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One of the most fundamental questions in the field of neuroscience is the emergence

of synchronous behaviour in the brain, such as phase, anti-phase, and shift-phase

synchronisation. In this work, we investigate how the connectivity between brain areas

can influence the phase angle and the neuronal synchronisation. To do this, we consider

brain areas connected by means of excitatory and inhibitory synapses, in which the

neuron dynamics is given by the adaptive exponential integrate-and-fire model. Our

simulations suggest that excitatory and inhibitory connections from one area to another

play a crucial role in the emergence of these types of synchronisation. Thus, in the case of

unidirectional interaction, we observe that the phase angles of the neurons in the receiver

area depend on the excitatory and inhibitory synapses which arrive from the sender

area. Moreover, when the neurons in the sender area are synchronised, the phase angle

variability of the receiver area can be reduced for some conductance values between the

areas. For bidirectional interactions, we find that phase and anti-phase synchronisation

can emerge due to excitatory and inhibitory connections. We also verify, for a strong

inhibitory-to-excitatory interaction, the existence of silent neuronal activities, namely a

large number of excitatory neurons that remain in silence for a long time.

Keywords: synchronisation, excitatory and inhibitory connections, exponential adaptive integrate-and-fire model,

neuronal activities, coupled areas

1. INTRODUCTION

The study of synchronisation of neuronal activities is one of the greatest topics in neuroscience
(Achuthan and Canavier, 2009; Fell and Axmacher, 2011; Protachevicz et al., 2020). Vysata et al.
(2014) analysed synchronous behaviour between different areas through electroencephalogram
(EEG) time series. The existence of phase, anti-phase, and shift-phase synchronisation between
brain areas during different cognitive tasks have been reported inmanyworks (Luo andGuan, 2018;
Alagapan et al., 2019; Carlos et al., 2020). Due to this fact, the capability of neurons to synchronise
in phase and anti-phase has been broadly investigated (Achuthan and Canavier, 2009; Liang et al.,
2009; Belykh et al., 2010; Jalil et al., 2010, 2012; Batista et al., 2012; Wang et al., 2012; Ao et al., 2013;
Lowet et al., 2016; Kim and Lim, 2020).
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Phase synchronisation between brain regions was observed
during memory processes (Klimesch et al., 2008; Fell and
Axmacher, 2011; Polanía et al., 2012; Fell et al., 2013; Clouter
et al., 2017; Daume et al., 2017; Staudigl et al., 2017;
Bahramisharif et al., 2018; Gruber et al., 2018), perception (Jamal
et al., 2015), attention (Sauseng et al., 2008; Kwon et al., 2015),
and motor tasks (Serrien and Brown, 2002). It was also reported
for subjects playing guitar (Lindenberger et al., 2009), meditating
(Herbert et al., 2005; Josipovic et al., 2012), in conscious
perception (Melloni et al., 2007), and during cognitive processes
(Canolty et al., 2006). Phase and anti-phase were observed in the
monkey visual cortex (Spaak et al., 2012). The organisation of
anti-phase synchronisation can be related to delayed excitatory
conductance between regions (Knoblauch et al., 2003; Li and
Zhou, 2011; Petkoski et al., 2018, 2019). The results demonstrated
by Fox et al. (2005) suggest that anticorrelated activities in the
brain dynamics, as well as correlated activities, can arise naturally
in the human brain. Some works have also reported observations
of anticorrelated activities in the mammalian brain (Fox et al.,
2009; Josipovic et al., 2012; Liang et al., 2012; Schwarz et al., 2013;
Kodama et al., 2018).

Recently, the synchronisation in neuronal networks in
presence of both excitatory and inhibitory synapses has been
observed using neuronal models (Bera et al., 2019a; Pal et al.,
2021) coupled through hypernetworks (Rakshit et al., 2018a;
Bera et al., 2019b) and multiplex configurations (Rakshit et al.,
2018b). In cortico-cortical communication, one cortical area can
interact with other one by means of excitatory and inhibitory
connectivities (Roland et al., 2014; Tamioka et al., 2015; Tovete
et al., 2015; D’Souza et al., 2016). In this work, we investigate
how the excitatory and inhibitory connectivities from one area to
another influence the phase angle and neuronal synchronisation.
We consider unidirectional (sender-receiver) and bidirectional
interactions between two areas. For the unidirectional interaction
and desynchronised neurons in the sender area, we show
that the phase angle values and synchronous behaviour of
the neurons in the receiver area depend not only on the
neuronal dynamics of the sender area, but also on the type
of connections between the areas. We find phase, anti-phase,
and shift-phase synchronisation in the receiver area when the
neurons are synchronised in the sender one. With regard to
the bidirectional interaction, we verify phase and anti-phase
synchronous behaviour between the areas. The excitatory-to-
excitatory (inhibitory-to-inhibitory) and excitatory-to-inhibitory
(inhibitory-to-excitatory) connections can induce phase and
anti-phase synchronisation between the areas, respectively. For
a strong inhibitory-to-excitatory interaction between the areas,
a large number of silent excitatory neurons are found in
both areas.

The paper is organised as follows. In section 2, we introduce
the neuronal network composed of adaptive exponential
integrate-and-fire (AEIF) neurons and the diagnostic tools to
characterise the synchronous behaviour. Sections 3 and 4 present
our results and discussions about the effects of the unidirectional
and bidirectional interactions between two areas, respectively, on
the neuronal synchronisation and the phase angle. We draw our
conclusions in section 5.

FIGURE 1 | Connection matrix of two areas, where excitatory and inhibitory

neurons are randomly connected. In each area, pee and pii are the probabilities

of connection between excitatory and inhibitory neurons, respectively. The

probability pei (pie) corresponds to the connection from the excitatory

(inhibitory) to inhibitory (excitatory) neurons. The superscript “A” is used for the

connection probabilities between neurons in different areas.

2. METHODS

2.1. Network
We build a neuronal network composed of two areas, where
each one has a thousand of adaptive exponential integrate-and-
fire neurons (N = 1, 000) (Brette and Gerstner, 2005). Each
area has a fraction of excitatory (Pexc = 0.8) and inhibitory
(Pinh = 0.2) neurons (Noback et al., 2005; di Volo et al.,
2019). In each area, the neurons are randomly coupled by
means of excitatory and inhibitory connections. The connection
is excitatory (inhibitory) when it occurs from an excitatory
(inhibitory) neuron. Inside of each area, the probabilities of
connections in the same neuronal populations (excitatory or
inhibitory) are given by pee = 0.05 and pii = 0.2, while
between different neuronal populations by pei = pie = 0.05
(di Volo et al., 2019). Between the areas, the probabilities are
given by pAee = 0.01 (from excitatory to excitatory neurons),
pAei = 0.05 (from excitatory to inhibitory neurons), pAii =

0.10 (from inhibitory to inhibitory neurons), and pAie = 0.05
(from inhibitory to excitatory neurons). Figure 1 shows how the
probabilities are distributed in a connection matrix, where k
and j correspond to the presynaptic and postsynaptic neurons,
respectively. In Figure 1, j, k ∈ [1, 1000] correspond to the
neurons in Area 1 and j, k ∈ [1001, 2000] to the neurons in Area
2. For the unidirectional configuration, the connections given
by k = [1001, 2000] and j = [1, 1000] are not considered. For
both unidirectional and bidirectional configuration, we consider
only excitatory or inhibitory connections between the areas in
each case.
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With regard to the coupling intensities, each one is associated
with a probability of connection and denoted by gee, gii, gei, gie,
gAee, g

A
ei , g

A
ii , and gAie . For instance, gei and gie are related to the

connections with the probabilities pei and pie, respectively.

2.2. Neuronal Model
The cortex is mainly constituted by excitatory pyramidal
neurons and inhibitory interneurons (Atencio and Schreiner,
2008). Excitatory neurons have a relatively lower firing rate
than inhibitory ones (Wilson et al., 1994; Inawashiro et al.,
1999; Baeg et al., 2001). In the mammalian cortex, excitatory
neurons show regular spike (RS), while inhibitory neurons
exhibit fast spike (FS) activities (Neske et al., 2015; Wang et al.,
2016). In addition, while inhibitory neurons exhibit a negligible
adaptation, excitatory neurons show an adaptationmechanism in
their firings (Foehring et al., 1991; Mancilla et al., 1998; Hensch
and Fagiolini, 2004; Destexhe, 2009; Masia et al., 2018; Borges
et al., 2020). The adaptive exponential integrate-and-fire (AEIF)
model is able to mimic these different firing patterns, including
RS and FS (di Volo et al., 2019). In this work, the dynamics of
each neuron j (j = 1, . . . ,N) in the network is given by

Cm
dVj

dt
= −gL(Vj − EL)+ gL1T exp

(

Vj − VT

1T

)

−wj + I + Ichemj ,

τw
dwj

dt
= aj(Vj − EL)− wj, (1)

τs
dgj

dt
= −gj.

The membrane potential Vj and adaptation current wj represent
the state of each neuron j. The capacitance membrane is set to
Cm = 200 pF, the leak conductance to gL = 12 nS, the leak
reversal potential to EL = −70 mV, the slope factor to 1T = 2
mV, and the spike threshold to VT = −50 mV. We consider
the injection of current I = 270 pA, which is the intensity
above the rheobase current. The application of this constant
current allows that the neurons change their potentials from
resting potentials to spikes. The level of the subthreshold and
triggered adaptation are represented by aj and bj, respectively.
We consider inhibitory neurons of fast spiking activities without
adaptation (aj = 0 and bj = 0) and excitatory neurons of regular
spiking with adaptation mechanisms (aj = [1.9, 2.1] nS and
bj = 70 pA). Neuronal adaptation corresponds to the capacity of
the neuronal membrane in adapting to its excitability according
to the past neuronal activity. A sub- and a triggered-threshold
adaptation mechanism can be associate with the parameters aj
and bj, respectively. The adaptation current also depends on
the adaptation time constant τw = 300 ms. gj represents the
synaptic conductance of each neuron j with an exponential decay
associated with the synaptic time constant τs = 2.728 ms. The
connections from excitatory and inhibitory neurons are related

to the excitatory and inhibitory matrix,
−→
M exc and

−→
M inh, where

each matrix element is identified as Mexc
jk

and Minh
jk

, respectively.

A matrix element is equal to 1 when there is a connection from
k to j or 0 in the absence of a connection. The excitatory and

inhibitory elements of the matrix are associated with the red and
blue dots in Figure 1. The chemical current input Ichemj arriving

on each neuron j is defined by the expression

Ichemj = Iexcj + Iinhj (2)

where the excitatory and inhibitory currents are given by

Iexcj = Ieej + Ieij + Iee,Aj + Iei,Aj ,

=
[

Vexc
REV − Vj

]

NT
∑

k=1

Mexc
jk gk(t − dexc), (3)

and

Iinhj = Iiij + Iiej + Iii,Aj + Iie,Aj

=

[

V inh
REV − Vj

]

NT
∑

k=1

Minh
jk gk(t − dinh), (4)

where I
xy
j and I

xy,A
j are associated with the excitatory (x=e) or

inhibitory connectivity (x=i) arriving at the excitatory (y=e) or
inhibitory neurons (y=i). The type of synapse depends on the
synaptic reversal potential VREV. We consider the Vexc

REV = 0 mV

for excitatory andV inh
REV = −80mV for inhibitory synapses.NT is

the total number of neurons in the network.When themembrane
potential of the neuron j is above the thresholdVj > Vthres (Naud
et al., 2008), the state variable is updated by the rule

Vj → Vr,

wj → wj + bj, (5)

gj → gj + gs.

In our simulations, we consider Vr = −58 mV. The value of bj
depends whether the neuron j is excitatory or inhibitory. Each
synaptic current is related to the respective conductance gs. Inside
of each area, gs is equal to gee for synapses between excitatory
neurons, gei for synapses from excitatory to inhibitory neurons,
gii for synapses between inhibitory neurons, and gie for synapses
from inhibitory to excitatory neurons. Between different areas we
include the superscript “A.” The time delay in the conductance is
dexc = 1.5 ms for excitatory connections and dinh = 0.8 ms for
inhibitory ones (Borges et al., 2020).

Table 1 gives the values of the parameters used in our
simulations. We consider gee = 0.5 nS, gii = 2 nS, and
gie = 1.5 nS. The areas exhibit synchronous and desynchronous
behaviour when uncoupled between them for gei = 1 nS and
gei = 2 nS, respectively. The area 1 is considered synchronised
and desynchronised when uncoupled, while the area 2 is always
considered desynchronised when uncoupled.

The initial values ofVj are randomly distributed in the interval
[−70,−50] mV for all neurons. The initial values of wj are
randomly distributed in the interval [0, 300] pA for excitatory
neurons and equal to 0 for inhibitory ones. The initial value of
gj is equal to 0 for all neurons. To solve the delayed differential
equations, we consider that the excitatory and inhibitory neurons
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TABLE 1 | Values of the parameters, where the excitatory values are indicated by

• and the inhibitory ones by ⋆.

Parameter Description Value

N AEIFs in each area 1,000 neurons

Areas Number of areas 2

A Area number 1 or 2

NT Total number of neurons 2,000 neurons

Cm Capacitance membrane 200 pF

gL Leak conductance 12 nS

EL Leak reversal potential –70 mV

I Constant input current 270 pA

1T Slope factor 2 mV

VT Threshold potential –50 mV

τw Adaptation time constant 300 ms

Vr Reset potential –58 mV

Mij Adjacent matrix elements 0 or 1

τs Synaptic time constant 2.728 ms

tfin Final time to analyses 100 s

tini Initial time to analyses 20 s

ai Subthreshold adaptation [1.9, 2.1] nS •

0 nS ⋆

bj Triggered adaptation 70 pA •

0 pA ⋆

VREV Synaptic reversal potential VexcREV = 0 mV •

V inhREV = -80 mV ⋆

gs Synaptic conductances gee, gei, g
A
ei, g

A
ee •

gii, gie, g
A
ii , g

A
ie ⋆

gee Excitatory to excitatory ⊙ 0.5 nS •

gei Excitatory to inhibitory ⊙ 1 or 2 nS •

gii Inhibitory to inhibitory ⊙ 2 nS ⋆

gie Inhibitory to excitatory ⊙ 1.5 nS ⋆

gAee Excitatory to excitatory ⊕ [0,3] nS •

gAei Excitatory to inhibitory ⊕ [0,6] nS •

gAii Inhibitory to inhibitory ⊕ [0,4] nS ⋆

gAie Inhibitory to excitatory ⊕ [0,4] nS ⋆

dj Time delay dexc = 1.5 ms •

dinh = 0.8 ms ⋆

The connections inside the area are identified by ⊙ and between the areas by ⊕.

in the network are not spiking before the beginning of the
simulation (t = 0). To integrate the set of ordinary differential
equations, we use the 4th Runge-Kuttamethodwith the time-step
of integration equal to 10−2 ms.

2.3. Synchronisation and Relative Phase
Angle
The synchronous behaviour in the network can be identified by
means of the complex phase order parameter (Kuramoto, 1984)

R(t) =

∣

∣

∣

∣

∣

∣

1

NT

NT
∑

j=1

exp
[

iψj(t)
]

∣

∣

∣

∣

∣

∣

, (6)

where R(t) is the amplitude of a centroid phase vector over time.
The phase of each neuron j is obtained through

ψj(t) = 2πm+ 2π
t − tj,m

tj,m+1 − tj,m
, (7)

where tj,m corresponds to the time of the m−th spike of the
neuron j (tj,m < t < tj,m+1) (Rosenblum et al., 1997). We
consider that the spike occurs when Vj > Vthres. The value of
R(t) is equal to 0 for completely desynchronised behaviour and
equal to 1 for fully synchronised patterns.

We calculate the time-average order parameter R (Batista
et al., 2017)

R =
1

tfin − tini

∫ tfin

tini

R(t)dt, (8)

where tfin − tini is the time window with tfin = 100 s
and tini = 20 s.

The order parameter for each area is given by

RA(t) =

∣

∣

∣

∣

∣

∣

1

N

A·N
∑

j=(A−1)·N+1

exp
[

iψj(t)
]

∣

∣

∣

∣

∣

∣

, (9)

where A denotes the area number. The mean value of RA(t) (RA)
is computed by Equation (8). The resultant phase angle of each
area A is defined as

2A(t) = arctan

(

R
y
A(t)

RxA(t)

)

. (10)

The real RxA and complex R
y
A components of the order parameter

can be described as

RxA(t) =
1

N

A·N
∑

j=(A−1)·N+1

cos
[

ψj(t)
]

, (11)

and

R
y
A(t) =

1

N

A·N
∑

j=(A−1)·N+1

sin
[

ψj(t)
]

, (12)

respectively. 2A(t) evolves in the counter-clockwise direction,
since each individual neuron evolves in this direction.

We define a relative phase angle for each area 2′
A(t) (Varela

et al., 2001) as

2′
A(t) = 2A(t)−21(t). (13)

The phase of the area 1 changes over time and its relative value

2′
1(t) is equal to 0. For the area 2, the relative phase angle 2

′

2(t)
can change over time. We calculate the mean value of the relative
phase angle of the area 2 by means of

2′
2 =

1

tfin − tini

∫ tfin

tini

2′
2(t)dt. (14)
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FIGURE 2 | Schematic representation of the mean order parameter of the

area 1 and area 2 for (A) out-of-phase, (B) phase, (C) anti-phase, and (D)

shift-phase synchronisation.

FIGURE 3 | Schematic representation of the excitatory connections (red

arrows) from the area 1 (sender) to the neurons in the area 2 (receiver). The red

and blue arrows represent the excitatory and inhibitory connections,

respectively.

To compute the predominant rotation direction of the area 2, we
consider the first-order derivative of their relative phase angle,
which corresponds to the instantaneous velocity of the relative
phase angle (rad/s), that is given by

2̇′
2(t) =

d2′
2(t)

dt
. (15)

The mean value of the relative velocity of the area 2 is obtained
via

2̇′
2 =

1

tfin − tini

∫ tfin

tini

2̇′
2(t)dt. (16)

FIGURE 4 | Unidirectional excitatory interaction between synchronised

neurons in the sender area and desynchronised neurons in the receiver area.

Synchronised sender area can generate phase and shift-phase

synchronisation due to gAee and gAei, respectively. (A) The predominant direction

of rotation of the relative phase angle of the area 2, (B) the standard deviation

of the relative phase angle of the area 2, (C) the mean relative phase angle of

the area 2, and (D) the mean order parameter of the area 2. The circle, square,

and triangle symbols indicate gAee = 2.7 nS and gAei = 0.6 nS, gAee = 1.5 nS and

gAei = 3 nS, and gAee = 0.3 nS and gAei = 5.4 nS, respectively.

The value is close to 0 for non-preponderant direction of rotation
and positive (negative) for predominant counter-clockwise
(clockwise) direction.

The variability of2′
2 is given by

σ2′
2
=

√

2′2
2 −2′

2

2
. (17)

Small and high deviations are given by σ2′
A

≈ 0 and σ2′
A
>

0.5, respectively. Figure 2 shows a schematic representation
of the mean order parameter of the area 1 and area 2 for
Figure 2A desynchronised patterns of both areas out-of-phase,

Figure 2B in-phase (2′
2 = 0), Figure 2C anti-phase (2′

2 =

π), and Figure 2D shift-phase synchronisation (2′
2 ≈ 4π/3).

In Figure 2A, the clockwise (blue) and counter-clockwise (red)
arrows indicate that the relative phase angle of area 2 change over
time. The amplitude and direction of the relative phase angle of

the area A can be described by RAe
i2′

A . In our simulations, we
observe results in which desynchronised activities can be related
to high variability of the relative phase angle of the area 2. When
the areas are synchronised, the variability of the relative phase
angle can go to 0. The mean value of relative phase angle is
efficient for small variability of the relative phase angle.
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FIGURE 5 | Raster plot (top), time evolution of 2′
2 (middle), and time evolution of the order parameter (bottom) for (A) gAee = 2.7 nS and gAei = 0.6 nS, (B) gAee = 1.5 nS

and gAei = 3 nS, and (C) gAee = 0.3 nS and gAei = 5.4 nS. We consider unidirectional interactions with excitatory connections between the areas, where the neurons are

synchronised in the sender area and the neurons are initially desynchronised in the receiver area. In the raster plots, the blue and red dots indicate the fires of the

inhibitory and excitatory neurons, respectively. Synchronised sender area can actuate on the initially desynchronised receiver area generating (A) phase

synchronisation due to gAee, (B) desynchronisation due to both gAee and gAei, and (C) shift-phase synchronisation due to gAei. In (A), R1 (black line) and R2 (green line)

exhibit different values due to the fact that there are some neurons with bursting activity in the area 2. The bursts are generated due to the excitatory connections from

the area 1 to the excitatory neurons of the area 2. In (C), R2 is smaller than R1 due to the excitatory connections from the area 1 to the inhibitory neurons of the area 2.

3. UNIDIRECTIONAL INTERACTION
BETWEEN THE AREAS

3.1. Excitatory Connections
We analyse a neuronal network separated into two areas (sender-
receiver) coupled by means of the excitatory connections.
Figure 3 displays a schematic representation of the sender area
1 to receiver area 2 via excitatory connections, that are related to
the gAei and gAee conductances.

Firstly, we consider the case in which the neurons in
the sender and receiver area are desynchronised. Through
the time evolution of 2′

2, we verify that, depending on
the conductance values, it can occur a relative counter-
clockwise rotation, clockwise rotation, or neither of them
in the area 2. We observe that gAee contributes to generate

positive 2̇′
2, while gAei to negative one. Both areas show

order parameters with small values, i.e., the neurons
remain desynchronised.

Secondly, we consider that the neurons in the sender area
are synchronised while the neurons in the receiver area are
initially desynchronised. In Figure 4A, the parameter space gAee×

gAei exhibits values of 2̇′
2 in [−0.1, 0.1] rad/s, where the 2̇′

2
values approximately or less than −0.1 are in a small black

diagonal region. For a large set of parameters, 2̇′
2 is close

to zero. Figure 4B displays σ2′
2
values about 0, except for a

small red region where the values are greater than 0.5. We
compute the mean relative phase angle of the area 2, as shown
in Figure 4C. We verify that gAee leads the area 2 to a value of the
phase angle equal to 0, while gAei leads to a shifted phase angle,

2
′

2 ≈ 4π/3. The stabilisation of the phase angle is associated with
the synchronisation of the area 2, as shown in Figure 4D. We see
a large region in which R2 is close to 1, meaning that the neurons
in the area 2 are synchronised.

Figure 5 displays the raster plot (top), relative phase angle
(middle), and order parameter (bottom) for (a) gAee = 2.7 nS and
gAei = 0.6 nS, (b) gAee = 1.5 nS and gAei = 3 nS, and (c) gAee = 0.3
nS and gAei = 5.4 nS, that are indicated in Figure 4 through the
circle, square, and triangle symbols, respectively. In Figure 5A,
we see that2′

2 is closed to the sender phase angle and the receiver
area has synchronised neurons due to a high gAee conductance.
Figure 5B shows that for a combination of gAee and gAei , neurons
in the area 2 are not synchronised. In Figure 5C, we observe
that due to high gAei conductance, neurons in the area 2 have a

shift-phase synchronisation, corresponding to 2
′

2 ≈ 4π/3, as
indicated in Figure 2D.

3.2. Inhibitory Connections
Figure 6 displays a schematic representation of the sender area to
the receiver area via the gAii and gAie conductances.

For desynchronised neurons in the sender and receiver areas,

increasing gAii , we see that 2̇′
2 is positive for small values of

gAie , as shown in Figure 7A. On the other hand, gAie contribute

to negative values of 2̇′
2. Figure 7B exhibits a high variability

(σ
2

′

2
> 0.5) of 2

′

2. In Figures 7C,D, we compute the mean

order parameters for the areas 1 and 2, respectively. The neurons
are desynchronised in the area 1, while in the area 2, we see a
small region in the parameter space where there is synchronous
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FIGURE 6 | Schematic representation of inhibitory connections from the area

1 to the neurons in the area 2.

FIGURE 7 | Unidirectional inhibitory interaction between two coupled areas

with desynchronised neurons. Desynchronised sender area can generate

synchronisation and silence on excitatory neurons of the receiver area due to

gAii and gAie, respectively. (A) The predominant direction of rotation of the

relative phase angle of the area 2, (B) the standard deviation of the relative

phase angle of the area 2, (C) the mean order parameter of the area 1, and (D)

the mean order parameter of the area 2. The circle, square, and triangle

symbols indicate gAii = 3.6 nS and gAie = 0.3 nS, gAii = 2 nS and gAie = 1 nS,

and gAii = 0.4 nS and gAie = 2.7 nS, respectively.

behaviour (R2 > 0.8). The increase of R2 is due to the gAii
parameter, that induces the inhibition of the inhibitory neurons
of the receiver area (circle). For high gAie values (triangle), a large
number of excitatory neurons do not fire. A similar result was
reported by Zhou et al. (2010), where silent activities of excitatory
neurons were observed due to a strong inhibition. Urban-
Ciecko et al. (2015) found which inhibition can silence excitatory
synapses in the neocortex. Pals et al. (2020) demonstrated that
activity-silence maintenance can be related to a working memory
process. The silence of neurons has received great attention in the
last years (Mochol et al., 2015; Wiegert et al., 2015; Barbosa et al.,
2020; Xu et al., 2020).

Figure 8 displays the raster plot (top), time evolution of 2′
2

(middle), and time evolution of the order parameter (bottom)

for the values of gAii and gAie indicated by circle, square, and
triangle symbols in Figure 7. For gAii = 3.6 nS and gAie = 0.3

nS (Figure 8A), the neurons in the area 2 synchronise and 2
′

2
denotes a relative counter-clockwise rotation. For gAii = 2 nS
and gAie = 1 nS (Figure 8B), the neurons in the area 2 are

desynchronised and 2
′

2 denotes a relative clockwise rotation.
In Figure 8C, there is no synchronous behaviour and we see a
large number of excitatory neurons that remain in silence for a
long time.

We also consider the case in which the sender area has
synchronised neurons. Figure 9A shows that the 2̇′

2 values are
positive due to the gAii conductance with small values of gAie for
small values of gAie . This result is similar to the situation in which
the neurons in the sender area are desynchronised. However, due
to the synchronised neurons in the area 1, we verify the existence
of regions in the parameter space gAii × gAie with small values of
the variability, as shown in Figure 9B. σ

2
′

2
< 0.5 corresponds

to a certain stabilisation of the relative phase angle of the area
2. Figure 9C displays the mean relative phase angle of the area 2.

For the lowest σ
2

′

2
, we find a region where2′

2 ≈ π . In Figure 9D,

we see that synchronous behaviour in the area 2 for large gAii and
small gAie values arise, where there is a circle symbol. Partial anti-
phase synchronisation is observed in the region indicated by the
square. The triangle denotes the region in which a high inhibition
of the excitatory neurons occurs, and as a consequence a great
quantity of excitatory neurons in the receiver area are silenced.

4. BIDIRECTIONAL INTERACTION
BETWEEN THE AREAS

4.1. Excitatory Connections
Figure 10 exhibits a schematic representation of bidirectional
interactions via excitatory connections with gAei and gAee
conductances. Without an interaction between the areas (gAee =

gAei = 0), the neurons exhibit desynchronised activities.
Figure 11A displays the mean order parameter of the

neuronal network. The region, where the circle is located, has a
larger value of R, due to the fact that the neurons in the two areas
are synchronised, namely phase synchronisation among neurons.
In Figure 11B, we verify that the reduction of the variability
can be associated with the synchronised activities between the
areas. Figures 11C,D shows the mean order parameters of
the areas 1 and 2, respectively. We can see that the regions
of the small variability of 2′

2 (circle and triangle symbols)
correspond to the synchronised activities. For the region with
large variability values (square symbol), the neurons of the areas
are desynchronised. In the region where the triangle symbol
is located, there is an anti-phase synchronisation between the
neurons of the areas 1 and 2.

4.2. Inhibitory Connections
Figure 12 displays a schematic representation of the bidirectional
configuration interacting through inhibitory connections
associated with the gAii and g

A
ie conductances. Without interaction

between the areas (gAii = gAie = 0), the neurons exhibit
desynchronised activities.
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FIGURE 8 | Raster plot (top), time evolution of 2′
A (middle), and time evolution of the order parameter (bottom) for (A) gAii = 3.6 nS and gAie = 0.3 nS, (B) gAii = 2 nS

and gAie = 1 nS, and (C) gAii = 0.4 nS and gAie = 2.7 nS. We consider unidirectional interaction with inhibitory connections between the areas, where the neurons are

desynchronised in the sender area and the neurons are initially desynchronised in the receiver area. A = 1 and A = 2 in black and green lines, respectively.

Desynchronised sender area can actuate on the initially desynchronised receiver area generating (A) synchronisation due to gAii , (B) desynchronisation due to both gAii
and gAie, and (C) silent activities of excitatory neurons due to gAie conductances.

FIGURE 9 | Unidirectional inhibitory interaction between two coupled areas,

where the neurons in the sender area are synchronised and the neurons in the

receiver area are initially desynchronised. (A) The predominant direction of

rotation of the relative phase angle of the area 2, (B) the standard deviation of

the relative phase angle of the area 2, (C) the mean relative phase angle of the

area 2, (D) the mean order parameter of the area 2. The circle, square, and

triangle symbols indicate gAii = 3.6 nS and gAie = 0.4 nS, gAii = 2 nS and

gAie = 0.9 nS, and gAii = 0.4 nS and gAie = 3.6 nS, respectively. Synchronised

sender area can generate synchronisation and silent activities of excitatory

neurons of the receiver area depending on gAii and gAie.

In the parameter space gAii × gAie , the mean order parameter
for the neuronal network (Figure 13A) shows a region in which
the neurons in the areas are synchronised, where a circle symbol

FIGURE 10 | Schematic representation of bidirectional interaction between

the areas by means of excitatory connections.

is located. For the standard deviation of relative phase angle
rotation of the area 2, we identify three regions with values
about 0, as shown in Figure 13B. The inhibitory connections
are responsible for decreasing the relative phase angle variability
(circle, square, and triangle symbols). Figures 13C,D exhibits
the mean order parameter of the areas 1 and 2, respectively.
The regions of small variability of 2′

2 can correspond to
the synchronous behaviour in each area or silence of some
excitatory neurons.

In Figure 14, we show the raster plot (top), the relative phase
angle (middle), and the order parameter (bottom) for (a) gAii =

3.6 nS and gAie = 0.2 nS, (b) gAii = 1.5 nS and gAie = 1.0 nS, and (c)
gAii = 0.2 nS and gAei = 2.5 nS, according to the circle, square, and
triangle symbols, respectively, denoted in Figure 13. Figure 14A
displays the occurrence of phase synchronisation among the
neurons between the areas. Depending on the values of gAii and
gAie , it is possible to observe partial anti-phase synchronisation
and silenced excitatory neurons, as shown in Figures 14B,C.
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FIGURE 11 | Bidirectional excitatory interaction between two areas with

desynchronised neurons. (A) The mean order parameter of the neuronal

network, (B) the standard deviation of the relative phase angle of the area 2,

(C) the mean order parameter of the area 1, and (D) the mean order

parameter of the area 2. The circle, square, and triangle symbols indicate

gAee = 0.9 nS and gAei = 0.2 nS, gAee = 0.5 nS and gAei = 0.9 nS, and gAee = 0.1

nS and gAei = 1.8 nS, respectively. The bidirectional excitatory connectivity can

generate phase and anti-phase synchronisation between the two areas due to

gAee and gAei, respectively.

FIGURE 12 | Schematic representation of bidirectional interaction between

the areas by means of inhibitory connections.

5. CONCLUSIONS

In this work, we investigate the influence of excitatory and
inhibitory connections between areas in neuronal synchronous
behaviour. We build a network with two areas formed by
excitatory and inhibitory neurons. The neuron dynamics is
modelled by means of an adaptive exponential integrate-and-
fire (AEIF) model, that is able to mimic known neuronal
activities. We consider unidirectional (sender-receiver) and
bidirectional interactions between the areas, as well as different
coupling configurations.

In the unidirectional interaction, firstly we analyse the
dynamical behaviour of the receiver area with excitatory
connections from the sender area. When the neurons in the

FIGURE 13 | Bidirectional inhibitory interaction between two areas with

desynchronised neurons. (A) The mean order parameter of the neuronal

network, (B) the standard deviation of the relative phase angle of the area 2,

(C) the mean order parameter of the area 1, and (D) the mean order

parameter of the area 2. The circle, square, and triangle symbols indicate

gAii = 3.6 nS and gAie = 0.2 nS, gAii = 1.5 nS and gAie = 1 nS, and gAii = 0.2 nS

and gAei = 2.5 nS, respectively. The bidirectional inhibitory connectivity can

generate phase and anti-phase synchronisation between the two areas

depending on gAii and gAie. In both areas, silent activities of excitatory neurons

are observed for small gAii and large gAie values, respectively.

sender area are desynchronised, depending on the conductances
values, counter-clockwise and clockwise rotation can arise in
the receiver area. For synchronised neurons in the sender area,
it is possible to observe phase and shift-phase synchronisation.
Secondly, for inhibitory connections from the sender area,
we find values of the conductances in which the neurons in
the receiver area can be silenced, namely, they do not spike
for a long time. The inhibitory connections can also induce
synchronous behaviour in the neurons that belong to the
receiver area even when the neurons in the sender area are
desynchronised. For synchronised or desynchronised neurons
in the sender area, the excitatory (inhibitory) connections
to the excitatory (inhibitory) neurons in the receiver area
generate an increase in the relative phase angle of the
receiver area. Otherwise, excitatory (inhibitory) connections
from the sender area to inhibitory (excitatory) neurons
in the receiver area reduce the relative phase angle of
the receiver area. We also verify that the synchronised
sender area is more efficient to reduce the variability of
the relative phase angle of the receiver area than the
desynchronised one.

With regard to bidirectional interactions, the excitatory
connections to the excitatory neurons can induce phase
synchronisation, while to inhibitory neurons can favour anti-
phase synchronisation. In our work, the anti-phase mechanism
due to the inhibitory connections is similar to the mechanism
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FIGURE 14 | Raster plot (top), relative phase angle (middle), and order parameter (bottom) for (A) gAii = 3.6 nS and gAie = 0.2 nS, (B) gAii = 1.5 nS and gAie = 1 nS, and

(C) gAii = 0.2 nS and gAei = 2.5 nS. We consider bidirectional interaction with inhibitory connections between the areas, where the neurons in the sender and receiver

areas are initially desynchronised. Due to the bidirectional inhibitory interaction, (A) phase synchronisation can emerge due to gAii , (B) anti-phase synchronisation due

to a combination of gAii and gAie, and (C) silent activities of excitatory neurons due to large values of gAie.

reported by Kim and Lim (2020). They demonstrated the
existence of phase-shift synchronisation among three cluster
networks due to inhibitory synaptic coupling. We verify that the
inhibitory connections from the areas to the inhibitory neurons
of other ones can generate phase synchronisation between
them due to the bidirectional interaction. In addition, when
the inhibitory connections arriving at the excitatory neurons
between the areas are strong, silence activities of the excitatory
neurons are observed.

Our simulations suggest that the excitatory and inhibitory
connections from one area to another play a crucial role in
the emergence of phase, anti-phase, shift-phase synchronisation
between the neurons in the areas. Our results should be useful
to clarify how these types of synchronisation emerge in neuronal
areas. For more than two areas, we expect to find phase
synchronisation due to gAee. Nevertheless, we believe that more
complex patterns related to the synchronous behaviour will arise.
In future works, we plan to study the emergence of neuronal
synchronisation in more than 2 coupled brain areas. We will also
analyse the influence of different interactions on the neuronal
activities as proposed in the model of Potjans and Diesmann
(2014).
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