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In recent years, event-based sensors have been combined with spiking neural networks

(SNNs) to create a new generation of bio-inspired artificial vision systems. These systems

can process spatio-temporal data in real time, and are highly energy efficient. In this study,

we used a new hybrid event-based camera in conjunction with amulti-layer spiking neural

network trained with a spike-timing-dependent plasticity learning rule. We showed that

neurons learn from repeated and correlated spatio-temporal patterns in an unsupervised

way and become selective to motion features, such as direction and speed. This motion

selectivity can then be used to predict ball trajectory by adding a simple read-out layer

composed of polynomial regressions, and trained in a supervised manner. Hence, we

show that a SNN receiving inputs from an event-based sensor can extract relevant

spatio-temporal patterns to process and predict ball trajectories.

Keywords: SNN, STDP, unsupervised learning, spiking camera, ball trajectory prediction, motion selectivity

INTRODUCTION

The original aim of Artificial Neural Networks (ANNs) was to mimic human or even non-human
brain processing. The learning and generalization abilities of ANNs have led to great advances,
particularly in solving visual tasks (Rawat and Wang, 2017). However, the quest for performance
has taken ANNs away from their original bio-inspired function, even if ANNs show good
performances with neural activity correlated with human cortical activity (Schrimpf et al., 2018).

There is, however, another category of neural networks, called Spiking Neural Networks (SNNs).
SNNs use spikes as signals between neurons, and in this respect, are closer to the brain than
ANNs. The temporality of these spikes provides additional information (VanRullen et al., 2005),
making SNNs good candidates to deal with spatio-temporal stimuli. Moreover, since spiking
activity is usually binary-coded and sparse (Van Rullen and Thorpe, 2001; Perrinet et al., 2004),
processing in SNNs is highly power efficient (Rueckauer et al., 2017; Barrios-Avilés et al., 2018;
Pfeiffer and Pfeil, 2018).

SNNs can be coupled with synaptic plasticity rules such as STDP (Spike Timing Dependent
Plasticity), which are bio-inspired and unsupervised.

SNNs with STDP rule have been applied many times on image categorization tasks, in
order to benchmark them against more common ANNs or other SNNs (Diehl and Cook, 2015;
Kheradpisheh et al., 2018; Lee et al., 2018; Thiele et al., 2018). However, most of these studies
used static images as stimuli, and thus, did not take full advantage of the above-mentioned
benefits. In contrast, videos (or spikes from spiking cameras also called event-based cameras) are
more suited for SNNs due to their spatio-temporal nature (Pfeiffer and Pfeil, 2018; Iyer et al.,
2021). Recently, (Orchard et al., 2017) used event-based cameras and mimicked retinal saccades
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to perform categorization tasks on standard datasets like MNIST.
This allowed spike processing on more biologically plausible and
more realistic data where a temporal dimension was induced
directly by the motion saccade. The performance of the model
was not only excellent (Lee et al., 2016), but even surpassed state-
of-the-art ANNs on temporally occluded images (Moraitis et al.,
2020).

In order to process motion, frame-based cameras are the
most common way to acquire data. Frame-based processing
is different from that of the retina. Typically, the camera
output is synchronous, and processed by the ANN frame-
by-frame. This processing then induces response time delays
depending on the number of frames per second (FPS), motion
blur, and data redundancy, resulting here again in unnecessary
resource consumption.

However, the development of visual (Lichtsteiner et al., 2008;
Posch et al., 2011; Brandli et al., 2014; Son et al., 2017), audio
(Liu et al., 2014), and tactile (Taunyazov et al., 2020) event-
based sensors brings them closer to biomimetics. These sensors
only encode variations (of brightness, frequency, etc.) and are
fully asynchronous, much like the retina. This allows sensors
to generate extremely sparse data and to considerably reduce
response latency (Farabet et al., 2012). These sensors make it
possible to take advantage of all the benefits of SNNs. Indeed, a
combination of SNNs with event cameras has been used to solve
several tasks, such as object detection (Bichler et al., 2012), optical
flow estimation (Orchard et al., 2013; Adams and Harris, 2014;
Paredes-Valles et al., 2019), motion detection, etc.

These studies show that a bio-inspired system composed
of an SNN driven by inputs from an event-based camera can
learn, in an unsupervised manner, to optimally process spatio-
temporal data.

In this study, we used a specific type of event camera, the
“Neurosoc,” introduced in section Choice of the Event Camera.
We recorded ball trajectories with the NeuroSoc and used an
SNN to learn specific features of the trajectory (direction, speed,
shape). Our objective was to test the accuracy of this setup in
predicting the arrival point of the ball under various presentation
times. We wanted to test if our network is able to anticipate the
arrival point of the ball based on a snapshot of the trajectory, like
sport experts do on the field, for example (Farrow and Abernethy,
2003).

A ballistic trajectory is constrained by physical laws, and based
on these regularities. Humans can anticipate the arrival point of
a moving object from information about the object’s position,
velocity and direction (Aglioti et al., 2008). Likewise, in this study,
we aimed to decode the output of the SNN with polynomial
regression. If after learning, neurons code for precise directions
and speeds, it should be possible to accurately predict where the
ball will fall from the SNN responses.

MATERIALS AND METHODS

The aim of this study was to predict the ending point of a ball’s
trajectory from an artificial visual system. Our pipeline consisted
of (1) a “Neurosoc” camera which generates spikes from ball

trajectories, (2) a 3-layer SNN equipped with an STDP learning
rule which progressively becomes selective to motion patterns
and (3) a read-out layer which uses polynomial regressions to
recover the ending point of the ball’s trajectory. We further
detail these three parts in the next sections. Figure 1 provides a
schematic overview of the artificial system.

Neurosoc
Choice of the Event Camera
Several models of event-driven cameras have already been
proposed in the industry (Prophesee, iniVation, Insightness,
Samsung, CelePixel) and operate mainly according to a pixel-to-
pixel temporal difference. Although the performances of these
devices are remarkable in terms of temporal frequency and
dynamic range, they suffer from some crucial limitations in terms
of bio-inspired modeling, namely the inexistence of spatial filters
upstream of the spike-generation. Using bio-inspired models
which capture various aspects of the visual system (Masquelier
and Thorpe, 2007), these filters make it possible to reinforce
the performances of spike-based analysis by introducing a bio-
inspired component upstream of the spike-generation.

In parallel to this observation, different devices have appeared
during the last few years which allow the generation of
spikes from standard CMOS image sensors (Abderrahmane and
Miramond, 2019; Admin, 2020; Spike Event Sensor, 2021). The
main objective behind these cameras is, on one hand, to be able
to integrate spatial filters upstream of the spikes generation, and
on the other hand, to have sensors of different formats going, for
example, up to 2M pixels (Caiman Camera, 2021) [usually the
pixel-count of event-based cameras is rather limited (Lichtsteiner
et al., 2008; Posch et al., 2011; Brandli et al., 2014; Son et al.,
2017)].

In order to guarantee reliable integration of spikes, it is
imperative that these image sensors work in global-shutter mode
(instantaneous image acquisition), and with a short exposure
time (in the order of few milliseconds). Such cameras are
an intermediary between event-based sensors and frame-based
cameras, and allow for spatial and temporal filtering with
high FPS.

The NeuroSoc camera from Yumain (Spike Event Sensor,
2021) possesses these characteristics and was, therefore, chosen
for this study. This camera operates at 240 frames per second
at a resolution of 128 × 120 px. Spatial and temporal filters
are embedded in a processing board closed to the image sensor
(see section Architecture of the NeuroSoc Event Camera) to
detect brightness variations and generate spikes. As explained
above, these spatial filters (here DoG type) are closer to those
found in the lateral geniculate nucleus in the human visual
system. As a result, they reduce noise, detect edges, and increase
output sparseness.

Architecture of the NeuroSoc Event Camera
We used the NeuroSoc event camera developed by Yumain
which is based on a global-shutter CMOS MT9024 image sensor
from On Semiconductor and a board called NeuroSoC. This
board is composed of a MPSoC Zynq 7020 circuit from Xilinx
and a 4 Gbits DDRAM memory (see Figure 2). The CMOS
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TABLE 1 | Parameters for each SNN’s layers.

wMax τmemb Nf τLTP aLTP aLTD fInst fLong TThresh

Layer 1 1.873 0.01 60 0.0754 0.00195 0.0005 3.0 2.89 0.031

Layer 2 0.813 0.052 80 0.0236 0.0131 0.00118 2.82 2.41 0.023

Layer 3 1.308 0.039 100 0.0368 0.00815 0.00198 3.46 1.9 0.051

FIGURE 1 | (A) General architecture of the system. The neurosoc camera captures “ON” and “OFF” events (red and green points). These are duplicated, delayed

(three different delays are used: 1t0, 1t1, and 1t2) in the input layer (see section Delays) and subsequently sent to a 3-layers SNN. Output spikes are finally

processed by a read-out layer in order to predict the final position of the ball. (B) Simplified STDP learning rule. (C) Evolution of the adaptive threshold intensity ULong, n

over time (see section Lateral Inhibition and Threshold Adaptation).

sensor operates in global-shutter mode (instantaneous image
acquisition) with an exposure time in the range of 31 ns to
4ms. In the context of this study, images are generated in a 128
× 120 pixels format guaranteeing a throughput of 240 frames
per second, with an exposure time of 3.7ms due to low luminosity
conditions (window shutters closed for proper operation of the
Vicon). Images from the image sensor transmitted to the Zynq
MPSoC circuit are filtered in real time in order to extract the
salient parts of the objects contained in the images. The first
step of the process consisted of calculating the difference between
the images at time tn and tn−1 (the sampling period tn-tn−1

was 4.17ms or 1/240 fps). In this study, a DoG (Difference of
Gaussian) filter was applied to this difference. The output of the
filter was classified (positive/negative values generate ON/OFF
spikes) and sorted according to the most important to the least
important absolute values above a threshold, thus constituting a
train of temporal spikes. The threshold value was set manually
during the acquisition phase, and was adjusted to extract as many
spikes from movements as possible while keeping the noise level

low. As shown in Figure 2, all these treatments are implemented
in the FPGA within the Zynq MPSoC.

The spike stream was transmitted outside the camera via
an ethernet link. Input/output management (spike transmission,
sensor exposure time control) of the event camera was performed
through the ARM processor of the Zynq MPSoC.

Time Encoding
The outputs of the filters implemented in the cameras (see above)
were first thresholded. Values above threshold were subsequently
converted into spikes using an intensity to latency conversion
(Thorpe et al., 2001; VanRullen et al., 2005; Masquelier and
Thorpe, 2007; Chauhan et al., 2018). Spike-latencies were
obtained by inverting the output values of the corresponding
filters. Spikes were spread between the current and the next
frame, see Equation (1):

1ts,rel =
(Is − Imin)

FPS · (Imax − Imin)
and ts =

F

FPS
+ 1ts,rel (1)

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2021 | Volume 15 | Article 658764

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Debat et al. Event-Based Trajectory Prediction

FIGURE 2 | (A) The event-based camera used in the study (NeuroSoc). It is based on a global shutter CMOS image sensor connected to a MPSoC Zynq circuit. (B)

Implementation treatments on NeuroSoC board.

With:

F= Index of the current frame
1ts, rel = Relative time of the spike s to the current frame F
Is = Inverted intensity of the spike s
ts = Time of the spike s.

SNN
In this study, the architecture we used is similar to other proposed
multi-layer convolutional SNN (Masquelier and Thorpe, 2007;
Tavanaei and Maida, 2017; Kheradpisheh et al., 2018; Mozafari
et al., 2018; Thiele et al., 2018; Paredes-Valles et al., 2019).
These studies highlighted the relevance of multi-layer SNN
trained with an STDP learning rule to extract spatiotemporal
features. Our architecture is composed of 3 layers trained with
STDP. There is no pooling layer, and the network uses delays
similar to (Paredes-Valles et al., 2019), but directly applied to
the input layer generated by the NeuroSoc (see Figure 1A). We
used a 3-layer SNN, composed of leaky integrate and fire (LIF)
neurons with feedforward connections and lateral inhibition.
The synaptic weights of the feedforward connections were learnt
through a simplified STDP rule (Bichler et al., 2012). Similar
as (Masquelier and Thorpe, 2007; Paredes-Valles et al., 2019),

we used a weight sharing process with retinotopically organized
neurons connected to 5 × 5 × d patches and a stride of 1
(d corresponds to the number of convolutional filters in the
previous layer). The network was also endowed with a lateral
inhibition mechanism which reduced the membrane potential of
all neurons sharing the same position, instead of resetting it (see
details in section Lateral Inhibition and Threshold Adaptation).
Simulations were performed using a C++ code developed by
the team.

Neuron Model
Our SNN was based on leaky integrate and fire (LIF) neurons.
When such a neuron receives an incoming spike, its membrane
potential increases in proportion to the synaptic weight that
connects it to the pre-synaptic neuron that emitted the spike. In
the absence of incoming spikes, the neuron membrane potential
leaks according to Equation (2):

Ui (t) = Urest + (U (tk) − URest) · exp

(

− (t − tk)

τmemb

)

(2)

tk: last time update
URest: resting potential= 0
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The SNN was event-based, and the membrane potential of a
neuron was only updated when an incoming spike was received
by the neuron. First, the leak was applied, and then, a value
Wi,j (weight connection between neuron i and j, constrained
between 0 and 1) multiplied by WMax was added to the
membrane potential.

A given neuron emitted a spike when its membrane potential
reached a threshold value UThresh. A spike was then generated
and propagated to the next layer and the membrane potential was
reset to its resting-state value Urest .

STDP
To update synaptic weight connections and to give neurons
the ability to learn specific features, we used a bio-inspired
unsupervised learning rule called spike-timing dependent
plasticity (STDP) (Bi and Poo, 2001; Caporale and Dan, 2008).
It detects input correlations and enables the neurons to become
selective to most frequently occuring patterns. Previous studies
have already demonstrated that SNNs equipped with STDP can
learn repetitive specific patterns (Masquelier et al., 2008), visual
properties such as orientation (Delorme et al., 2001; Masquelier,
2012), binocular disparity (Chauhan et al., 2018) or shape
(Masquelier and Thorpe, 2007; Diehl and Cook, 2015; Thiele
et al., 2018). In this study, we used a simplified STDP learning
rule inspired from (Bichler et al., 2012) (see Figure 1B). This
simplified version does not include a time window for LTD. If
the time of the last presynaptic spike is not included within the
LTP window (τLTP), LTD is applied. Synaptic weight updates
corresponding to spikes occurring during the LTP window are
all equal and therefore independent of spike times, as shown
in Equation (3). Contrary to the synaptic update rule used in
(Bichler et al., 2012), we included a multiplicative term which
depends on the current weight. This multiplicative rule also
forces a soft-bound on the weights in the interval (0, 1).

1Wi,j =
(

1−Wi,j

)

∗aLTP if tj − ti < τLTP and

1Wi,j = −Wi,j∗aLTD otherwise (3)

Wi,j: weight synaptic connection between afferent neuron i and j
ti: last spike of afferent i.
tj: last spike of neuron j.
aLTP/aLTD: amplitude of the potentiation/depression
τLTP: LTP time window.

Delays
Although SNNs equipped with STDP can learn different spatial
patterns (orientation, spatial frequency, binocular disparity, . . . ),
learning motion direction is a harder task because it relies on
spatio-temporal properties. Indeed, input neurons with similar
spatial positions spike but not in the same order: for leftward
(or rightward) motion, inputs placed on the left (right) spike
first, followed by other inputs from the left (right) to the right
(left). The common way to improve SNNs’ temporal selectivity
and thereby permit discrimination of motion direction is to
use delays. These delays improve synchrony between input
spikes for specific spatio-temporal patterns (rightward motion,
for example) and desynchronize inputs for opposite patterns
(leftward motion).

In order to work with delays, it is necessary to be careful
about the strategy employed to learn them. Over the last few
years, various approaches have been proposed to select these
delays (Eurich et al., 2000). For instance, the delay shift (Eurich
et al., 2000; Tversky and Miikkulainen, 2002; Gibson et al., 2014)
approach consists of learning the delay from the input spikes. In
addition to the weight-learning rule, this approach also uses a
specific learning rule for delays to increase the simultaneity of the
input spikes. Another approach, called delay selection (Paredes-
Valles et al., 2019), consists of duplicating synapses and adding
delays to them. In delay selection, a single weight-learning rule
can be used to select synapses with appropriate delays. In this
study, we used this second method (Eurich et al., 2000; Paredes-
Valles et al., 2019). Three different delays (0, d1, and d2) were
applied on each input and each synapse was therefore duplicated
three times. Because we consider both “on” and “off” events,
there were 6 different synapses for each pixel-positions (ON1t=0,
OFF1t=0, ON1t=d1, . . . , OFF1t=d2) as shown in Figure 1A.

Lateral Inhibition and Threshold Adaptation
When a neuron spiked, the neurons of the same layer sharing
the same retinotopic position were prevented from spiking. We
used an instantaneous inhibition, the membrane potential was
reduced by a specific value UInst [see, e.g., Diehl and Cook (2015)
and Delorme et al. (2001)]. The purpose of this inhibition was
to prevent the filters from learning similar patterns. It therefore
increases selectivity and sparsity within the neural population.

We also used a homeostatic process which added a penalty
Ulong,n to the neurons by increasing their threshold. The
magnitude of change in the threshold had an inverted “V” shape
in time—it increased and subsequently decayed back to zero (the
increase and decrease both lasted for a time-interval TThresh),
allowing a time dependent threshold adaptation (see Figure 1C
and Annex 1 in Supplementary Material).

The threshold variation and inhibition intensity was made
proportional to UPropInh: the current average of squared
membrane potentials of neurons connected to the same patch
(see Annex 1 in Supplementary Material).

Training Procedure
The 3-layer SNN was trained layer-by-layer in an unsupervised
manner using the STDP learning rule described in sectionDelays.
Seventy percentage of the recorded trajectories were used for
training. During the training and testing phases, trajectories
were presented individually and were separated by periods of 2 s
without spikes, allowing the SNN to reset to its initial state. The
third layer output was then used to make predictions, as detailed
in section Trajectory Prediction. For each convolutional filter (Nf

= 100 for the third layer), a polynomial regression was performed
with the spatial position (x and y) of the spiking neuron as input
and the ball’s vertical position as the predicted variable.

An SNN with STDP learning rule has some parameters which
need to be tuned (membrane potential time constant, ratio
LTP/LTD, learning rate, . . . ). We estimated these parameters with
a genetic algorithm (Mohammadi et al., 2017) (see Table 1).
A simplified version of the prediction process presented in
section Trajectory Prediction was used. The cost function for the
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minimization was the average value of the mean prediction error
at 15, 45, . . . , 90% of trajectory presentation.

Data Acquisition and Comparison
We recorded 297 passes of the ball between two participants
using the Neurosoc camera. The two participants were separated
by a distance of ∼2.30m, and the trajectories included
multiple velocities. The camera’s direction was perpendicular to
the trajectories.

Each of the 297 trajectories was manually labeled so as to
determine the start and end points of the throw, the direction
and the height of the reception (X and Y-axis, respectively, see
section Trajectory Prediction). The trajectories were partitioned
using a 70–30 train-test split, and the final training and testing
sets contained 208 and 89 trajectories, respectively.

To quantify the neuron’s selectivity, we recorded the ball’s 3D
spatial position with Vicon cameras (Merriaux et al., 2017). These
cameras use infrared light to capture the position of markers
placed on the ball, at a frequency of 200Hz. Four targets were
placed at four opposite positions on the ball. The ball’s center
of gravity was obtained by averaging these positions. A low-
pass filter was applied to these values with a cut-off frequency of
6Hz. Using the exact value of the ball over time, we could easily
determine the ball’s direction and speed.

Vicon technology uses infrared flashing lights to detect targets.
These lights were perceived by the camera and generated big
variations of brightness which generated spikes. To overcome this
issue, we used an anti-IR lens with a cut-off wavelength of 730 nm
(SP730 Near-IR/Colorless Dichroic Block Shortpass Filter, 2015).

Trajectory Prediction
Our main objective was to predict the ball’s reception point
from the output of the SNN. Since this point would be highly
impacted by the receiver (depending on whether he moved his
arms forward to intercept the ball or not), we restricted these
predictions to the y-axis. The prediction along the x-axis was
simplified, with only two choices reflecting the ball’s direction
(right or left).

The y-value was the ball’s position when it crosses the
blue/brown line for leftward/rightward directions (see
Figure 3B). Polynomial regressions (PR) for each filter of
the last layer were used to decode the SNN output and
predict the y-value. We used a simple decoder to ensure that
performances were mostly driven by processing within the SNN.
More complicated decoders could provide better results, but this
study focuses on the performance of the SNN. Second degree
polynomial regressions were chosen because filters of the SNN
spiked for specific patterns. If the SNN did not develop any
motion direction selectivity, predictions from PRs would be
inaccurate. To demonstrate this point, we also applied PRs to the
outputs of the neurosoc camera (i.e., PRs were performed on the
SNN inputs) (see Figure 6).

In this study, to determine the prediction on the Y-axis, we
used a PR of second degree for each filter n, Equation (4):

YPred,n = a00 + a10x+ a01y+ a20x
2 + a02y

2 + a11xy (4)

With x and y, the spatial position of the spiking neuron of
filter n, as schematized in Figure 3A. PR’s parameters were
learned by presenting all spatial positions of spiking neurons
of corresponding filter n as PR’s input and the corresponding
y-value at the spike time as value to predict. This process was
applied for each filter of the output layer.

The ball’s predicted direction (Xpred) was not taken into
account during the PR. Filters mostly encode for specific
directions. The direction was thus independent of the PR. The
root mean square error (RMSE) of each PR was then computed
in order to evaluate the reliability of each PR. Finally, a scoring
mechanism (see Figure 3C and Annex 2 in Supplementary
Material) was used to spatially integrate the predicted value
YPred,n based on the PR’s reliability, and perform an average
prediction over time.

Unsupervised Motion Tracking
The motion selectivity of filters should allow us to track specific
motions of stimuli based on their speed, directions, shape, etc.
There are few different motions-patterns in the stimuli, mainly
the ball and arms which can be divided into multiple parts
(hands, forearm, . . . ). An ideal way to evaluate our network’s
ability to track specific motions should be to label all of them, but
this would make the task highly time-consuming and unfeasible.
This study mainly evaluates if filters spike for the ball or for
shapes similar to the ball.

A first way to determine whether a filter spikes for the ball
is to compute the distance between the center of the ball and the
spike’s position. Because the camera was facing the plan of the ball
trajectory, there is a linear relation between the ball’s position in
the reference frame of the camera and the one of the Vicon. So,
given the ball’s position in the reference frame of the Vicon, we
can easily compute its position on the frame and compute the
distance between a given spike and the center of the ball.

Then, by looking at the mean distance Dn from the ball of
all spikes for each filter n, we can determine if the given spike
encodes the ball’s motion (if Dn is very low) or some other feature
like a part of an arm.

Because a neuron is determined by its position and its filter,
which encodes or not for ball motion (based onDn), we should be
able to track the ball’s motion based on the output of this network.
As an example, in the context of Figure 3A, we can expect that
filter 2 and 23 could be used to track ball motion and filter 1 for
hand motion.

Comparison With Human Performance
In order to compare the performances of our system to human
capabilities, we conducted an experiment during which 12
participants (mean age= 27+/− 12,9) were instructed to predict
the end-point of the ball at different time steps. The NeuroSoc
camera also recorded the classical frame-based video at f =

240 fps in parallel with spike estimation and transmission. The
trajectories presented to these participants were therefore exactly
the same as the ones used to test our SNN. All participants
had normal or corrected-to-normal vision, and were healthy
and without any known oculomotor abnormalities. Participants
were naïve with respect to the purpose of the experiment, which
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FIGURE 3 | (A) Readout process. When a neuron spikes, its spatial position in its corresponding neural map is used as input for the PR linked to the spiking neuron’s

filter. In this figure, 3 neurons from different positions and filters spike and generate 3 predictions. These are then integrated to compute a score value as presented in

(C). (B) Horizontal positions used as receiving points. (C) Example of the score update (see Annex 2 in Supplementary Material). Thick lines represent the score

added by three spiking neurons from different filters, based on Equation (4). It is assumed that these three neurons spike at the same time, and there is no leak of the

score. The dashed blue line represents the score. The gray and orange dotted lines are the real and predicted values, respectively.

received the appropriate ethical authorization from the “Comité
d’éthique de la Recherche” of the Federal University of Toulouse
(agreement 2020-279). The sample size was determined using
G∗Power (Faul et al., 2007) after having analyzed the results of
a previous experiment investigating the influence of presentation
duration on anticipation’s performances. The results showed that
for a desired power of 0.90, a total sample size of 12 participants
was required.

Only a part of the trajectories (i.e., the first 15, 30, 45, 60, 75,
and 90%) were presented to the participants who were instructed
to predict the end-point by clicking with the mouse on the
anticipated ending point, without any temporal constraint. The
experiment was divided into three parts:

- Pre-learning: first time videos are presented to participants
- Active-learning: after each prediction made by the participant,
the exact arrival point was -shown on the screen to provide the
prediction error to the user, as a feedback

- Post-learning: same procedure as Pre-learning (no error was
shown) but subjects had the experience of the “Active-
learning” phase.

For each part, 8 trajectories were shown for each percentage of
presentation time, for a total of 48 trials in each condition. Videos
with a dimension of 384 × 360 pixels were presented on a 13.3-
in. screen (60Hz, full resolution 1,366 × 768, dimension 29.5 ×
17 cm in horizontal by vertical).

In contrast to our SNN, the human participants already
had experience with ball motion or motion in general. We

nonetheless included an active-learning phase in the experiment
so that participants could adapt to its specificities.

RESULTS

Selectivity
During the acquisition of the videos, we used the Vicon
technology to precisely measure the trajectory and position
of the ball (see section Data Acquisition and Comparison).
After the learning phase, we characterized the selectivity of
the neurons from these ground truth data. We averaged
all results over 6 simulations of the SNN with different
random weight-initializations. The network learned using the
training set, and the results below are the analysis from
the output of the third layer with the test set as input
of the SNN.

Direction Selectivity
Motion direction selectivity was obtained by counting the
number of spikes from the output layer triggered by all the
ball’s trajectories. For each filter n, we divided the number of
spikes for each direction of the ball (rounded to the unit) by
the number of occurrences of each of these directions during
all presented throws, giving us θf n. These results are presented
in Figures 4A,B.

We can observe that filters mostly spike for directions
similar to their preferred direction θcn, which demonstrates
a strong motion direction selectivity. Figure 4C, provides a
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FIGURE 4 | Direction selectivity. (A) Normalized direction selectivity θFn of four different filters. Each filter spikes for different direction’s range. (B) General DS of all

filters centered on their preferred direction θcn. (C) Distribution of the preferred directions of the filter compared to number of input spikes per direction.

FIGURE 5 | (A) 2D normalized density of the ball’s speed by angle. Speeds and directions are correlated: for example, ascending motions are on average faster

(initiation of the throw, angles around 45 and 315 degrees) than horizontal motion (top of the trajectory, angles around 90 and 270 degrees). (B) Range of speeds that

generate a spike (blue line) for three filters with similar motion direction selectivity, compared to the range of speeds when the ball’s direction causes the corresponding

neuron to generate a spike (red line). These filters have similar direction selectivities, explaining the closeness of the red lines. We can observe that these neurons spike

for a smaller range of speeds (Sfn) compared to the randomly drawn distribution (SfRandn).

comparison between a histogram of the preferred directions
θcn of our filters and the occurrence of input spikes for
each direction.

Different filters are selective to different trajectories as shown
in Figures 4A,C, and there are more filters selective to ascending
motion. Indeed, leftward/rightward rising directions (which
include the throw phase, when the ball is still in the thrower’s
hand) represent the majority of our trajectories, and this result
confirms the ability of our model to learn the direction selectivity
patterns in the inputs.

Speed Selectivity
Using an analysis similar to direction selectivity, we evaluated Sfn:
the speed distribution for which each filter n spikes. However, this
is not sufficient to evaluate the speed selectivity as there is a broad
range of different speeds of the ball for all trajectories, but given
the limited set of recorded trajectories, directions and speeds are
correlated (kinematics in a uniform gravitational field), as shown
in Figure 5A.

To better characterize speed selectivity, we evaluated it
independently of its direction selectivity. We compared Sfn

Frontiers in Computational Neuroscience | www.frontiersin.org 8 May 2021 | Volume 15 | Article 658764

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Debat et al. Event-Based Trajectory Prediction

FIGURE 6 | (A) Evolution of the average absolute error with time of presentation for different PR inputs. (B) Average absolute prediction error comparison for different

PR inputs.

with a randomly drawn distribution SfRandn of ball’s speeds
with directions similar to the filter’s direction selectivity θf n.
Details about this randomly drawn distribution and filters’
speed selectivity can be found in Annex 3 in Supplementary
Material. A non-selective filter should have an Sfn very close to
SfRandn. Figure 5B, shows that filters become selective to the
ball’s speed. These three filters with similar direction selectivity
spike for a smaller range of speeds (Sfn) than the randomly drawn
distribution (SfRandn), and the distributions also have different
peak values. These results highlight filters’ selectivity for a range
of speeds and confirms previous results (Paredes-Valles et al.,
2019). This selectivity is broader than direction selectivity, and
although we cannot determine speed with high precision, it still
provides information about velocity, which is useful to make
predictions about the trajectory of the ball.

Trajectory Prediction
After training of the SNN and PRs, the test set of trajectories
was presented. For each spike generated by the last layer, the
prediction was updated. We analyzed the mean Absolute Error
(AE) and variability of AE (SD AE) obtained during the test
phase, through the mean of separate ANOVAs, with Visibility
(15–90%) as a within factor.

The ANOVA on AE showed that Visibility influenced the
mean AE, F(5, 25) = 1156.38, p < 0.001. Post-hoc tests using

Bonferroni corrections demonstrated that the mean AE was
always reduced as the visibility increased (see the layer 3 in
Figure 6). We obtained good performances even with 15% of
the trajectory with an error of 7.7 pixels. This error decreased
with presentation time and went down to 2.2 pixels for 90% of
trajectory presentation. No direction (rightward/leftward throw)
error was made, whatever the percentage of presentation. It
is important to note that for the lower Visibility condition
(15%), the video is stopped on average 0,114 s after the
throw’s initiation.

As a comparison, if we compute the mean of all training
values, equals to 68.2 pixel, and use it as a naive predictor,
we get an error of 9.4 pixels. Even with 15% of the trajectory
presentation, the SNN can predict the throw’s direction and is
16.7% better than this ≪ naive ≫ predictor. The ball was still
in the thrower’s hand for all trajectories at 15% of trajectory
presentation and also at 30% for 35 over 89 trajectories (the ball
had just left the hand for others).

The analysis of SD AE also showed a significant influence of

the Visibility, [F(5, 25) = 143.60, p < 0.001], with the SD AE

decreasing as the visibility increases. The SD goes from 5.605
pixels at 15% to 1.996 at 90%, with no significant difference
between the 15 and 30% conditions, and 75 and 90% conditions.
The evolution of the SD AE depending on visibility can be seen
in Figure 10B.
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FIGURE 7 | (A) Evolution of the average absolute prediction error with time of presentation for different number of trajectories presented during the learning phase. (B)

Average absolute prediction error for different number of trajectories presented during the learning phase.

We compared the prediction error over different layers, with
an untrained network and with direct inputs to evaluate the
performance of the learning and the impact of adding layers to
the network. As shown in Figure 6, using the direct input (i.e.,
output of the camera), we cannot predict the reception point. As
expected, PRs are not accurate with just the position information,
and need more complex features, such as speed and direction
encoded in filters.

Error prediction decreased over the successive layers. The first
layer still made some errors but performed far better on the
untrained network, more specifically for the end of the trajectory.

We subsequently investigated how quickly our solution (SNN
+ PR) could learn and how many presentations it needed to
provide correct estimations. We applied the same learning and
prediction process as before, but the learning was done with only
a subset (20, 40, 60, 80, and 100%) of the 211 training trajectories.
Our approach led to very good performance even when only
learning from 20% of trajectories. Performances increased and
then reached a ceiling at 80%, ∼168 trajectories, as shown
in Figure 7.

Unsupervised Motion Tracking
Numerous studies showed that SNNs equipped with STDP
develop a progressive selectivity to shape along their hierarchy

(asmore conventional neural networks) (Masquelier and Thorpe,
2007; Kheradpisheh et al., 2018; Thiele et al., 2018). Neurons in
the first layers are selective to edges whereas neurons in deeper
layers are selective to more complex features. In the context of
our SNNs, filters with a mean distance from the ball under 6
pixels mostly encode for features related to the ball (including the
forearm of the thrower when the ball is still in their hands). Filters
with an higher value encode for different features, like other parts
of the arm, the receiver, etc. The distribution of Dn highlights the
ability of filters to encode for specific motions’ patterns, such as
the motion of the ball (see Figure 8A). As shown in Figure 8B,
we can see the position of spikes for 4 different filters. Each filter
spikes for specific positions and different motion patterns. This
unsupervised selectivity could then be used to track motion of
specific objects such as the ball, the thrower’s hand, etc.

Human’s Performances
We analyzed the performance of human participants (AE and
SD AE) with two separate ANOVAs, with Learning (Pre-test,
Active and Post-test) and Visibility (from 15 to 90%) as within-
subject variables. The results show that visibility [F(5, 55) = 31.85,
p < 0.001] and learning [F(2, 22) = 10.78, p < 0.001] have
an influence on prediction error and there are no interactions
between these two factors [F(10, 110) = 2.32, p= 0.016]. Prediction
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FIGURE 8 | (A) Histogram of the mean distance Dn of all filters. Blue bars represent filters with Dn under 6 pixel which mostly spike for the ball, the hand or the

forearm. Red bars represent filters which spike for other features less correlated with the ball motion (arm, after throw motion, etc.). (B) Spike’s position for four

different filters: The filter number 37 (in red) spikes for ascending leftward ball’s motion, the opposite of filter 5 (in yellow) which spikes for descending rightward ball’s

motion. Filter 87 (in blue) is selective to the right thrower’s arm during the throwing motion (i.e., when the arm rises) and filter 10 (in green) to the left thrower’s arm after

throwing motion (i.e., when the arm goes back to initial position).

error decreases with the percentage of trajectory that is shown
to the participants, as shown in Figure 9B. From post-hoc tests,
we did not observe significant differences between 15 and 45
and between 45 and 60 percent of trajectory’s presentation.
There are also significant differences between pre-learning and
other learning phases (learning and post-learning) and not
between learning and post-learning, as shown in Figure 9A.
These results highlight the effect of the learning phase which
improves the prediction results which remain stable during the
post-learning phase.

Performance Comparison
To compare the performances between the human participants
and our SNN, we performed an ANOVA on the mean AE and SD
AE for the trained condition only (i.e., Post-Test condition for the
humans and test set for the 6 simulations of the SNN). We used
the participant-type (humans vs. SNN) as a between variable, and
Visibility as a within variable.

By comparing the results between humans and SNN, a
large difference between them can easily be seen at first
when comparing their mean absolute error [F(1, 16) = 47.09,
p < 0.001] and their SD AE [F(1, 16) = 20.16, p < 0.001]
for each participant/simulation. This suggests that predictions
made by the SNN are more accurate and more precise than
human predictions.

The mean and SD AE decreases in a linear way as Visibility
increases [for the mean: F(5, 80) = 38.21, p < 0.001, for the SD:
F(5, 80) = 22.88, p < 0.001], as shown in Figure 10. Finally, there
was a significant interaction, [F(5, 80) = 2.53, p = 0.036] for
AE only, indicating that the SNN always outperformed human
participants, except when the trajectory was presented for 60 or
90% of the trajectory. The absence of the interaction regarding
SD AE [F(5, 80) = 1.19, p= 0.32] indicates that SD AE is generally
lower for the SNN, independent of the visibility.

Next, we investigated how the SNN or human participants
predict the ending point of the ball trajectory. The prediction
strategy used by humans and the SNN is different as shown
in Figure 11. Indeed, the SNN has mean predictions close
to 68 pixels which is close to the average prediction value
of the training set (equals to 68.2 pixels) and remains
stable over time. On the contrary, average prediction for
human participants varies over presentation time. On average,
human participants under-estimate the final position of the
ball (prediction under 68.2 pixels) for the beginning of
the trajectory, which changes to a light over-estimation
with time.

The variability of predicted values is also different between
humans and our system. Indeed, the standard deviation of
predicted values increases over presentation’s times for our
solution. This one is low for the beginning of the trajectory
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FIGURE 9 | (A) Distribution of mean absolute error as a function of the learning phase. Yellow line and points represent average values. (B) Evolution of the mean

absolute error depending on the trajectory visibility.

and so our solution predicts values close to 68 px. Then, it
increases the prediction’s variability with more information and
so presentation’s time. This tendency is also valid for humans but
less≪ significant≫ than our system.

These results show a different way to predict the reception
point between our solution and humans. On the one hand,
our solution makes cautious and ≪ statistical ≫ predictions
by targeting close on average to 68.2 px (the average value of
the training set). As visibility increases, the SNN is able to step
aside from this mean value and predict a different position,
close to the correct value. In other words, the SNN makes
cautious predictions, based on the average value of the dataset
when the visibility is low, but is able to make more liberal—but
accurate—predictions as visibility increases. Humans however
seem to act differently, without using a statistical mean as a
target. Their perception is variable even under low visibility
conditions, indicating a trial-by-trial decision, and seems to
switch from an underestimation to a small overestimation as
visibility increases.

DISCUSSION

Studies have already shown the ability of SNNs to process motion
from a spike-based visual flow. This study extends the evidence

of the reliability of using SNNs for motion processing and the
efficiency of such networks.

One of our study’s main contributions is the new sensor
used to generate spikes and to analyze motion. Usually, SNNs
are fed by asynchronous spiking cameras (Bichler et al., 2012;
Orchard et al., 2013; Paredes-Valles et al., 2019) which spike
for each step of brightness, thus generating a large number
of spikes.

In this study, the brightness variation is encoded in the
spike’s temporality using the neuroSoc and an intensity
to latency conversion rule. The filtering process used
by the Neurosoc sensor thus provides less noisy and
sparser information.

Firstly, we show our system is able to process motion
information from a spiking camera, which is reliable for making
ball trajectory predictions.

Secondly, we show that the selectivity of the filters can then

be used to track specific motion patterns (arm, ball, etc.). Like
the motion selectivity of our network, the tracking ability is fully

unsupervised. While it was not the main objective of this study, it

highlights the ability of unsupervised neural networks to solve
multiple tasks. Thus, we can expect it to be relevant to other
related visual tasks such as gesture recognition, counting tasks,
object recognition, etc.
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FIGURE 10 | Evolution of the mean (A) and standard deviation (B) of the absolute error with trajectory visibility for humans (red) and SNNs (blue).

Finally, we show our system outperforms human prediction
on this task.

Previous studies have shown that it is possible to make
predictions from the outputs of SNNs receiving spikes generated
by an event-based camera. Some of them use liquid state
machines (LSM), but their predictions remain restricted to short
durations (i.e., typically a few ms) (Burgsteiner et al., 2007;
Kaiser et al., 2017). Another study used delays in anisotropic
lateral connections (Kaplan et al., 2013). Others use a learning
rule to anticipate inputs on longer prediction times but with
simpler and repetitive input stimuli (Gibson et al., 2014). Our
system permits predictions on longer duration by extracting
motion features, as we used ball’s trajectories restricted by
physics’ laws.

Event-based sensors allow performing sparse coding on
dynamic visual scenes. In the context of this study, only a
small part of the visual scene is relevant to be extracted as
we only want to process motion (ball and arm). Using the
testing dataset presented as the SNN’s input, an average of about
9,000 spikes per second were generated by the neuroSoc. This
represents only 0.26 percent of pixels for each frame (37 +/−
15.5 ON/OFF spikes per frame), and shows that, in comparison
to a full-frame synchronous camera, the output of the NeuroSoC
was extremely sparse. This, in turn, makes the system highly

energy-efficient if embedded in a neuromorphic chip as the
power consumption of spiking neural networks is determined
by the number of spikes processed (Farabet et al., 2012).
Through STDP, the network can then learn from these repeated
sparse spatio-temporal stimuli and is thus highly capable of
processing motion.

Even though our approach has been evaluated on a rather
easy task, with little variations in trajectories and minimal
background motion, this evaluation is still relevant to numerous
situations such as basketball free throws, or objects moving
along a specific constraint (e.g., cars moving on a road or
pedestrian crossing a sidewalk). In a more complex situation
with background motion, the motion tracking ability of the
SNN could be used to discriminate the ball’s motion from
other objects.

The next step would be to evaluate our system on more
complex trajectories (rebounds, collisions etc.) or scenes which
involve unconstrained motion trajectories such as pedestrians
moving along a footpath or players moving across a football
field. This type of solution could also be useful in robotics
(e.g., aerial drones) where real-time, energy-efficient processing
is highly desirable.

In the near future, one of our aims is to embed this SNN
on a chip such as the FPGA of the neuroSoc camera, allowing
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FIGURE 11 | Evolution of the mean (A) and standard deviation (B) of the prediction with trajectory visibility for humans (red) and SNNs (blue).

us to have the acquisition sensor, the spike extraction, and the
processing (SNN) in a single, low-powered, and real-time chip.
Hence, this work is the first step toward showing the reliability
of a simple SNN to extract relevant spatiotemporal features using
the neuroSoc camera.
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