
ORIGINAL RESEARCH
published: 03 August 2021

doi: 10.3389/fncom.2021.674154

Frontiers in Computational Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 674154

Edited by:

Oliver Rhodes,

The University of Manchester,

United Kingdom

Reviewed by:

Shimeng Yu,

Georgia Institute of Technology,

United States

Rishad Shafik,

Newcastle University, United Kingdom

*Correspondence:

Martino Dazzi

daz@zurich.ibm.com

Received: 28 February 2021

Accepted: 23 June 2021

Published: 03 August 2021

Citation:

Dazzi M, Sebastian A, Benini L and

Eleftheriou E (2021) Accelerating

Inference of Convolutional Neural

Networks Using In-memory

Computing.

Front. Comput. Neurosci. 15:674154.

doi: 10.3389/fncom.2021.674154

Accelerating Inference of
Convolutional Neural Networks
Using In-memory Computing

Martino Dazzi 1,2*, Abu Sebastian 1, Luca Benini 2 and Evangelos Eleftheriou 1

1 IBM Research Europe, Rüschlikon, Zurich, Switzerland, 2 Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland

In-memory computing (IMC) is a non-von Neumann paradigm that has recently

established itself as a promising approach for energy-efficient, high throughput hardware

for deep learning applications. One prominent application of IMC is that of performing

matrix-vector multiplication in O(1) time complexity by mapping the synaptic weights

of a neural-network layer to the devices of an IMC core. However, because of

the significantly different pattern of execution compared to previous computational

paradigms, IMC requires a rethinking of the architectural design choices made when

designing deep-learning hardware. In this work, we focus on application-specific,

IMC hardware for inference of Convolution Neural Networks (CNNs), and provide

methodologies for implementing the various architectural components of the IMC core.

Specifically, we present methods for mapping synaptic weights and activations on the

memory structures and give evidence of the various trade-offs therein, such as the one

between on-chip memory requirements and execution latency. Lastly, we show how to

employ these methods to implement a pipelined dataflow that offers throughput and

latency beyond state-of-the-art for image classification tasks.

Keywords: convolutional neural network, in-memory computing, computational memory, AI hardware, neural

network acceleration

1. INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have revolutionized the field of Machine Learning
by reaching unprecedented accuracy in a large number of cognitive data analysis tasks. DNNs are
currently being used in a wide variety of applications, ranging from image classification (He et al.,
2016) to autonomous driving (Bojarski et al., 2016) and natural language interpretation (Vaswani
et al., 2017). As the applications increase in number and complexity, so do DNN architectures, and
along with them the hardware architectures for their execution and training.

Historically, DNNs run on general purpose processors, such as CPUs and GPUs. While this
solution is still widely employed and GPUs are constantly improving their metrics of energy
consumption and execution time for training and inferencing, they are inadequate for application
areas with power envelopes of sub Watt or of very few Watts, which are generally referred to as
the IoT or edge computing realm. To this end, custom hardware platforms such as application-
specific integrated circuits (ASICs) are being designed (Chen et al., 2016) for low power and efficient
execution of DNNs. ASICs are quite energy efficient in terms of TOPS/W and can reach state-of-the
art accuracy and throughput in a variety of tasks (Jouppi et al., 2017), albeit at the expense

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.674154
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.674154&domain=pdf&date_stamp=2021-08-03
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:daz@zurich.ibm.com
https://doi.org/10.3389/fncom.2021.674154
https://www.frontiersin.org/articles/10.3389/fncom.2021.674154/full

Dazzi et al. Accelerating CNN Inference Using IMC

of time consuming circuit design and, to a certain extent, limited
scope of execution. Moreover, a hardware-aware training of the
DNNs (Han et al., 2015; He et al., 2017; Jacob et al., 2018) is
often needed.

Independently from the hardware platform, be it general
purpose processors or ASICs, different performance can be
obtained on the basis of the computational paradigm being used.
In general, von Neumann architectures are inherently limited
in performance by the need to move data from the memory
to the computational units: in modern DNN models, with a
parameter count that can reach hundreds of millions (Huang
et al., 2017; Vaswani et al., 2017) retrieving them from a memory
can severely hinder performance. This phenomenon, also known
as the von Neumann bottleneck, has led to many research efforts
aiming at alternative, non-von Neumann paradigms. Among
these, we look in depth into IMC (Prezioso et al., 2015; Burr
et al., 2017; Hu et al., 2018; Ielmini and Wong, 2018; Le Gallo
et al., 2018; Xia and Yang, 2019; Sebastian et al., 2020), a
computational paradigm showing promise for unprecedented
performance and energy efficiency, targeting specifically themain
computational load of DNNs: matrix-vector multiplications.
With IMC, we take advantage of a set of resistance-based or
charge-based memory devices, such as memristive (Sebastian
et al., 2019; Joshi et al., 2020) or CMOS-based devices (Valavi
et al., 2019). By organizing these devices in a crossbar array
configuration, based on their physical properties, a matrix-vector
multiplication can be carried out with O(1) time complexity,
contrary to the O(N2) time complexity of this operation on
traditional architectures. However, in order to fully exploit
this new computing paradigm, in the design of IMC-based
hardware we must rethink well-established architectural choices
and provide novel methodologies for optimizing the dataflow.
Specifically, while the number and size of synaptic weights can
vary greatly within the layers of a DNN, the IMC crossbar arrays
on which they are mapped have pre-determined, fixed shapes.
Consequently, the mapping of synaptic weights is a pivotal
problem to optimize in order to fully exploit the potential of IMC
in DNN applications.

Moreover, while IMC obviates the need to communicate
synaptic weights, the intermediate results must be cached on
the local memories of the IMC cores. Also in this case, new
approaches must be developed for handling the data efficiently
and according to the dataflow.

In this work, we focus on the problem of executing
image classification tasks on IMC-based hardware architectures.
Specifically, we focus on Convolutional Neural Networks
(CNNs), which represent the state-of-the-art for a variety of
image processing applications. In section 2, we propose a
novel IMC core architecture for inference of CNNs. Moreover,
we present novel methods for mapping weights on the IMC
crossbar array and activations on the local memory of the
IMC core. These methods enable high-throughput, efficient
execution of CNNs on the IMC hardware. Note that while these
contributions are presented as different parts that organically
belong to a IMC-based accelerator for inference of CNNs, the
methodologies and approaches developed here, have universal

applicability regardless of the overall architectural configuration.
In section 3, we introduce the dataflow of the IMC-based
accelerator and present as a case study the execution of
ResNet-32 on the CIFAR-10 dataset. This section gives evidence
of how our proposed methodologies applied to IMC yield
beyond state-of-the-art performance compared to non-IMC
ASICs targeting the same dataset. Lastly, section 4, compares
our approach with previous works in the field and concludes
the paper.

2. METHODS

2.1. Hardware Architecture Overview
We identify the In-Memory Computing core (IMC core) as the
unit building block of the IMC hardware architecture. The IMC
core is built around a crossbar array executing the matrix-vector
multiplication and features peripheral circuitry for the additional
functionality required by CNNs.

Figure 1 shows the mapping of the CNN layers on the
IMC cores and the tasks carried out during execution by each
component. We start by describing the operation required by
CNNs in order to understand how these are employed on the
hardware architecture and how the hardware itself is designed in
order to facilitate their execution.

A CNN architecture is typically comprised of a series of
interconnected layers, each layer defined by learnable parameters
and typically one activation function. The result of the activation
function is referred to as activation. As the name suggests, every
layer of a CNN performs a convolution on the activations. A
convolutional layer transforms an input volume of feature maps
of size Hin · Win · Cin into an output volume of feature maps
of size Hout · Wout · Cout . Unless specified, we will consider in
our study input and output volumes with Hin = Hout = H and
Win = Wout = W. Note that these assumptions do not affect
generality, since for the layers in which pooling, striding, and
padding are involved, the approach we follow in designing the
various architectural choices would remain the same. Also, we
will refer to the activations along the plane marked by H and W
as lying on the (H,W) plane.

Each convolutional layer consists of many dot products.
Specifically, every element of the output volume in the (H,W)
plane is calculated as the dot product between a patch of
the input volume of size F1 · F2 · Cin with an equally sized
matrix of parameters of that layer, also called kernel weights.
The dot product is executed Cout times by applying Cout

different kernel weights in order to obtain all Cout output
channels of the output volume. The results of the matrix-
vector multiplication are called pre-activations. In matrix form,
the matrix-vector multiplication for one pre-activation at layer
L + 1 across all channels at a generic position (u, v) is
expressed by Equation (1), where α

n,L
i,j indicates an activation

at layer L and position (i, j) at channel n, γ
n,L
i,j denotes a

pre-activation layer L, position (i, j) and channel n, and K

represents the kernel matrix. One element of the kernel matrix
for a position (a,b), input channel v, and output channel w

Frontiers in Computational Neuroscience | www.frontiersin.org 2 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 1 | Mapping of ResNet-32 on an array of IMC cores. (A) Mapping of the network on the array: each layer is mapped onto one IMC core. The synaptic

weights are mapped on the computational memory elements, while operations on pre-activations or activations are carried out by the Digital Processor. (B) One

matrix-vector multiplication for a convolutional layer. (C) Dataflow between two IMC cores; the dataflow is scheduled by the Dataflow Controller. The system level

representation (left) and, color-coded, the corresponding functionality of each component (right).

is indicated as kv,w
a,b

. We consider Cin = N, Cout = M,
and F1 = F2 = F.

γ
L+1
u,v = α

L
i : i+F−1,j : j+F−1 ·

K =





















α
0,L
i,j

. . .

α
N/2−1,L
i+F−1,j+F−1

α
N/2,L
i,j

. . .

α
N−1,L
i+F−1,j+F−1





















T


















k0,00,0 . . . k0,M0,0
.

k
N/2−1,0
F−1,F−1 . . . k

N/2−1,M
F−1,F−1

k
N/2,0
0,0 . . . k

N/2,M
0,0

.

kN,0
F−1,F−1 . . . kN,M

F−1,F−1



















(1)

Subsequently to the operation on the kernel weights, the
resulting pre-activations undergo a post processing that typically
involves additive and multiplicative scalings, known as batch
normalization (Ioffe and Szegedy, 2015) and a non-linear
activation function. Given the operations described above, the
matrix-vector multiplication that transforms activations from
one layer into pre-activations of another is particularly suited
for IMC, while the subsequent operations on pre-activations are
better suited for standard digital processing units.

Figure 1A shows the mapping of a CNN, ResNet-32, on an
array on IMC cores. The network is mapped on the physical
array so that at most one layer is mapped on each IMC core.
In the cases in which the size of the layer is greater than that
of the IMC core, the synaptic weights of the layer are split
between multiple IMC cores. The topology of the network is
mapped on the IMC cores, implemented as crossbar arrays,
so that edges of the dataflow graph of the CNN correspond
to communication channels in the physical array. While the
design of the communication fabric for such an architecture
is not the subject of this work, we will assume that any IMC
core can communicate in one timestep to any other IMC
core with which communication is required, as presented in
Dazzi et al. (2019). Figure 1B shows figuratively the matrix-
vector multiplication of Equation 1 for a convolutional layer
where F1 = F2 = F. A subset of the input volume (in
green) is multiplied by the kernel weights (in blue); after batch
normalization and execution of the activation functions, the
results are the output activations across all output channels Cout

and one position on theH,W dimensions (in orange). Figure 1C
shows the hardware architecture of two successive IMC cores
and, color coded, the role of every component in the execution
of the CNN. The IMC core consists of the Crossbar Array, an

Frontiers in Computational Neuroscience | www.frontiersin.org 3 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

Input Memory, a Digital Processor, an Output Memory and a
Dataflow Controller.

The Input Memory stores the input activations of one layer,
which during execution are either received from an input
scratchpad or from another IMC core executing another layer.
When needed for computational purposes, the activations are
read from the Input Memory and provided to the interface of
crossbar array 1 . The crossbar array maps the kernel weights
of one layer to its IMC devices and executes the matrix-vector
multiplication between a patch of the input volume and the
kernel weights themselves expressed in Equation (1) 2 . The
result of this computation are Cout pre-activations, i.e., the results
of one matrix-vector multiplication before any post-processing
and application of the non-linear activation function. The Digital
Processor executes the remainder of the computation that
transforms pre-activations into activations 3 . Namely, it takes
care of all computations in CNNs not adequate for IMC. In our
example, these include batch normalization and the application
of activation functions. Lastly, the output memory collects the
output activations that are the result of the computation 4 ;
These results are then delivered, via communication links, to the
next layers (cores) for further processing 5 .

Figure 2 shows the detailed dataflow of two IMC cores
executing two subsequent layers L and L+1 and the dataflow chart
for the IMC core executing layer L. In the example, we assume a
3x3 kernel and no padding. Firstly, rows of input pixels to layer
L are fetched from the Input Memory and loaded to the Crossbar
Array 1 . In this phase, the pixels are fetched from the local
SRAM and loaded on the local buffers of the Crossbar Array,
which temporarily store pixels for the subsequent computation to
be executed. The operation is repeated for timesteps t0 − 2 (red
row of pixels), t0 − 1 (yellow row of pixels), and t0 (green row
of pixels), after which enough data for one dot product has been
loaded to the buffers of the Crossbar Array. Consequently, the
computation in the crossbar array 2 can take place at timestep
t0. Finally, timestep t0 concludes with the delivery of the pixel
that was computed to the local memory of the subsequent core
3 . In can be seen how, aside from the initial loading of pixels
at timesteps t0 − 2 and t0 − 1, the IMC core assigned to layer
L requires a new row of pixels to be fetched for computation.
Indeed, at timestep t0 + 1, one new row of pixels (in blue) is
loaded, followed by computation of one dot product and delivery
of the pixel to the IMC core assigned to layer L+1.

2.2. Mapping of Weights
In CNNs, the synaptic weights, also referred to as kernel weights
and responsible for the matrix-vector multiplications, comprise
a convolutional layer. In this section, we will refer to the overall
matrix of kernel weights of size F1 · F2 · Cin × Cout as the kernel
matrix. Also, for the sake of brevity, we will refer to the activations
for one position in the (H,W) plane across all channels as one
pixel. Figure 3 shows the mapping of one kernel matrix on a
crossbar array. Without loss of generality, it is assumed that
one kernel weight is mappable on one computational memory
device. Note that this is a reasonable assumption given the
common precision requirements of weights in DNNs (Joshi
et al., 2020) and the effective precision offered by the memory

FIGURE 2 | Data movement in two IMC cores at two consecutive timesteps t0
and t0 + 1. Execution steps are represented as (1) fetching and loading of the

data, (2) computation, and (3) communication of the pixel to other IMC cores.

The timechart shows the execution steps for the IMC core executing layer L.

At timesteps t0 − 2 and t0 − 1 input pixels are loaded on the crossbar array. As

data is not yet sufficient for the computation of any pixel, no computation or

communication takes place. At timestep t0, sufficient pixels are available to

compute on the crossbar array and one input pixel is computed and

communicated to other IMC cores. Likewise at timestep t0 + 1, a new row of

pixels is loaded and the IMC core executed the computation and

communication of another output pixel.

devices used for IMC. Our approach can however be easily
extended to cases where a single weight is mapped on multiple
devices. According to this mapping approach, the kernel matrix
is unrolled so that the kernel weights associated to one output
channel are placed along one column of the crossbar. In this
way, the Cout columns of the kernel matrix are mapped on the
same amount of adjacent columns of the crossbar array. Based
on this physical placement, one matrix-vector multiplication is
performed as follows: first, the input data-patch, retrieved from
the Input Memory, is unrolled and provided at the input rows
of the crossbar, matching the corresponding rows of the kernel
matrix. Then, from each column, the pre-activation for a single
channel is read back and converted to a digital value. The pre-
activations will subsequently undergo digital processing, which
in principle implements the non-linear function and any other
digital processing that is required.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 3 | Mapping of one kernel matrix of size F · F ·Cin ·Cout on a crossbar

array. The kernel weights (top) are color coded to reflect their placement on

the devices (bottom). The F · F · Cin kernel weights responsible for one of the

Cout output channels are mapped on one column of the array.

Fundamentally, the problem of mapping a kernel matrix
to a crossbar array constitutes the mapping of a shape of

(F1 · F2 · Cin) × Cout elements onto a grid of fixed size
composed of computational memory elements. Although the
F1, F2, Cin, Cout parameters change from layer to layer and
from network to network, state-of-the-art CNNs for image
classification (He et al., 2016; Huang et al., 2017) typically
feature kernels of size F1 = F2 = 3, and channel sizes in
powers of two, commonly ranging from 16 to 1024. Furthermore,
usually Cin = Cout for the majority of the internal layer of the
CNNs (Krizhevsky et al., 2012; He et al., 2016). In light of this
assessment, we will focus on the case where F1 = F2 = 3
and Cin = Cout , as this is the set of hyperparameters which
is the most common within the architectures of the CNNs we
take into consideration. Regarding the dimensionality of the
crossbar arrays, it appears that practical implementations adopt
square sizes, primarily for generality and for the possibility of
performing the reverse read operation in the case the array was
designed also for training DNNs (Nandakumar et al., 2018).
Based on these considerations, the kernel matrices typically
appear to have an aspect ratio equal to F1 · F2 = 9 (i.e., they
require 9 times more rows than columns), and are mapped on a
crossbar array grid with aspect ratio equal to one. This implies
that a large number of the crossbar array devices will end up
being unmapped, and therefore unutilized, during the execution
of CNNs. We try to avoid this issue by proposing two methods
of parallelization of the computation of the convolutional layers
by replication of the kernel matrix. In these methods, we map
multiple replicas of the kernel matrix on the crossbar array

for one convolutional layer in order to execute in parallel
multiple matrix-vector multiplications of the same layer. Note
that the number of kernel replicas mapped on the crossbar array
effectively represent the number of dot products that can be
executed in parallel on the array. Consequently, the number of
kernel replicas is equivalent to the degree of parallelism of the
dot products.

2.2.1. Parallelizing Computation Across One Direction
In thismethod, we parallelize the computation so that the outputs
are pre-activations along one direction of the (H,W) plane of
the output volume. Figure 4 shows the parallelization of three
matrix-vector multiplications for a single convolutional layer
with a kernel of size F1 = F2 = 3.

Figure 4A shows the input and output feature map volumes.
In the input volume, we highlight the input patches required for
each of thematrix-vectormultiplications we parallelize and in the
output volume we highlight the positions of the resulting pre-
activations. All the activations from the various input patches
will be provided in parallel to the rows of a crossbar array, and
consequently all the pre-activations of the output volume will
be calculated in parallel on the columns of the crossbar array.
Figure 4B shows the single input patches of the input volume,
colored and patterned, and the corresponding pre-activations
on the output volume with the same kernel matrix. It can be
noted in Figure 4A that, while each of the three input patches
comprise 27 · Cin activations, they overlap and overall comprise

(5× 3) · Cin unique activations. Figure 4C shows the mapping
of the kernel replicas on the crossbar array. Three replicas of the
kernel matrix are mapped on the crossbar, each kernel matrix by
itself occupying an area of F1 · F2 · Cin rows and Cout columns.
Different color patterns represent input activations and output
pre-activations for different matrix-vector multiplications on the
same input volume in Figure 4A. Note that, because of the
overlapping in the input patches, some input activations belong
to more than one input patch. Specifically, in Figure 4C, input
activations with overlapping color patterns represent activations
of the input volume that belong to various input patches.
Consequently, as the input pixels for different matrix-vector
multiplications are shared, some rows of the crossbar are shared
between different kernels. Specifically, assuming F1 = F2 = F,
while one kernel matrix occupies a (F · F · Cin) × Cout area on
the crossbar, any additional kernel matrix adds F · Cin rows and
Cout columns.

2.2.2. Parallelizing Computation Across Two

Directions
In this method, we parallelize the computation so that the
output are pre-activations along on both directions of the (H,W)
plane of the output volume. In Figure 5A, we color-code and
pattern the input patches for the parallelized matrix-vector
multiplications on the feature maps. We parallelize overall six
matrix-vector multiplications, with the input patches covering
collectively a 5-by-4 area on the (H,W) plane of the input
volume. Figure 5B shows the physical mapping of the kernel
replicas on the crossbar and the position of the activations
provided as inputs. It can be noted that, contrary to the previous

Frontiers in Computational Neuroscience | www.frontiersin.org 5 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 4 | Parallelization of the computation along one direction through mapping of kernel matrix replicas on the crossbar array. In this example, we display the

parallelization of three matrix-vector multiplications of the convolutional layer. Devices outside the colored patches are unmapped. (A) Input volume (left) and output

volume (right) of feature maps for a given layer, where three matrix-vector multiplications are executed in parallel. The patches required for every matrix-vector

multiplications are highlighted in the input volume and color-patterned. The resulting output activations in the output volume are color-patterned in a matching color.

(B) Correspondence between the input patches in (A) and the resulting output activation. (C) Mapping of the kernel matrix replicas for the three matrix-vector

multiplications on the crossbar array. The color of the devices corresponds to the similarly colored input and output activations in (B). Input activations are provided to

the crossbar array in one timestep in an order that is highlighted by the same color pattern as in (A,B).

FIGURE 5 | Parallelization of the computation along two directions by mapping of kernel matrix replicas on the crossbar array. (A) Color-patterned position of the six

input patches for the six matrix-vector multiplications executed in parallel on the crossbar. (B) Mapping of the kernel matrix replicas on the crossbar array. Input

activations are provided to the crossbar array in an order that is highlighted by the same color pattern as in (A).

method, the sharing of rows among different kernels is more
scattered, and generates a less regular pattern of mapping of both
activations to the rows of the crossbar and kernel weights to
the devices. With this method, for every replica of the kernel
matrix mapped onto the crossbar, Cout columns are assigned to
the new output to be computed, while the number of additional
rows depends on the position of the patch on which the kernel
is supposed to perform the computation. In particular, based on
the position, the activations required by one kernel replica may
or may not have been already in use by rows in the crossbar.
For example, the kernel associated with the yellow patch, i.e., the

one with a vertical stripe pattern in Figure 5A, requires F · Cin

rows to be assigned. However, the kernels associated with the
red diagonal stripe patterned and light green horizontal stripe
patterned patches only require Cin new rows to be assigned
for each.

2.2.3. Comparison of Parallelization Methods
Given the many variables in the mapping of kernel matrices to
crossbar arrays (e.g., crossbar size, kernel size, and number of
input and output channels that might change even within the
same CNN), a reasonable figure of merit of a mapping scheme

Frontiers in Computational Neuroscience | www.frontiersin.org 6 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

should be based on the aspect ratio of the kernel matrices that are
mapped on the crossbar. Indeed, assuming crossbars of aspect
ratio equal to 1 and given a number of kernel matrices to be
mapped on that crossbar, then the greatest number of kernel
matrices that can fit on the crossbar is achieved by a method
that makes the aspect ratio of the shape of the overall replicas
of the kernel matrix closer to 1. In this section, we will refer to the
method proposed in section 2.2.1 as Method 1, and the method
proposed in section 2.2.2 as Method 2. Also, we will refer to the
overall matrix comprising a number of kernel matrix replicas to
be mapped onto one crossbar as the collective kernel matrix. In
Method 1, the aspect ratio of n kernel replicas (collective kernel
matrix) mapped on the crossbar can be expressed in closed form
and, for F1 = F2 = F, is equal to

A (n) = F2 ·
Cin

Cout
·
1+ (n− 1) · 1

F

1+ (n− 1)
(2)

It can readily be seen that for Cin = Cout , then A (1) =

F2, and A (∞) = F. Thus, as the number of kernel matrix
replicas increases, the aspect ratio of the collective kernel matrix
decreases. Specifically, from a quadratical dependency when n =

1, we reach asymptotically a linear dependency.
For Method 2, given that the way in which the number of

new rows to be assigned for every replica strongly varies from
the position of the input volume patch that the kernel takes as
input, we did not derive a closed formula expression. We note
however that as Method 2 parallelizes computations across both
directions of the (H,W) plane of the input volume, the theoretical
minimum aspect ratio is:

A (n = Hout ·Wout) =
Cin ·Hin ·Win

Cout · Hout ·Wout
(3)

which, for layers with Cin = Cout , Hin = Hout , Win = Wout and
stride equal to 1, is equal to 1.

Figure 6 shows at comparison of the twomethods for different
parameters. In this comparison we consider Cin = Cout = 16
and F1 = F2 = F = 3, which are realistic parameters for
CNNs targeting IoT-like datasets. We perform the comparison in
the following way: given an output volume, we fix a maximum
number of pixels on the width direction Wout in its (H,W)
plane (In Figure 6 it is called 1W). We then parallelize the
computations in order to obtain adjacent pixels with maximum
width equal to 1W. By comparing the two methods in this
way, we observe that the case with 1W = 1 corresponds
to Method 1, while any other value of 1W corresponds to
Method 2. Figure 6A shows a comparison of the aspect ratios
of the collective kernel matrix as a function of the number
of kernel replicas n. As foreseen by Equation 2, the minimum
aspect ratio reachable with 1W = 1 is 3. Method 2, with

(1W ≥ 2) is able to further reduce the aspect ratio, and while
the theoretical minimum is equal to 1, it tends to decrease very
little at around A = 2. Also, it is apparent that for 1W ≥ 3
the parallelization seems to perform similarly. Figure 6B shows
the number of rows required for a given 1W, as function of
the number n of kernel replicas. For a given number of replicas,

FIGURE 6 | Comparison between different mappings of kernel replicas at the

increase of the number of kernels n. Different methods are marked by different

1W. (A) Aspect ratio of the collective kernel matrix (# crossbar rows/#

crossbar columns) for a given number of kernel replicas. (B) Number of Rows

at the increase of the number of kernel replicas.

Method 2, with 1W ≥ 2 clearly requires less rows compared
to Method 1. For example, note that a collective kernel matrix
of 20 kernels requires 1,056 rows with Method 1, and only 672
with Method 2 and 1W = 5. Lastly, we discuss the benefits of
our methodologies on device utilization. Mathematically, device
utilization u can be formulated as:

u =

∑N−1
i=0 DK

DA
, (4)

where DK denotes the number of devices required for one kernel
matrix, N represents the number of kernels, and DA indicates
the number of devices of the crossbar array. As our proposed
mapping methods maximize N, they also enable higher device
utilization, which increases linearly with N. However, note that
u is not a function of 1W. Consequently, for a given number
N of kernel matrices that are mapped on the array, the device
utilization is the same, regardless of the1W used in themapping.

2.3. Mapping of Activations
As presented in section 2.1, the activations for one layer are stored
on the Input Memory of the IMC core. The purpose of the Input
Memory is to cache the pixels, which will serve as the input
vectors for thematrix-vector multiplications that will be executed
on the crossbar array.We start by describing the pattern by which
pixels need to be stored and fetched from the input memory. At
every timestep, if the conditions for computation are met, each
IMC core must fetch a given number of pixels and provide them
to the crossbar array interface for computation of the matrix-
vector multiplications. Further, the IMC core may have to store
the pixels that it receives from other IMC cores. We assume that
the Input Memory is a static random-access memory (SRAM),

Frontiers in Computational Neuroscience | www.frontiersin.org 7 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 7 | Mapping of pixels on the Input Memory. In the memory mapping, colored-in boxes represent data, while diagonal patterned boxes represent empty

bitlines. (A) Portion of a feature map volume, in which we highlight the pixels to be mapped on the Input Memory. (B) Inter-word adjacent placing of pixels. In the

figure, we display the numbering of words and bit lines in the Input Memory. (C) Kernel-level interleaved placing. Pixels belonging to one kernel row are placed

contiguously to each other [e.g., pixels (0, 0) to (0, 2))]; the remaining bit lines for the word containing the (0, 2) pixel as left empty. (D) Activation-level interleaved

placing. No data from different pixels in stored in the same word. Note that 1pix[i] indicates the index of word with the beginning of the i − th pixel. 1kernel denotes

the overall number of words that store one row of pixels.

which is commonly used to the end of caching operands in ASICs
(Shafiee et al., 2016).

In general, for the pipelined operation of layers with stride
equal to 1, at every timestep a IMC core must fetch a number of
pixels equal to the kernel size and store one pixel received from
a previous layer (IMC core). We note the difference between the
logical placement of pixels, which are part of the input volume
of pixels as shown in Figure 2, and their physical instantiation in
the local memory. Given that the fetching pattern is tied to the
logical placement of the pixels in the input volume, in principle
we would prefer to store pixels in the Input Memory in a way
that mimics their logical position. Unfortunately, this task poses
several problems. First, for a single network, different layers can
typically have different channel depth, i.e., pixels for different
layers are represented by a different number of bits. Moreover,
the channel depth can vary from network to network. On the
other hand, memory arrays such as on-chip SRAM, have fixed
physical structures organized in words, each word comprising a
given number of bits. The overall number of words is defined as
the word depth. Below, we present three methods for mapping
the varying and flexible data structure of pixels onto the fixed
and predetermined memory array. We also present appropriate
metrics for evaluating these methods.

2.3.1. Memory Mapping Evaluation Metrics
In standard on-chip memories, the granularity for fetching the
data is the memory word. This means that in one clock cycle,
the memory can be accessed one word at a time. The number
of cycles required to store (i.e., write) and fetch (i.e., read)
one pixel depends on the size of the memory word and of the
pixel itself. Furthermore, in the case where different pixels are
stored in a single word, the writing operation is possible through
write-masks, which are a common feature in SRAMs. On the
other hand, the reading operation will require bit-slicing logic to
dissect the word and extract the logical units required. Although
possible, both the reading and the writing of different data in the
same word require the accounting of the bit-line index where one
data ends and another begins.

In the following subsections, we use as a metric the number
of cycles required to write one pixel and to read one kernel-row
of pixels. Moreover, we consider the requirement of storing bit-
line indexes for reading and writing data. Lastly, we assess the

amount of memory needed to store the same number of data by
the various methods.

2.3.2. Intra-Word Adjacent Placing (IWAP)
Using this method, we store pixels adjacent to each other in the
memory so that different pixels could be stored on the sameword.
The placing mimics the logical organization of the data, so that
adjacent pixels on the same row in the input volume are stored
adjacent to each other on the Input Memory. Figure 7B shows
inter-word adjacent mapping for a number of pixels highlighted
in Figure 7A. Each pixel is mapped so that different channels
are stored sequentially and according to their logical order in
the feature map volume. If space is available within one word,
different pixels can be stored in the same word; this is for
example the case of pixel (0, 0) and pixel (0, 1) in word 1. For a
given number of pixels to be cached, this method requires the
minimum possible amount of memory. However, it requires bit-
line indexes for both storing and fetching the pixels, and can
require different number of cycles for writing and reading the
pixels depending on the timestep.

2.3.3. Kernel-Level Interleaved Placing (KLIP)
Using this method, we store different pixels within the same
word, only if they belong to a single row of an input patch for
which matrix-vector multiplications must be computed. Assume
that, in Figure 7A, the feature map volume is to be convolved
with a 3x3 kernel. Among those highlighted in the figure, the
rows of pixels belonging to input patches for the convolution are
[(0, 0), (0, 1), (0, 2)]; [(1, 0), (1, 1), (1, 2)]; and [(2, 0), (2, 1), (2, 2)].
Figure 7C shows the mapping on the Input Memory. The pixels
of each row are stored contiguously to each other in the memory.
However, the remaining bit lines within the word containing
the last pixel of the feature map volume are left empty. This
practice of leaving part of thememory empty in order to allow the
mapping of data in a way that is closer to its logical positioning is
somewhat similar to the concept of memory interleaving typically
employed in memory management for CPUs.

As this method leaves part of the memory empty to
accommodate the positioning of pixels in memory, it clearly
does not use the minimum amount of memory possible for one
volume of pixels. As with the previous method, it may require
different number of cycles for writing the pixels depending on the

Frontiers in Computational Neuroscience | www.frontiersin.org 8 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

timestep. Moreover, given that different pixels can still be stored
within one word, bit line indexes are required for writing. As
described in Figure 2, at every timestep where computations are
executed, a new row of an input patch is loaded in the memory.
Since we place contiguously the pixels of the rows of the input
patches, the number of read cycles is constant at every timestep,
and no bit line index is required for reading one row.

2.3.4. Pixel-Level Interleaved Placing (PLIP)
Using this method, we do not allow storing different pixels within
the same word. Figure 7D shows one such memory mapping. In
the example in Figure 7A, each pixel is stored in two memory
words. The unoccupied part of the last word storing each pixel
is left empty. This is very similar to the concept of kernel-level
interleaved placing, this time applied to single pixels across the
channel depth.

This method has the finest granularity of logical units to
be stored, and thus makes the most inefficient use of the local
memory. Since every pixel is individually interleaved, there is no
need for bit line index for either writing or storing words. Also
contrary to previous methods, both the number of read and write
cycles are constant regardless of the pixels being read or stored.

2.3.5. Comparison of the Methodologies
In this subsection, we compare the various memory-mapping
methodologies, discussed above, using the metrics introduced in
section 2.3.1. Consider the storing of a portion of the feature
map volume of size H · F · N, where H denotes the height of
the volume, F the kernel size of that layer and N the channel
depth. For the cases considered in this comparison, we use a fixed
kernel size F = 3, whereas H and N are varying parameters.
Furthermore, for this comparison we consider 8-bit precision
for the pixels. As explained in section 2.3.1, at each cycle one
pixel across all channels must be written on the Input Memory,
while a number of pixels equal to one row of input patch must be
fetched to execute the matrix-vector multiplication. Thus, in our
comparison, write cycles refers to the number of cycles to write
one pixel, while read cycles refers to the number of cycles to read
F = 3 pixels.

Table 1 shows the results for various memory mappings.
Firstly, we investigate the case of writing and reading the input
image of a CNN, which typically comprises N = 3 channels.
The size of the image is based on input images for the CIFAR-
10 dataset, i.e., H = 32. Word length (WL) is set to 128 bits. It
can be noted how inter-word adjacent placing (IWAP)requires
the minimum amount of memory, but has a varying number of
read and write cycles based on the pixels to be read. In this case,
owing to the small size of the pixels in comparison to the word
length, kernel-level interleaved placing (KLIP) and Activation-
level interleaved placing (PLIP) cause a severe overhead of empty
memory because of interleaving, i.e., 43 and 82.1%, respectively.

Secondly, we look at the mapping of a volume with N = 56
and H = 8. This corresponds, for example, to the parameters
of the last set of layers of the ResNet-32 architecture with some
channels being pruned, as in Joshi et al. (2020). For WL = 160,
IWAP has varying read and write cycle counts. KLIP guarantees
constant read cycle count, but the write cycles can still vary

between 3 and 4 based on the pixel to be written, with a small
overhead of empty memory, which is about 6%. PLIP guarantees
a constant read and write cycle time, with an almost identical
empty memory overhead in the case of KLIP. Note that PLIP
also guarantees the minimum number of read and write cycles
compared to both IWAP and KLIP.

Lastly, we look at the mapping with of a volume with N =

56 and H = 8, but with WL = 128. While IWAP does not
guarantee constant read and write cycle count, in this scenario
it outperforms all other methods by providing constant and
minimum read and write count, other than of course minimum
memory requirements. This can be accounted for by the fact
that the number of bits of one pixel is exactly 3.5 times the
word length. KLIP performs identically to IWAP on the metrics
considered, while adding a 4% empty memory overhead. Lastly,
PLIP performs the worst by requiring one additional read more
compared to the other two methods, and 12%memory overhead.
The comparison gives evidence of how different methodologies
perform differently for different pixel sizes and word length of
the memory, and no methodology outperforms the others a
priori. In general terms, IWAP and KLIP perform better for
pixels that have a small size compared to the word length, but
require the use of write masks to store pixels and, once read, post
processing for separating the bits in the word that are required
from those that are unwanted. Also, the fact that neither method
guarantees a constant number of reading and writing cycles,
may be problematic to the design of the dataflow. Conversely,
PLIP typically provides better performance for pixel sizes that are
greater than the word length, and gives constant read and write
cycles count regardless of word length and pixel size. It also does
not require the use of write masks, and it may only require the use
of post processing for selecting non-zero bits inside the words.
These advantages come at the expense of a greater memory
requirement. No method, in principle, guarantees a lower read
and write cycle count. Lastly, we note that for pixel sizes that are
exact multiples of the word size, the three methods map pixels
and perform in the exactly the same way.

2.4. Dataflow and Memory Control
Contrary to von-Neumann computing paradigms, IMC
considers one operand of the matrix-vector multiplication to
be physically instantiated and ready for execution. In the case
of inference of CNNs, the two operands of the matrix-vector
multiplication are, as presented above, activations and kernel
weights. Inherently to the functionality of hardware based on
IMC, the kernel weights for every layer are physically instantiated
on the devices of the computational memory in the IMC cores,
and stationary on their assigned core during execution. This
contrasts with von-Neumann hardware models, where the kernel
weights for each layer have to be fetched from a memory, and
would not be ready for use at the same time. Because of this,
in order to increase the utilization of the IMC cores, we would
like in principle to parallelize the operation across layers. CNNs
are a class of neural networks particularly suited for this specific
parallelization because, as detailed in the previous sections and
contrary to other classes of neural networks, the matrix-vector
operation per layer depends only on a subset of the overall

Frontiers in Computational Neuroscience | www.frontiersin.org 9 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

TABLE 1 | Memory mapping metrics for different channel depth of the pixels (in table, N) and word length (WL).

Memory [KB] % Empty # Read # Write

N = 3 IWAP 0.288 0 [1, 2] [1, 2]

H = 32 KLIP 0.505 43 1 1

WL = 128 PLIP 1.523 82.1 3 1

N = 56 IWAP 1.344 0 [9, 10] [3, 4]

H = 8 KLIP 1.427 5.9 9 [3, 4]

WL = 160 PLIP 1.436 6.4 9 3

N = 56 IWAP 1.344 0 11 4

H = 8 KLIP 1.4 4 11 4

WL = 128 PLIP 1.528 12 12 4

For all cases, we consider 8-bit precision. Numbers in brackets indicate that different numbers can be obtained for reading or writing different pixels. N and H are the channel depth

and the height of the volume of feature maps, respectively. WL is the word length of the local memory.

volume of pixels produced by the previous layer or layers. In
this section, we present a method to execute inference of such
networks by pipelining across matrix-vector multiplications of
different layers.

Assume an array of IMC cores interconnected by a
communication fabric. Fundamentally, the dataflow implies that
each IMC core operates independently, receiving pixels from
cores interconnected to it and triggering its own computations
once enough pixels have been received, according to the
parameters of the layer it is executing. Upon completion of
computation, it will deliver the data to the cores that require it.
It is evident from this first summary of the dataflow that the
execution will depend highly from the communication fabric that
interconnects the IMC cores array. In this work, we assume the
presence of a communication fabric that allows any IMC core to
communicate with a point-to-point connection to any other IMC
core that would require its data for a given application. One such
communication fabric and the principles by which to organize
communication between an array of IMC cores for the execution
of CNNs are described in depth in Dazzi et al. (2019). In our
IMC core architecture, the dataflow is enforced by the Dataflow
Controller, which also generates the addresses for writing and
reading pixels as described in section2.3. We discuss the dataflow
control in section 2.4.1, and memory control in section 2.4.2.

2.4.1. Dataflow Control
Algorithm 1 provides a pseudocode that describes the activity of
the Dataflow Controller. At every timestep (line 2) the Dataflow
Controller first checks the presence of new incoming pixels and
stores them in the InputMemory according to one pixel mapping
method (lines 3 to 7). Subsequently, it also updates the pointer
(pointer_in) that keeps track of the current position of the pixels
in the input volume. Secondly (lines 10 to 17), it checks whether
the conditions to execute the computation are satisfied. When
the computation is parallelized, the operations of storing the
pixel and updating the input pointers are repeated a number
of times (line 4) equal to the number of pixels that are being
received (nr_parallel). The conditions to start the computation
will depend on the pixels present in the Input Memory (and

Algorithm 1 Dataflow Control

1: def dataflow_ ctrl():
2: at every timestep do

3: if pixel_in then

4: for i from 0 to (nr_parallel− 1) do
5: store_data(pointer_in, pixel_in)
6: pointer_in.x.update()
7: pointer_in.y.update()
8: end for

9: end if

10: if conditions_to_compute(pointer_in): then
11: for i from (nr_parallel− 1) downto 0 do
12: data_pixels=read_data(pointer_in-i)
13: data_to_crossbar(data_pixels)
14: pointer_out.x.update()
15: pointer_out.y.update()
16: end for

17: if pointer_out == end then
18: computation_complete=True
19: end if

20: end if

21: if conditions_to_residual(pointer_in) then
22: read_res()
23: end if

24: end

thus from pointer_in), and on the parameters of the layer, for
example on whether the layer uses padding or the stride of
the convolution. In case these conditions are met, the Dataflow
Controller reads the pixels from the Input Memory and makes
them available to the crossbar array interface (lines 12, 13).
Further, it updates a pointer of the output volume that is being
computed (pointer_out), which will rise a flag indicating the
completion of the computation (lines 17, 18) once all the data
of the output volume had been computed. Also for the case
of fetching the pixels from the Input Memory, in the case of
parallelization, the operations of reading the pixels and updating

Frontiers in Computational Neuroscience | www.frontiersin.org 10 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

the output pointers is repeated a number of times equal to the
number of pixels that are being produced (line 11). Lastly, the
Dataflow Controller checks whether the conditions to send the
residual pixel to other IMC cores are met (lines 21, 22), and in
case they are verified reads the data from the Input Memory and
makes it available to the inter-core communication fabric.

2.4.2. Memory Control
For the control of the Input Memory, the duty of the Dataflow
Controller is to generate the read and write addresses for writing
and reading the appropriate data. As discussed in section 2.3, the
read and write addresses comprise the word address and may
or may not include bitline addresses for write masks and bit
slicing. In this section, we will consider the case of PLIP memory
mapping, in which write masks are not required and the address
represents only the address of the memory words. Algorithm 2

shows two functions, store_data and read_data. The store_data
function is called by the Dataflow Controller each time there is
new incoming pixels. In principle, one may want to store the
entire volume of pixels in the Input Memory. Nevertheless, by
pipelining across matrix-vector multiplications, the computation
is executed on the data as soon as this is available in the Input
Memory, and the input volume is never needed in its entirety
for executing the computation. Namely, for a kernel of size
F1 = F2 = F with padding P and an image of size H by H,
given the dataflow presented above, the minimum number of
pixels that need to be stored in order to start the computation
is H · (F − P − 1) + (F − P), regardless of the stride of the layer.
For the sake of simplicity of the memory mapping, at the cost of
a small memory overhead, we decide to store in memory H · F
pixels. Note that the choice of the number of pixels to store is
simply made on grounds of an easier memory mapping, and it is
independent from the memory mapping strategies described in
section 2.3.

In the store_data pseudocode, at line 2, the incoming data
pixel_in is written to the Input Memory starting from the
cached memory address addr_w_0. For any incoming pixels
within one column (lines 5 to 7), the new address is computed
by incrementing the current address by a quantity 1kernel,
representing the number of words required to store F pixels. This
can be seen clearly in the example in Figure 7D, where1kernel is
6 words, so that two consecutive pixels on the same column [e.g.,
(0, 0) and (1, 0) in Figure 7A] are stored 1kernel words apart.
When changing column of pixels (line 3), the address must be
first reset to the first position of that column in the memory. This
is done by resetting addr_w_0 to one position 1pix, which stores
the position of the first pixel in one column. With reference to
Figure 7D, 1pix[0] = 0, 1pix[1] = 2, 1pix[2] = 4. When
storing the first pixel of column y = 1 in Figure 7A, i.e., pixel
(0, 1), addr_w_0 must be reset to 1pix[1]. Since, as described
above, we want to store an H · F portion of the input volume
of pixels, we must take into consideration how to write pixels
in the memory once we reach a column greater than the F − th
column. Again with reference to Figure 7D, when storing pixels
from column y = 3, we would reset the initial address to1pix[0],
effectively storing column y = 3 in place of column y = 0,
which by that timestep would have become obsolete in terms of

Algorithm 2Memory Control

1: def store_data(pointer_in, pixel_in):
2: write_to_SRAM(addr_w_0, pixel_in)
3: if pointer_in.x == 0 then
4: addr_w_0=1pix[mod(pointer_in.y;kernel_size)]
5: else

6: addr_w_0+=1kernel
7: end if

8: def read_data(pointer_in):
9: for i = 1, . . . , kernel_size do
10: addr_r=addr_r_0+1pix·mod(pointer_in.y +

i;kernel_size)
11: data_out.append(read_from_SRAM(addr_r))
12: end for

13: if pointer_in.x == 0 then
14: addr_r_0=1pix[0]
15: else

16: addr_r_0=1kernel
17: end if

18: return data_out

computation. Thus, we would effectively permute the position of
the column inside the Input Memory between F columns. This is
expressed by the mod function in line 4 of Algorithm 2.

As relates to reading back the pixels from the Input Memory,
the functionality is expressed by the read_data function. With
reference to Figure 2, we take now in consideration the case in
which one row of pixels is read from the Input Memory (e.g., the
blue row of pixels in the timestep t0+ 1 portion of Figure 1). The
read_data function loops through kernel_size pixels (line 9) and
generates the addresses from which every pixel starts to be read
by the read_from_SRAM function (line 11). The various pixels
are appended to one another (line 11) and ultimately returned
by the function (line 14). The reordering of the pixels because
of the permutation of their positions in the Input Memory that
was dealt with in the description of the store_data function is
performed during the generation of the addresses. Starting from
one address indicating the beginning of a row of contiguous
pixels addr_r_0, this is incremented in the reading loop in the
order defined by the current permutation of the positions of the
pixels. Taking again as an example the storing of the pixels in
Figure 7A as shown in Figure 7D, in the case in which column
y = 3 was the last column to be stored in the Input Memory, the
ordering of adjacent pixels in memory would be column y = 3,
column y = 1, and column y = 2. Thus, for the first row of
pixels, the order would be (0, 3) in words 0 and 1; (0, 1) in words
2 and 3; (0, 2) in words 4 and 5. As expressed by the mod function
in line 10, starting in this case from addr_r_0 = 0, addr_r is
incremented during the loop so that the pixels are read in the
order (0, 1), (0, 2), (0, 3). addr_r_0 is then incremented to the
initial position of the next row, or reset (lines 13 to 17). Note
that, in the case of a convolution with padding, it is equivalent
to having additional pixels equal to zero at the borders of the

Frontiers in Computational Neuroscience | www.frontiersin.org 11 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

input volume. This can be addressed in two ways, either by pre-
emptively storing zero pixels in the Input Memory (thus having
the store_data function handle the padding) or by adding the
zeros once the pixels are read from the Input Memory (thus
having the read_data function handle the padding). In the next
sections, we will consider the former option.

2.4.3. Example of the Overall Dataflow
Figure 8 shows an example of the evolution of the state variables
in Algorithm 1 at different timesteps. Consider a convolution
as in Figure 8A, representing a generic layer L of a CNN. It
transforms an input volume (left-hand side) to an output volume
(right hand-side) with a kernel size of 3 × 3, stride =1 and
without padding. Figure 8B shows the input memory and state
variables of the dataflow control at 4 different timesteps. Before
timestep N, the Input Memory is empty, the memory addresses
addr_w_0 and addr_r_0 are at zero and the pointer pointer_in
and pointer_out are at an invalid value (−1). At a Timestep
N, the first pixel is received. This corresponds to the pixel at
position (0, 0) on the (x, y) plane, and the pointer to the input
volume are consequently updated to values pointer_in.x = 0,
pointer_in.y = 0. According to the PLIP memory mapping, the
initial address to store the next pixel is updated to addr_w_0 =

1kernel. Lastly, since a single pixel is not sufficient to perform
any computation, the conditions to compute return False, and
addr_r_0 and pointer_out are not updated. At the subsequent
timestep N+1, another pixel along the column y = 0 is received.
Similarly to the previous timestep, pointer_in is updated to (1, 0),
addr_w_0 is incremented of 1kernel, while the other pointers
remain as they were. At some timestep N+H, the entire column
y = 0 has been received and store in the Input Memory. Again,
the update of pointer_in reflects the position reached in the input
volume, which is still not enough to perform any matrix-vector
multiplication with a 3x3 kernel without padding. As one column
has been received in entirety, addr_w_0 will have to be reset to the
initial position of the second column with y = 1, which is equal
to 1pix[1]. Finally, 2H + 3 timesteps after the initial timestep
N, two entire columns and three pixels of the third column
have been received, and the input pointer pointer_in is updated
to position (2, 2). As the layer executes a 3 × 3 convolution
without padding, there is sufficient data to execute the first
matrix-vector multiplication. The condition_to_compute at line
7 of Algorithm 1 returns True and the input data, highlighted in
red in Figure 8, is read from the Input Memory and provided to
the interface of the crossbar. This matrix-vector multiplication
results in the upper leftmost pixel of the output volume, and
thus the output pointer pointer_out is updated to the newly
computed position (0, 0). Lastly, the initial address for data to be
read is updated to the position of the latest pixel to be read, equal
to 31kernel.

2.4.4. Splitting of Layers Onto Multiple IMC Cores
So far, we assumed the kernel matrix can fit in its entirety on
the crossbar array of the IMC core. Nevertheless, because of the
variability of kernel matrices even within a single CNN on the
one hand and the fixed size of crossbar arrays on the other, we
must take into consideration the case in which one crossbar array

does not have enough rows or columns to fit one kernel matrix.
Without loss of generality, we consider the two cases separately,
one where the number of rows in one crossbar is not sufficient
to fit one kernel matrix and one where the number of columns is
not sufficient. As expressed in section 2.2, because of the typical
shape of kernel matrices on computational memory, the former
case will be, in principle, the most common.

Assume the case of a crossbar array with R rows and C
column, and layer whose kernel matrix requires RKM rows and
CKM columns. If 2R ≥ RKM > R and CKM ≤ C, we can
split the kernel matrix between two crossbar arrays so that they
calculate partial accumulations of the same convolution. This is
equivalent to splitting the original matrix-vector multiplication
between a patch of the input volume αi : i+F−1,j : j+F−1 and a
kernel matrixK as in Equation (5), with each IMC core executing
one matrix-vector multiplication.

αi : i+F−1,j : j+F−1 · K =



















α0
i,j

. . .

α
N/2−1
i+F−1,j+F−1

α
N/2
i,j

. . .

αN−1
i+F−1,j+F−1



















T 

















k0,00,0 . . . k0,M0,0
.

k
N/2−1,0
F−1,F−1 . . . k

N/2−1,M
F−1,F−1

k
N/2,0
0,0 . . . k

N/2,M
0,0

.

kN,0
F−1,F−1 . . . kN,M

F−1,F−1



















=

=







α0
i,j

. . .

α
N/2−1
i+F−1,j+F−1







T




k0,00,0 . . . k0,M0,0
.

k
N/2−1,0
F−1,F−1 . . . k

N/2−1,M
F−1,F−1



+

+







α
N/2
i,j

. . .

αN−1
i+F−1,j+F−1







T




k
N/2,0
0,0 . . . k

N/2,M
0,0

.

kN,0
F−1,F−1 . . . kN,M

F−1,F−1





(5)

This is effectively equivalent to splitting the layer into two
different layers, where the IMC core executing the first half of
the computation forwards it to the other IMC core, which sums
the two partial results and execute the required digital processing
(batch normalization, activation function and possibly residual
additions). In terms of dataflow, this is not different from having
two separate layers.

Assume now the case in which RKM ≤ R and 2C ≥ CKM >

C. In this case, we can split the kernel matrix between two
crossbar arrays so that they calculate different channels of the
same convolution. This is equivalent to performing the splitting
shown in Equation (6), where ⊕ indicates the concatenation
operation. This is also equivalent to splitting the layer into
two different layers, and the same considerations made for the
previous case hold.

αi : i+F−1,j : j+F−1 · K =







α0
i,j

. . .

αN−1
i+F−1,j+F−1







T 





k0,00,0 . . . k
0,M/2−1
0,0

.

kN−1,0
F−1,F−1 . . . k

N−1,M/2−1
F−1,F−1






⊕







α0
i,j

. . .

αN−1
i+F−1,j+F−1







T 





k
0,M/2
0,0 . . . k0,M0,0
.

k
N−1,M/2
F−1,F−1 . . . kN−1,M−1

F−1,F−1







(6)

Frontiers in Computational Neuroscience | www.frontiersin.org 12 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 8 | Example of dataflow for one IMC core at subsequent timesteps. (A) Example of a convolution. The input volume of depth Cin (left) is convolved with the

kernel (in blue) to obtain an output volume of depth Cout. (B) Input memory and state variables of an IMC core at different timesteps.

This concept can be of course generalized to a splitting into
an arbitrary number of IMC cores, combining both types of
splitting, provided connectivity between these IMC cores exists.

3. RESULTS

3.1. Execution of ResNet-32 on an a IMC
Accelerator
In this section, we will present the employment of our proposed
methodologies in the mapping of a CNN on an array of IMC
cores and discuss the behavior of the overall inter- and intra-core
dataflow. Specifically, we will consider the inference of ResNet-
32 for the CIFAR-10 dataset, which represents a state-of-the art
accuracy network for such dataset. While our methodologies are
generic with respect to the IMC technology that is employed
and are orthogonal to the implementation of the crossbar
array and/or the precision of the matrix-vector multiplication
operations, in this section we make some assumptions on the
hardware. Firstly, we assume the crossbar arrays of each IMC
core to have size of 256 × 256. The crossbar arrays operate
in a fully parallel mode, and utilizes Phase-Change Memory
(PCM) as the IMC devices. Specifically, in this implementation,
each weight is mapped onto a differential pair of PCM devices.
Input and output data is provided in 8-bit int fixed precision
format. Regarding the Digital Processor, this implementation
assumes a light digital processing element that can perform
batch normalization, residual addition and ReLU. This choice

is justified by the fact that the great majority of state-of-the-art
CNNs, among which ResNet-32, feature these three operations
on activations. Regarding the reduced precision implementation
of ResNet-32, it is based on the one presented in Joshi et al.
(2020). Such implementation presents a training strategy for the
same hardware and numerical precision presented in this work,
and reaches 93.7% accuracy on CIFAR-10. Also in this case, note
that our proposed methodologies and dataflow are orthogonal to
the training process and optimization of the DNNs executed on
the IMC hardware.

In this section, we first present the mapping of the network on
the IMC core array in section 3.1.1. In section 3.1.2, we present
the mapping strategy employed for the activations, and in section
3.1.3, we give display of the dataflow and the overall performance.
In section 3.1.4, we discuss the possibility of speedup of the
dataflow. Lastly, in section 3.2, we present an implementation of
the dataflow controller and input memory implemented in 14 nm
CMOS technology.

3.1.1. Mapping of the Kernel Weights on the Array
Figure 1A shows a representation of ResNet-32 and its mapping
on an array of IMC cores. ResNet-32 comprises 34 layers.
Specifically, 31 convolutional layers with kernel size F1 = F2 =

F = 3, one fully connected layer at the end of the network
for classification, and two layers for resampling of the residual
connection with kernel size F1 = F2 = F = 1. Firstly, we
must store the kernel matrices on the computational memory of
the IMC core array. We proceed in the following way: we map

Frontiers in Computational Neuroscience | www.frontiersin.org 13 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

TABLE 2 | Layer specifications for ResNet-32 network.

#Layers Hin × Win Hout × Wout Stride Cin Cout Kernel Size #Rows #Columns Pixel Size

[bits]

1 32 × 32 32 × 32 1 3 16 3 × 3 27 16 24

2/11 32 × 32 32 × 32 1 16 16 3 × 3 144 16 128

RS1 32 × 32 16 × 16 2 16 28 1 × 1 16 28 128

12 32 × 32 16 × 16 2 28 28 3 × 3 252 28 224

13/21 16 × 16 16 × 16 1 28 28 3 × 3 252 28 224

RS2 16 × 16 8 × 8 2 28 56 1 × 1 28 56 224

22 16 × 16 8 × 8 2 56 56 3 × 3 504 56 448

23/31 8 × 8 8 × 8 2 56 56 3 × 3 504 56 448

FC 1 × 1 1 × 1 2 56 10 / 56 10 448

FIGURE 9 | Mapping of ResNet-32 on an array of IMC cores. Different colored arrows represent different functionality of the communication. Specifically, green arrows

represents feedforward communication and the blue ones denote residual connections. Moreover, the red arrows indicate communication to resampling layers,

whereas the orange ones represent residual connections from a resampling layer. Finally, the purple arrows signify partial summation for layers split on multiple

IMC cores.

one layer per IMC core; in case the crossbar array did not have
enough rows or columns to fit the kernel matrix for one layer,
we split the kernel matrix and map it on multiple IMC cores.
For the sake of simplicity, in this first discussion of the dataflow,
we will assume the mapping of a single kernel matrix per layer,
that is, no kernel replication as in section 2.2. Table 2 reports the
required number of rows and columns for the kernel matrices
of each layer. In order to better match the size of the crossbar
array, we have trained a version of ResNet-32 with a slightly lower
number of channels for the layers RS1, RS2, 12, 32 and FC. In
general, all channel depth of 32 have been reduced to 28, and
all channel depths of 64 to 56. Such modification is consistent
with the implementation in Joshi et al. (2020). Given the number
of required rows and columns, all layers except 22/31 can be
mapped onto a single crossbar array. Layers 22/31 require more
rows i.e., 504, than the 256 rows available in a single crossbar
array. Thus, for each of these layers we split the kernel matrix into
two smallermatrices of size 256× 56. In this way, we perform two
partial accumulations of the overall matrix-vector multiplication.
Note that, for these layers, activations α0,L to α27,L are input to
one crossbar array, and α28,L to α56,L are input to another one.
We will discuss in more detail, in section 3.1.3, how these two
partial accumulations are combined. As a result of this overall
mapping strategy, the ResNet-32 network requires 43 IMC cores.

3.1.2. Mapping of Activations on the Input Memory
Table 2 shows the parameters of the layers of ResNet-32 as well
as the size in bits of every pixel that needs to be stored in

the Input Memory of the corresponding IMC core. We have
assumed a word length of 128 bits and a word depth of 512,
amounting to a total to 8KB SRAM for the Input Memory of
each IMC core. We have used IWAP to store the pixels for layer
1 and ALIP for storing pixels for the remaining layers. In fact,
as noted in section 2.3.5, IWAP works best for layers where the
size of the pixels is small compared to the word length, as is
the case with layer 1, while for the other layers KLIP or PLIP
are preferable. From the consideration on the minimummemory
requirements in section 2.4.2, the memory requirements for the
different convolutional layers are 0.28 KB for layer 1 and 1.5 KB
for all the others. Both requirements are lower than the size of the
Input Memory.

3.1.3. Dataflow and Performance
Figure 9 shows the mapping of ResNet-32 on an 8-by-6 array
of IMC cores. Arrows between cores represent communication
channels. We assume a communication fabric as in Dazzi et al.
(2019), such that every connection can be satisfied as required
by the network. This topology assures that all data delivery
occurs within one timestep, guaranteeing that the pipeline
never stalls. In Figure 9 different colored arrows represent
different functionality of the communication. Specifically, green
arrows represents feedforward communication and the blue ones
denote residual connections. Moreover, the red arrows indicate
communication to resampling layers, whereas the orange ones
represent residual connections from a resampling layer. Finally,
the purple arrows signify partial summation for layers split

Frontiers in Computational Neuroscience | www.frontiersin.org 14 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

FIGURE 10 | Pixels per layer as a function of the timesteps. Layers with different feature map size are color-coded in different colors. (A) Pixels being computed by

mapping at most 1 kernel matrix per layer. (B) Pixels being computed by mapping multiple kernel matrices per layer.

on multiple IMC cores. Figure 10A shows the evolution of
the computation per convolutional layer as a function of the
timestep. In an ideal pipelining scenario, one would expect that
one pixel is computed at every timestep, such that the number
of pixels to be computed per layer is equal to the number of
timesteps the IMC core is active. This implies that the slope of the
curves in Figure 10A should be equal to one. The slope is indeed
equal to one for all layers that do not need strided convolutions
(see red curves in Figure 10A). However, the computation of
layer 12, with stride equal to two, can only be executed every
two rows and every two columns. As the size of the feature
map for that layer is 16x16, the IMC core assigned to layer 12
will perform computations every 2 timesteps, while receiving the
pixels from layer 11, and stall for 16 timesteps when receiving
columns on which no computation is required. Overall, on
average, this implies that there will be a computation every
4 cycles, meaning the average slope is 1/4. As all the layers
subsequent to layer 12 are connected in a feedforward way, the
reduced slope of the computation vs. timesteps curve propagates
to all the subsequent layers until the point at which layer 12
is completed. This is evident in Figure 10A, where the layers
from 13 to 21 progress also at slope 1/4 up to point at which
layer 12 is completed, after which the slope progresses at slope
1. Moreover, this is propagated to the layers from 22 to 31
where the slope, which is supposed to be equal to 1/4 (the stride
equal to two in layer 22), is reduced of an additional factor 4,
i.e., 1/16.

As a result, the overall latency for a single classification is
1,628 cycles. Assuming a timestep of 100 ns, this results in
161.8 us latency for the classification of a single image and
9,650 Images/s throughput.

FIGURE 11 | Physical layout of the Dataflow Controller and Input Memory.

3.1.4. Dataflow Speedup
In an architecture as shown in Figure 9, the bandwidth of the
communication links is tailored on the most expensive data
communication. The bandwidth requirements are calculated as

B = (nbits · C
max
out)/Ttimestep (7)

where nbits denotes the number of bits per single activation,
Cmax
out indicates the maximum number of output channels of

the convolutional layers throughout the network, and Ttimestep

represents the duration in seconds of one timestep. Assuming
that we want to deliver all the data from one IMC core at

Frontiers in Computational Neuroscience | www.frontiersin.org 15 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

most within one timestep of 100 ns, the maximum bandwidth
required is 4.5 Gbps, from layers 22 to 31. This corresponds
to the layers colored in green in Figure 10. In ResNet-32 and
generally in the design of CNNs, the number of channels per
layer doubles for every group of layers. In Figure 10, the group
of layers marked in blue have twice the number of channels
compared to the layers in red, and the layers marked in green
have four time the number of channels compared to the layers
in red. From Equation 7, it follows that the same bandwidth
that allows to send 1 activation in 1 timestep for the last group
of layers, allows to deliver in 1 timestep 4 activations for the
first group of layers and 2 for the second, respectively. Based on
this observation, we present a pipeline speedup method that uses
the same hardware communication requirements as the regular
dataflow. Figure 10B shows the number of activations computed
per layer as the timesteps increase, assuming a sped up dataflow.
According to this dataflow, we assume that the IMC cores
parallelize the computation of matrix-vector operations based
on one of the methods presented in section 2.2. Specifically, the
first group of layers (red) computes four activations per timestep,
the second group of layers (blue) computes two activations per
timestep, and the third computes one activation per timestep.
As argued before, as long as the kernel matrices can fit on
the crossbar arrays of the IMC cores, this does not modify
the bandwidth requirements of the hardware implementation.
In accordance with the activations per timesteps that are
computed per layer, Figure 10B shows that the slope of the
activation/timestep curve is equal to four for the first group of
layers. This seed-up is reflected on the post-stride layers (in blue),
where the slope of the layers is increased by 4x compared to
Figure 10A, as long as its computation depends on the data that
is received from the first set of layers, after which it proceeds at
the speed set by the IMC core (2 activations/timestep). Similarly
for the third group of layers, the speed-up of the preceding layers
reflects on its own execution that is sped up as long as it depends
on the data that are received by the previous layers, with the slope
gradually increasing from 1/4 to 1/2 and ultimately to 1 when the
second group of layers have finished the computations. As the
number of activations that are produced per layer depend on both
the rate of the preceding layers and its own rate, the speed-up is
clearly non-linear. For the case of ResNet-32, it results in a latency
for a single classification of 526 cycles, resulting to a speed-up of a
factor 3.1. The throughput, which depends primarily on the rate
of the first layers, is equal to 38,600 Images/s for a batch of 100
images to be classified.

3.2. Hardware Implementation
We demonstrated the dataflow presented in this work via
experiments and simulation. Specifically, the Input Memory,
Dataflow Controller and communication fabric have been
implemented in CMOS 14nm technology. The communication
fabric implements the topology presented in Dazzi et al. (2019).
These elements represent the digital framework around an array
of 8-by-8 IMC cores, constituting an IMC based inference
engine. This architecture allows the execution of inference for
CNNs through the dataflow described in section 2.4. Note that,
in this implementation, we are agnostic of the computational

TABLE 3 | Power consumption and area occupation for Input Memory, Dataflow

Controller, and communication links implemented in 14 nm CMOS technology.

Area DFC [mm2] Area SRAM [mm2]

0.0132 0.0091

Power DFC+SRAM [mW] Power links [mW]

10.544 0.775

elements, i.e., Crossbar Array and Digital Processor. Based on
the application and the desired accuracy, different computational
elements can be utilized in such an architecture to build the
overall accelerator.

The design assumes supply voltage equal to 0.8V and clock
frequency of 500MHz. Table 3 shows the power consumption
and area occupation of the blocks. The Input Memory has been
implemented as an SRAMmemory with word length equal to 128
bits, comprising 8 KB of memory. Figure 11 displays the layout
of the Input Memory and Dataflow Controller. Overall, the Input
Memory occupies 0.0091mm2, while the Dataflow Controller
occupies 0.0132mm2. In order to have a realistic estimation of
the power consumption, we evaluate the joint operation of both
blocks. Specifically, storing and reading from the Input Memory
is only executed based on the dataflow set by the Dataflow
Controller. The joint power consumption of Dataflow Controller
and Input Memory is equal to 10.54mW. A breakdown of the
power consumption is reported in Table 4. Most power is spent
in the Sequential elements, which is justified considering the
significant amount of buffering of data and pointers inside the
Dataflow Controller.

As relates to the communication fabric, the design implements
synchronous communication with latch-to-latch links. The
average power consumption is 0.775mW. The energy efficiency
of the links depends on their lengths, and ranges between 39.4
and 346.5 fJ/bit.

We now discuss the usage of the computational elements
within the architecture described above. In accordance with
the case study presented in section 3.1, we assume crossbar
arrays of size 256 × 256. We assume the use of phase-change
memory (PCM) (Burr et al., 2017) as the computational memory.
In order to estimate the performance of such an array, we
take into consideration the analog and digital contributions
to the energy consumption of the crossbar array. Specifically,
as regards the analog contributions, we consider the energy
for the voltage regulators for the columns of the array, the
energy for the analog-domain computation and the energy of
the ADCs for the analog-to-digital conversion. For the analog
computation we assume the average conductance of the PCM
devices to be 2.5µS and the read voltage to be 0.2V. Also,
the energy for the ADCs is taken from Kull et al. (2017).
As regards the digital contributions, for the crossbar array
we also take into consideration the pulse-width modulator
(PWM). The PWM applies the input to the array as voltage
pulses, performing a digital-to-analog conversion from an 8-
bit signed integer to a read voltage pulse. Lastly, we assume
a Digital Processor performing batch normalization, ReLU and
addition for the residual connection. The power consumption

Frontiers in Computational Neuroscience | www.frontiersin.org 16 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

TABLE 4 | Power breakdown for the internal components of the Dataflow Controller.

Internal power Switching Power Leakage power Total Power Percentage (%)

Sequential 4.052 0.3429 0.06095 4.455 42.25

SRAM macro 2.548 0.03460 0.02155 2.604 24.7

Combinational 0.5563 1.625 0.04357 2.225 21.1

Clock 0.1884 1.071 0.001539 1.261 11.96

Total 7.344 3.073 0.1276 10.54 100

of the digital blocks was obtained from RTL simulations of
the HDL code of one implementation. Overall, the resulting
energy efficiency is 10.5 TOPS/W. Note that, although our chip
design is based on 256 × 256 crossbar arrays, it can be readily
estimated that by increasing the crossbar array size to 512
× 512 the efficiency becomes 16.3 TOPS/W. Comparing the
resulting energy efficiency with digital accelerators targeting
similar datasets (Sim et al., 2016) and IMC-based accelerators
(Ando et al., 2017), our architecture outperforms them up to a
factor 7.4x and 5.2x, respectively. Moreover, our implementation
yields very high operations per second, providing 1.008 TOPS.
Such performance is, respectively, 7.36x and 409x higher
compared to SRAM-based (Jia et al., 2020) and ReRAM-
based (Xue et al., 2020) IMC array implementations. In
terms of performance density, our proposed PCM-based array
provides 1.59 TOPS/mm2, outperforming the aforementioned
implementations by 41.76x and 1322x, respectively. Lastly,
comparing our results in terms of thoughput with the ones
reported by systolic array-based ASICs on a ResNet of similar
depth (Andri et al., 2018), we achieve a throughput that is 206x
higher with the dataflow described in section 3.1.3 and 826x
higher with the dataflow speedup method described in section
3.1.4. Furthermore, our presented throughputs are, respectively,
7x and 31x higher compared to that of ASICs targeting the same
dataset (Esser et al., 2016).

4. DISCUSSION

Various optimized dataflows for efficient hardware deployment
of CNNs have been explored in literature. Specifically, pipelined
dataflows that exploit parallelization of the computation
between layers, have demonstrated mitigation of bandwidth
limitations (Goetschalckx and Verhelst, 2019). Similarly,
dataflows exploiting the local computation of feature maps
between CNN layers have already been employed in a
variety of hardware accelerators. For example, dataflows
that fuse the computation between subsets of subsequent
layers within a CNN (Alwani et al., 2016) have been used
in implementations of CNNs on FPGA-based accelerators
(Reggiani et al., 2019). Moreover, such advanced dataflows
have been proposed for heterogeneous architectures in order
to improve throughput and avoid use of off-chip memory (Wei
et al., 2018). Dataflows that pipeline the computation across
layers in an end-to-end fashion have recently been employed in

accelerators based on IMC for inference (Shafiee et al., 2016),
and similar concepts have also been used for training dataflows
(Song et al., 2017).

All these contributions consider simple feed-forward
networks. Furthermore, in all the prior works, the optimization
and possible parallelization of the computation performed
on the crossbar array has not been considered. In this work
we present a fully pipelined, end-to-end inference dataflow
based on the proposed optimized mapping of synaptic weights
on the crossbars and of activations on the on-chip memory.
The dataflow is agnostic of the connectivity of the CNN
layers and is not limited to simple feedforward networks.
Among the contributions to the mapping of kernel weights
on computational memory, it is worth mentioning the results
on different ordering strategies presented in Yue et al. (2020).
While this work targets easier data handling in the case the
kernel matrices were split onto multiple crossbars, we take an
orthogonal approach by trying to optimize device utilization
when mapping multiple replicas of the kernel weights on the
same crossbar array. Clearly, different ordering techniques
can in principle be used alongside the optimization strategies
presented in this paper. Optimization of the kernel mapping
has also been explored in Peng et al. (2019). This work
reorders and partitions kernel matrices in order to facilitate
their mapping on the crossbar arrays, and proposes a novel
dataflow in order to allow DNN inference with such a kernel
partition. In our work, we propose kernel mapping methods
that do not require ad-hoc dataflows for their execution,
so that they can be applied to well-established dataflows
and compatible with widely used environments for neural
network definitions.

To summarize, in this paper we have introduced various
methodologies for accelerating convolutional neural networks
(CNNs) on hardware based on IMC. We introduced an
architecture of a computational memory (IMC) core for
execution of CNNs. We presented an exhaustive set of methods
for mapping kernel matrices on the crossbar arrays of the
IMC cores. For a given number of matrix-vector multiplications
to be executed in parallel, these methods allow the size of
the crossbar array required to map the kernel matrices to
be minimized. Secondly, we presented three novel methods
for storing activations on the local memory of the IMC
cores. Based on the overall size of the activations and on
the parameters of the local memory used for storing them,
these different methods for storing activations can minimize

Frontiers in Computational Neuroscience | www.frontiersin.org 17 August 2021 | Volume 15 | Article 674154

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

the number of read and write cycles required. Using these
mapping schemes for both kernel matrices and activations, we
then proposed an end-to-end dataflow for execution of CNNs
on an array of IMC cores. We studied the performance of
this dataflow on ResNet-32 for CIFAR-10 and presented the
implementation of the dataflow control logic in 14nm CMOS
technology, demonstrating a throughput that is at least 7x higher
than achieved by ASICs targeting the same neural network
and dataset.

DATA AVAILABILITY STATEMENT

Some of the datasets presented in this article are not
readily available because simulators used for some results are
proprietary. Other datasets presented in this study can be
found in online repositories. CIFAR-10 dataset is available
for download at https://www.cs.toronto.edu/~kriz/cifar.html.
ResNet models are typically available in machine learning
frameworks such as PyTorch (https://pytorch.org/hub/pytorch_
vision_resnet/).

AUTHOR CONTRIBUTIONS

MD conceived the IMC core architecture with support from
AS and EE. MD conceived the weight and activation mapping
methodologies and developed the python simulator for the
experiments. MD developed the dataflow concept for CNNs
on IMC with support from AS, LB, and EE. MD designed the
hardware implementation of the dataflow controller. MD and EE
wrote the manuscript with inputs from LB and AS. AS, LB, and
EE supervised the project. All authors contributed to the article
and approved the submitted version.

ACKNOWLEDGMENTS

We would like to thank Christophe Piveteau for the fruitful
discussions and the help with the simulation of the dataflow. We
would also like to thank Matthias Braendli from IBM Research
Europe for his technical support in the 14 nm CMOS design.
Lastly, we thank our colleagues at IBM Research, in particular
those affiliated to the IBM AI Hardware Center.

REFERENCES

Alwani, M., Chen, H., Ferdman, M., and Milder, P. (2016). “Fused-

layerCNN accelerators,” in 2016 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO) (Taipei: IEEE), 1–12.

doi: 10.1109/MICRO.2016.7783725

Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato, S., Nakahara, H., et al.

(2017). BRein memory: a single-chip binary/ternary reconfigurable in-memory

deep neural network accelerator achieving 1.4 TOPS at 0.6 W. IEEE J. Solid

State Circ. 53, 983–994. doi: 10.1109/JSSC.2017.2778702

Andri, R., Cavigelli, L., Rossi, D., and Benini, L. (2018). “Hyperdrive: a systolically

scalable binary-weight CNN inference engine for mW IoT end-nodes,” in 2018

IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (Hong Kong:

IEEE), 509–515. doi: 10.1109/ISVLSI.2018.00099

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,

P., et al. (2016). End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316.

Burr, G. W., Shelby, R. M., Sebastian, A., Kim, S., Kim, S., Sidler, S., et al. (2017).

Neuromorphic computing using non-volatile memory. Adv. Phys. X 2, 89–124.

doi: 10.1080/23746149.2016.1259585

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2016). Eyeriss: an energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid

State Circ. 52, 127–138. doi: 10.1109/JSSC.2016.2616357

Dazzi, M., Sebastian, A., Francese, P. A., Parnell, T., Benini, L., and Eleftheriou,

E. (2019). 5 parallel prism: a topology for pipelined implementations of

convolutional neural networks using computational memory. arXiv preprint

arXiv:1906.03474.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–

11446. doi: 10.1073/pnas.1604850113

Goetschalckx, K., and Verhelst, M. (2019). Breaking high-resolution CNN

bandwidth barriers with enhanced depth-first execution. IEEE J. Emerg. Select.

Top. Circ. Syst. 9, 323–331. doi: 10.1109/JETCAS.2019.2905361

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, 770–778. doi: 10.1109/CVPR.

2016.90

He, Y., Zhang, X., and Sun, J. (2017). “Channel pruning for accelerating

very deep neural networks,” in Proceedings of the IEEE International

Conference on Computer Vision, Venice, 1389–1397. doi: 10.1109/ICCV.

2017.155

Hu, M., Graves, C. E., Li, C., Li, Y., Ge, N., Montgomery, E., et al. (2018).

Memristor-based analog computation and neural network classification with

a dot product engine. Adv. Mater. 30:1705914. doi: 10.1002/adma.201705914

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely

connected convolutional networks,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, HI, 4700–4708.

doi: 10.1109/CVPR.2017.243

Ielmini, D., and Wong, H.-S. P. (2018). In-memory computing with resistive

switching devices. Nat. Electron. 1:333. doi: 10.1038/s41928-018-0092-2

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al.

(2018). “Quantization and training of neural networks for efficient integer-

arithmetic-only inference,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, 2704–2713.

doi: 10.1109/CVPR.2018.00286

Jia, H., Valavi, H., Tang, Y., Zhang, J., and Verma, N. (2020). A programmable

heterogeneous microprocessor based on bit-scalable in-memory computing.

IEEE J. Solid State Circ. 55, 2609–2621. doi: 10.1109/JSSC.2020.2987714

Joshi, V., Le Gallo, M., Haefeli, S., Boybat, I., Nandakumar, S., Piveteau, C., et al.

(2020). Accurate deep neural network inference using computational phase-

change memory. Nat. Commun. 11, 1–13. doi: 10.1038/s41467-020-16108-9

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.

(2017). “In-datacenter performance analysis of a tensor processing unit,”

in Proceedings of the 44th Annual International Symposium on Computer

Architecture (Toronto, ON: ACM), 1–12. doi: 10.1145/3079856.3080246

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, 1097–1105.

Kull, L., Luu, D., Menolfi, C., Braendli, M., Francese, P. A., Morf, T., et al.

(2017). “28.5 a 10b 1.5 GS/s pipelined-SARADCwith background second-stage

common-mode regulation and offset calibration in 14nm CMOS FinFET,” in

2017 IEEE International Solid-State Circuits Conference (ISSCC) (San Francisco,

CA: IEEE), 474–475. doi: 10.1109/ISSCC.2017.7870467

Le Gallo, M., Sebastian, A., Mathis, R., Manica, M., Giefers, H., Tuma, T., et

al. (2018). Mixed-precision in-memory computing. Nat. Electron. 1, 246–253.

doi: 10.1038/s41928-018-0054-8

Frontiers in Computational Neuroscience | www.frontiersin.org 18 August 2021 | Volume 15 | Article 674154

https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/hub/pytorch_vision_resnet/
https://pytorch.org/hub/pytorch_vision_resnet/
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1109/JSSC.2017.2778702
https://doi.org/10.1109/ISVLSI.2018.00099
https://doi.org/10.1080/23746149.2016.1259585
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/JETCAS.2019.2905361
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1002/adma.201705914
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1038/s41928-018-0092-2
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1109/JSSC.2020.2987714
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ISSCC.2017.7870467
https://doi.org/10.1038/s41928-018-0054-8
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Dazzi et al. Accelerating CNN Inference Using IMC

Nandakumar, S., Le Gallo, M., Boybat, I., Rajendran, B., Sebastian, A.,

and Eleftheriou, E. (2018). “Mixed-precision architecture based on

computational memory for training deep neural networks,” in International

Symposium on Circuits and Systems (ISCAS) (Florence: IEEE), 1–5.

doi: 10.1109/ISCAS.2018.8351656

Peng, X., Liu, R., and Yu, S. (2019). “Optimizing weight mapping and data flow

for convolutional neural networks on RRAM based processing-in-memory

architecture,” in 2019 IEEE International Symposium on Circuits and Systems

(ISCAS) (Sapporo: IEEE), 1–5. doi: 10.1109/ISCAS.2019.8702715

Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Adam, G. C., Likharev, K.

K., and Strukov, D. B. (2015). Training and operation of an integrated

neuromorphic network based on metal-oxide memristors. Nature 521:61.

doi: 10.1038/nature14441

Reggiani, E., Rabozzi, M., Nestorov, A. M., Scolari, A., Stornaiuolo, L., and

Santambrogio, M. (2019). “Pareto optimal design space exploration for

accelerated CNN on FPGA,” in 2019 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW) (Rio de Janeiro: IEEE), 107–114.

doi: 10.1109/IPDPSW.2019.00028

Sebastian, A., Boybat, I., Dazzi, M., Giannopoulos, I., Jonnalagadda, V., Joshi,

V., et al. (2019). “Computational memory-based inference and training of

deep neural networks,” in Proceedings of the IEEE Symposium on VLSI Circuits

(Kyoto). doi: 10.23919/VLSIC.2019.8778178

Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R., and Eleftheriou, E. (2020).

Memory devices and applications for in-memory computing.Nat. Nanotechnol.

15, 529–544. doi: 10.1038/s41565-020-0655-z

Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu,

M., et al. (2016). ISAAC: a convolutional neural network accelerator with in-

situ analog arithmetic in crossbars. ACM SIGARCH Comput. Arch. News 44,

14–26. doi: 10.1145/3007787.3001139

Sim, J., Park, J.-S., Kim, M., Bae, D., Choi, Y., and Kim, L.-S. (2016).

“14.6 a 1.42 TOPS/W deep convolutional neural network recognition

processor for intelligent IOE systems,” in 2016 IEEE International Solid-

State Circuits Conference (ISSCC) (San Francisco, CA: IEEE), 264–265.

doi: 10.1109/ISSCC.2016.7418008

Song, L., Qian, X., Li, H., and Chen, Y. (2017). “Pipelayer: a pipelined ReRAM-

based accelerator for deep learning,” in 2017 IEEE International Symposium

on High Performance Computer Architecture (HPCA) (Austin, TX: IEEE),

541–552. doi: 10.1109/HPCA.2017.55

Valavi, H., Ramadge, P. J., Nestler, E., and Verma, N. (2019). A 64-tile 2.4-Mb

in-memory-computing CNN accelerator employing charge-domain compute.

IEEE J. Solid State Circ. 54, 1789–1799. doi: 10.1109/JSSC.2019.2899730

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.

(2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Wei, X., Liang, Y., Li, X., Yu, C. H., Zhang, P., and Cong, J. (2018). “TGPA: tile-

grained pipeline architecture for low latency CNN inference,” in Proceedings of

the International Conference on Computer-Aided Design, San Diego, CA, 1–8.

doi: 10.1145/3240765.3240856

Xia, Q., and Yang, J. J. (2019). Memristive crossbar arrays for brain-inspired

computing. Nat. Mater. 18:309. doi: 10.1038/s41563-019-0291-x

Xue, C.-X., Huang, T.-Y., Liu, J.-S., Chang, T.-W., Kao, H.-Y., Wang, J.-H., et al.

(2020). “15.4 A 22 nm 2Mb ReRAM compute-in-memory macro with 121-

28TOPS/W for multibit MAC computing for tiny AI edge devices,” in 2020

IEEE International Solid-State Circuits Conference-(ISSCC) (San Diego, CA:

IEEE), 244–246. doi: 10.1109/ISSCC19947.2020.9063078

Yue, J., Yuan, Z., Feng, X., He, Y., Zhang, Z., Si, X., et al. (2020).

“14.3 a 65nm computing-in-memory-based CNN processor with 2.9-to-35.8

TOPS/W system energy efficiency using dynamic-sparsity performance-scaling

architecture and energy-efficient inter/intra-macro data reuse,” in 2020 IEEE

International Solid-State Circuits Conference-(ISSCC) (San Diego, CA: IEEE),

234–236. doi: 10.1109/ISSCC19947.2020.9062958

Conflict of Interest: MD, AS, and EE were employed by the company IBM

Research Zurich.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Dazzi, Sebastian, Benini and Eleftheriou. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 19 August 2021 | Volume 15 | Article 674154

https://doi.org/10.1109/ISCAS.2018.8351656
https://doi.org/10.1109/ISCAS.2019.8702715
https://doi.org/10.1038/nature14441
https://doi.org/10.1109/IPDPSW.2019.00028
https://doi.org/10.23919/VLSIC.2019.8778178
https://doi.org/10.1038/s41565-020-0655-z
https://doi.org/10.1145/3007787.3001139
https://doi.org/10.1109/ISSCC.2016.7418008
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/JSSC.2019.2899730
https://doi.org/10.1145/3240765.3240856
https://doi.org/10.1038/s41563-019-0291-x
https://doi.org/10.1109/ISSCC19947.2020.9063078
https://doi.org/10.1109/ISSCC19947.2020.9062958
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Accelerating Inference of Convolutional Neural Networks Using In-memory Computing
	1. Introduction
	2. Methods
	2.1. Hardware Architecture Overview
	2.2. Mapping of Weights
	2.2.1. Parallelizing Computation Across One Direction
	2.2.2. Parallelizing Computation Across Two Directions
	2.2.3. Comparison of Parallelization Methods

	2.3. Mapping of Activations
	2.3.1. Memory Mapping Evaluation Metrics
	2.3.2. Intra-Word Adjacent Placing (IWAP)
	2.3.3. Kernel-Level Interleaved Placing (KLIP)
	2.3.4. Pixel-Level Interleaved Placing (PLIP)
	2.3.5. Comparison of the Methodologies

	2.4. Dataflow and Memory Control
	2.4.1. Dataflow Control
	2.4.2. Memory Control
	2.4.3. Example of the Overall Dataflow
	2.4.4. Splitting of Layers Onto Multiple IMC Cores

	3. Results
	3.1. Execution of ResNet-32 on an a IMC Accelerator
	3.1.1. Mapping of the Kernel Weights on the Array
	3.1.2. Mapping of Activations on the Input Memory
	3.1.3. Dataflow and Performance
	3.1.4. Dataflow Speedup

	3.2. Hardware Implementation

	4. Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

