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The optimal organization for functional segregation and integration in brain is made

evident by the “small-world” feature of functional connectivity (FC) networks and is

further supported by the loss of this feature that has been described in many types of

brain disease. However, it remains unknown how such optimally organized FC networks

arise from the brain’s structural constrains. On the other hand, an emerging literature

suggests that brain function may be supported by critical neural dynamics, which is

believed to facilitate information processing in brain. Though previous investigations have

shown that the critical dynamics plays an important role in understanding the relation

between whole brain structural connectivity and functional connectivity, it is not clear if the

critical dynamics could be responsible for the optimal FC network configuration in human

brains. Here, we show that the long-range temporal correlations (LRTCs) in the resting

state fMRI blood-oxygen-level-dependent (BOLD) signals are significantly correlated with

the topological matrices of the FC brain network. Using structure-dynamics-function

modeling approach that incorporates diffusion tensor imaging (DTI) data and simple

cellular automata dynamics, we showed that the critical dynamics could optimize the

whole brain FC network organization by, e.g., maximizing the clustering coefficient while

minimizing the characteristic path length. We also demonstrated with a more detailed

excitation-inhibition neuronal network model that loss of local excitation-inhibition

(E/I) balance causes failure of critical dynamics, therefore disrupting the optimal FC

network organization. The results highlighted the crucial role of the critical dynamics

in forming an optimal organization of FC networks in the brain and have potential

application to the understanding and modeling of abnormal FC configurations in

neuropsychiatric disorders.
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INTRODUCTION

Functional connectivity (FC) analysis of resting state human
brain allows to understand how the functional networks are
organized, how this organization is related to behavior, and how
it changes in case of pathology (van den Heuvel and Hulshoff
Pol, 2010; Lee et al., 2013; Yu et al., 2016). Recent studies have
identified the so-called resting-state networks which consist of
anatomically separated, but functionally linked brain regions that
show a high level of ongoing FC during rest (Heine et al., 2012;
Raichle, 2015). The graph theoretical analysis of resting-state
functional magnetic resonance imaging (fMRI) has revealed the
“small-world” feature of the whole brain functional connectivity
network (Rubinov and Sporns, 2010). Compared with random
networks, small-world networks exhibit shorter characteristic
path length but higher clustering coefficients (Watts and Strogatz,
1998). This specific organization of functional network is believed
to benefit the higher-level cognitive functions requiring the
integration of information from different brain regions (Watts
and Strogatz, 1998), maximize efficiency at a minimal cost for
effective information processing between multiple brain regions
(Achard and Bullmore, 2007), and promote low wiring costs
(Bassett and Bullmore, 2006). The small-world organization
of brain functional network is likely to be related to human
intellectual performance (van den Heuvel et al., 2009) and
disrupted with normal aging (Wang et al., 2010). Extensive
studies also showed that this small-world properties of functional
network are altered by diseases such as schizophrenia (Liu et al.,
2008), AD (Sanz-Arigita et al., 2010), autism (Rudie et al.,
2013), etc. Specifically, the alterations are normally characterized
by increased characteristic path length, as well as decreased
clustering coefficient and efficiency [for an example, pleases
see Ref. (Liu et al., 2008) for details], implying the disrupted
organization of FC networks for integration and segregation.
However, little is known about the underlying dynamics based
on which this optimal FC network is established, and how its
disruption induced by disease is associated with changes in
brain dynamics.

The theory from statistical physics has predicted that resting
state brain dynamics operates close to a critical point, hallmarked
by power-law distributions of spatiotemporal cascades of
activity-termed neuronal avalanche. Scale-free avalanches have
been observed in different scales of neural systems with different
methods (Beggs and Plenz, 2003; Gireesh and Plenz, 2008;
Ribeiro et al., 2010), including local field potentials (Thiagarajan
et al., 2010; Plenz, 2012), human electroencephalography (EEG)
(Meisel et al., 2013), magnetoencephalogram (MEG) (Palva et al.,
2013; Shriki et al., 2013), and fMRI (He, 2011; Tagliazucchi
et al., 2012). It is suggested that there are many computational
advantages for the neural systems being poised around this
critical point. It maximize the number of meta-stable states
(Haldeman and Beggs, 2005), the dynamic range to the input
stimuli (Shew et al., 2009; Gautam et al., 2015), as well
as the information capacity and transmission (Shew et al.,
2011) of the cortical neural networks. Furthermore, cortical
EI balance are found to be crucial for the forming of critical
behavior at multiple levels of neuronal organization (Poil et al.,
2012), perhaps achieved through self-organization with synaptic

plasticity (Stepp et al., 2015). On the other hand, a leading theory,
proposed over a decade ago as a model for autism (Rubenstein
and Merzenich, 2003), holds that brain disorders arise from
imbalanced EI in brain circuitry. This concept has since been
applied to many other brain disorders, such as schizophrenia,
tuberous sclerosis, and Angelman syndrome (O’Donnell et al.,
2017). These studies have led to the conjecture that criticality
may be a signature of healthy neural systems, and conversely
excursion from such an optimal point may be responsible for a
diversity of brain disorder (Massobrio et al., 2015; Cocchi et al.,
2017).

Recent modeling studies have also revealed crucial role of
critical dynamics in understanding the relation between large
scale brain architecture and function. For example, the spatial
organization of resting state networks observed in the resting
state fMRI data, such as default mode network, emerge at the
critical point in the dynamic network derived from human
brain neuroanatomical connections (Haimovici et al., 2013).
The structure-function coupling is maximal when the global
network dynamics operate at a critical point (Deco et al., 2014a),
and the decoupling of functional connectivity from anatomical
constraints is found in the brains losing consciousness,
accompanied with fading signature of criticality (Tagliazucchi
et al., 2016). In addition, the local excitation/inhibition ratio
(E/I ratio) significantly improves the model’s prediction of the
empirical human functional connectivity at the large-scale brain
level (Deco et al., 2014b). The loss of small-world organization
of FC networks and failure of critical dynamics in diseased brain
implies the potential relationship between them. However, it is
still not clear how the organization of the FC network depends
on the large-scale critical dynamics in brains.

In this work, we answered this question by investigating:
(i) the correlation between topological metrics of FC network
and the long-range temporal correlations (LRTCs) of BOLD
signals in fMRI data of healthy subjects; (ii) the dependence of
these metrics on the control parameter (excitation threshold)
in a toy model which combines the structural diffusion tensor
imaging (DTI) and Greenberg-Hasting (GH) dynamics around
the critical point; (iii) the impact of local E/I ratio on the
critical dynamics and thus the functional network metrics in
a biological plausible whole brain model. We showed that
with the critical dynamics, the brain FC network exhibited
optimized organization, characterized by maximized efficiency
and clustering coefficient, but shortest characteristic path length.
We also showed that local E/I ratio have a great influence on this
large-scale critical dynamics and organization of FC networks.
We discussed the potential application of our findings to the
understanding and modeling of abnormal FC configurations in
brain disorders.

RESULTS

Correlation of Network Metrics With
LRTCs in Resting-State fMRI Data
We first assessed LRTCs in BOLD signals from the resting-
state fMRI data of 95 healthy subjects by computing the Hurst
exponent in the temporal domain using classical rescaled range
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(RS) method (Blythe and Nikulin, 2017) (“METHOD AND

MATERIALS,” “Hurst Exponent H”). A Hurst exponent in the
range 0.5 < H < 1 indicates the presence of LRTCs, i.e., a high
value in the series will probably be followed by another high
value. An exponent of 0 < H < 0.5 is obtained when the time
series is anticorrelated (switching between high and low values
in consecutive time steps). The uncorrelated temporal activity
with exponential decay of the autocorrelation function yields
an exponent of H = 0.5. After preprocessing with the standard
preprocessing procedure (“METHOD AND MATERIALS,”
“fMRI Data Acquisition and Preprocessing”), the automated
anatomical labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002)
was used to parcellate the brain into 90 brain regions, and the
mean BOLD signals were extracted in each brain region by
averaging the signals of all voxels within the region. For each
subject, the Hurst exponents were calculated for each mean
BOLD time series, and the mean Hurst exponent (H) from 90
brain regions was taken as a measure of LRTCs at the whole
brain level for this subject. The Hurst exponent reflects the
temporal correlations of a signal. The group averaged Hurst
exponent in our study is 0.8628 ± 0.0188, indicating the long-
range memory of the BOLD signals in human brain (He, 2011).
However, the variance in the Hurst exponent among subjects
should not be ascribed to noise sources, such as physiological
noise. On the contrary, considering criticality as a theory of long-
range fluctuation in the human brain, it reflects the different
intrinsic brain dynamics among subjects that can be described
by a departure from the criticality (Blythe and Nikulin, 2017), as
we demonstrated below.

For each subject, we applied a binarizing threshold Td to
the absolute values of the correlation coefficients among mean
BOLD signals from 90 brain regions to construct the FC
network. Then six typical topological metrics, namely global
and local efficiency (Eglobal and Elocal), characteristic path length
(L), clustering coefficient (Cglobal), mean connection strength
(Ecorr), and sparsity (S) of the FC networks for each subject
were calculated (“METHOD AND MATERIALS,” “Network
Metrics”). We found there existed significant correlations
between these metrics and the Hurst exponents (Figure 1). The
longer temporal memory in BOLD signals yields higher global
efficiency (Figure 1A), local efficiency (Figure 1B), clustering
coefficient (Figure 1D), mean connection strength (Figure 1E),
and sparsity (Figure 1F), but shortest characteristic path length
(Figure 1C).

We then investigated the dependence of topological metrics
and their correlations with Hurst exponents on the binarized
threshold Td. We first determined the small-world regime of
the FC networks for Td (Liu et al., 2008). The upper criteria
for Td are so set to make sure there is no isolated node
in the network (red vertical lines in Figure 2). To determine
the lower criteria for Td, we compared the global efficiency
of brain FC networks with that estimated in a random graph
with the same degree distribution over a range of network
sparsity (Supplementary Figure 1A). Then the lower criteria
are set as the smallest value of the threshold Td (blue
vertical line in Figure 2) with which the global efficiency
curve for the brain networks is below the global efficiency

curve for the random networks. In this range of threshold
Td, the Hurst exponents and the topological metrics are
significantly correlated (Figure 2, the threshold values with
correlation coefficients R > 0.26 are marked with open circles
and R < −0.26 with filled circles. The corresponding p-
values are indicated with triangles if p < 0.01). It was
also noticed in Figure 2 that as the threshold Td increases,
the global efficiency (Figure 2A), local efficiency (Figure 2B),
clustering coefficient (Figure 2D), and sparsity (Figure 2F)
decrease, whereas the characteristic path length (Figure 2C)
and the mean connection strength (Figure 2E) increase. The
binarizing threshold dependent changes of these topological
metrics are in line with previous study, e.g., Ref. (Liu et al.,
2008).

The Critical Dynamics in the DTI+GH Brain
Network Model
We built a toy brain network model which combines the DTI
structural connection data among the 90 brain regions and
GH excitable cellular automatons to simulate the BOLD signals
from 90 brain regions (Figure 3, see details in the “METHOD

AND MATERIALS,” “DTI+GH Brain Network Model”). In
this model, the DTI connection data provides the number of
fibers connecting every two brain regions, which is taken as the
connection weights among the regions. The regional dynamics
is given by simple rules that describe the excitation of the
active media. Previous work has demonstrated that such simple
dynamical brain model is sufficient to replicate fundamental
features of spontaneous brain activity observed in fMRI data.
For example, the resting state networks, such as default mode
network, emerge in such kind of whole brain models with the
critical dynamics (Haimovici et al., 2013).

The criticality refers to a balanced state between ordered
and disordered and is characterized by power law distribution
of avalanche activity (i.e., the avalanche size distribution shows
no characteristic scale). The supercritical state refers to the
ordered states that are characterized by avalanche with large
size, whereas the subcritical state refers to the disordered states
that are characterized by avalanches with small size (Beggs and
Plenz, 2003; Tagliazucchi et al., 2012; Shriki et al., 2013). In our
model, we calculated the avalanche size distribution from the
spatiotemporal patterns of excited nodes for different excitation
threshold Tm (“METHOD AND MATERIALS,” “Avalanche
Detection”). When Tm is low, the nodes in the model are excited
easily, and their activities are highly synchronized to result in
a rather ordered state (Figure 4D). Thus, the activities tend to
form avalanches with large size to have a power-law slope with
a heavier tail in the distribution (Figure 4A), indicating the
supercritical dynamics. Whereas, when Tm is high, the nodes in
the network are less excitable, and their activities are random
and less synchronized (Figure 4F). Thus, the groups of activity
are small and die out quickly, unlikely to form avalanches with
large size, which is termed as subcritical regime (Figure 4C). In
both cases, the size distribution of avalanches demonstrates a
characteristic scale. However, with moderate Tm (Tm ≈ 0.52)
the scale-free avalanche distribution emerges with an exponent of
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FIGURE 1 | Scatter plots with trend line showing the dependence of topological metrics of FC network on Hurst exponents. (A) Global efficiency. (B) Local efficiency.

(C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The topological metrics of FC networks were calculated with

threshold Td = 0.4. Pearson correlation coefficient (R) for all six topological metrics were significant (p < 0.01).

−1.5 (Figure 4B), and the system is perched between order and
random (Figure 4E).

We then convolved the activities of each node in the
model with the hemodynamic response function to generate 90
simulated BOLD time series (“METHOD AND MATERIALS,”
“DTI+GH Brain Network Model”). Typical BOLD signals
of arbitrarily chosen brain regions for supercritical, critical,
and subcritical regimes are demonstrated in Figures 4G–I,
respectively. The Hurst exponent calculated from these simulated
BOLD signals yields its largest value at the critical point
(Supplementary Figure 2A). The FC matrices corresponding
to different regimes were then obtained by calculating the
correlation coefficients among 90 simulated BOLD time series
as before. We compared the similarity between simulated
FC matrices and experimental FC networks and found
the maximal similarity occurs around the critical point
(Supplementary Figure 3A). It is also seen that when the
system is poised at the critical point, the FC matrix exhibits
patterns which is similar to the DTI structural connections
(Figure 4K), whereas the supercritical and subcritical dynamics
fail to replicate the DTI structural connections (Figures 4J,L).

This phenomenon has been systematically studied with computer
modeling and experiment on propofol-induced departure from
critical dynamics (Tagliazucchi et al., 2016). It was argued that
the functional organization of the brain is constrained and
enabled by the unique structural organization (Tagliazucchi et al.,
2016), and the spontaneous brain activity can be understood
as an ever-transient exploration of the repertoire of paths
offered by structural connections (Deco et al., 2014a; Tagliazucchi
et al., 2016). The critical dynamics of the system would allow
a more widespread exploration of all possibilities offered by
the structural connections, makes FCs better reproduce its
structural connections [see Ref. (Tagliazucchi et al., 2016) for a
vivid explanation].

Optimal Organization of the FC Network at
Criticality
We then investigated the changes of FC network metrics across
the transition from supercritical to subcritical regime in the
DTI+GHmodel. The simulated FCmatrices were binarized with
threshold Td and the corresponding metrics were calculated in
the small-world regime as before (Supplementary Figure 1B).
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FIGURE 2 | The dependence of topological metrics of the FC networks and their correlations with Hurst exponents on the threshold Td . (A) Global efficiency. (B)

Local efficiency. (C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The red vertical lines mark the upper criteria

above which there is no isolated node in the network, and the blue vertical lines mark the lower criteria below which the global efficiency curve for the brain networks is

less than the global efficiency curve for the random networks. Open circles indicate that the correlation coefficients between the Hurst exponent and the

corresponding topological metrics are larger than 0.26, where filled circles mark the correlation coefficients that is smaller than −0.26. Triangles mark the

corresponding p-values of the correlation analysis that is significant (p < 0.01).

It is seen from Figure 5 that around the critical point (Tm

= 0.52), all the network metrics are maximized except for
the characteristic path length which is minimized (Figure 5C).
These results imply that critical dynamics can optimize brain
FC network organization and the departure from criticality will
cause the disruption of this optimal balance between integration
and segregation.

It was also seen from Figure 5 that with the increase
of binarizing threshold Td, global efficiency (Figure 5A),
local efficiency (Figure 5B), clustering coefficient (Figure 5D),
and sparsity (Figure 5F) decrease, whereas the characteristic
path length (Figure 5C) and the mean connection strength
(Figure 5E) increase. The dependence of these network metrics
on the binarizing threshold Td predicted by our model is in
line with that obtained from the fMRI data (Figure 2), and that
reported by other researchers (Liu et al., 2008).

Local E/I Ratio Tunes Critical Dynamics in
the DTI+EI Network Model
Next, we built a large-scale brain functional model based on
DTI structural connection data and EI neuronal networks
(Figure 6). In this model, the neural activity in each region is

modeled with a neuronal network composing 100 excitatory
(E) and 25 inhibitory (I) neurons so that the ratio of number
of excitatory neurons to that of inhibitory ones is 4:1. The
single neuron dynamics is modeled with Izhikevich cortical
spiking neuron model, which is computationally efficient and
biologically plausible (Izhikevich, 2004). The neurons in each EI
networks are connected with a probability of 0.5. The excitatory
neurons send out only excitatory synaptic connections to other
neurons and inhibitory neurons send out only inhibitory ones.
In the simulation, we systematically change the E–E connection
strength but fixed other ones and define the ratio of E–E to I–I
synaptic connection strength as the local E/I ratio. The number
of excitatory neurons that establish inter-regional connections is
proportional to the number of fibers connecting corresponding
brain regions (see “METHOD AND MATERIALS,” “DTI+EI
Whole Brain Model” for details).

Through adjusting the local E/I ratio in each region
simultaneously, we observed the power law distribution of
avalanche activities with exponent of −1.5 within each brain
region when the E/I ratio is around 2.025 (Figure 7B), indicating
the critical dynamics of the system. Whereas, the system
is supercritical when the E/I ratio is high (Figure 7A) but
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FIGURE 3 | The DTI+GH whole brain model. (A) The DTI structural connection matrix. (B) The Greenberg-Hastings (GH) cellular automaton model for dynamics of

each brain region. The GH model has three states: quiescent (Q), excitation (E), and refractory (R). The colored arrows indicated the transition between these states.

The transition from Q to E can happen with a small probability r1, or if the sum of the connection weights wij with the active neighbors j is higher than a threshold Tm.

Once the system is excited, it always goes to R. Then it transits from R to Q with a probability r2 after several steps of delaying. (C) Demonstration of the method to

extract avalanches from simulation of the whole brain model. The spatial activity in several simulation step is assigned as a frame (consecutive frames are divided by

white lines). An avalanche is defined as the consecutive frames that are preceded by a blank frame (in which no activation occurs, marked with light cyan) and ended

by a blank frame. The avalanche size is the total number of excited nodes in this avalanche. Black dots represent the excited nodes that are in the state E.

subcritical when the E/I ratio is low (Figure 7C). The spikes of the
neurons are quite synchronized when the system is supercritical,
especially for the excitatory neurons because of the strong
excitatory connections among them (Figure 7D), but the firings
are rather random when the system is subcritical with decreased
excitatory connections (Figure 7F). The critical dynamics of
the system exhibits moderate synchrony where synchronous
firing occurs occasionally among excitatory neurons (Figure 7E).
After, taking spike rate in each region as the input, we
used the Balloon-Windkessel hemodynamic model to generate
simulated BOLD signal for each region (see “METHOD AND

MATERIALS” for details). Figures 7G–I demonstrates the
examples of simulated BOLD signals from arbitrarily chosen
brain regions for each case. Again, the Hurst exponent of these
simulated BOLD signals exhibits its maximal values at the critical
point (Supplementary Figure 2B). We then obtained the 90 ×
90 FC matrices from the 90 simulated BOLD time series for each

regime. We observed FC patterns emerge when the system is
critical (Figure 7K). However, the pattern vanishes if the system
is poised in the supercritical (Figure 7J) or subcritical regimes
(Figure 7L). Again, the simulated FC matrices are most close to
experimental FC network when the model is at its critical point
(Supplementary Figure 3B).

Dependence of FC Network Metrics on
Local E/I Ratio in the DTI+EI Model
We then calculated the dependence of simulated FC network
metrics on the E/I ratio and the binarizing threshold Td. The
range of Td for small-world regime was determined in the
same way as before (Supplementary Figure 1C). It is seen from
Figure 8 that the E/I ratio, at where the critical dynamics
emerges, maximizes the global efficiency (Figure 8A), local
efficiency (Figure 8B), clustering coefficient (Figure 8D), mean
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FIGURE 4 | The avalanche activity in the DTI+GH brain network model, the simulated BOLD signals, and FC matrices. Through tuning the excitation threshold Tm,

the mode can exhibit typical avalanche distribution corresponding to supercritical (A), critical (B), and subcritical (C) dynamics. The horizontal axes are the size of

avalanches, and vertical axes are the corresponding probability. The black lines in (A–C) indicate power law with exponent = −1.5. (D–F) The raster plots of

spatial-temporal excitation distributions corresponding to (A–C). The dots in the raster plots represent the excitation of the nodes (i.e., in state E). (G–L) The typical

simulated BOLD signals of an arbitrarily chosen nodes and simulated FC matrices from the DTI+GH brain model in the supercritical (G,J), critical (H,K), and

subcritical (I,L) regimes. Scale bar indicates the FC strength among the nodes in the model. The parameters of GH model in simulations are r1 = 0.005, r2 = 0.98,

and ndelay = 55.

connection strength (Figure 8E), and sparsity (Figure 8F) but

minimizes the characteristic path length (Figure 8C). These

results further suggest that the local E/I ratio could adjust the
global brain dynamics to the critical state, so as to achieve the
balance between segregation and integration in FC networks.
On the other hand, this optimal organization of FC networks
could be damaged when the optimal E/I ratio is altered. As
the binarizing threshold Td increases, global efficiency, local
efficiency, clustering coefficient, and sparsity decrease, but the
characteristic path length and the mean connection strength

increase. The dependence of these metrics on the binarizing
threshold is in line with our above results from fMRI data
analysis (Figure 2), the DTI+GH brain model (Figure 5) and
that reported by other researchers (Liu et al., 2008).

DISCUSSION AND CONCLUSION

It has been shown that a network with shorter characteristic
path length benefit the global efficiency, while a network with
densely local connectivity benefit the local efficiency. Only
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FIGURE 5 | The dependence of FC network topological metrics simulated with DTI+GH model on the excitation threshold Tm and binarizing threshold Td. (A) Global

efficiency. (B) Local efficiency. (C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The results were obtained by

averaging results from 1,000 times of simulation. In each simulation, the obtained raw BOLD signals were sampled every 140 iteration steps to achieve the simulated

BOLD time series of 200 time points.

in the small-world region, i.e., low characteristic path length
combined with large clustering coefficient, does the network
display globally and locally efficient at the same time (Latora

and Marchiori, 2001). Recent analysis of human brain functional
networks derived from EEG/MEG and fMRI experiments
showed that these networks exhibit prominent small-world

Frontiers in Computational Neuroscience | www.frontiersin.org 8 March 2021 | Volume 15 | Article 641335

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Zhou et al. Criticality Promots Small World Networks

FIGURE 6 | The DTI+EI whole brain model. (A) The DTI structural connection matrix. (B) Example of two excitation-inhibition (EI) neuronal networks that represent

two brain regions. Each regional neuron network consists of one excitation neuron pool and one inhibitory neuron pool. They are 80% excitatory neurons and 20%

inhibitory neurons in the network. The excitatory neurons send our only excitatory synapses to other neurons and the inhibitory neurons send out only inhibitory

synapses. The two EI networks are coupled only by excitatory inter-regional connections.

organization. Through forming intrinsically densely connected
and strongly coupled local network communities, the small-
world topology facilitates functional segregation. Meanwhile, by
enabling global communication between communities through
network hubs, it also promotes functional integration (Bassett
and Bullmore, 2006; Sporns, 2013). In this work, through resting-
state fMRI data analysis and computational model of whole brain
dynamics, we demonstrated that the critical dynamics favors
this optimal organization of FC networks, and failure of critical
dynamics causes the collapse of balance between segregation and
integration in the network by increasing the characteristic path
length and decreasing the cluster coefficient.

Critical dynamics in brains has been observed at brains at
different levels, from single neuron to the whole brain levels,
with different recoding techniques (Shew et al., 2009; Gal and
Marom, 2013; Gollo et al., 2013; Mora et al., 2015). Recent
work with resting-state fMRI data analysis demonstrated the
existence of large-scale critical dynamics, hallmarked by scale-
free avalanche activity, in the human cortex (Tagliazucchi et al.,
2012). Beside these observations, the critical brain hypothesis
argued that criticality benefits neural information processing
in many ways, e.g., the maximal information transmission and
storage capabilities (Shew et al., 2011; Timme et al., 2016).
However, these arguments usually defined the advantages of
criticality in the general framework of information-theoretic
[e.g., mutual information entropy (Shew et al., 2011)], neural
dynamics [e.g., maximal dynamic range (Shew et al., 2009;
Gautam et al., 2015), or the number of the metastable states in the

energy landscape (Shew et al., 2009)], but their direct relations to
brain functions are unclear. The FC network metrics have been
related to many factors that affect brain functional performance,
e.g., intellectual performance (van den Heuvel et al., 2009),
aging (Wang et al., 2010), and a variety of brain diseases (Stam
et al., 2007; Liu et al., 2008; Wang et al., 2009; Sanz-Arigita
et al., 2010; Zhang et al., 2011; Rudie et al., 2013). Furthermore,
it is believed that both segregated and integrated information
processing are facilitated by the small-world topology of FC
networks. The information transmission efficiency is maximized
with this small-world topology, with their high clustering
coefficient for segregated processing and short characteristic
path length for integrated processing. Meanwhile, the disrupted
network organization was found in neuropsychiatric disorders,
usually characterized by increased characteristic path length and
decreased cluster coefficient, and these changes were correlated
with symptom severity in clinical-scale examinations (Stam et al.,
2007; Liu et al., 2008; Wang et al., 2009; Zhang et al., 2011;
Rudie et al., 2013). In our work, we found the critical dynamics
maximizes clustering coefficient but minimizes the characteristic
path length and yields both maximal local and global efficiency
of the FC network. So our findings presented in this work not
only uncovered the possible underlying dynamics fromwhich the
small-world FC network organization emerges but also revealed
the advantage of large-scale critical dynamic in information
processing at the whole brain level.

It is well-established that the EI balanced is critical for the
forming of critical dynamics in healthy brains (Poil et al.,
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FIGURE 7 | The dynamical behaviors of the DTI+EI brain model. Through tuning the E/I ratio, the model can exhibits supercritical (A), critical (B), and subcritical (C)

avalanche dynamics in each regions. Colored lines are corresponding to different brain regions chosen arbitrarily. (D–F) The raster plots of spatial-temporal firing

distributions of an arbitrarily chosen brain regions corresponding to (A–C). The firings are more synchronized in the supercritical regions (D), but the firings are rather

random when the system is subcritical with decreased excitatory connections (F). The critical dynamics is characterized with moderate synchrony (E). The dots in the

raster plots indicate the firing of the neurons. (G–L) The typical simulated BOLD signals of an arbitrarily chosen brain region and simulated FC matrices from the

DTI+EI brain model in the supercritical (G,J), critical (H,K) and subcritical (I,L) regimes. Scale bar indicates the FC strength among the nodes in the model.

2012; Yang et al., 2012), and the neural systems may achieved
this balanced state through synaptic plasticity (de Arcangelis
et al., 2006; Stepp et al., 2015). On the contrary, the EI
imbalance hypothesis has been postulated to underlie brain

dysfunction across neurodevelopmental and neuropsychiatric
disorders (Canitano and Pallagrosi, 2017; Foss-Feig et al., 2017).
It was recently demonstrated that regulating the local E/I ratio
crucially changes not only the characteristics of the emergent
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FIGURE 8 | The dependence of topological metrics of the FC network on the thresholding value Td and E/I ratio in the DTI+EI whole brain model. (A) Global

efficiency. (B) Local efficiency. (C) Characteristic path length. (D) Clustering coefficient. (E) Mean connection strength. (F) Sparsity. The results were obtained by

averaging results from 10 times of simulation. Each simulation last for 480 s with a time step of 1ms and the first 180 s was removed for stability. The obtained raw

BOLD signals were then normalized and sampled at a rate of 0.5Hz.

resting activity but also evoked activity. It also gives a more
robust prediction of resting state FCs. Furthermore, it enhances
the information capacity and the discrimination accuracy in the
global networks (Deco et al., 2014b). These arguments have led to
another hypothesis that criticality is a signature of healthy neural
systems (Massobrio et al., 2015). In this study, we demonstrated
that through tuning the E/I ratio of the brain model, the system
could be poised at the critical point, and at this critical point,
the functional integration and segregation of brain FC network
is optimized. Considering the well-reported disruption of FC
network in brain diseases, our modeling work with EI networks
not only revealed the crucial role of the local E/I ratio in the
forming of the optimal organization of whole brain FC networks

but also provided supportive evidence for the hypothesis of
EI imbalance by linking it with disruption of FC organization
at the whole brains level, which has been observed in many
brain diseases.

One attractive point and also the limitation of EI imbalance
hypothesis is that brain disorders can be arranged in an
imaginary line around the optimal point that balances excitation
and inhibition. The limitation for unidimensionality of the
EI imbalance has been discussed recently and it was argued
that the higher dimensional models can better capture the
multidimensional computational functions of neural circuits
(O’Donnell et al., 2017). Therefore, EI balance may be not the
only factor that is responsible for aberrant neural activity and
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FC network organization in diseased brains. Our results from
DTI+GH model suggested that the general conclusion in this
work still holds even in this case, since optimal organization
of FC networks can emerge from critical dynamics without EI
connections. These results implies the possibility of utilizing
criticality to bridge the gap between altered FC organization
caused by diseases at the whole brain level and aberrant neural
activity described by higher dimensional models at the circuit
level, rather than one-dimensional EI model.

However, there are several limitations in the current study.
In the fMRI data analysis, the Hurst exponent was used as
an indicator of criticality. However, it cannot distinguish the
super- or subcritical state of the system. The full solution
for this problem requires the calculation of avalanche size
distribution, branching ratio, as well as mean synchronization,
as had done in EEG (Meisel et al., 2013). However, though the
scale-free distribution of avalanche has been observed with fMRI
(Tagliazucchi et al., 2012), the applicability of this method alone
to identify super- or subcritical dynamics is still questionable. The
major concern is that unlike EEG, fMRI does not measure neural
activity directly but via the changes of BOLD signals. Therefore,
future investigations that combines EEG and fMRI are necessary
to validate the conclusions drawn from this study (Fagerholm
et al., 2015).

It is also noticed that after the critical dynamics in our models
is established, there is quite a few parameters that must be
determined to obtain the simulated BOLD signals. Due to the
simplificationsmade in themodels, the neural activities produced
by models are not exactly in the same time scale as in the real
brains. Therefore, though we used the standard parameters for
hemodynamic response function in models [it is also noticed that
though these function and model were used widely in simulation
of BOLD signals (Deco et al., 2011; Haimovici et al., 2013;
Tagliazucchi et al., 2016), they were actually proposed for task-
related hemodynamic response, not for resting state], simulation
parameters (such as fMRI sampling rate, duration for scanning
session) are not exactly the same as these in the experiment.
Therefore, our results in this work requires further test with
more detailed simulations of whole brain neural dynamics, as
well as more detailed simulation of hemodynamic response in the
resting state fMRI (Rangaprakash et al., 2017).

In this study, we tested the hypothesis that critical dynamics
is responsible for optimal organization of brain FC networks
which is usually featured with “small worldness.” We found that
the LRTCs of the BOLD signals measured with Hurst exponent
is significantly correlated with the topological metrics of the
FC networks, suggesting there exists an optimal dynamics for
the brain FC network organization. Based on the inter-regional
structural connection provided by DTI data, we built two kinds
of whole brain dynamics model, using either simple cellular
automaton, or more biological plausible neuronal networks with
EI synaptic connections. In these models, we demonstrated that
the critical dynamics could optimize the brain FC network
organization through maximizing its cluster coefficient, while
minimizing the shortest characteristic path length, so to achieve
highest efficiency information transmission in the brain. We
further showed that the local E/I ratio would have a great impact

on critical dynamics and the organization of whole brain FC
networks, suggesting imbalanced EI in brain circuitry may be
responsible for the loss of small worldness in FC networks of
brain disorder.

In conclusion, we demonstrated that the critical dynamics
could optimize the brain FC network organization through
maximizing its cluster coefficient, while minimizing the
characteristic path length, so to achieve highest efficiency
information transmission in the brain. Furthermore, imbalanced
EI in brain circuitry may be responsible for the loss of the optimal
organization in FC networks observed in brain disorder. Our
findings revealed the crucial role of large scale critical dynamics
in the forming of optimal FC network organization for efficient
information processing, and potential relationship between local
EI imbalance and the disrupted small-world organization. We
hope that in the future these findings could not only lead to
fundamental understanding on human brain function in health
and its alterations in disease, but also help to develop whole
brain computer models that could account for these alterations
in brain disorder.

METHODS AND MATERIALS

fMRI Data Acquisition and Preprocessing
One hundred right-handed healthy subjects (mean age: 31.2
± 8.8 years, range: 15–70 years, 63 males) participated in the
study. The degree of education is from 0 to 23 years (mean: 8.5
years). All participants were screened to ensure they were free
of neurological or psychiatric disorders. The data was acquired
using a Siemens Trio 3.0 Tesla MRI scanner at the Second
Hospital of Lanzhou University. All subjects provided written
informed consent prior to the study which was approved by the
medical ethics committee of the Second Hospital of Lanzhou
University in accordance with the 1964 Declaration of Helsinki
and its later amendments or comparable ethical standards.
Participants were instructed to relax and keep their eyes closed,
remain as motionless as possible, and not to think of anything
in particular. Both functional and high-solution structural MRI
were applied to all participants. T2∗-weighted resting-state fMRI
data were acquired using a gradient-echo EPI sequence, TR =
2 s, TE = 30ms, slice thickness = 3mm, gap = 0.99mm, FOV
= 240mm, matrix size = 64 × 64. The scans lasted 360 s (180
volumes). High-resolution T1-weighted images were acquired
with a magnetization prepared rapid gradient echo sequence, TR
= 2 s, TE = 2.67ms, inversion time = 900ms, slice thickness =
1mm, gap = 1mm, FOV = 220 × 220mm, matrix size = 256
× 224.

Preprocessing of fMRI data was performed using Statistical
Parametric Mapping (SPM) 8 (http://www.fil.ion.ucl.ac.uk/spm)
and the Data Processing Assistant for Resting-State fMRI
(DPARSF) within the Data Processing and Analysis for Brain
Imaging (DPABI) (Yan and Zang, 2010). Volumes were corrected
for slice timing and head movements, and five subjects were
excluded for excessive head movement (>3mm or >3◦) during
the scan. After spatial normalization (Montreal Neurological
Institute space), resampling (3mm isotropic voxels), and spatial
smoothing (4mm, full-width, half-maximum Gaussian kernel),
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volumes were preprocessed using linear trend subtraction and
temporal filtering (0.01–0.08Hz). In addition, using the general
linear regression, nuisance regressors including head motions,
global mean signals, white matter signals, and cerebrospinal fluid
signals were regressed out from the fMRI time series.

The DTI Data Acquisition and Processing
In this study, the DTI data was obtained from IMAGEN
consortium, which included 142 healthy participants (76 females,
age: 14.5 ± 0.2 years). The detailed information of data
acquisition could be found in Ref. (Schumann et al., 2010). The
DTI data were corrected for motion and eddy current distortion
using FMRIB Software Library v5.0 (FSL, http://www.fmrib.ox.
ac.uk/fsl) (Jenkinson et al., 2012). In addition, we extracted
the brain mask from the B0 image. We used the TrackVis
(Wang et al., 2007) to perform the fiber tractography with the
deterministic tracking method. Maps of fractional anisotropy
(FA) were computed from the DTI data. The regions of interest
(ROIs) were determined by the AAL atlas-based T1 image from
each subject (Tzourio-Mazoyer et al., 2002), using the PANDA
suite (Cui et al., 2013). Finally, between each pair of ROIs,
we assessed the fiber number to construct the DTI structural
connection matrix.

Hurst Exponent
We use the Hurst exponent to measure the extent of long-range
memory of the BOLD time series, either from the fMRI data or
from the simulation with both brain models. The Hurst exponent
is estimated using the method of classical rescaled range (RS)
method (Blythe and Nikulin, 2017):

1. Divide the time series {y(t)}Tt=1 into M subseries by choosing
an appropriate number n, and each subseries has a window
length of n.

2. For each subseries (m = 1, 2, M), calculate the local
statistic LSn,m =

Rn,m
Sn,m

. The range of mth subseries

Rn,m = max (Z1, Z2, . . . ,Zn) − min (Z1, Z2, . . . ,Zn),

where Zk =
∑k

t=1 (yt,m − yn,m). Sn,m is the standard
deviation of mth subseries, which is calculated as Sn,m =
√

1
n

∑n
t=1 (yt,m − yn,m)

2
. Then by averaging over all subseries,

we obtain the global statistic, i.e., SSn =
1
M

∑M
m= 1 LSn,m.

3. Through changing n and repeating the previous steps, we
obtain a series of SSn corresponding to a different choice of n.

4. The Hurst exponent is estimated by fitting the power law
SSn ≈ CnH to the data. This can be done by running a
double logarithm regression for a series of SSn corresponding
to different values of n.

In the calculation, the global Hurst exponent of the whole brain
level was obtained by average the local Hurst exponent across
90 brain regions in both fMRI data analysis and the DTI+EI
model. Whereas, in the DTI+GH models, to obtain the stable
estimation of Hurst exponent of the systems, we first averaged
the 90 simulated BOLD time series and then calculated its
Hurst exponent.

Network Metrics
First, we used the AAL template to extract from 90 brain regions
90 time series, each of which is the averaged BOLD signals across
all the voxels in each region. The correlation coefficients for each
pair of the time series was then calculated to build the FC matrix
z(i, j) (i, j = 1, 2, 90), in which each off-diagonal element is
the correlation coefficient between a pair of brain regions. The
FC network was constructed by setting a threshold Td to each
element in the absolute FC matrix:

aij =

{

1 if
∣

∣z(i, j)
∣

∣ ≥ Td

0 otherwise
(1)

The networkmetrics of a FC network with n nodes was calculated
as follows:

The degree of a node i is defined as the number of its
direct neighbors:

ki =
∑

j∈N
aij (2)

where aij is the connection between nodes i and j, aij = 1 when
they are directly linked, aij = 0 if not.

The connectivity strength of the node i is:

Ei_corr =
1

ki

∑

j∈N

∣

∣z(i, j)
∣

∣ · aij, (3)

which is a measure to evaluate the strength of the connectivity
between node i and the nodes connected to it. The connectivity
strength of a network is:

Ecorr =
1

n

∑

i∈N

Ei_corr. (4)

The ratio of the number of existing edges to the number of
maximum possible number:

S =
1

n(n− 1)

∑

i∈N

ki, (5)

is defined as the sparsity of the network.
Characteristic path length measures the extent of average

connectivity or overall routing efficiency of the network (Sanz-
Arigita et al., 2010), which is defined as

L =
1

n

∑

i∈N

Li =
1

n

∑

i∈N

∑

j∈N,j 6=i dij

n− 1
, (6)

in which dij =
∑

auv∈gi↔j
auv is the shortest path length between

nodes i and j with the shortest way gi↔j and Li is the mean
shortest path length of node i.

Global efficiency is a measure of the efficiency of parallel
information transfer in the network at the global level:

Eglobal =
1

n

∑

i∈N

Ei =
1

n

∑

i∈N

∑

j∈N,j 6=i dij
−1

n− 1
. (7)
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Local efficiency, which measures the efficiency at the local level,
is defined as:

Elocal =
1

n

∑

i∈N

Eloc,i =
1

n

∑

i∈N

∑

j,h∈N,j 6=i aijaih
[

djh(Ni)
]−1

ki(ki − 1)
, (8)

where djh(Ni) is the shortest path length between nodes j and h
which should be the nodes directly connected to node i.

Clustering coefficient measures the possibility that any two
neighbors of one node are also connected, i.e., the extent of the
local density of the network:

Cglobal =
1

n

∑

i∈N

Ci =
1

n

∑

i∈N

2ti

ki(ki − 1)
, (9)

where ti =
1
2

∑

j,h∈N aijaihajh is the number of triangles around

node i.
The network metrics were calculated in a range of threshold

that is small enough to assure the mean number of connected
nodes within each group was > 89, yet large enough so that the
small worldness of network still holds, i.e., the global efficiency
of the normal networks is less than the global efficiency of the
random networks.

DTI+GH Brain Network Model
The DTI+GH brain network model used in this study was
adapted from the model proposed by Haimovici et al. (2013). The
coupling strength wij between any two nodes i and j was given
by the corresponding element in the DTI structural connection
matrix multiplied by 0.01. Each node was modeled with the
Greenberg-Hastings (GH) dynamics. The detailed description of
GH dynamics could be found in Ref. (Haimovici et al., 2013). We
binarized the time series of each node by assigning state E= 1 and
the rest of the states into 0 s. To model the brain neurometabolic
coupling, we then convolved the binarized time series with a
hemodynamic response function (Henson and Friston, 2007):

f (t) =

(

t − o

d

)p−1(exp(−(t − o)/d)

d(p− 1)!

)p−1

, (10)

where d= 0.6 is the time-scaling, o= 0 is the onset delay, and
p = 3 is an integer phase-delay (the peak delay is given by pd,
and the dispersion by pd2). The obtained raw BOLD signals were
sampled every 140 iteration steps to have the simulated BOLD
time series of 200 time points.

DTI+EI Whole Brain Model
In this model, each brain region is modeled by an EI neuronal
network comprising 100 excitatory and 25 inhibitory neurons. As
in the mammalian neocortex, the ratio of excitatory to inhibitory
cells is 4 to 1 (DeFelipe et al., 2002). The connection probability
between these neurons is set to 0.5. Then we use the Izhikevich

model to produce single neuron dynamics (Izhikevich, 2004):

dvi

dt
= 0.04(vi)

2
+ 5vi + 140− ui + Isynapse + ξ (t), (11)

dui

dt
= a

(

bvi − ui
)

, (12)

If vi≥30mV, then

{

vi ← c

ui ← ui + d
(13)

where vi and ui represent the ith neuron’s membrane potential
and recovery, respectively. The parameters a, b, c, and d are
set to model either excitatory (0.02, 0.2, −65 + 15r2, 2.8−6r2)
or inhibitory (0.02 + 0.08r, 0.2–0.05r, −65, 2) neurons. To
introduce some variability in the neuronal population, the
variable r is drawn from a uniform distribution U(0,1). Isynapse
represents synaptic currents this neuron receives from other
neurons. ξ (t) is the background Gaussian white noise with
〈

ξ (t)
〉

=0 and
〈

ξ (t)ξ (t′)
〉

=Dδ(t-t’), where the noise intensity D =
25 for excitatory neurons and D = 6.25 for inhibitory neurons.
Equation (13) models the after-spike reset behavior when the
membrane potential vi exceeds a threshold. This model is widely
used in large-scale neuronal network modeling because of its
computational efficiency and biological plausibility (Izhikevich,
2004).

In our model, the synaptic current received by one neuron
(Isynapse) can be divided into two parts: Iiintra<uscore>synapse is the

synaptic current the ith neuron receives from other neurons in
this brain region, which is written as:

Iiintra<uscore>synapse =
∑

j 6=i

g
ij
E→E,E→I,I→E,I→I δ

(

t− t
j

spike

)

, (14)

where t
j

spike
is the time instant when the presynaptic neuron

j that exerts synaptic connection to the neuron i fires a
spike. The summation runs across all the neurons that exert
synaptic connection to the neuron i. The intra-regional synaptic

connecting strength is set as follow: g
ij
E→I = 1 if the jth neuron

is excitatory and ith neuron is inhibitory; g
ij
I→E,I→I = −1 if the

jth neuron is inhibitory no matter if the ith neuron is excitatory
or inhibitory. In the simulation, we systematically varied the

connections among excitatory neurons g
ij
E→E to change the local

E/I ratio, which was defined as the ratio of g
ij
E→E to g

ij
I→ I .

The inter-regional connections are set only for excitatory
neurons among the different brain regions. Therefore,

I
ij
inter<uscore>synapse = 0 if neurons i and j belong to different

regions and at least one of them is an inhibitory neuron. The
inter-regional connection probability of excitatory neurons in
each pair of brain regions is proportional to their corresponding
DTI structural connection strength and the maximum is set to be
0.5. Specifically, if the DTI connection between regionm and n is
q, then the excitatory neurons in these two brain regions have an
inter-regional connection probability of 0.5qmn/qmax, where qmax

is the highest value in the DTI matrix. For example, for neuron
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i in one region, it receives inter-regional synaptic currents from
neuron j in another region is written in the following form:

I
ij
inter<uscore>synapse =

∑

i ∈ M
j ∈ N

g
ij
E↔E δ(t− t

j

spike
), (15)

where E ↔ E represents the inter-regional excitatory synaptic

coupling. The inter-regional synaptic connection g
ij
E↔E = 0.15

in the simulation.
For DTI+EI model, the fMRI BOLD signals are computed

with Balloon-Windkessel hemodynamic model (Friston et al.,
2003). The regional BOLD signal is driven by the collective
neuronal activity of both excitatory and inhibitory neurons. For
region i, we define neuronal activity zi as the ratio of number
of spikes to the number of neurons in the region within a
time window of 1ms. We assume zi causes an increase in a
vasodilatory signal si that increases the flow fi. The inflow fi
then causes changes in blood volume vi and deoxyhemoglobin
content qi:

dsi (t)

dt
= ǫizi − kisi − γi

(

fi − 1
)

, (16)

dfi (t)

dt
= si, (17)

τi
dvi (t)

dt
= fi − v

1/α
i , (18)

τi
dqi (t)

dt
=

fi(1− (1− ρi)
fi )

ρi
−

qiv
1/α
i

vi
, (19)

where ρ is the resting oxygen extraction fraction. Taken as a
static non-linear function of volume and deoxyhemoglobin that
comprises a volume-weighted sum of extra- and intravascular
signals, the BOLD signal is then calculated as:

yi = V0(7ρi
(

1− qi
)

+ 2

(

1−
qi

vi

)

+ (2ρi − 0.2)(1− vi)),(20)

where V0 = 0.02 is the resting blood volume fraction. The
biophysical parameters in the simulation were set as ǫi = 0.2,
ki = 0.65, γi = 0.41, τi = 0.98, αi = 0.32, and ρi = 0.34.
The simulation last for 480 s with a time step of 1ms, and the first
180 s was removed for stability. The obtained raw BOLD signals
were then normalized and sampled every 2 s (TR).

Avalanche Detection
For the DTI+GH model, the simulated time series were
subsequently binarized by assigning the active state to 1 and
the other two to 0. Then the raster plot of the activations was
divided intomany consecutive frames.We calculated the number
of activated nodes Ni for frame i. In addition, this frame is
blank if Ni = 0. If the consecutive frames contain activated
nodes, proceeding with blank frame, and ended with blank frame,
then the activities in these consecutive frames is defined as an
avalanche. The number of total activated nodes in this avalanche
is defined as its size. The frame length of DTI+GHmodel was set

to two iteration steps so to obtain avalanche size distribution with
power law distribution of−1.5 (Beggs and Plenz, 2003).

For the DTI+EI model, the detection of avalanche in each
region is the same as before, except that the activation of nodes
is replaced with the firing events of the neurons. The frame
length is chosen to be 2ms so as to produce power law avalanche
distributions with exponents closest to−1.5.
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AUTHOR’S NOTE

The hypothesis that the brain might operate at or near-phase
transitions because criticality facilitates information processing
capabilities and health. This hypothesis was strongly driven
by theoretical concepts and supported by many experimental
studies. Recent structure-dynamics-function modeling studies
combining the structural and functional imaging data at whole
brain level demonstrated the functional connectivity (FC)
emerges from structural connectivity when the brain dynamics
is poised at the criticality. It is therefore conjectured that
criticality may facilitate the optimal organization of FC networks,
usually characterized by “small worldness” which are corrupted
in disordered brains. There are several arguments for this
conjecture: First, criticality has been argued to optimize the
neural systems for computation, whereas the “small worldness”
FC network has been considered an efficient way for inter-
regional communication in brains. Second, it has been shown in
experiments and simulations that a proper excitation-inhibition
(E/I) balance is required to maintain critical dynamics in cortical
networks. Accordingly, E/I imbalances have been implicated in
various brain disorders, such as autism, schizophrenia, etc. In
this study, we demonstrated that the FC network organization
is optimized by critical dynamics by maximizing the cluster
coefficient while minimizing the characteristic path length, so
to yield maximal global and local efficiency in information
transmission. We also demonstrated with whole brain model
that the local E/I ratio can be optimized to produce critical
dynamics in the system, thereby yielding optimal organization of
FC networks at the whole brain level.
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