whiskers (Figure 7B) displaying plasticity. Figure 7C shows
that the plasticity was preserved under the hypoxic condition
as observed by Ranasinghe et al. (2015). The fourth condition,
which is the ischemia combined with hypoxia, caused a global
reduction in blood flow, and due to inadequate feedback from
the vessels, the neurons had a very low firing probability. This
was due to the increase in the threshold value resulting from a

Frontiers in Computational Neuroscience | www.frontiersin.org

June 2021 | Volume 15 | Article 638700


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles

Kumar et al.

Network Model of Bidirectional Neurovascular Coupling

FIGURE 6 | (A) Peak HbT observed 1.8 s post stimulus presentation to C3 whisker, (i) at the center of the barrel corresponding to the whisker (principal barrel) which
was stimulated (blue), at the boundary of the principle barrel (green) and very far from the principal barrel (red). (B) The average of peak response of HoT (red) and
the average neural activity (blue) around the principal barrel for different stimulus amplitudes. (C) Variation of threshold as a function of available ATP. (D) Observed
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low ATP value. Because of this low firing probability, plasticity
did not occur. Hence, the response map remained unchanged as
observed by Ranasinghe et al. (2015). The peak response to the
stimulus was very low in the hypoxia-ischemia condition due to a
large threshold value. Therefore, the response map shown in this
case is not that of the output, but the net input obtained before
passing through the sigmoid function. Basically, it is equivalent
to displaying subthreshold activity of the neuron instead of the
usual spiking response. This is similar to a situation where a
neuron that is tuned to a particular whisker does receive the
maximal input but due to the raised threshold, it is unable to fire.
Because of this, the plasticity of the network was lost as observed
in Figure 7D.

The ratio of the cells representing the D whiskers to C
whiskers under all four conditions was compared with that
from the experimental observations in Figure 8A. The possible
effect of stages of hypoxia-ischemia and pure ischemia on
plasticity as observed by the model was shown in Figure 8B. The
model supported the experimental observation that the hypoxic
condition (oxygen saturation as low as 70%) alone does not

affect the plasticity significantly. The model was also able to
capture the absence of plasticity in Hypoxia-Ischemia condition.
Thus, this experiment showed that short-term hypoxia does not
compromise the neural functionality as compared to ischemia.
The effect of various stages of hypoxia as predicted by the model
is plotted in Figure 8C. As seen in Figure 8C, the model predicted
an intermediate stage where plasticity is not completely lost, but
as the inlet saturation drops below 60%, it impacts the plasticity.
Similarly, there is a difference in how the plasticity is affected by a
reduction in arteriolar diameter under normal oxygen supply and
hypoxic condition (Figure 8B).

DISCUSSION

A biological neural network can carry on with its firing activity
only if it has an adequate and timely energy supply. The vascular
contribution to efficient neural performance has always been
taken for granted. Our model attempts to capture the influence
of retrograde signaling from vessels on the neural network
characteristics. It assumes a middle ground between detailed
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FIGURE 7 | (A-D) Topographic map formation around a small area in the whisker barrel cortex under various conditions. (A) When the whiskers are intact, and
blood supply is normal. (B) When the C1-C3 whiskers are lesioned, but blood supply is normal. (C) When the whiskers C1-C3 are lesioned and also the blood is
hypoxic. (D) When the whiskers C1-C3 are lesioned and also under hypoxia-ischemia condition.

biophysical models (Chander and Chakravarthy, 2012; Mathias
et al., 2017a,b) and abstract models (Gandrakota et al., 2010;
Philips et al., 2016). The key feature of the model is that it
captures the feedback from the vascular layer to the neural
layer, representing the dependence of neural activity on the
energy substrates released by the cerebral vessels. The behavior
of each neuron changes depending on the energy available to
it and hence influences the network properties in a significant
manner. Vascular structure, defined by a three-dimensional
branching of blood vessels at different levels of hierarchy (arteries,
arterioles, and capillaries), perfuses a two-dimensional neural
sheet at the level of capillaries to retrieve the experimentally
observed hemodynamic responses (Devor et al., 2003, 2005;
Berwick et al., 2008) in the rat whisker barrel cortex. This model
can be seen as a first step toward capturing the variations in
hemodynamic responses observed in different areas of the brain
(Lecrux and Hamel, 2016).

We chose LISSOM to model the barrels observed in the layer
IV (L4) of the somatosensory cortex (S1) over the previous
computational models of whisker barrel cortex like the works by
Wilson et al. (2010) and Kremer et al. (2011), since our modeling
requirement demanded a simpler version in order to reduce
the computational complexity while incorporating the vascular
dynamics during the training. The aim of the studies by Wilson
etal. (2010) and Kremer et al. (2011) were to model the formation
of direction selectivity map in the layer 2/3 (L2/3) barrel cortex,
which is not included in our modeling objectives. Our intention
was to understand the effect of vascular feedbacks on whisker
barrel formation in normal and energy starved conditions. We
hence formulated the whisker barrel cortex as simply as possible.
In our model, the neural layer only required to map the principal
barrels onto the whisker barrel cortex to simulate the barrels
observed in the layer IV (L4) of the somatosensory cortex (S1) in
rats. Hence the neural dynamics in the model was captured by the
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D/C ratio comparison between experiment and model
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FIGURE 8 | (A) Comparison of D/C ratio of experiment (Ranasinghe et al., 2015) and model under the four simulation paradigms. (B) The change in D/C ratio of a
lesioned model at various stages of hypoxia-ischemia (blue) and purely ischemic condition (red). (C) The change in D/C ratio of a lesioned model at various
percentages of oxygen saturation at the inlet.

LISSOM model which is a simple yet biologically plausible model  adaptive threshold, GCAL (Bednar, 2012; Stevens et al., 2013)
to simulate cortical neural activity (Miikkulainen et al., 2005).  which makes the network robust to variation of contrasts in
There is a more stable version of LISSOM, with gain control and  input stimulus. But we define the stimulus as a two-dimensional
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gaussian function centered around the whisker, with no variation
in contrast. Hence even in the absence of gain control and
adaptive threshold, the model would remain robust and stable
over the inputs that are provided during the simulation.

Individual units of LISSOM encode the rate of neuronal firing
over an area. The forward connections to the vessels carry the
vasodilatory influence of the neural firing and are represented
by a variable that affects the elasticity or compliance of the
vessel wall. Oxygen consumption near the tissues is directly
dependent upon the neural activity and available oxygen, which
is a direct indicator of the metabolic demand. The feedback signal
from the vessels to neurons is in the form of available oxygen
for metabolism whose end result is ATP. The model treats the
metabolic aspects of neurovascular interaction by considering
first order dynamics for the cerebral metabolic rate of oxygen
(CMRO;) with the synthesis term proportional to the net oxygen
extracted from the vessels (OE) and the neural activity. ATP
derived from this oxygen metabolism is again assumed to follow
a first order dynamics with the synthesis term being governed by
CMRO; and the decay being proportional to the neural activity.
(ATP) described in the Equation 28 presents a dimensionless
quantity which replicates the characteristics of concentration
of ATP. The profiles of CMRO2 and [ATP] are in agreement
with the experimental observations (Hoge et al, 1999) and
modeling studies (Aubert and Costalat, 2002). The dimensionless
parameter representing [ATP] could be incorporated easily into
the LISSOM network made up of sigmoidal neural units in the
form of threshold of activation.

The proposed model which merges the biophysical metabolic
quantities on the vascular side with abstract activation variables
on the neural side was able to reproduce the hemodynamic
response observed experimentally. The time profiles of the
hemodynamic response-related variables (HbT, HbO, and Hb)
were in agreement with the experimental observations (Aubert
and Costalat, 2002; Devor et al., 2005). By introducing the delay
of vasodilatory signal in reaching the vessels, the model was
able to capture the immediate drop in oxygenated hemoglobin
observed in the proximal vessels of excited neurons soon after the
stimulus is given. The model was also able to replicate the change
in hemodynamic variables with spatial accuracy. It was able to
replicate the vascular dilation/HbT variation at various locations
on the whisker barrel after stimulation of a single whisker. We can
also control the amount of dilation in arterioles and capillaries
individually to suit the literature (Biesecker et al., 2016).

As a first step to explore the influence of vascular feedback on
neural network properties using this framework, we modeled the
plasticity of the brain under conditions of hypoxia/ischemia in
neonatal rats. The stimulation of a whisker normally activates
a fixed area in the whisker barrel cortex. As long as all
whiskers are intact, the area in the barrel cortex representing
each of the whisker would be the same. But once a whisker
is no longer active, the area representing that particular
whisker shrinks and will be used to represent the other active
whiskers. This plasticity, which is implemented in our model
by Hebbian learning, is dependent on the vascular feedback.
The retraining of the LISSOM layer with vascular feedback
was carried out for four different paradigms, for four different

vascular characteristics. Observing the response map of the
retrained LISSOM network revealed the influence of vascular
feedback on neural reorganization due to plasticity. When
one row of whiskers is suppressed (C row), naturally, the
plasticity of the neural network should allow the boundaries
of neighboring (D row) whisker barrels to encroach into the
area that previously represented the suppressed whiskers (C
rows). But we observed that this encroachment by barrels of
neighboring active whiskers, which is an indication of intact
plasticity does not happen when the vascular feedback is not
adequate. Ranasinghe et al. (2015) showed that neonatal rats had
plasticity preserved as in controls, in hypoxic condition alone,
but the plasticity was lost during hypoxia-ischemia condition.
In the hypoxia-ischemia condition, the cortex was unable to
respond to stimuli thereby preventing any plasticity. Our model
was able to reproduce these effects on plasticity experimentally
observed on neonatal rats. To the best of our knowledge, a
study on how a step-by-step reduction of blood flow or a step-
by-step reduction in oxygen concentration influences plasticity,
and its consequences like cortical map formation, has not yet
been carried out.

In the current model, we have assumed that more than
10% drop in ATP variable from the resting state value could
reduce the firing probability of the neuron. Even though the
network simulations using this choice agree with the available
experimental studies, the model predicts a loss of plasticity
at a hypoxic condition where inlet oxygen saturation is less
than 60%. A careful experimental study that observes the
effect of step-by-step variation of the inlet oxygen saturation
level on plasticity will help confirm this assumption and the
model can be used to predict the effect of various vascular
phenomena on neural dynamics. This emphasizes the need for an
extensive experimental investigation where the neural responses
are observed under carefully calibrated vascular changes.

CONCLUSION

As discussed by Hillman (2014), although several candidate
mechanisms for neurovascular coupling have been identified,
their integrated role has still not been understood. The
vascular origin of many neurodegenerative diseases (Iadecola
and Davisson, 2008; Iadecola, 2017; Kisler et al., 2017; Tarantini
etal,, 2017) points to the importance of understanding the proper
functioning of neurovascular communication. Apart from this,
the role of vessels in neural information processing is also a topic
of debate (Moore and Cao, 2008; Pradhan and Chakravarthy,
2011). Vascular characteristics like vasomotion indicate that
vessels have their own dynamics that may influence each other
and the neuronal dynamics (Stergiopulos et al., 1998; Secomb
and Pries, 2002; Pradhan and Chakravarthy, 2011). With an intact
network layer structure for neurovascular interaction, by merely
modifying the vessel model to incorporate active and intrinsic
vascular dynamics,—and not just the vascular rhythms passively
driven by neural inputs,—the effect of vascular dynamics on
neural dynamics could be studied. Our model is an effort
toward that direction.
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The individual unit of the LISSOM network in this model is
a sigmoid neural unit. This could be replaced by a network of
spiking neurons that represent neural activity more accurately.
The vascular network in this model has a tree structure of variable
resistors in which the flow is analogous to the current flow.
Also, neurovascular interaction could be mediated by modifiable
connections, which makes possible multiple vascular adaptations
like arteriogenesis (Buschmann and Schaper, 2000; Scholz et al.,
2001) and angiogenesis (Krupinski et al., 1994; Beck and Plate,
2009) following ischemic conditions.

One drawback of this model is that we did not consider the
lateral interaction among vessels, which, we believe, would be
crucial for optimal distribution of blood flow. We also have not
explicitly considered the role of astrocytes in the neurovascular
coupling which might play an important part in both feedforward
and feedback interactions between neurons and vessels, even
though the generalized vasodilatory parameter takes care of
that factor to an extent. The generalized vasodilatory parameter
acts on the capillaries which are mediated by astrocytes and
on the arterioles, which are controlled directly by neurons
(Biesecker et al., 2016).
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