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Predictive coding provides a computational paradigm for modeling perceptual
processing as the construction of representations accounting for causes of sensory
inputs. Here, we developed a scalable, deep network architecture for predictive coding
that is trained using a gated Hebbian learning rule and mimics the feedforward and
feedback connectivity of the cortex. After training on image datasets, the models
formed latent representations in higher areas that allowed reconstruction of the original
images. We analyzed low- and high-level properties such as orientation selectivity,
object selectivity and sparseness of neuronal populations in the model. As reported
experimentally, image selectivity increased systematically across ascending areas in
the model hierarchy. Depending on the strength of regularization factors, sparseness
also increased from lower to higher areas. The results suggest a rationale as to why
experimental results on sparseness across the cortical hierarchy have been inconsistent.
Finally, representations for different object classes became more distinguishable from
lower to higher areas. Thus, deep neural networks trained using a gated Hebbian
formulation of predictive coding can reproduce several properties associated with
neuronal responses along the visual cortical hierarchy.

Keywords: visual processing, predictive coding, deep biologically plausible learning, selectivity, sparseness,
sensory neocortex, inference, representation learning

INTRODUCTION

According to classical neurophysiology, perception is thought to be based on sensory neurons
which extract knowledge from the world by detecting objects and features, and report these to
the motor apparatus for behavioral responding (Barlow, 1953; Lettvin et al., 1959; Riesenhuber
and Poggio, 1999). This doctrine is radically modified by the proposal that percepts of objects
and their features are representations constructed by the brain in attempting to account for the
causes underlying sensory inputs (Kant, 1781; von Helmholtz, 1867; Gregory, 1980; Mumford,
1992; Friston, 2005; Pennartz, 2015). This constructivist view is supported, for instance, by the
perceptual psychology of illusions (Gregory, 1980; Marcel, 1983) and by the uniform nature of

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 666131

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.666131
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncom.2021.666131
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.666131&domain=pdf&date_stamp=2021-07-28
https://www.frontiersin.org/articles/10.3389/fncom.2021.666131/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-666131 July 22, 2021 Time: 16:39 # 2

Dora et al. DHPC Model of Visual Processing

action potentials conveying sensory information to the brain,
unlabeled in terms of peripheral origin or modality (Pennartz,
2009, 2015). A promising computational paradigm for generating
internal world models is predictive coding (Srinivasan et al.,
1982; Dayan et al., 1995; Rao and Ballard, 1999; Lee and
Mumford, 2003; Friston, 2005). Predictive coding models posit
that higher areas of a sensory cortical hierarchy generate
predictions about the causes of the sensory inputs they receive,
and transmit these predictions via feedback projections to lower
areas, which compute errors between predictions and actual
sensory input. These errors are transmitted to higher areas via
feedforward projections and are used for updating the inferential
representations of causes and for learning by modifications of
synaptic weights (Rao and Ballard, 1999; Bastos et al., 2012;
Olcese et al., 2018).

In addition to being aligned with the feedforward/feedback
architecture of sensory cortical hierarchies (Felleman and Van
Essen, 1991; Markov et al., 2014), the occurrence of some form
of predictive coding in the brain is supported by accumulating
experimental evidence. Superficial layer V1 neurons in mice
navigating in virtual reality code error signals when visual inputs
are not matched by concurrent motor predictions (Keller et al.,
2012; Leinweber et al., 2017; Keller and Mrsic-Flogel, 2018).
Moreover, indications for a bottom-up/top-down loop structure
with retinotopic matching were found by Marques et al. (2018)
for a lower (V1) and higher (LM) area in mouse cortex. In
monkeys, evidence for coding of predictions and errors has
been reported for the face-processing area ML (Schwiedrzik and
Freiwald, 2017). In humans, predictive coding is supported by
reports of spatially occluded scene information in V1 (Smith and
Muckli, 2010) and suppressed sensory responses to predictable
stimuli along the visual hierarchy (Richter et al., 2018).

While foundational work has been done in the computational
modeling of predictive coding, it is unknown how these
early models – which were often hand-crafted and limited
to only one or two processing layers (Rao and Ballard,
1999; Spratling, 2008, 2012; Wacongne et al., 2012) – can be
expanded to larger and deeper networks in a way that can be
considered neurobiologically plausible, or at least compatible
with neurobiological principles. For instance, previous models
studying attentional modulation or genesis of low-level response
properties of V1 neurons (e.g., orientation selectivity) were
limited to only a few units (Spratling, 2008) or to one processing
layer devoid of top-down input (Spratling, 2010; Wacongne et al.,
2012). These models provide a useful theoretical framework
for studying information processing in early sensory areas but
cannot be readily extrapolated to higher brain areas. A predictive
coding approach for training deep neural networks was
developed in Lotter et al. (2017) but this utilized the biologically
implausible method of error-backpropagation for learning.

Thus we set out, first, to develop a class of predictive
coding models guided by computational principles that allow
architectures to be extended to many layers (i.e., hierarchically
stacked brain areas) with essentially arbitrarily large numbers
of neurons and synapses. Second, learning was required to
be based on neurobiological principles, which led us to use
unsupervised, gated Hebbian learning instead of physiologically

implausible back-propagation based methods (Rumelhart et al.,
1986; Lillicrap et al., 2016). The class of predictive coding models
we introduce here is thus named “deep Hebbian predictive
coding” (DHPC). Third, we investigated which properties
associated with responses of biological neurons are also exhibited
by model neurons without being explicitly imposed by network
design constraints. For this purpose, we studied both low-level
visual cortical properties such as orientation selectivity (Hubel
and Wiesel, 1961) and high-level properties such as selectivity for
whole images or objects found in, e.g., inferotemporal cortex (IT)
(Gross et al., 1972; Desimone et al., 1984; Perrett et al., 1985).

MATERIALS AND METHODS

Model Architecture With Receptive
Fields
It is known that receptive field (RF) size increases from low to
high-level areas in the ventral stream [V1, V2, V4, and IT] of
the visual system (Kobatake and Tanaka, 1994). To incorporate
this characteristic, neurons in the lowermost area of our network
(e.g., V1) respond to a small region of visual space. Similarly,
neurons in the next area [e.g., secondary visual cortex (V2)]
are recurrently connected to a small number of neurons in
V1 so that their small RFs jointly represent the larger RF of
a V2 neuron. This architectural property is used in all areas
of the network, resulting in a model with increasing RF size
from lower-level to higher-level areas. Furthermore, there can
be multiple neurons in each area having identical RFs (i.e.,
neurons that respond to the same region in visual space). This
property is commonly associated with neurons within cortical
microcolumns (Jones, 2000).

The model variants described in this paper receive natural
images in RGB color model as sensory input of which the size
is described by two dimensions representing the height and
width of an image. Similarly, RFs of neurons in visual cortical
areas extend horizontally as well as vertically. To simplify the
explanation below, we will assume that the input to the network is
one-dimensional and correspondingly neurons in the model also
have RFs that can be expressed using a single dimension.

Figure 1 shows the architecture of the DHPC network with
(N+1) layers which are numbered from 0 to N. The layers 1
to N in the network correspond to visual cortical areas; layer
1 represents the lowest area [e.g., primary visual cortex (V1)]
and layer N the highest cortical area (e.g., area IT). Layer 0
presents sensory inputs to the network. Below, we will use the
term “area” to refer to a distinct layer in the model in line with
the correspondence highlighted above. Each area is recurrently
connected to the area below it. Information propagating from a
lower-level to a higher-level area constitutes feedforward flow of
information (also termed bottom-up input) and feedback (also
known as top-down input) comprises information propagating
in the other direction. Conventionally, the term “receptive field”
of a neuron describes a group of neurons that send afferent
projections to this neuron. In other words, a RF characterizes
the direction of connectivity between a group of neurons and
a “reference” neuron. We employ a more general definition of
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FIGURE 1 | Architecture of the deep Hebbian predictive coding network with receptive fields. (A) A population of neurons having identical receptive fields is
represented by three overlapping circles. pkl denotes the kth population in the lth area and sl is the size of the receptive field of all populations in the lth area. Both sl

and sl+1 have been set to 3 here. For this value of sl , the populations pkl−1 through p(k+2)l−1 constitute the receptive field of the population pkl (their connections are
represented by black lines). Similarly, for this value of sl+1, pkl will be present in the projective fields of populations p(k−2)l+1 through pkl+1 . The populations within the
receptive fields of p(k−2)l+1 , p(k−1) l+1 and pkl+1 have been shown using red, blue, and green arrows, respectively. Their connections with pkl are rendered in full color
while other connections are shown in light colors. (B) For processing images, neuronal populations in each area can be visualized in a two-dimensional grid. Each
population exhibits a two-dimensional receptive field (the receptive field of an example population in a higher-level area is shown in green). As a result, the receptive
fields of two different populations can exhibit different overlaps horizontally and vertically. The receptive fields of two horizontally adjacent populations (black and blue)
overlap completely in the vertical direction and partially in the horizontal direction. Similarly, the receptive fields of two vertically adjacent populations (black and
brown) overlap completely in the horizontal direction and partially in the vertical direction. (C) An overview of the network with nl = 1 for all areas. Sensory input is
presented to the network through Area 0. Activity of neurons in areas 1–4 is represented by tiles in grayscale colors. The green square in a lower area denotes the
receptive field of the population represented as a red tile in the higher area.

RF in which the RF of a reference neuron in the lth area is
defined in terms of neurons in the

(
l−1

)th area. Specifically, the
RF of a neuron x represents a group of neurons in a lower-level
area that receive error signals based on predictions generated
by higher-level neuron x (see section “Learning and Inference
Rule”). Similarly, the group of cells that receive projections from a
given neuron represents the projective field of that neuron. In the
current paper the term “projective field” of a neuron x describes a
group of higher-level neurons that receive error signals from the
lower-level neuron x (see section “Learning and Inference Rule”).

Neurons in the lth area are organized in populations of
nl neurons having identical receptive and projective fields.
Populations having an equal number of neurons are used
to reduce computational overhead. The activity of the kth

population in the lth area, referred to as pkl , is a (nl by 1) vector
denoted by ykl . To reduce computational complexity, we assume
that the RFs of all neurons in the lth area are of equal size, denoted
by sl, and the RFs of two consecutive populations have an overlap

of (sl−1). The population pkl is reciprocally connected with
populations pkl−1 through p(k+sl−1)l−1

(Figure 1). Thus, the lth

area has (sl−1) fewer populations with distinct RFs compared to
the

(
l−1

)th area. The synaptic strengths of connections between
the populations pkl and pkl−1 is a (nl−1 by nl) matrix denoted
by Wkl−1kl . We assume that the neuronal populations pkl and
pkl−1 are connected by symmetric weights, i.e., feedforward
and feedback projections between these populations have equal
synaptic strengths. The top-down information transmitted by
population pkl to pkl−1 is denoted by ŷkl

kl−1
and is given by

ŷkl
kl−1
= φ

(
Wkl−1kl ykl

)
(1)

where φ is the activation function of a neuron. Predictions
(see section “Learning and Inference Rule”) about activities of
the population pkl−1 are denoted by ŷkl

kl−1
. Neuronal activity is

described in terms of firing rate, which by definition can never
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be negative. Therefore, we used a Rectified Linear Unit (ReLU) as
an activation function which is defined as

φ(x) = max (x, 0) (2)

which results in values that are positive or zero. To extend the
architecture described above for handling natural images, the
populations in each area can be visualized as a two-dimensional
grid (Figure 1B). Here, each population has RFs that extend both
horizontally as well as vertically.

Learning and Inference Rule
The learning rule presented in this section is inspired by
the approach to predictive coding in Rao and Ballard (1999)
and builds upon our previous work (Dora et al., 2018). Each
area of the model infers causes that are used to generate
predictions about causes inferred at the level below. These
predictions are sent by a higher-level area to a lower-level area
via feedback connections. The lower-level area computes an
error in the received predictions, as compared to its bottom-
up input, and transmits this error to the higher-level area via
feedforward pathways. The information received by an area
is used to infer better causes, which is termed the inference
step of predictive coding, and also to build the brain’s internal
model of the external environment, which is termed the
learning step.

The neural implementation of predictive coding we developed
is shown in Figure 2 for a one-dimensional sensory input. For a
given sensory input, the neuronal activities

([
y1l , . . . , ykl , . . .

])
of all neurons in the lth area collectively denote the causes of
the sensory input inferred in this area, hence these neurons are
referred as “representation neurons.” Based on these causes, the
prediction of causes inferred in the

(
l−1

)th area is estimated
according to Equation 1. Note that a given neuronal population
in the lth area will generate predictions only about the neuronal
populations within its RF (Figure 2). This prediction in turn
activates (when ŷkl

kl−1
is positive) or deactivates (when ŷkl

kl−1
is 0) a gating mechanism (not shown in Figure 2) which
allows for inference and learning to occur (see below). Based
on the prediction, the neuronal populations in the lth area
receive bottom-up errors via feedforward connections only
from lower-level populations within their RF. Relative to
area l, the bottom-up error

(
β

kl−1
kl

)
based on the prediction

generated by pkl about the activity of pkl−1 is computed as

β
kl−1
kl
=

(
ykl−1− ŷkl

kl−1

)
(3)

The computation of this bottom-up error occurs in the
(
l−1

)th

area (red rectangles in Figure 2) and is transmitted to the
lth area via feedforward projections. The neurons in a given
area that compute the bottom-up errors are termed “error
neurons.” Note that the error neurons shown in Figure 2 were
not included in Figure 1 for simplicity. The simulations in
this paper use a summation of squared bottom-up errors

(
eβ

kl

)
received from populations in the RFs of pkl , which is given as

eβ

kl
=

k+sl−1∑
j=k

(
β

jl−1
kl

)2
(4)

In general, other biologically plausible functions of bottom-up
errors can also be used in simulations. Along with bottom-
up errors, neurons in the lth area also receive a top-down
prediction from neurons in the

(
l+1

)th area. Due to an overlap of
(sl+1−1) between two consecutive RFs in area

(
l+1

)
, populations

in the lth area will be present in the projective fields of
sl+1 populations in the

(
l+1

)th area (Figure 1A). Populations
in the lth area whose RFs are closer to the boundary of
the visual space are an exception to this property as these
neurons will be present in the projective fields of fewer than
sl+1 populations. Here, we will focus on the general case.
The population pkl will receive top-down predictions from
neuronal populations p(k−sl+1+1)l+1

through pkl+1 . The error
based on the top-down prediction of the neuronal activity of the
population pkl generated by the population pkl+1 is computed as

β
kl
kl+1
= (ykl− ŷkl+1

kl
) (5)

The computation of this top-down error occurs in the lth
area (Figure 2). In turn, this error will also constitute the
bottom-up error for the population pkl+1 . Thus, whether
an error signal is labeled bottom-up or top-down is
defined relative to the area under scrutiny. The superscript
and subscript in β

kl
kl+1

do not indicate a direction of
signal propagation. The summation of squared errors
due to the top-down predictions received by pkl from
p(k−sl+1+1)l+1

through pkl+1 is denoted by eτ
kl

and is given as

eτ
kl
= η

 k∑
i=k−sl+1+1

(
β

kl
il+1

)2
 (6)

where η was set to one for all models unless specified otherwise
(see section “Discussion”). In addition, we employ L1-
regularization to counteract high levels of neuronal activity
throughout all areas. Note that the regularization penalty
is instated to suppress the average neuronal activity and
does neither guarantee image selectivity nor representational
sparseness in neuronal populations (see below). The neuronal
activity of a given population is estimated by performing
gradient descent on the sum of errors computed in Equations
4, 6, and L1-regularization on neuronal activities. This
results in the following update rule for inferred causes

1ykl =

−γy

 k∑
i=k−sl+1+1

β
kl
il+1
−

k+sl−1∑
j=k

g
(̂

ykl
jl−1

) (
β

jl−1
kl

)T
Wjl−1kl+αy


(7)

where γy denotes the update rate for neuronal activities and
αy denotes the constant which controls how strongly the
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FIGURE 2 | Biologically motivated realization of deep Hebbian predictive coding. Each rectangle denotes a population of neurons that represents a specific signal,
computed in predictive coding. The populations that compute errors are denoted by red blocks and the populations that represent inferred causes are denoted by
blue blocks. Arrows represent excitatory connections and filled circles denote inhibitory connections (note that inhibitory interneurons were not explicitly modeled
here). The interareal connections between representation neurons and error neurons are plastic (Equation 8) whereas the intra-areal connections are not.
Connections conveying information required for the inference and learning steps of predictive coding are shown as black lines and other connections are shown in
gray. Gating mechanism has not been shown in this figure for simplification. See main text for explanation of symbols.

regularization penalty is imposed in comparison to other factors.
The regularization penalty is equivalent to imposing a Laplacian
prior on the estimated neuronal activities. Biologically, the
Laplacian prior represents a passive decay of the activity of a
population, at a rate determined by γy and αy and irrespective
of the stimulus and the current activation of the neuron.
g
(̂

ykl
kl−1

)
in Equation 7 is a gating factor (equivalent to the

partial derivative of the ReLU activation function), given by:

g
(̂

ykl
kl−1

)
=

 1 if ŷkl
kl−1

> 0

0 if ŷkl
kl−1
≥ 0

(8)

Functionally, this operation is implemented by a gating
mechanism which supports both inference and learning in the
neural implementation of predictive coding (see below and
section “Discussion”). All results presented here are based on
a single model with a Laplacian prior. This is different from
Rao and Ballard (1999) where Gaussian and sparse kurtosis
priors were used for separate experiments. The update rule
of Equation 7 constitutes the inference step of predictive
coding. It results in causes that better match with top-down
predictions and result in lower bottom-up errors. Higher-level
areas thus influence the representations inferred in lower-level
areas through top-down predictions. Similarly, lower-level areas
affect the representations inferred in higher-level areas via
bottom-up errors. To ensure that neuronal activities do not
become negative after updating, we rectify the neuronal activities
after every inference step using the rectifier function (Equation 2).
Note that 1ykl depends on the activities of neuronal populations
that represent errors in the (l−1)th and lth areas and the synaptic
strengths of the projections between populations in these two
areas (Figure 2). All of this information is available locally to the
population pkl .

The strengths of the synapses between populations in any two
areas are updated using a (gated) Hebbian learning, resulting
in gradient descent. Analogous to the inference step, an L1-
regularization is imposed to avoid indiscriminately high values

of synaptic strengths which imposes a Laplacian prior on the
synaptic weights. Based on the errors defined in Equation 4 and
L1 regularization of weights, the update rule for synaptic strength
is given by:

1Wkl−1kl = −γw

(
−g

(̂
ykl

kl−1

)
β

kl−1

kl

(
ykl

)T
+αw

)
(9)

where γw denotes the learning rate (governing synaptic weight
changes) and αw is the constant which determines how strongly
regularization is imposed relative to other factors. The learning
rule of Equation 9 constitutes the learning step of predictive
coding. The term g

(̂
ykl

kl−1

)
in Equation 9 is not computed by a

separate neural implementation but is functionally realized by
the same gating mechanism as used in Equation 7. Consider
the top-down prediction

(̂
ykl

kl−1

)
received by error neurons in

the (l−1)th area from the population pkl (Figure 2). When,

for instance, this prediction is 0, β
kl−1
kl

is equal to the neuronal
activity

(
ykl−1

)
of the population pkl−1 (Equation 3). In this

case, the update in the neuronal activity of the population pkl−1
due to top-down error is proportional to the current activity
of this population itself (Equation 7). Because g

(̂
ykl

kl−1

)
is 0,

no modification occurs at the interareal synapse between the
population pkl and error neurons in the

(
l−1

)th area (Equation 9).
In this case, the gating mechanism in the

(
l−1

)th area blocks flow
of information onto the intra-areal synapse from representation
neurons to error neurons, which prevents synaptic modification.
When the prediction is positive, g

(̂
ykl

kl−1

)
is equal to 1, and

therefore the interareal synapse between the population pkl and
the error neurons in the (l−1)th area can be modified. Thus,
the first term

(
g
(̂

ykl
kl−1

)
β

kl−1
kl

(
ykl

)T
)

in 1Wkl−1kl is a (gated)
Hebbian term as it depends on the activity of the population
that represents bottom-up errors

(
β

kl−1
kl

)
and the activity

(
ykl

)
of pkl ; these two are presynaptic and postsynaptic relative to
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each other, respectively (Figure 2). With “gated” we denote that
plasticity is controlled by an additional factor controlling the
amplitude of change, assuming a value of 0 or 1. The second
term (αw) represents a Laplacian prior on the weights and is equal
to the partial differentiation of the L1-norm of theweights being
updated with respect to weights themselves. The

(
nl−1 by nl

)
matrix of synaptic strengths

(
Wkl

kl−1

)
between two populations

can consist of both positive and negative weights. For a given
weight (w) between the pre- and post-synaptic populations β

kl−1
kl

and ykl , the second term equates to

αw =

{
−1 if w > 0
1 ifw < 0

(10)

which represents a passive decay of the weights. Based on this
decay term, if w > 0, the weight will be updated to a value closer
to 0, and the same holds for w < 0. The rate of this passive decay
is determined by the product of the constants γw and αw. Thus,
the learning rule in Equation 9 conforms to (gated) Hebbian
plasticity. Note that it is used to update the synaptic strengths for
interareal connections between error neurons and representation
neurons whereas the intra-areal connections are not updated.

Model Architecture Without Receptive
Fields
In the generative model described in sections “Model
Architecture With Receptive Fields” and “Learning and
Inference Rule,” the representations in the lth area of the model
are optimized to generate an accurate prediction about causes
inferred in the

(
l−1

)th area. In turn, this prediction about
causes inferred in the

(
l−1

)th area can be used to generate
a prediction about causes inferred in the

(
l−2

)th area. This
process can be repeated until a prediction is generated about
the sensory input in the lowest area. Using this method, it
is possible to obtain a reconstruction of the sensory input
using representations inferred in any area of the model. This
functionality is shared with autoencoders (Hinton and Zemel,
1994). Note that information on the original sensory input
is only coded by higher areas in the model by way of latent
representations of the causes of sensory inputs. Here we use
these reconstructions to qualitatively study the fidelity with
which information about the sensory input is coded by the
representations inferred in different areas. Our main goal is to
study neural response properties in a cortex-like architecture
with feedforward and feedback processing between areas, which
deviates from the structure of autoencoders. Due to presence
of overlapping RFs, neurons in each area generate multiple
reconstructions of a single sensory input at the lowest level. This
makes it harder to compare the reconstructions obtained using
representations inferred in different areas of the model. To avert
this problem, we built a network without RFs that is trained
by the same method used for the network with RFs. In the
network without RFs, each neuron in a given area is recurrently
connected to each neuron in the areas below and above it.
This fully connected network contained the same number of

layers as the network with RFs and corresponding layers of the
two networks contained equal numbers of neurons. A single
reconstruction of each sensory input was obtained using the
representations inferred in different areas of the network without
RFs. Examples of these reconstructions are shown in the section
“Model Without Receptive Fields: Inferred Causes Can Be Used
to Reconstruct Sensory Input.” Besides the reconstructed sensory
inputs, all other results reported here are based on the results
obtained with the network having RFs.

Details of Training
Both models are trained using 2000 images of airplanes and
automobiles as sensory input and these were taken from the
CIFAR-10 dataset. Each image has a height and width of 32 pixels.
Table 1 shows the values of different hyperparameters associated
with the architecture and learning rule. During training, stimuli
were presented to the network in batches of 100. For each
stimulus in a batch, the inference step (Equation 7) was executed
20 times in parallel in all areas and then the learning step
(Equation 8) was executed once. Biologically, this corresponds to
inferring representations of a sensory input on a faster time scale
and updating the synapses of the underlying model on a longer
time scale. At the beginning of training, the activity of all neurons
in the network was initialized to 0.1 and the model was trained
for 25,000 iterations.

Because the visual input image is of equal height and width,
populations in areas 1–4 can be visualized in two-dimensional

TABLE 1 | Hyperparameter settings used for training the network with and without
receptive fields.

Hyperparameter Meaning Value (with
RFs)

Value (without
RFs)

N Number of layers 4 4

sl,∀l ∈ {1, 2, 3, 4} Size of receptive
fields

7 Fully connected

n1 Population size
(Number of neurons
in a population) in
area 1

8 5408

n2 Population size in
area 2

16 6400

n3 Population size in
area 3

32 6272

n4 Population size in
area 4

64 4096

γy Update rate for
inference

0.05 0.0005

γw Learning rate for
synapses

0.05 0.0005

αy Regularization for
causes

0.001 (all areas) 0.0001

αw Regularization for
weights

0.001 (all areas) 0.001

The size of receptive field in the network with receptive fields is equal in both image
dimensions. Note that the term receptive field (RF) has been used in this table in
line with its conventional definition. For the network without RFs, n1, n2, n3, and n4
are equal to the total number of neurons in each area.
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square grids. Areas 1–4 in the models presented here can be
visualized using grids of sizes 26, 20, 14, and 8, respectively, which
results in 676, 400, 196, and 64 populations in the respective
areas. Each population in areas 1–4 contains 8, 16, 32, and 64
neurons, respectively, resulting in a total of 5408, 6400, 6272,
and 4096 neurons (number of populations times population
size), respectively. We varied several hyperparameter settings and
observed that prediction errors started saturating when the ratio
of the population size in a higher area to the population size in
a lower area was higher than 2. In line with this observation,
we trained models in which the population sizes were doubled
in each successive area to ensure that lower predictions errors
could be achieved across all model areas. Due to regularization
and the rectification of causes after the inference step, some of the
neurons remained inactive for any sensory input. These neurons
were excluded from the analysis of activity patterns conducted in
this paper, as they would not be detected by electrophysiological
methods. At the end of a typical training session for a network
with the neuron counts given above, 5393, 1280, 694, and 871
neurons were active in areas 1–4 of the network, respectively.
The firing-rate responses of neurons across all areas in the model
assumed values in the interval [0, 7.9].

To compute the number of synapses in the network, note
that for every feedback synapse that transmits a prediction,
there is a corresponding feedforward synapse that transmits an
error (Figure 1). Thus, the number of feedforward and feedback
synapses in the network is equal. The number of feedback
synapses from a population (neurons with identical RFs) is equal
to the product of the population size in higher-level and lower-
level areas and the RF size in the higher level area. For example,
the population size in areas 1 and 2 is 8 and 16 neurons (Table 1),
respectively, and populations in area 2 have projective fields
that extend by 7 units horizontally and vertically. This results
in 6272 (7 × 7 × 8 × 16) feedback synapses from a given
population in area 2. Thus, the total number of synapses between
two areas is equal to 794,976 (area 0 and 1), 2,508,800 (area 1
and 2), 4,917,248 (area 2 and 3), and 6422528 (area 3 and 4; the
number of populations times numbers of feedback synapses per
population), respectively.

Analysis of Neural Properties
Kurtosis is a statistical measure of the “tailedness” of a
distribution. It is more sensitive to infrequent events in
comparison to frequent events in the distribution. A commonly
used definition of kurtosis, termed “excess kurtosis,” involves
computing it for a given distribution with respect to the normal
distribution. Under this definition, 3 (i.e., the kurtosis value of
the normal distribution) is subtracted from the corresponding
value of a given distribution. Given a set of observations
(x1, . . . , xi, . . . , xN), excess kurtosis, henceforth referred to
simply as kurtosis, is computed using the following equation:

κ =

∑N
i=1 (xi−x)4

Ns4 −3 (11)

where x and s denote the mean and standard deviation of the
observations (N in total). Based upon the use of kurtosis as a

measure of neuronal selectivity (Lehky et al., 2005) and sparseness
(Lehky and Sereno, 2007) in experimental neuroscience, we
employ it as a measure of these properties in our model. An
estimate of kurtosis obtained from responses of a single neuron
to all stimuli is used as an estimate of image selectivity. While
computing selectivity, N will be equal to the number of stimuli.
Similarly, its value obtained from the responses of all neurons to
a single stimulus provides an estimate of sparseness. In this case,
N will be equal to the number of neurons.

RESULTS

In this study we worked with two types of DHPC networks.
The first type was a model without RFs, whereas the second
model had RFs. Below we will first present results from the
model without RFs. The aim of this first modeling effort was
to examine if the network is well-behaved in the sense that
latent representations of causes generated in higher areas can
be effectively used to regenerate the sensory input patterns
in lower areas, as originally evoked by input images. This
regeneration was qualitatively evaluated as we did not set
an explicit goal to achieve 100% accuracy. Following this
section we will continue with DHPC networks with RFs,
because this type of model is better suited to examine response
properties of neurons across the respective areas along the visual
processing hierarchy.

Model Without Receptive Fields: Inferred
Causes Can Be Used to Reconstruct
Sensory Input
For the DHPC networks without RFs, we used a model
that was trained on an image set X to infer causes for
an image set Y that was never presented to the network
during training. Set X contains images of objects from two
classes, i.e., airplanes and automobiles, and set Y consists
of images of 10 object classes namely airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. Note
that images of airplanes and automobiles in set Y were
different from images of these object classes in set X. For
a given stimulus in Y , a reconstruction of this stimulus is
obtained using the causes inferred from each area of the
model. For a given area, the inferred causes transmit a
prediction along the feedback pathways to the level below. This
process is repeated throughout the hierarchy until a predicted
sensory input is obtained at the lowest level. Figure 3 shows
examples of reconstructions of novel stimuli obtained using
the causes inferred in each area of the model, along with
the original sensory input. The first three exemplars are of
airplanes and an automobile which belong to object classes
that were used to train the model. The other exemplars
are reconstructions of a frog, a bird, a horse, and a ship,
which were never presented to the network during training,
neither as exemplar nor as object class. We conclude that the
reconstructions become somewhat blurrier if the generative
process is initiated from higher, as opposed to lower, areas of
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FIGURE 3 | Examples of reconstructions obtained using causes inferred by the trained model without receptive fields. Each column represents an example of a
sensory input. The three leftmost images represent novel stimuli from object classes used in training whereas other images are from object classes not used in
training. The top row shows the novel sensory input that was presented to the network to allow it to construct latent representations across the areas. The second to
fifth rows show the reconstructions of the sensory input obtained using the latent representations in the corresponding areas of the model. It can be observed that
the reconstructed sensory input faithfully reproduces the novel originals, although the lower areas regenerate the inputs more sharply.

the model, but also that the natural image statistics are captured
reasonably well.

Orientation Selectivity Emerges in a
Lower Area of the Network With
Receptive Fields
Neurons in V1 respond selectively to sensory input consisting
of edges oriented at specific angles in their RFs (Hubel
and Wiesel, 1961). The neurons in layer 1 of the model
with RFs also exhibited this property. Importantly, this
orientation selectivity was not hand-crafted or built into
the network a priori, but emerged as a consequence of
training the network on inputs conveying naturalistic image
statistics. After training, the strengths of feedback synaptic
connections between area 1 and 0 of the model resembled
Gabor-like filters. Figure 4 plots the strengths of synapses
onto a given neuron as representative examples for area 1
of the model (cf. Figure 1C). These plots were obtained
by normalizing the feedback weights of a representation
neuron in area 1 to the interval [0, 1]. Each image is
obtained by rendering the normalized weights of a single
representation neuron in area 1 as pixel intensities where
each pixel corresponds to a specific neuron in area 0 in the
RF of this representation neuron. Conventionally, orientation

selectivity is viewed as a property of feedforward projections
to V1. The model described here uses symmetric feedforward
and feedback weights (apart from their difference in sign,
Figure 2), therefore the orientation selectivity illustrated here
is applicable to both feedforward and feedback connections
between areas 0 and 1.

Image Selectivity Increases Across
Ascending Areas of the Model
Neurons in different brain areas situated along the sensory
processing pathways exhibit tuning to features of increasing
complexity. Whereas neurons in the primary visual cortex (V1)
respond to edges of different orientations (see above) neurons
in V4 respond selectively to, e.g., textures and colors (Okazawa
et al., 2015) and neurons in IT show selectivity to particular
faces or other objects (Gross et al., 1972; Tanaka et al., 1991;
Perrett et al., 1992; Logothetis and Pauls, 1995). This property
is manifested by differences in selectivity of cells across areas of
the visual cortical hierarchy with later stages exhibiting higher
selectivity in comparison to earlier stages. For our model, we
asked whether analysis of area-wise neuronal activity would also
reveal increasing selectivity from the lowest to highest areas.

Figure 5 shows the distribution of image selectivity for
neurons in each area of the model. The kurtosis was computed for
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FIGURE 4 | Orientation selectivity emerges in the lowermost area (area 1) of a trained model with receptive fields. Plots show normalized synaptic strengths for
connections between area 1 and 0 (i.e., the input layer) of the model. Each box shows a symbolic representation of synaptic strengths from a randomly selected area
1 neuron to all area 0 neurons within its receptive field (right panel). Darker regions in the images correspond to normalized synaptic strengths closer to 0 and
brighter regions in the images correspond to normalized strengths closer to 1. It can be observed that receptive fields of many cells contain non-isotropic patches
imposing orientation selectivity on neural responses in area 1.

each neuron based on its responses to all stimuli presented to the
model (Equation 10) and used as a measure of image selectivity
for a single neuron (Lehky et al., 2005). The figure shows that
neurons in all areas exhibit a strong response to a small number
of images and that there are many images to which the neuron
has a gradually weaker response. Similar response properties have
also been reported in studies on areas along the visual processing
hierarchy. Figure 6 shows example object tuning curves based on
multi-unit recordings in monkey IT [reproduced from Sato et al.
(2009); see also Suzuki et al., 2006]. Figure 5 shows that the mean
image selectivity increases from the lowest to the highest area in
the model. We compared the average selectivity in a given area
with every other area in the model using Mann–Whitney’s U-test
with Bonferroni correction for multiple comparisons. For all
comparisons, the null hypothesis was rejected with p < 5.10−15.
Thus, image selectivity strongly increased when ascending the
model hierarchy.

Sparseness Increases Across Ascending
Areas of the Model
A feature related to neuronal selectivity is sparseness, reflecting
how scarcely or redundantly a feature or object is coded across
the population in a given area (Vinje and Gallant, 2000; Willmore
and Tolhurst, 2001; Perez-Orive et al., 2002; Montijn et al.,
2015). A high or low sparseness can easily arise in a population
with large variations in average cellular activity. For instance,
consider a population in which a single neuron has an average
firing rate of 100 spikes/s and all other neurons have an average
firing rate of 10 spikes/s. In this population, the peak in the
distribution of population activity due to the neuron with high
average activity will result in high sparseness. To overcome
this problem in the analysis, we normalized the activity of all
model neurons using their average activity and an individual
estimate of kurtosis was obtained for each stimulus across
all neurons in each area based on this normalized activity.

Figure 7 shows a distribution of sparseness in each area. We
found that the average value of sparseness across all stimuli in
each area increased systematically from the lowest to highest
area. For validation, we conducted a pairwise comparison of
sparseness values in different areas using Mann–Whitney’s U-test
with Bonferroni correction for multiple comparisons. For all
comparisons between areas, the null hypothesis was rejected with
p < 5.10 −34.

We found that these results were strongly dependent
on regularization in the network. In the absence of any
regularization, average sparseness first increased and then
decreased when ascending across areas (Supplementary
Figure 1). This can be attributed to the network property that all
areas in the model infer causes that reconcile bottom-up and top-
down information (Equations 4, 6) received by an area, except
for the top area where causes are determined only by bottom-up
information. This lower constraint on the top area leads to a
decrease in sparseness in areas farther away from the sensory
input layer. Imposing regularization only on representations
inferred in the top area to compensate for this lack of constraint
did not alter this pattern of average sparseness across model
areas (Supplementary Figure 2). Further analysis showed that
this phenomenon occurred because sparse neuronal activity in
higher areas induced by regularization results in sparse top-down
predictions to lower areas which indirectly induce sparseness in
representations inferred in lower areas. Thus, average sparseness
in areas is determined by multiple factors pertaining to learning
and inference. Differences in these factors across experimental
studies may help explain why previous experimental studies on
visual cortex have reported diverging results on sparseness (see
section “Discussion”).

Furthermore, high regularization led to neurons being active
for only a small number of images. When the activity of
such neurons was normalized by their mean activity, this
could result in very high (relative) activity for some of these
images. An estimate of kurtosis obtained from normalized
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FIGURE 5 | Image selectivity of model neurons increases across ascending areas of the model. (A–D) Distribution of image selectivity of neurons in each area of the
model (top panels; A: lowest area/Area 1; D: highest area/Area 4). The mean value of neuronal image selectivity for each area is shown in the top right corner of the
corresponding plots. (Bottom panel) The activity of a randomly chosen neuron in each corresponding area has been sorted according to its response strength for all
stimuli presented to the network. It can be observed that the average selectivity of neurons increases from lower to higher areas in line with experimental data.

Frontiers in Computational Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 666131

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-666131 July 22, 2021 Time: 16:39 # 11

Dora et al. DHPC Model of Visual Processing

FIGURE 6 | Rank-ordered responses to visual stimuli in monkey inferotemporal cortex. Firing-rate responses (spikes/s) to faces and hands of human and monkey
recorded from different activity spots are plotted against stimulus rank. Here, activity spots refer to specific localized anatomical regions within inferotemporal cortex.
The pictures below each figure represent the top 12 of preferred object stimuli, arranged in descending order from left to right. The upper row indicates the six most
preferred images and the lower row indicates the 7th to the 12th best images [reproduced from Sato et al. (2009)].
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FIGURE 7 | Sparseness in neuronal activity increases across ascending areas of the model. Sparseness was measured as the kurtosis across all neuronal
responses in a given area and given a single stimulus. The mean value of sparseness is computed by averaging these estimates of kurtosis across all stimuli. (A–D)
Distribution of sparseness in each area. The mean value of sparseness for each area is shown in the top right corner of each plot. It can be noted that the average
sparseness of all neurons in model areas increases from lower to higher areas in agreement with some of the experimental studies.

neuronal activity can thus lead to arbitrarily high estimates of
sparseness (Figure 7).

Selectivity Is Negatively Correlated While
Sparseness Is Weakly Correlated With
the Average Neuronal Response
We next studied the relationship between a neuron’s selectivity
and its average response to all stimuli. Similarly, for each area
of the model we also investigated the relationship between
the average response of all neurons in an area to a stimulus
and the sparseness estimate for that area. The selectivity in
different areas of the model exhibited wide variations. For the
purpose of visualizing how the relationship between selectivity
and mean neuronal activity evolves from lower to higher areas,
we looked at the relationship between the log of selectivity
and mean neuronal activity. We observed that, in all areas,
there was a negative correlation between the selectivity and
average neuronal activity, i.e., neurons with high selectivity had
low average activity. Pearson correlation coefficients of −0.23,
−0.05, −0.55, and −0.42 were obtained between selectivity and
mean responses in areas 1–4, respectively. This has also been
reported in experimental data (Lehky et al., 2011). Further,
this negative correlation became stronger from lower to higher
areas in the model.

We conducted a similar study on the relationship between
sparseness and average population activity. It has been reported
in experimental data that the average population response

shows little variation for different values of sparseness (Lehky
et al., 2011). This was also the case for all model areas as
we observed only weak correlations between sparseness and
average population responses. Pearson correlation coefficients of
−0.18, 0.02, 0.23, and 0.18 were obtained between sparseness
and mean responses in areas 1–4, respectively. These similarities
between the statistical properties of model neurons and data from
animal experiments arise without being imposed by a targeted
network design or training procedure. The weak correlations
between sparseness and average firing rate of all neurons in a
given area imply that the responses of neurons in that area to
different stimuli vary in terms of their distributed activity pattern,
while the average firing rate across all neurons in the area does
not change significantly for various stimuli. This behavior was
observed for all areas in the model. Functionally, this may enable
a sensory cortical system to keep the average firing rate in an
area relatively constant across stimuli, while exhibiting distinct
activity patterns to these stimuli, which is useful for stimulus
discrimination capacities and efficient energy consumption.

Regularization Determines Whether
Sparseness Depends on Highly Selective
Neurons or Neurons With High Dynamic
Ranges
Although selectivity and sparseness represent different aspects
of neuronal activity, they are interconnected quantities, i.e.,
a population consisting of highly selective neurons will also
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exhibit sparseness in the population response to a single stimulus.
However, data recorded from macaque IT show that the dynamic
range of single-cell responses correlates more strongly with
sparseness than selectivity (Lehky et al., 2011). Here, dynamic
range was quantified using the interquartile range of neuronal
responses, which is the difference between the 75th and 25th
percentiles of a neuron’s responses to the individual stimuli
presented. We asked which of the two factors, selectivity or
dynamic range, contributed to sparseness in the responses of
model neurons in different areas.

To examine the interactions between these network
parameters, we estimated sparseness in three different sets
of neuronal populations that differed in terms of selectivity and
dynamic range. Figure 8 shows the histogram of interquartile
ranges for neurons in each area. The dynamic range gradually
increased from lower to higher areas as more neurons shifted
away from low range values. For each area, we considered a first
subset, denoted by “SNR” (i.e., Selective Neurons Removed),
obtained by removing activities of the top 10% of neurons having
the highest selectivity in that area (Figure 8). To obtain the
second subset of each area, denoted by “DNR” (i.e., Dynamic
Range Neurons Removed), we eliminated the activities of the top
10% of neurons with the broadest interquartile ranges. Figure 9
also shows the distribution of sparseness of the third set, viz.,
including all neurons of an area (denoted by “All”). It can be
clearly seen that sparseness is more dependent on neurons with
high selectivity in comparison to neurons that exhibit a broad
dynamic range. Thus, our model shows a strong influence of
neuronal selectivity on sparseness. This model behavior was also
dependent on regularization.

In the absence of regularization, sparseness in lower areas
was determined by high selectivity neurons, but in higher areas
sparseness was determined by high dynamic range neurons
(Supplementary Figure 3). This can be attributed to the network
property that the bottom-up input to lower areas is more
strongly driven by a fixed sensory input whereas in higher
areas the bottom-up drive is based on constantly evolving
representations. Stochastic fluctuations resulting from these
evolving representations at the inference step in higher areas
lead to higher dynamic response ranges in these very areas. As a
result, sparseness is more strongly determined by high dynamic
response range neurons in higher areas, which is in line with
the experimental results of Lehky et al. (2011). However, adding
regularization to the top area constrains neural activity in higher
areas, thereby reducing the dependence of sparseness on high
dynamic range neurons (Supplementary Figure 4).

Area 4 Exhibits Higher Object
Classification Performance Compared to
Lower Model Areas
We next studied the ability of the model with RFs to infer
causes that generalize across different exemplars of a given object
class. The exemplars varied in terms of object identity, viewing
angle, size, etc. For this purpose, we trained separate support
vector machine (SVM) classifiers using latent representations of
causes in each of the four areas of the model (Figure 10A).

We split the set of images using a 75–25 ratio where 75% of
the images were used for training and 25% of them were used
for evaluating the classification performance. Using the training
subset of the stimuli with which the model was trained, a linear
binary SVM classifier was optimized to distinguish between
representations of exemplars of two object classes, i.e., airplanes
and automobiles. The remaining stimuli (25% of the images)
were used to estimate the performance of the SVM classifier
which thus yields an estimate of the model’s capacity to generalize
across different exemplars of the same class. The percentage
of latent representations that was correctly categorized by the
trained binary SVM classifier was used as an estimate of object
classification performance.

To examine whether the representations in different areas
exhibited better generalization progressively across ascending
areas, we optimized a linear SVM classifier using representations
for 1500 stimuli randomly chosen from both classes and then
computed its classification performance on the remaining 500
stimuli. This analysis was repeated 100 times by bootstrapping
without replacing the samples selected for optimizing the linear
SVM classifier. Figure 10B shows the classification performance
of the SVM classifier for representations in different areas of
the model. First, we observed a classification accuracy well
above chance level in all areas (one sample t-test; p-values
are lower than 8.10−130 for all areas). Second, we observed a
modest but systematic increase in the classification performance
from the lowest to highest area of the model. This shows
that representations in higher areas can generalize better
across unfamiliar exemplars than lower areas. To validate
our results, we compared the accuracy in the topmost area
with accuracy in other areas using Mann–Whitney’s U-test
with Bonferroni correction for multiple comparisons. The
maximum p-value of 0.0004 was obtained for the comparison
between the accuracies of the topmost area and area 2.
Based on these comparisons, the null hypothesis for all
comparisons between areas was rejected at a significance level
of at least 0.01.

To ensure that this result was not dependent on the number
of stimuli used, we repeated this analysis with different stimulus
sets. For this purpose, we optimized the SVM classifier on
stimulus sets containing 1000–1500 stimuli in steps of 100 and
evaluated its performance on the remaining stimuli. Figure 10C
shows the performance of the classifiers optimized using different
numbers of stimuli for different areas of the model. The
generalizing capacity of the inferential representations in higher
areas of the model was better than in the lower areas irrespective
of the number of stimuli used to optimize the SVM classifier.
For all comparisons, the null hypothesis could be rejected at a
significance level of at least 0.05. The lowest level of significance
was obtained for the comparison between the accuracies of the
top area and area 2 (p < 1.10 −21).

DISCUSSION

We described a general method to build deep predictive
coding models for estimating representations of causes
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FIGURE 8 | (A–D) Distribution of the dynamic range of neurons computed as the interquartile range of the neuronal responses in a given area across all stimuli. The
mean value for each area is computed by averaging across interquartile ranges for all neurons in that area.

of sensory information, based on principles compatible
with neurobiology. Different hyperparameters of the
network can be modified to model various aspects of
cortical sensory hierarchies; for instance, N was varied
from 1 to 5 to study cortical hierarchies of increasing
depth. This provides a mechanism to develop deep neural
network models that can be used to simultaneously study
properties of lower-level as well as higher-level brain
areas. The models were trained using unsupervised (gated)
Hebbian learning. Both the inference and learning steps
utilized only locally available information. We found that
several properties of neuronal and population responses
emerge without being imposed a priori by network
design or by the inference and learning steps. Image
selectivity increased systematically from lower to higher
levels, even in a linear model with no regularization of
weights and representations, and the average sparseness
of representations increased from lower levels to higher
levels, which has been reported in experimental work
(Okazawa et al., 2017).

Furthermore, we studied object classification properties of the
causes inferred by the model. The classifiers optimized using
representations in higher areas exhibited better performance in
comparison to those in lower areas. Thus, predictive coding
may provide a useful basis for the formation of semantic
concepts of increasing complexity along the information
processing hierarchy in the brain, at least when combined
with networks performing categorization [e.g., in the medial

temporal lobe (Quiroga et al., 2005) or prefrontal cortex
(Freedman et al., 2003)].

Reproduction of Experimental Findings
by the Model
The increase in image selectivity in ascending areas of DHPC
networks has also been reported in experimental studies on visual
cortical areas (Gross et al., 1972; Tanaka et al., 1991; Logothetis
and Pauls, 1995). This can be attributed to the strong activation of
neurons in each model area by the patterned activity of neurons
within their RF. For example, neurons in the lowest area develop
Gabor-like filters that resemble oriented edges which have also
been shown to emerge naturally in theoretical models based on
efficient coding of sensory input (Barlow, 1961; Olshausen and
Field, 1996; Chalk et al., 2018). These low-level neurons will be
strongly active when a particularly oriented edge is present within
their RF. Similarly, a neuron at the next level will be strongly
active when neurons within its RF at the lower level exhibit a
specific pattern of activity. A neuron at this higher level will
therefore only become active when a particular configuration of
edges (rather than a single edge) occurs at a specific location in
visual space, resulting in an increase in complexity of features
coded at this level. This increased complexity in successive model
areas leads to a corresponding increase in the average neuronal
selectivity when ascending the hierarchy.

It could be argued that regularization will automatically
lead to an increase in average selectivity in neuronal responses
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FIGURE 9 | Highly selective neurons determine sparseness more strongly in comparison to neurons with high dynamic range. (A–D) Histogram of sparseness for
three different populations of neurons. The distribution of sparseness was first determined with all neurons in an area included, and is shown in blue. The population
in which the top 10% most image-selective neurons were removed (SNR) is shown in dark green and light brown denotes the populations in which the top 10%
neurons with high dynamic response range were removed (DNR). The top 10% selective neurons that were removed here, were identified based on their image
selectivity (cf. Figure 5). Neurons in the top 10% of the dynamic range that were removed were identified based on their interquartile ranges (cf. Figure 8). Values
represent the mean sparseness estimates for the different populations in corresponding colors. In all areas of the model (except area 1) it can be observed that the
mean sparseness drops much more strongly on removal of highly image-selective neurons in comparison to removal of neurons with high dynamic range.

across model areas. To examine this possibility, we also trained
linear models without regularization (either for synaptic weights
or inferred causes) while all other hyperparameters remained
unchanged. These models also exhibited an increase in average
selectivity across model areas, underscoring the conclusion that
this increasing selectivity is an emergent network property, not
solely imposed by regularization. However, adding regularization
did result in an overall increase in average selectivity in each
model area. By definition, the responses of a selective neuron will
have a high interquartile range. Thus, the increasing selectivity
across model areas also leads to an increase in the average
interquartile range across ascending model areas (Figure 8).

Unlike selectivity, there is no consensus in the literature
on how sparseness varies along the cortical hierarchy due
to a lack of consistency in experimental data. Experimental
studies indicate either an increase (Okazawa et al., 2017) or
constancy of sparseness along the cortical hierarchy (Rust
and DiCarlo, 2012). We observed that variations in average
sparseness across model areas depended strongly on multiple
factors which include the hierarchical position of an area, the
regularization and the difference in weighting of bottom-up
versus top-down feedback. A lack of top-down feedback in the

top area resulted in lower average sparseness in areas closer
to the top compared to lower areas. Thus, a low average
sparseness at the top spreads to other areas in the network
(Supplementary Figure 2). Similarly, having regularization in
the top area leads to increased sparseness in other areas, with
areas closer to the top exhibiting a stronger increase in sparseness
(Supplementary Figure 2). Having regularization at the top
significantly reduced the difference in sparseness between areas 1
and 4 (Supplementary Figure 2), which aligns with experimental
observations reported by Rust and DiCarlo (2012). These effects
could be altered by changing the relative strength assigned to
bottom-up and top-down feedback. For instance, in a model
with regularization in the top area and η < 1 (Equation 6),
the average sparseness increased from lower to higher areas
as observed in Okazawa et al. (2017). These results may help
explain the varying results regarding sparseness observed in
experimental data. Thus, different settings associated with the
three factors that impact sparseness (viz., hierarchical position
of an area, regularization and difference in weighting of bottom-
up versus top-down feedback) may support various sparseness
regimes across the information processing hierarchy, thereby
enabling exploration of dynamic coding behaviors in the brain.
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FIGURE 10 | Object classification performance based on Area 4 representations is higher than that based on lower model areas. (A) Method used for computing the
accuracy of a classifier based on causes, in this case, inferred in area 1. The inferred causes for a given stimulus are presented to a support vector machine (SVM)
classifier whose output is used to determine the predicted class (airplanes versus cars) of a given stimulus. This procedure is repeated for all areas. (B) Boxplot of
classification performance in different areas using 1500 randomly selected samples for optimization. Horizontal lines of the boxes denote the first, second, and third
quartiles. Whiskers represent the entire range of data and circles denote outliers. The second quartile in all areas was significantly above chance level accuracy (one
sample t-test, *p < 0.05). The performance of the classifier optimized using area 4 representations was significantly higher than the performance of classifiers of
other areas (Mann–Whitney’s U-test with Bonferroni correction, *p < 0.05). (C) Boxplot of classification performance in different areas using different numbers of
samples for optimization. The number of samples did not affect the conclusion observed in panel (B) (Mann–Whitney’s U-test with Bonferroni correction, *p < 0.05).

In experiments, sparseness has been compared across two brain
regions at most, and our model suggests that results obtained
from such studies may not generalize to other brain regions.

Regularization also affected the contributions of high-
selectivity neurons or high-dynamic range neurons to sparseness
(Figure 9). Having regularization in an area suppressed the
average neural activity in this area, thereby reducing the
dependence of sparseness on high dynamic range neurons
(Supplementary Figure 4).

Object Classification Performance
We showed that a binary SVM classifier optimized using higher-
level representations (causes inferred in area 4) performed better
than a classifier trained on lower-level representations (i.e., in
areas 1, 2, and 3). This effect disappeared when there was no
regularization penalty. Regularization of activity and synaptic
strength biased the network to generate representations in
which most neurons were inactive (or less active) and active
neurons captured most of the information in the presented
stimuli. This results in a representational code that allows better
discrimination between object classes. Thus, regularization helps
improve the accuracy of the classifiers based on representations
in each area significantly above chance level. In combination
with increasing feature complexity in the network, this leads to

a modest but systematic increase in classification performance
from lower to higher levels in the network.

Comparison With Previous Models
Existing works on predictive coding models have provided a
solid foundation for studying various properties of neuronal
responses in early sensory areas (Rao and Ballard, 1999;
Spratling, 2008, 2010, 2012). For instance, it has been shown
that a predictive coding network with two cortical regions and
suitable initialization of synaptic strengths can reproduce various
aspects related to attention (Spratling, 2008). An extension
of this model reproduced various properties associated with
neuronal responses in V1 (Spratling, 2010). A different model
of predictive coding that employed neurons selective to different
auditory tones arranged in a columnar architecture accounted for
mismatch negativity (Wacongne et al., 2012). DHPC networks
advance upon these studies by providing a methodology for
building scalable, deep neural network models using a (gated)
Hebbian rule for both adjusting synaptic strengths and estimating
inferential representations. It can be used as a framework to study
more complex aspects of information processing that rely on
higher level areas in the brain.

Deep Hebbian predictive coding networks provide a
mechanistic framework for predictive processing with arbitrary
and scalable architectural attributes corresponding to biological
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analogs like RF size and number of brain areas. Here, DHPC
networks were scaled up to contain millions of synapses and
thousands of neurons whereas most existing predictive coding
models have simulated networks with up to hundreds of neurons
and thousands of synapses. Furthermore, DHPC networks
reproduce, within the same architecture, many attributes of
neuronal responses without explicit a priori incorporation of
these properties in the model. Probably, the approach closest
to our work is by Lotter et al. (2017) who employed networks
consisting of stacked modules. This network was specifically
designed to predict the next frame in videos and was trained
end-to-end using error-backpropagation, which is unlikely to be
realized in the brain.

Neurobiological Plausibility and
Anatomical Substrate of Predictive
Coding
Deep Hebbian predictive coding networks employ a learning rule
(Equation 9) that consists of a Hebbian term depending on the
activity of pre- and post-synaptic neurons, a gating factor, and an
additional passive decay term. The decay term leads to a passive
decrement of established weights toward zero and is determined
by the learning rate (γw) and the factor (αw) that determines
the strength of the regularization penalty. As concerns the
gating factor, these networks do not compute the derivative of
the ReLU activation function explicitly, instead they deploy a
gating mechanism to realize well-behaved learning and inference.
There are multiple possibilities for implementing this gating
mechanism neurobiologically, such as neural circuits modulating
presynaptic activity [for instance, modulation of transmitter
release via metabotropic glutamate receptors (Takahashi et al.,
1996)], effects of neuromodulators [for instance, presynaptic
regulation of glutamate release by nicotinic acetylcholine
receptors (McGehee et al., 1995; Gray et al., 1996)] or synapse-
or dendritic compartment-specific postsynaptic modulation such
as by somatostatin-positive cortical interneurons (Yaeger et al.,
2019) or norepinephrine (Lur and Higley, 2015).

Importantly, the learning rule of Equation 8 is only
employed for modifying the synaptic strengths of interareal
connections between lower-level error neurons and higher-
level representation neurons. Intra-areal connections between
representation neurons and error neurons are not modified
(Figure 2). This restriction might seem biologically implausible
at first sight, but previously it has been emphasized that the
brain requires mechanisms for controlling plasticity to preserve
previously acquired knowledge while maintaining the capability
to continue learning from new experiences (McClelland et al.,
1995). GABAergic inhibition has been suggested as a means for
controlling plasticity in the brain (Wigström and Gustafsson,
1986; Pennartz et al., 1993; Wilmes et al., 2016), while
simultaneously permitting transmission of information in the
presence of strong excitation. Although we did not incorporate
these inhibitory mechanisms explicitly in our model, our results
illustrate how localized inhibition in representation and error
neurons may usefully allow for plasticity of interareal synapses
while suppressing modification of intra-areal synapses in DHPC

networks. Inhibition of representation neurons could specifically
suppress plasticity induced by information transmitted over
synapses from the intra-areal error neurons. Similarly, inhibition
of error neurons could suppress synaptic modification induced
by information transmitted over synapses from the intra-areal
representation neurons. Thus, a biological realization of DHPC
networks in the brain may rely on existence of localized
GABAergic inhibition between intra-areal representation and
error neurons (or another mechanism to prevent plastic changes
of intra-areal connections, such as a lack of NMDA receptors)
instead of a network with homogeneous connectivity between
intra-areal neurons (for example, Garagnani et al., 2008).

As concerns the regularization penalty on high neural activity
(Equation 7), this may be biologically realized through multiple
mechanisms such as, again, GABAergic inhibition [for example
by inhibition of pyramidal cells through parvalbumin-positive
interneurons (Perrenoud et al., 2016; Tremblay et al., 2016)],
normal repolarization of the neuron toward resting membrane
potential following perturbation, or spike frequency adaptation
[for example through Calcium-dependent Potassium currents
(Khawaja et al., 2007)].

An intriguing question related to predictive coding is its
potential neuroanatomical substrate in the brain. Several studies
have looked at possible biological realizations of predictive
coding based on physiological and anatomical evidence (Bastos
et al., 2012; Keller and Mrsic-Flogel, 2018; Pennartz et al., 2019).
DHPC networks are well compatible with insights from several
experimental studies on predictive coding and error signaling
(Leinweber et al., 2017; Schwiedrzik and Freiwald, 2017) and
cortical connectivity (Rockland and Pandya, 1979; Douglas and
Martin, 2004; Marques et al., 2018). However, some aspects of
predictive coding highlighted by experimental studies have not
yet been explicitly modeled by the current DHPC architecture.
A combination of experimental and modeling studies predicts
that neurons coding inferential representations are present in
superficial as well as deep layers of sensory cortical areas
(Pennartz et al., 2019). Representation neurons in deep layers
are proposed to transmit top-down predictions to error neurons
located in superficial layers of the lower area they project to
(Bastos et al., 2012; Pennartz et al., 2019). These error neurons
also receive input from local representation neurons in superficial
layers of the same area and transmit bottom-up errors to the
granular layer of the higher area they project to.

This anatomical configuration and the neurophysiological
differences in neuronal properties across neocortical laminae
are not considered in the current architecture. This would
require explicitly modeling various cell types located in different
neocortical layers to study the impact of different activation
properties of the various cell types on network properties.
For simplicity, our DHPC networks employ a ReLU activation
function across all layers and we have therefore assumed that the
neurons are operating in a bounded range (i.e., their activity lies
between zero and the upper bound of the near-linear shape of a
sigmoid activation function). The firing rates of representation
neurons in the model are arbitrary and, using an appropriate
scaling factor, could be mapped to firing rates observed in the
cortex. Further, the proposed DHPC networks utilize a simple
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layered network in which areas are reciprocally connected with
their immediate neighbors. This architecture does not take into
account the existence of long-range connections in the brain, for
instance, direct occipito-temporal connections (Gilbert and Li,
2013; see also Pennartz et al., 2019 for “skip connections”).

Another simplifying assumption made by DHPC networks
is the existence of bi-directional, interareal connections with
the same synaptic strength between representation neurons in
a higher area and error neurons in a lower area. Further,
feedforward and feedback connectivity in DHPC networks is
configured such that the RFs of lower-level neurons and those
of higher-level neurons that predict activities of these lower-
level neurons overlap with each other. In mice, feedback from
a higher visual area (i.e., lateromedial cortex, LM, to V1)
targets retinotopically matched locations, which supports the
assumption of overlapping RFs for lower- and higher-level
neurons (Marques et al., 2018). As yet, there is no evidence
on correlations between synaptic strengths of feedforward
and feedback connections between higher visual areas and
V1. However, randomly initialized feedforward and feedback
connections between representation and error neurons may well
become correlated when updated using Hebbian mechanisms.
This may be attributed to the fact that update rules for
both feedforward and feedback connections rely on the same
set of correlated pre- and post-synaptic activities. A Hebbian
update rule has been shown to be effective in training deep
neural networks with non-symmetric feedforward and feedback
connections (Amit, 2019). Another possibility to address this
neurobiological question is the theory of feedback alignment
(Lillicrap et al., 2016) which suggests that modifiable feedforward
weights may adapt to the information transmitted by randomly
initialized feedback weights, thereby alleviating the need for an
a priori constraint on symmetrical weights.

Altogether, these considerations reveal a number of
constraints that are required to allow for well-behaved learning
and inference in deep predictive coding networks operating on
a Hebbian basis, and which are compatible with neurobiological
principles identified in cortical architectures. Before considering
this class of models as neurobiologically plausible, however, more
tests will have to be conducted, guided by the various predictions
derived from the DHPC inference and learning steps. As such,
they may inform future research and will help bridge the gap

between theoretical models and biologically relevant aspects of
cortical architectures potentially implementing predictive coding.
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