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Spike sorting is used to classify the spikes (action potentials acquired by physiological

electrodes), aiming to identify their respective firing units. Now it has been developed

to classify the spikes recorded by multi-electrode arrays (MEAs), with the improvement

of micro-electrode technology. However, how to improve classification accuracy and

maintain low time complexity simultaneously becomes a difficulty. A fast and accurate

spike sorting approach named HTsort is proposed for high-density multi-electrode arrays

in this paper. Several improvements have been introduced to the traditional pipeline that

is composed of threshold detection and clustering method. First, the divide-and-conquer

method is employed to utilize electrode spatial information to achieve pre-clustering.

Second, the clustering method HDBSCAN (hierarchical density-based spatial clustering

of applications with noise) is used to classify spikes and detect overlapping events

(multiple spikes firing simultaneously). Third, the template merging method is used

to merge redundant exported templates according to the template similarity and the

spatial distribution of electrodes. Finally, the template matching method is used to

resolve overlapping events. Our approach is validated on simulation data constructed

by ourselves and publicly available data and compared to other state-of-the-art spike

sorters. We found that the proposed HTsort has a more favorable trade-off between

accuracy and time consumption. Compared with MountainSort and SpykingCircus,

the time consumption is reduced by at least 40% when the number of electrodes is

64 and below. Compared with HerdingSpikes, the classification accuracy can typically

improve by more than 10%. Meanwhile, HTsort exhibits stronger robustness against

background noise than other sorters. Our more sophisticated spike sorter would facilitate

neurophysiologists to complete spike sorting more quickly and accurately.

Keywords: spike sorting, multi-electrode arrays, overlapping spikes, clustering, template match, HDBSCAN

1. INTRODUCTION

Most neurons communicate with each other through firing action potentials. Part of the work of
neurophysiologists is to understand the working mechanisms of the nervous system by studying
these action potentials. One way to obtain action potentials is to use physiological electrodes for
in-vivo extracellular recordings (Perge et al., 2014; Rey et al., 2015; Wu et al., 2018). Depending on
the purpose of the study, neurophysiologists may wish to sort these action potentials according to
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putative firing units (Lewicki, 1998; Hill et al., 2011; Quiroga,
2012; Harris et al., 2016; Lefebvre et al., 2016; Carlson and Carin,
2019). Spike sorting aims to classify the spikes (action potentials)
emitted from different units based on some degree of reliability.

In the early stage of this field, spike sorting was employed
to sort extracellular recordings that were monitored only by a
single electrode (McNaughton et al., 1983; Gray et al., 1995;
Lewicki, 1998; Harris et al., 2000; Csicsvari et al., 2003). During
that period, many algorithms had been reported to classify
spikes (Lewicki, 1998; Pillow et al., 2013; Ekanadham et al.,
2014; Franke et al., 2015; Rey et al., 2015; Carlson and Carin,
2019). However, single-electrode mode limits the development
of spike sorting and neural information decoding. With the
development of integrated circuits and electrode technology in
recent decades, multi-electrode arrays (MEAs) which integrate
multiple electrodes at a high density with tens of microns of
pitch have become increasingly popular to acquire the neural
signals for neuro-physiological experiments (Einevoll et al., 2012;
Lefebvre et al., 2016; Pachitariu et al., 2016; Steinmetz et al., 2018;
Carlson and Carin, 2019). MEAs provide more valuable temporal
and spatial information that will facilitate the development of
spike sorting (Lewicki, 1998; Einevoll et al., 2012; Lopez et al.,
2016; Carlson and Carin, 2019).

However, researchers need to face new challenges whenMEAs
offer them opportunities to classify spikes better. First, most
traditional algorithms cannot be employed to multi-electrodes
because their computational time presents exponential growth as
the number of electrodes increases (Einevoll et al., 2012; Lefebvre
et al., 2016; Rossant et al., 2016; Steinmetz et al., 2018; Carlson
and Carin, 2019). Second, neural signals can be captured possibly
by multiple adjacent electrodes under a dense arrangement,
and these signals can no longer be considered as independent
existences. Meanwhile, overlapping spikes can disrupt the feature
space to cause a decrease in classification accuracy (Lewicki,
1998; Einevoll et al., 2012; Carlson and Carin, 2019). Third, the
tricky problems that exist in the single-electrode case, such as
burst-firing neurons and electrode drift, are still troublesome
(Bar-Hillel et al., 2006; Chestek et al., 2007; Calabrese and
Paninski, 2011; Pachitariu et al., 2016; Steinmetz et al., 2018).
To solve the problem of spike sorting in the high-density multi-
electrode condition, numerous researchers have proposed their
solutions. The Kilosort algorithm defines a loss function for spike
waveform features and obtains optimal results by optimizing the
loss function. HerdingSpikes and MountainSort developed their
clustering methods for spike sorting by combining waveform
features and electrode spatial location, but neither of them
proposed the solutions for addressing overlapping events (Chung
et al., 2017; Hilgen et al., 2017). YASS (Lee et al., 2017)
proposed a different strategy of triage-then-cluster-then-pursuit.
The strategy first excludes overlapping spikes, then clusters the
remaining spikes. The experimental results demonstrated that
this strategy is effective. However, a neural network in YASS
is used to detect spikes, and the neural network needs a large
number of labeled samples for training in the first place, which
leads to YASS not being available in unsupervised applications.
YASS new version (2.0) can train its neural network on new
data, making it also unsupervised. However, training the neural

network for the first run can be time consuming. Besides, a
clustering method based on Gaussian hybrid models is adopted,
but the distribution of samples is not always ideal Gaussian-
shape, which means that the density-based or hierarchical
clustering is a preferred choice (Lewicki, 1998; Rey et al., 2015).
SpykingCircus (Yger et al., 2018) runs the clustering method to
only obtain the templates. Then, the classification of the whole
spikes is completed through the template matching method. In
this way, it gets more accurate results, but relatively consumes
more time on the template matching method.

In this paper, a fast and accurate multi-electrode spike sorting
approach named HTsort is proposed. An important divide-and-
conquer method is used to process data on multiple electrodes.
Next, the clustering algorithm HDBSCAN (hierarchical density-
based spatial clustering of applications with noise) is applied
to classify clusters and detect overlapping events. Then, an
automated template merging method is designed to address
overclustering issue. Last, the template matching method is
adopted to resolve the overlapping events. This paper is
organized in the following ways. Section 2 elucidates the
methodological details. Section 3 presents the performance test
results. The discussion and conclusion is placed in section 4.

2. MATERIALS AND METHODS

2.1. Overview
The proposed approach can be illustrated by Figure 1. First,
the neural signals are acquired by multiple electrodes and then
the threshold detection method is used to detect spikes. Before
this, some pre-processing can be included depending on the
situation, such as using a bandpass filter with a bandwidth
of 300-3kHz. The threshold detection step performs amplitude
detection parallelized on each channel to pick up signal fragments
(snippets) that contain the full spike waveforms.

After the threshold detection, the divide-and-conquer method
groups snippets by electrodes. Specifically, if some snippets are
acquired on electrode chA, then they are grouped into group gpA.
This grouping actually utilizes the electrode location feature to
pre-cluster the spikes based on the assumption that different units
have different locations (Einevoll et al., 2012; Lefebvre et al., 2016;
Rossant et al., 2016; Hilgen et al., 2017). Without the help of pre-
cluster, spikes with very similar waveforms emitted by different
units would be hard to separate by only a clustering method
based onwaveform features. Following this, principal component
analysis (PCA) is performed to carry out feature extraction and
data decomposition for each snippet vector, and eventually the
feature space for each snippet group is‘constructed.

Next, HDBSCAN is carried out in each snippet group
to cluster samples (McInnes et al., 2017). For high-density
multi-electrode cases, it is not surprising that several spike
waveforms overlap, and such colliding events can often become
outliers in the feature space (Lewicki, 1998; Franke et al., 2009;
Ekanadham et al., 2014; Lefebvre et al., 2016; Lee et al., 2017;
Yger et al., 2018). Different from some conventional clustering
method can be disturbed by these outliers, HDBSCAN can
mark them as noise and perform hierarchical density-based
spatial clustering on the remaining samples. In this way, the
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FIGURE 1 | Flowchart of the proposed HTsort, illustrated with a 4-electrode dataset. (A) Raw signals acquired by multi-electrodes. (B) Snippets extracted by

threshold detection and grouped with the divide-and-conquer (D&C) method. (C) Feature space in each group generated with PCA. (D) Clusters and outliers found by

HDBSCAN in each group. (E) The template library is constructed after finishing the template merging. (F) The overlapping spikes resolved by the template matching

method. (G) Spike sorting results.

classification of benign spikes is finished. And the possible
decrease of classification accuracy caused by overlapping events
can be avoided.

After the clustering method, the cluster centers that estimated
by calculating the average of samples belong to the same cluster
are used to construct the template library. If the number of
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templates obtained is more than the ground-truth, overclustering
(overfitting of clusters) has occurred. The reason is that snippets
that should belong to the same putative neuron are divided into
different groups by the divide-and-conquer method (Pachitariu
et al., 2016; Lee et al., 2017; Yger et al., 2018; Carlson and
Carin, 2019). The automated template merging method is used
to address this problem based on two criteria: the Euclidean
distance between their centers is close enough, and the spatial
position of the electrodes is near enough. The first criterion
ensures that the two templates are close enough in PCA space,
which means they have similar waveform features. The second
criterion ensures that the spatial locations where they appear
are sufficiently close, and therefore likely to be emitted by the
same neuron. By this, a more compact and precise template
library is obtained and the overclustering problem is solved. By
the way, we do not store and maintain a template library for
long. A template library is only used temporarily during once
spike sorting. Therefore, we build a standalone template library
during each spike sorting instead of taking a permanent public
template library.

Finally, the overlapping events that were previously
temporarily excluded by HDBSCAN are addressed by the
template matching. The template matching method subtracts the
best matching template from the overlapping event iteratively
until there is no more valid spike component. In this way, the
overlapping events get resolved.

2.2. Pre-processing
Pre-processing of the raw signal is not necessary, but can usually
help the following steps work better. The filtering removes some
of the noise from the original signal and benefits the operation
of the threshold detection. A bandpass filter with a bandwidth
of 300–3 kHz is used in this step of HTsort. Then the data is
interpolated or downsampled as appropriate. If the sampling
rate of the original signal is low and without interpolation,
the peak alignment and feature extraction will be affected (Rey
et al., 2015). If the sampling rate is pretty high and without
downsampling, excessive data points need to be checked by the
threshold detection. In the experiment, we downsampled the
original signals (30 kHz) to 14 kHz. More details about the
influence of the sampling rate is discussed in section 4.2.

2.3. Threshold Detection
The threshold detection method is used to extract snippets
that contain the full spike waveforms from the raw voltage
signals. The principle behind it is that the most important
feature that distinguishes spike signals from background noise is
their larger amplitude (Lewicki, 1998). Therefore, it is sensible
to set a threshold to distinguish them, but threshold setting
requires some experience. If the threshold is too high, it leads
to an increase in false-negative samples (missed spikes). If the
threshold is too low, it leads to an increase in false-positive
samples (the number of background events that cross the
threshold) (Lewicki, 1998; Quiroga et al., 2004; Rey et al., 2015).
An automated method for threshold determination based on
an estimate of the standard deviation of background noise σn

was proposed (Quiroga et al., 2004). The threshold can be set

according to the following equation:

threshold = k ∗ σ̂n (1)

σ̂n =
median(|X|)

0.6745
(2)

where k is typically a constant between 3 and 5, andX is the band-
pass filtered signal. The denominator 0.6745 comes from the
inverse of the cumulative distribution function for the standard
normal distribution evaluated at 0.75. Generally, the majority
part of extracellular recordings are background noise, so it is
feasible to estimate σn with X. Additionally, adopting the median
of |X| reduces the amplitude interference from spiking activity.
In fact, this method of threshold setting has been validated on
simulated (Quiroga et al., 2004) and real data (Quiroga, 2012) to
provide a robust estimation of σn, even if the noise distribution
might deviate from Gaussian.

In the proposed HTsort, the alignment of the peaks of the
waveforms is finished during the threshold detection. First, an
appropriate window size wnd is determined to represent the
length of the extracted waveform (e.g. 3 ms time). Next, define
the position p for the peak alignment (e.g., the middle of the
window). Then, the sliding window algorithm is applied to the
band-pass filtered signal. When the absolute value of data point
at position p is the maximum within the window and greater
than threshold, then this snippet of length wnd is extracted. The
threshold detection processes over multiple electrode channels
are performed in parallel and then snippets that contain the spike
waveforms corresponding to each channel are output.

2.4. Divide-and-Conquer for
Multi-Electrode
The divide-and-conquer method aims to use the spatial location
information of the electrodes to perform a pre-clustering, and
then discards the redundant data from multiple electrodes.
When doing the pre-clustering, we do not explicitly enter
the coordinates of each electrode, but directly group snippets
by different electrodes. For example, if some snippets are
acquired on electrode chA, then they are grouped into group
gpA. Generally, it is difficult for clustering methods based on
waveform features to classify spikes that have similar waveforms
and belong to different neurons, but this way of pre-clustering
can utilize spatial information to separate them. The pre-
clustering is based on the assumption that different neurons have
different spatial locations (Lefebvre et al., 2016). Also, the pre-
clustering may accidentally separate spikes that should belong
to the same class, so the template merging method described in
section 2.6 is employed to solve the problem. Another issue is
that when multiple electrodes capture the same spike will lead
to redundant data (Lefebvre et al., 2016; Lee et al., 2017; Yger
et al., 2018). It is unnecessary to keep copies of the same spike
within multiple groups. What the divide-and-conquer method
do is to select the best channel for each spike event. For the
snippets belonging to the same spike event, only the snippet with
the largest magnitude is kept. This process can be represented as,

Ŵi = max
amplitude

{Wi, j|j ∈ Gi} (3)
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where Ŵi is the best estimation of the spike waveform for spike
Si, and Gi denotes the set of adjacent electrodes. Wi, j is the
waveform of Si that is acquired at the jth electrode. Besides, after
completing the divide-and-conquer method, groups can carry
out their respective clustering tasks in parallel, which is obviously
efficient than performing clustering on all samples together.

2.5. Feature Extraction and HDBSCAN
Clustering
Before clustering, the principal component analysis (PCA) is
used to extract features from spike waveforms to construct the
feature space. By PCA, an ordered set of orthogonal basis vectors
(principal components) that capture the largest variation can
be found (Mishra et al., 2017). In fact, studies have shown
that the first three components account for about 76% of the
spike data variation (Lewicki, 1998; Rey et al., 2015; Lefebvre
et al., 2016; Carlson and Carin, 2019). Typically, only the first
two have variances that are significantly above the background
noise, so using more components would offer little improvement
in classification accuracy (Lewicki, 1998). Besides, using more
components as the dimensionality of the clustering space may
cause the “curse of dimensionality” in machine learning. Thus,
only the first two components were selected in our experiments.

Then, the hierarchical density-based spatial clustering method
HDBSCAN is used to accomplish the clustering task and
outlier detection. HDBSCAN is an improvement from DBSCAN
and it works by the following process: (1) Transform the
feature space according to the definition of mutual reachability
distance: dmreach−k(a, b) = max

{

corek(a), corek(b), d(a, b)
}

,
where d(a, b) is the original metric distance between a and
b, and corek(x) is the distance between x and its kth
nearest neighbor. (2) Build a minimum spanning tree based
on the mutual distances of samples in the new space. (3)
Construct a cluster hierarchy from the minimum spanning
tree. (4) Condense the cluster hierarchy and then extract the
stable clusters (Daszykowski and Walczak, 2009; Campello
et al., 2015; McInnes and Healy, 2017; McInnes et al., 2017).
More details can be found on HDBSCAN documentation. In
essence, HDBSCAN iteratively conducts DBSCAN with different
parameters to yield more stable clustering results (McInnes
et al., 2017). In this way, HDBSCAN can work well with
variable sample density distributions, but DBSCAN does not
(McInnes and Healy, 2017; McInnes et al., 2017).

The clustering method HDBSCAN is used in the proposed
HTsort approach for several reasons: (1) If spike variability
depends only on additive and Gaussian stationary background
noise, all clustering methods based on Gaussian mixed models
will be effective, but the reality is that non-Gaussian distribution
is common in neural signals. So, using density-based or
hierarchical clustering methods is preferable (Lewicki, 1998;
Carlson et al., 2014; Rey et al., 2015; Lee et al., 2017). (2)
Overlapping events usually occur as outliers in the feature space,
which disrupt the proper functioning of the clustering method.
HDBSCAN can perform outlier detection and exclude them.

The process from the divide-and-conquer method to
HDBSCAN can be illustrated in Figure 2, the involved data is a

four-electrode dataset (publicly available on SpikeForest website).
The sample distribution of snippets output by the threshold
detection method in the PCA space is shown in Figure 2A.
Note that the PCA method is used in Figure 2A just for display
convenience. In fact, the PCA method is only executed after the
divide-and-conquer method is finished in Figure 2B. Also, we
have removed the redundant data between the electrodes for
display convenience. If look at intuitively, it contains five clusters
in Figure 2A. Figure 2B shows the distribution of the samples in
PCA space within each group after using the divide-and-conquer
method. Since there are four electrodes, four groups are here.
After the four groups have completed the HDBSCAN clustering
in parallel, the results are presented in Figure 2C. Here are
seven clusters and some outliers (outliers can be overlapping
events and will be finally addressed by the template matching).
Figure 2D indicates the ground-truth of the clusters, contrary
to our intuition in Figure 2A, the number 3 cluster should be
split into two classes. But after using the divide-and-conquer
method, the steel-blue cluster and the sandy-brown cluster can
be successfully separated in Figure 2C, which is the effect of
pre-clustering (these two clusters are overlapping in the PCA
space, and it is almost impossible to separate them by clustering
algorithm based on waveform features). Although redundant red
cluster is derived in Figure 2C, this overclustering problem can
be addressed by the template merging method (see section 2.6).

2.6. Template Merging
After finishing clustering, the templates would be obtained by
calculating the mean or median of the samples contained in each
cluster. And each template can be used to represent a class of
spike signals.

An action potential would often acquired by multiple
electrodes. Although the best channel is selected for each spike
signal by the divide-and-conquer method, the reality is that the
best channel is not always the same one. If the neuron that
emits spike S is as close to both electrodes ch1 and ch2, the best
channel will sometimes be electrode ch1 and sometimes electrode
ch2, resulting in the same template obtained in the group
corresponding to both electrodes. If templates that belong to the
same class of spikes are not merged, it will cause overclustering
(overfitting of clusters) (Pachitariu et al., 2016; Lee et al., 2017;
Yger et al., 2018; Carlson and Carin, 2019). The merging of
templates follows two criteria: 1. The Euclidean distance between
the two templates must be less than a specified tunable parameter
σ (default setting is 0.05). 2. The electrodes that each of the two
templates belonging to must be neighbors. The first criterion
directly reflects how similar the two templates are. The second
criterion is used to ensure that the two templates do need to be
merged. After the template merging, a more compact and precise
template library is gotten. The process of the template merging
can be expressed as,

Tmerged = (
1

m

m
∑

i=1

ti,1,
1

m

m
∑

i=1

ti,2, . . . ,
1

m

m
∑

i=1

ti,n) (4)

where Tmerged is the final template vector got after merging
m templates that satisfy the two criteria. Each template is
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FIGURE 2 | The pre-clustering effect of the divide-and-conquer can separate samples that are difficult to classify based on waveform features only. (A) Distribution of

the overall samples in PCA space when not using the divide-and-conquer. But here we already removed the redundant data between the electrodes for display

convenience. If look at intuitively, it contains five clusters. (B) Distribution in PCA space of the samples within each group resulting from the divide-and-conquer

method. (C) Clustering is performed for each group in (B), and the results are presented in the same PCA space. There are seven clusters and some black outliers.

Outliers can be overlapping events and will be finally resolved by the template matching method. (D) The ground-truth of (A), it contains six clusters. The steel-blue

cluster and the sandy-brown cluster can not be split without using the divide-and-conquer to achieve pre-clustering. Although redundant red cluster is derived in (C),

this overclustering problem can be addressed by the template merging method.

FIGURE 3 | Overclustering issue addressed by the template merging. (A) The arrangement of the electrodes on Neuropixels-24 probe. If the blue electrodes within

the red circle are identified as neighbors of the red electrode, the templates obtained on the red electrode have a chance to merge with the templates estimated from

its neighbor. (B) Five clusters found in PCA space before doing the template merging. (C) The small red cluster is merged into the steel-blue cluster after performing

the template merging. (D) Templates estimated from each cluster (thick line) and samples from red cluster (red thin line). If the similarity of two templates is greater than

a set threshold and the electrodes they belong to are a pair of neighbor electrodes, the clusters they represent will be merged.
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represented by an n-dimensional PC feature vector. ti,j is the
jth feature of the ith template that need to be merged. As
illustrated in Figure 3A, if the electrodes within the red circle are
identified as neighbors of the red electrode, then the templates
obtained on the red electrode have a chance to merge with the
templates obtained on these neighbor electrodes. In our practical
experiments, the distance-based threshold thresnb is used to
determine the neighbors of an electrode. If the distance between
two electrodes is less than thresnb, then they are neighbors to
each other. The setting of the threshold theoretically depends
on the transmission distance of the action potential and the
electrical properties of the channels. Since our merging criterion
also needs to ensure that the templates are indeed similar enough,
the threshold will not be as sensitive. So a choice of 20–50µm
is reasonable.

The effect of performing the template merging on a 4-
electrode dataset can be elucidated in Figures 3B,C. The case
before performing the merging is showed in Figure 3B, and the
result after performing the merging is showed in Figure 3C.
The red cluster merged with the steel-blue cluster, because their
centers (templates) in Figure 3D are close (similar) enough and
their corresponding two electrodes are neighbors. However, the
steel-blue cluster will not be merged with the sandy-brown
cluster, nor will the red cluster be merged with the green cluster,
as they cannot satisfy both criteria for merging.

2.7. Template Matching
Template matching can find the areas in a target that best match
a template based on specified metrics. One use of template
matching in spike sorting is served as an alternative to clustering
methods to accomplish classification, as is the case in Kilosort and
SpykingCircus (Pachitariu et al., 2016; Yger et al., 2018). But in
general, clustering methods are better able to handle uncertainty
in template shape and spike assignments than template matching
(Lee et al., 2017). Another use of template matching is employed
to resolve overlapping events. Although it is possible to use
outlier detection to identify overlapping spikes and to keep them
out of downstream processing, we would like to recover their
labels as many as possible (Lewicki, 1998).

In the proposed HTsort, the template matching method takes
the following steps to address overlapping events: (1) Find
a template from the template library that matches best the
overlapping event. (2) Define a criterion to accept the template.
(3) If the template is accepted, subtract it from the overlapping
event and go back to the first step. This method is referred to
as greedy templates matching pursuit (Rey et al., 2015; Lefebvre
et al., 2016; Pachitariu et al., 2016). In the proposed HTsort,
the templates needed for the matching process come from the
template library after performing the template merging method,
and the metric used for matching can be represented by,

R(x, y) =

∑

x′ ,y′

(

T
(

x′, y′
)

− I
(

x+ x′, y+ y′
))2

√

∑

x′ ,y′
T
(

x′, y′
)2

·
∑

x′ ,y′
I
(

x+ x′, y+ y′
)2

(5)

where I is the overlapping event and T is a template from the
template library. (x, y) is the starting point of the target signal
to be matched and

(

x′, y′
)

is the offset during the matching
process. In step (2) we accept the template that yields the
maximum R(x, y) > 0.8. After subtracting the template from
raw data in step (3), if the amplitude of the residuals is less
than the parameter dtcTh (its value is set equal to the parameter
threshold of the threshold detection step), it is assumed that
there is no longer a valid spike signal component and the whole
process stops.

3. RESULTS

3.1. Data
One hurdle for the current development of spike sorting is
the lack of standardized measures and validation data. Many
automated spike sorting algorithms already exist, but usually
the accuracy is validated by different paper authors under
their own experimental conditions. Potential biases may exist
(Einevoll et al., 2012; Rey et al., 2015; McInnes and Healy,
2017; Buccino and Einevoll, 2020; Magland et al., 2020; Wouters
et al., 2020). To address this problem, a platform is needed
to provide open, uniform, and standard spike sorting datasets.
With such a platform, numerous spike sorting algorithms can
be validated and compared in a fair and reasonable manner.
SpikeForest is a reproducible, continuously updating platform
which benchmarks the performance of spike sorting codes
across a large curated database of electrophysiological recordings
with ground truth (Magland et al., 2020). In this paper, both
simulation data generated by MEArec and publicly available data
from SpikeForest are used to validated the proposed HTsort
approach (datasets are available at Github and SpikeForest
website). Then the proposed HTsort was compared with several
state-of-the-art spike sorting algorithms on the same datasets
by using the unified framework SpikeInterface. SpikeInterface
wraps many popular spike sorters and provides interfaces
for comparison and benchmarking (Buccino et al., 2020). In
addition, we prepared the simulation datasets in a control
variables way, to show the classification accuracy and execution
time of the algorithm when the number of electrodes increases
and when the number of neural units increases, respectively.

The specifications of the simulation datasets generated by
MEArec are reported in Table 1. First, the number of neurons
is fixed to 10 and the number of electrodes is gradually
increased from 4 to 128. Second, the number of electrodes is
fixed to 32 and the number of neurons gradually increased
from 4 to 15. So, there are 9 different dataset specifications.
And ten recordings for each specification are prepared with
different random seeds (affects the random selection of spike
templates and the random generation of background noise).
Except for tetrode recordings, the probe types of remaining
recordings are Neuropixels. Neuropixels probes are nearly the
most popular in the electrophysiology field, and they provide
dense recording sites on a narrow shank, with on-board
amplification, digitization, and multiplexing (Steinmetz et al.,
2018). The details of the used publicly available dataset from
SpikeForest are reported in Table 2.
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TABLE 1 | Simulation data prepared for performance comparison.

Dataset Num. Sample Duration Num. Num. Num. Probe type

Recordings rate(Hz) (s) Electrodes Units Spikes

C4-U10 10 30,000 30 4 10 7,438 tetrode

C24-U10 10 30,000 30 24 10 7,438 Neuropixels-24

C32-U10 10 30,000 30 32 10 7,438 Neuropixels-32

C64-U10 10 30,000 30 64 10 7,438 Neuropixels-64

C128-U10 10 30,000 30 128 10 7,438 Neuropixels-128

C32-U4 10 30,000 30 32 4 3,225 Neuropixels-32

C32-U6 10 30,000 30 32 6 4,582 Neuropixels-32

C32-U8 10 30,000 30 32 8 6,044 Neuropixels-32

C32-U10 10 30,000 30 32 10 7,438 Neuropixels-32

C32-U15 10 30,000 30 32 15 11,356 Neuropixels-32

TABLE 2 | “HYBRID_JANELIA” dataset publicly available on the SpikeForest website.

Serial Dataset Num. Sample Duration Num. Num. Num.

number recordings rate(Hz) (s) electrodes Units Spikes

0 4c_600 s 3 30,000 600 4 74 241,585

1 16c_600 s 3 30,000 600 16 74 241,585

2 32c_600 s 3 30,000 600 32 74 241,585

3 64c_600 s 2 30,000 600 64 74 241,585

4 4c_1,200 s 3 30,000 1,200 4 74 482,868

5 16c_1,200 s 3 30,000 1,200 16 74 482,868

6 32c_1,200 s 3 30,000 1,200 32 74 482,868

7 64c_1,200 s 1 30,000 1,200 64 74 482,868

3.2. Experimental Results
The proposed HTsort has been validated on simulation data
reported in Table 1 and compared with HerdingSpikes (HS,
Hilgen et al., 2017), MountainSort (MS, Chung et al. 2017),
and SpykingCircus (SC, Yger et al. 2018) in x86_64 Ubuntu
18.04 environment. The sorters mentioned above all work in the
unsupervised situation. Other existing sorters that cannot work
in unsupervised scenarios (e.g. YASS) are not involved in the
comparison. The detailed results are reported in Figures 4A–F

and Tables 3, 4. The definitions of metrics involved in the
results are:

accuracy =
tp

tp+ fp+ fn
(6)

precision =
tp

tp+ fp
(7)

recall =
tp

tp+ fn
(8)

where tp is the number of true positive events (correct
classification), and fp is the number of false positive event and
fn is the number of false negative event (misclassification).

For an ideal multi-electrode spike sorting algorithm, when the
number of neurons is fixed increasing the number of electrodes
can help the algorithm to better resolve and classify spikes.
Meanwhile, we want tomaintain an acceptable linear relationship

between the time consumption and the number of electrodes.
As shown in Figure 4A, HTsort outperforms other methods in
accuracy, showing a steady improvement in accuracy with an
increasing number of electrodes. The results of SC are actually
not bad, except for the poor performance when the number
of electrodes is low (less than 64 electrodes). The performance
of MS is mediocre. For HS, as the number of electrodes is
gradually increased from 4 to 32, its classification accuracy
clearly benefits from the increase of the number of electrodes.
But as the number of electrodes continues to be increased the
classification accuracy of HS declines rapidly. So in our test, it
is shown that HS is unable to process datasets acquired from
more than 64 electrodes properly. From Figure 4B, we found
that the computation time of HTsort, HS, and SC algorithms
have an approximate linear relationship with the number of
electrodes. HS consumed least time overall, but its accuracy is not
satisfactory. Then we compared the time consumption of HTsort
and SC and it is clear that HTsort performs better. In the most
disparate case (4-electrode), HTsort consumes <10% of the time
of SC. Overall, HTsort has higher efficiency than SC. The time
consumption changing curve ofMS is unacceptable, and it clearly
does not work well with the growing number of electrodes.

If the number of electrodes is fixed, an increase in the
number of neurons means more complex classification. This will
inevitably lead to a decrease in the accuracy of the algorithm,
as well as an increase in time consumption. It is challenging
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FIGURE 4 | Performance comparison between the art-of-the-state sorters. (A) Accuracy of the sorters evaluated on simulation data with the various number of

electrodes. (B) Time consumption of the sorters evaluated on simulation data with a various number of electrodes. (C) Accuracy of the sorters evaluated on simulation

data with the various number of neurons. (D) Time consumption of the sorters evaluated on simulation data with a various number of neurons. The proposed HTsort

achieves the best trade-off between accuracy and time consumption. (E) The accuracy, recall, precision of sorters evaluated on simulation data. (F) The number of

units detected by sorters on simulation data. (G,H) Accuracy and time consumption of the sorters evaluated on “HYBRID_JANELIA” dataset.

that spike sorting methods maintain relatively high accuracy
and relatively low time consumption. As shown in Figure 4C,
HTsort has maintained high accuracy (over 90%). When the
number of neurons is small (8 or less), the accuracy of SC can

be about 5% higher than HTsort. But as the number of neurons
increases, its accuracy fluctuates considerably, and in the worst
case, the accuracy is 10% lower than HTsort. The performance
of MS is still mediocre. As for HS, we can see that its accuracy
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TABLE 3 | Classification accuracy of HTsort, HerdingSpikes, MountainSort, and SpykingCircus tested on simulation data.

Dataset Num. Num. Num. HTsort Herding Mountain Spyking

recordings electrodes Units (%) spikes (%) sort (%) circus (%)

C4-U10 10 4 10 69.7(±8.2) 41.4(±12.6) 66.6(±3.5) 55.5(±4.3)

C24-U10 10 24 10 85.3(±4.3) 78.0(±8.6) 69.7(±5.4) 88.9(±4.1)

C32-U10 10 32 10 90.6(±2.5) 82.3(±7.0) 58.8(±4.3) 79.8(±6.7)

C64-U10 10 64 10 92.3(±4.1) 70.8(±4.9) 73.4(±4.4) 92.5(±1.3)

C128-U10 10 128 10 95.0(±3.8) 34.2(±11.1) 77.9(±4.7) 96.6(±3.6)

C32-U4 10 32 4 91.9(±6.1) 63.6(±11.8) 81.4(±6.9) 95.9(±4.4)

C32-U6 10 32 6 91.0(±5.3) 78.7(±9.5) 81.9(±5.6) 95.1(±1.6)

C32-U8 10 32 8 90.3(±3.8) 76.6(±13.1) 75.5(±2.5) 94.8(±2.2)

C32-U10 10 32 10 90.6(±2.5) 82.3(±7.0) 58.8(±4.3) 79.8(±6.7)

C32-U15 10 32 15 86.2(±4.2) 83.5(±4.6) 71.5(±3.6) 88.6(±3.6)

Collision* 100 4120 930 46.3(±11.6) 34.7(±12.7) 29.9(±8.2) 49.2(±12.4)

Average 100 4120 930 87.8(±4.3) 69.7(±8.5) 70.5(±4.3) 85.8(±3.9)

*Classification accuracy for collision/overlapping spikes.

TABLE 4 | Time consumption of HTsort, HerdingSpikes, MountainSort, and SpykingCircus tested on simulation data.

Dataset Num. Num. Num. HTsort Herding Mountain Spyking

Recordings electrodes Units (s) spikes (s) sort (s) circus (s)

C4-U10 10 4 10 1.3(±0.1) 3.3(±0.4) 3.8(±0.8) 21.1(±1.5)

C24-U10 10 24 10 9.6(±0.2) 6.5(±2.1) 66.5(±7.4) 30.8(±0.8)

C32-U10 10 32 10 15.9(±0.2) 17.7(±1.0) 125.9(±4.1) 35.4(±1.6)

C64-U10 10 64 10 29.9(±0.4) 13.4(±6.1) 574.4(±45.2) 56.5(±1.8)

C128-U10 10 128 10 111.1(±0.5) 64.0(±11.7) 2831.3(±21.6) 114.1(±12.5)

C32-U4 10 32 4 18.2(±1.5) 14.4(±2.7) 228.6(±9.0) 32.6(±2.5)

C32-U6 10 32 6 19.3(±1.0) 13.5(±3.2) 220.4(±3.2) 33.0(±1.5)

C32-U8 10 32 8 19.6(±1.1) 13.2(±1.7) 228.7(±11.8) 34.1(±0.7)

C32-U10 10 32 10 15.9(±0.2) 17.7(±1.0) 210.9(±4.1) 35.4(±1.6)

C32-U15 10 32 15 23.3(±3.0) 13.4(±0.4) 213.0(±8.2) 97.7(±1.4)

is very unstable, and it is clear that HS is not robust enough
to cope with the variations of the noise and spike waveforms.
The time consumption was reported in Figure 4D. HS is still the
fastest, and HTsort is close to HS. They both maintain their time
consumption without an obvious increase. SC consumes more
time than HTsort and HS. As for MS, its time consumption is
many orders of magnitude higher than other algorithms.

The publicly available data reported in Table 2 are alse used
to validate the above algorithms, and the results are reported
in Figures 4G,H. Again, the proposed HTsort is able to provide
high classification accuracy and low time consumption, which
means that the proposed HTsort approach offers a good trade-off
between accuracy and time consumption.

4. DISCUSSION AND CONCLUSION

In comparison with other state-of-the-art spike sorts, it is
validated that the proposed HTsort approach achieves a better
trade-off between accuracy and time consumption. First, the
divide-and-conquer method utilizes the spatial information of

electrodes to achieve pre-clustering. And large computational
tasks are divided into multiple small task groups that can
be executed in parallel. Then, HDBSCAN is used to execute
efficient clustering and outlier detection. Outlier detection is
important because the outliers can disturb the clustering process.
A subsequent template merging step is employed to rectify the
clustering results. The final template merging step ensures the
accurate parsing of overlapping events. Together, the HTsort
outperforms other sorts.

SC is good enough, and its accuracy is close to HTsort
(sometimes up to 5% more accurate than HTsort). But SC
typically consumes 45% more time than HTsort. The reason is
that SC only uses the clustering method to provide templates
without exploiting the classification results from clustering
method. And SC finally uses template matching to finish
classification for all samples with spending more time for post-
processing on each electrode (Lee et al., 2017; Yger et al., 2018).
MS is moderately accurate but has more time consumption. One
reason for this is that the clustering process in MS is repeatedly
executed until no more clusters can be found to split. It is a
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good way to separate clusters that would be easily merged, but
undoubtedly increase the time consumption (Chung et al., 2017).
HS runs fast because it only needs to perform a mean shift
clustering based on waveform features and spatial position. But
its classification accuracy is unstable. One reason for this is that
the mean shift clustering needs to assume that samples belonging
to the same class are satisfying a spherical distribution in the
feature space (Hilgen et al., 2017). The other reason is that HS
is sensitive to noise and spatial position bias, which leads to its
obvious fluctuating results on datasets with the same specification
but variable background noise.

4.1. Classification Accuracy
In our experiments, the standard definition formula for
classification accuracy in this field is used,

accuracy =
tp

tp+ fp+ fn
(9)

where tp is the number of true positive events (correct
classification), and fp is the number of false positive event and fn
is the number of false negative event (misclassification). For the
threshold detection, as we mentioned in section 2.3, the setting
of the threshold affects both fp and fn. But in the proposed
HTsort, we can tend to set the threshold value relatively lower
without significantly affecting the final classification accuracy.
A low threshold setting leads to an increase in fp, which
means that some background noise will be considered as spike
signals. These background noise, although recognized in the
threshold detection, are detected as outliers in HDBSCAN
clustering because their waveform features present stochasticity
and deviation. As we described in section 2.7, the possible spike
components in the outliers are detected by the template matching
method. If the outliers are overlapping events, the valid spike
components would be detected. Whereas, background noise is
discarded. This fact allows the threshold setting to be more
lenient and enhances the robustness of HTsort. Classification
accuracy of sorters that do not support outlier detection and
analysis, will be more sensitive to the threshold setting and
non-stationary background noise.

In the threshold detection method, we use the sliding window
algorithm to complete the peak alignment of spikes. The peak
alignment determines whether the features of extracted snippets
can be aligned at the correct position, thus peak alignment can be
an important factor for accurate classification of both template
and feature-based algorithms (Lewicki, 1998). The sampling
frequency greatly influences the effect of peak alignment. If the
sampling frequency is high enough, then sufficient waveform
features can be preserved and alignment can be done more easily.
However, processing signals with a high sampling frequency can
cause the whole algorithm to become computationally expensive,
so a reasonable trade-off needs to be made. We have discussed in
detail the effect of sampling frequency on time consumption in
the below section 4.2.

For the divide-and-conquer method, it achieves pre-clustering
by using the spatial location information of the electrodes, but
without explicitly entering the coordinates of each electrode.

The most important benefit of pre-clustering is that it can
help classify spikes that have similar waveforms but belong to
different neurons, which are often difficult to do with clustering
based on waveform features. In the case of MEAs, the spatial
information of multiple electrodes should be properly utilized
to help improve the classification accuracy, and this form of
pre-clustering is an example. However, we have to point out
that in the case of severe electrode drift, the divide-and-conquer
provides a limited pre-clustering effect. During several hours
of electrode recording, relative movement between an electrode
and biological tissue usually occurs (Lewicki, 1998; Rey et al.,
2015). In such a case, spikes that are excited by different neurons
and have similar waveforms can no longer be distinguished
only by the electrode location information. To handling the
drift and other non-stationarity, SpikingCircus and Kilosort are
reported can offer good results because they do not rely on
clustering to get the final results, and the clustering methods
based on waveform features are thought to be more sensitive to
waveform changes so clustering methods are not good at dealing
with drift problem. One of our current attempts is to model
the movement of the electrodes to be able to compensate for
electrode position offsets. Further improvement of the divide-
and-conquer method to cope with more extreme cases is one of
our future research directions.

For the proposed HTsort, it is critical to coordinate the
operations of HDBSCAN, the template merging, and the
template matching. HDBSCAN performs clustering and outlier
detection in the waveform feature space (outliers may be
background noise or overlapping events). The superfluous
templates resulting from overclustering are merged by the
template merging according to the criteria detailed in section
2.6. The template matching uses templates to seek possible
spikes in the outliers and to deconvolute the overlapping events.
The combined performance of HDBSCAN and the template
matching demonstrates the feasibility and efficiency of the triage-
then-cluster-then-pursuit strategy proposed by YASS (Lee et al.,
2017). However, the implementation of outlier detection in
YASS relies on the training of a neural network. The role
of this neural network is to extract spike waveforms from
the original signal and screen overlapping events. Further, the
clustering method DP-GMM employed by YASS (Lee et al.,
2017) requires the assumption that the distribution of samples
belonging to the same neuron obeys a multivariate Gaussian
distribution. But many studies have proven that this is only
the ideal case (Lewicki, 1998; Lee et al., 2017; McInnes et al.,
2017; Yger et al., 2018). Here, we employed HDBSCAN to apply
the strategy proposed by YASS into the unsupervised scenario,
without the assumption of a distribution prototype. HDBSCAN
executes density-based spatial clustering and supports outlier
detection. Notably, there is no concern that tp samples may
be identified as outliers, since they will be recovered in the
template matching step. The template merging can merge the
redundant clusters and provide a more accurate template library
for the template matching. It also corrects the clustering results
to a certain extent, enabling more robustness in the final
classification results.
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4.2. Time Consumption
After our experiments and analysis, the main time-consuming
parts in the proposed HTsort are the threshold detection
and HDBSCAN clustering. For the threshold detection, it is
executed in parallel on the raw data of multiple electrodes.
If the number of CPU cores of the computer is comparable
to the number of electrodes, the time complexity of this
process can be considered as O(T ∗ SPF). Where T represents
the duration of recording and SPF represents the sampling
frequency. However, usually the number of CPU cores will
be significantly less than the number of electrodes, then the
time complexity becomes O(T ∗ SPF ∗ C), where C denotes
the number of electrodes. In this case, to minimize the time
consumption, we can choose to downsample the raw signals in
the preprocessing step. Unfortunately, this may result in the loss
of the spike waveform features to various degrees. The study
of Navajas et al. (2014) discussed in detail that the minimum
requirement for the sampling frequency without obviously
affecting the classification accuracy is 7 kHz, while 100% fidelity
can be achieved with 28 kHz. Considering the possible research
limitations and timeliness of the study, we downsampled the
original signals (30 kHz) to a conservative 14 kHz in our
preprocessing step. In the future, we will comprehensively
investigate the appropriate downsampling range to reasonably
and effectively reduce the time consumption of the
threshold detection.

For the time consumption of HDBSCAN, its authors
have done an exhaustive benchmarking performance test on
HDBSCAN documentation. The results show that the asymptotic
complexity of HDBSCAN is sub-O(n2), but does not reach
O(n log(n)), where n is the number of samples involved in

clustering. In HTsort, as described in section 2.4 we use the
divide-and-conquer method to remove redundant data (only one
copy of each spike is retained) and execute HDBSCAN in parallel
for each group. In this way, the number of samples involved in

clustering is greatly reduced, and the time consumption can be
further decreased by a parallel mechanism when the number of
CPU cores is sufficient.

The template matching method is quite time-consuming,
which slides a template over the target signal to find the best
matching region. If a total of N templates and M target signals
need to be matched, then the time consumption is proportional
to N ∗ M. In HTsort, we only use the template matching for
overlapping events, and they are usually no more than 10% of
the total samples (Lewicki, 1998; Quiroga, 2012; Rey et al., 2015;
Carlson and Carin, 2019). If the template matching method is
used to classify all samples (e.g. SpykingCircus), it will take much
more time. The situation gets worse when the number of neurons
increases. The time consumption of SpykingCircus (Yger et al.,
2018) is rapidly increasing in Figure 4D for this reason.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

KC: conceptualization, methodology, and writing-original
draft. YJ: software, investigation, and writing-original draft.
HH: project administration, writing-review, and editing.
ZW: project administration, writing-review, and editing. NZ and
HW: writing-review and editing. All authors contributed to the
article and approved the submitted version.

FUNDING

Project supported by the Natural Science Foundation of Zhejiang
Province (LY20E070005 and LR19F020005).

REFERENCES

Bar-Hillel, A., Spiro, A., and Stark, E. (2006). Spike sorting: bayesian

clustering of non-stationary data. J. Neurosci. Methods 157, 303–316.

doi: 10.1016/j.jneumeth.2006.04.023

Buccino, A. P., and Einevoll, G. T. (2020). MEArec: a fast and

customizable testbench simulator for ground-truth extracellular spiking

activity. Neuroinformatics 19, 185–204. doi: 10.1007/s12021-020-

09467-7

Buccino, A. P., Hurwitz, C. L., Garcia, S., Magland, J., Siegle, J. H., Hurwitz, R., et al.

(2020). SpikeInterface, a unified framework for spike sorting. eLife 9:e61834.

doi: 10.7554/eLife.61834

Calabrese, A., and Paninski, L. (2011). Kalman filter mixture model for

spike sorting of non-stationary data. J. Neurosci. Methods 196, 159–169.

doi: 10.1016/j.jneumeth.2010.12.002

Campello, R., Moulavi, D., Zimek, A., and Sander, J. (2015). Hierarchical density

estimates for data clustering, visualization, and outlier detection. ACM Trans.

Knowl. Dis. Data 10, 1–51. doi: 10.1145/2733381

Carlson, D., and Carin, L. (2019). Continuing progress of spike sorting in the era

of big data. Curr. Opini. Neurobiol. 55, 90–96. doi: 10.1016/j.conb.2019.02.007

Carlson, D. E., Vogelstein, J. T., Wu, Q., Lian, W., Zhou, M., Stoetzner,

C. R., et al. (2014). Multichannel electrophysiological spike sorting via joint

dictionary learning andmixture modeling. IEEE Trans. Biomed. Eng. 61, 41–54.

doi: 10.1109/TBME.2013.2275751

Chestek, C. A., Batista, A. P., Santhanam, G., Yu, B. M., Afshar, A.,

Cunningham, J. P., et al. (2007). Single-neuron stability during repeated

reaching in macaque premotor cortex. J. Neurosci. 27, 10742–10750.

doi: 10.1523/JNEUROSCI.0959-07.2007

Chung, J., Magland, J., Barnett, A., Tolosa, V., Tooker, A., Lee, K., et al.

(2017). A fully automated approach to spike sorting. Neuron 95, 1381–1394.

doi: 10.1016/j.neuron.2017.08.030

Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Barthó

P., et al. (2003). Massively parallel recording of unit and local field

potentials with silicon-based electrodes. J. Neurophysiol. 90, 1314–1323.

doi: 10.1152/jn.00116.2003

Daszykowski, M., and Walczak, B. (2009). A density-based algorithm for

discovering clusters in large spatial databases with noise. Comprehens.

Chemometr. 2, 635–654. doi: 10.1016/B978-044452701-1.00067-3

Einevoll, G. T., Franke, F., Hagen, E., Pouzat, C., and Harris, K. D. (2012). Towards

reliable spike-train recordings from thousands of neurons withmultielectrodes.

Curr. Opin. Neurobiol. 22, 11–17. doi: 10.1016/j.conb.2011.10.001

Ekanadham, C., Tranchina, D., and Simoncelli, E. P. (2014). A unified framework

and method for automatic neural spike identification. J. Neurosci. Methods 222,

47–55. doi: 10.1016/j.jneumeth.2013.10.001

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2021 | Volume 15 | Article 657151

https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://doi.org/10.1016/j.jneumeth.2006.04.023
https://doi.org/10.1007/s12021-020-09467-7
https://doi.org/10.7554/eLife.61834
https://doi.org/10.1016/j.jneumeth.2010.12.002
https://doi.org/10.1145/2733381
https://doi.org/10.1016/j.conb.2019.02.007
https://doi.org/10.1109/TBME.2013.2275751
https://doi.org/10.1523/JNEUROSCI.0959-07.2007
https://doi.org/10.1016/j.neuron.2017.08.030
https://doi.org/10.1152/jn.00116.2003
https://doi.org/10.1016/B978-044452701-1.00067-3
https://doi.org/10.1016/j.conb.2011.10.001
https://doi.org/10.1016/j.jneumeth.2013.10.001
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Chen et al. Fast and Accurate Spike Sorter

Franke, F., Natora, M., Boucsein, C., Munk, M., and Obermayer, K. (2009).

An online spike detection and spike classification algorithm capable of

instantaneous resolution of overlapping spikes. J. Comput. Neurosci. 29, 127–

148. doi: 10.1007/s10827-009-0163-5

Franke, F., Pröpper, R., Alle, H., Meier, P., Geiger, J., Obermayer, K., et al.

(2015). Spike sorting of synchronous spikes from local neuron ensembles. J.

Neurophysiol. 114, 2535–2549. doi: 10.1152/jn.00993.2014

Gray, C. M., Maldonado, P. E., Wilson, M., and McNaughton, B. (1995). Tetrodes

markedly improve the reliability and yield of multiple single-unit isolation

frommulti-unit recordings in cat striate cortex. J. Neurosci. Methods 63, 43–54.

doi: 10.1016/0165-0270(95)00085-2

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsáki, G.

(2000). Accuracy of tetrode spike separation as determined by simultaneous

intracellular and extracellular measurements. J. Neurophysiol. 84, 401–414.

doi: 10.1152/jn.2000.84.1.401

Harris, K. D., Quiroga, R. Q., Freeman, J., and Smith, S. L. (2016). Improving

data quality in neuronal population recordings. Nat. Neurosci. 19, 1165–1174.

doi: 10.1038/nn.4365

Hilgen, G., Sorbaro, M., Pirmoradian, S., Muthmann, J. O., Kepiro,

I. E., Ullo, S., et al. (2017). Unsupervised spike sorting for large-

scale, high-density multielectrode arrays. Cell Rep. 18, 2521–2532.

doi: 10.1016/j.celrep.2017.02.038

Hill, D. N., Mehta, S. B., and Kleinfeld, D. (2011). Quality metrics to

accompany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705.

doi: 10.1523/JNEUROSCI.0971-11.2011

Lee, J. H., Carlson, D., Shokri, H., Yao, W., Goetz, G., Hagen, E., et al. (2017).

YASS: yet another spike sorter. Adv. Neural Inf. Proc. Syst. 2017, 4003–4013.

doi: 10.1101/151928

Lefebvre, B., Yger, P., and Marre, O. (2016). Recent progress in multi-

electrode spike sorting methods. J. Physiol. Paris 110, 327–335.

doi: 10.1016/j.jphysparis.2017.02.005

Lewicki, M. S. (1998). A review of methods for spike sorting: the detection

and classification of neural action potentials. Network 9, R53–R78.

doi: 10.1088/0954-898X_9_4_001

Lopez C. M., Mitra S., Putzeys J., Raducanu B., Ballini M., Andrei A., et al. (2016).

“A 966-electrode neural probe with 384 configurable channels in 0.13µm SOI

CMOS,” in 2016 IEEE International Solid-State Circuits Conference (ISSCC)

(San Francisco, CA), 392–393.

Magland, J., Jun, J., Jand Lovero, E., Morley, A. J., Hurwitz, C. L., Buccino, A. P.,

et al. (2020). SpikeForest, reproducible web-facing ground-truth validation of

automated neural spike sorters. eLife 9:e55167. doi: 10.7554/eLife.55167

McInnes, L., and Healy, J. (2017). “Accelerated hierarchical density based

clustering,” in IEEE International Conference on Data Mining Workshops,

ICDMW (New Orleans, LA), 2017, 33–42.

McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: hierarchical density based

clustering. J. Open Source Softw. 2, 205. doi: 10.21105/joss.00205

McNaughton, B. L., O’Keefe, J., and Barnes, C. A. (1983). The stereotrode: a

new technique for simultaneous isolation of several single units in the central

nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397.

doi: 10.1016/0165-0270(83)90097-3

Mishra, S., Sarkar, U., Taraphder, S., Datta, S., Swain, D., Saikhom, R.,

et al. (2017). Multivariate statistical data analysis- principal component

analysis (PCA). Int. J. Livestock Res. 7, 60–78. doi: 10.5455/ijlr.201704151

15235

Navajas, J., Barsakcioglu, D., Eftekhar, A., Jackson, A., Constandinou,

T., and Quian, R. (2014). Minimum requirements for accurate and

efficient real-time on-chip spike sorting. J. Neurosci. Methods 230, 51–64.

doi: 10.1016/j.jneumeth.2014.04.018

Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., and Harris, K. D.

(2016). Kilosort: realtime spike-sorting for extracellular electrophysiology with

hundreds of channels. bioRxiv. doi: 10.1101/061481

Perge, J., Zhang, S., Malik, W., Homer, M., Cash, S., Friehs, G., et al. (2014).

Reliability of directional information in unsorted spikes and local field

potentials recorded in human motor cortex. J. Neural Eng. 11:046007.

doi: 10.1088/1741-2560/11/4/046007

Pillow, J. W., Shlens, J., Chichilnisky, E. J., and Simoncelli, E. P. (2013). A model-

based spike sorting algorithm for removing correlation artifacts in multi-

neuron recordings. PLoS ONE 8:e62123. doi: 10.1371/journal.pone.0062123

Quiroga, R. Q. (2012). Spike sorting. Curr. Biol. 22, R45–R46.

doi: 10.1016/j.cub.2011.11.005

Quiroga, R. Q., Nadasdy, Z., and Ben-Shaul, Y. (2004). Unsupervised spike

detection and sorting with wavelets and superparamagnetic clustering. Neural

Comput. 16, 1661–1687. doi: 10.1162/089976604774201631

Rey, H. G., Pedreira, C., and Quian Quiroga R. (2015). Past, present

and future of spike sorting techniques. Brain Res. Bull. 119, 106–117.

doi: 10.1016/j.brainresbull.2015.04.007

Rossant, C., Kadir, S., Goodman, D., Schulman, J., Hunter, M., Saleem, A., et al.

(2016). Spike sorting for large, dense electrode arrays. Nat. Neurosci. 19,

634–641. doi: 10.1038/nn.4268

Steinmetz, N. A., Koch, C., Harris, K. D., and Carandini, M. (2018). Challenges and

opportunities for large-scale electrophysiology with Neuropixels probes. Curr.

Opin. Neurobiol. 50, 92–100. doi: 10.1016/j.conb.2018.01.009

Wouters, J., Kloosterman, F., and Bertrand, A. (2020). SHYBRID: a graphical tool

for generating hybrid ground-truth spiking data for evaluating spike sorting

performance. Neuroinformatics 19, 141–158. doi: 10.1007/s12021-020-09474-8

Wu, H., Yang, K., and Zeng, Y. (2018). Sparse coding and compressive sensing

for overlapping neural spike sorting. IEEE Trans. Neural Syst. Rehabil. Eng. 26,

1516–1525. doi: 10.1109/TNSRE.2018.2848463

Yger, P., Spampinato, G., Esposito, E., Lefebvre, B., Deny, S., Gardella, C.,

et al. (2018). A spike sorting toolbox for up to thousands of electrodes

validated with ground truth recordings in vitro and in vivo. eLife 7:e34518.

doi: 10.7554/eLife.34518

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Chen, Jiang, Wu, Zheng, Wang and Hong. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 June 2021 | Volume 15 | Article 657151

https://doi.org/10.1007/s10827-009-0163-5
https://doi.org/10.1152/jn.00993.2014
https://doi.org/10.1016/0165-0270(95)00085-2
https://doi.org/10.1152/jn.2000.84.1.401
https://doi.org/10.1038/nn.4365
https://doi.org/10.1016/j.celrep.2017.02.038
https://doi.org/10.1523/JNEUROSCI.0971-11.2011
https://doi.org/10.1101/151928
https://doi.org/10.1016/j.jphysparis.2017.02.005
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.7554/eLife.55167
https://doi.org/10.21105/joss.00205
https://doi.org/10.1016/0165-0270(83)90097-3
https://doi.org/10.5455/ijlr.20170415115235
https://doi.org/10.1016/j.jneumeth.2014.04.018
https://doi.org/10.1101/061481
https://doi.org/10.1088/1741-2560/11/4/046007
https://doi.org/10.1371/journal.pone.0062123
https://doi.org/10.1016/j.cub.2011.11.005
https://doi.org/10.1162/089976604774201631
https://doi.org/10.1016/j.brainresbull.2015.04.007
https://doi.org/10.1038/nn.4268
https://doi.org/10.1016/j.conb.2018.01.009
https://doi.org/10.1007/s12021-020-09474-8
https://doi.org/10.1109/TNSRE.2018.2848463
https://doi.org/10.7554/eLife.34518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	HTsort: Enabling Fast and Accurate Spike Sorting on Multi-Electrode Arrays
	1. Introduction
	2. Materials and Methods
	2.1. Overview
	2.2. Pre-processing
	2.3. Threshold Detection
	2.4. Divide-and-Conquer for Multi-Electrode
	2.5. Feature Extraction and HDBSCAN Clustering
	2.6. Template Merging
	2.7. Template Matching

	3. Results
	3.1. Data
	3.2. Experimental Results

	4. Discussion and conclusion
	4.1. Classification Accuracy
	4.2. Time Consumption

	Data Availability Statement
	Author Contributions
	Funding
	References


