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Large and small cortexes of the brain are known to contain vast amounts of neurons

that interact with one another. They thus form a continuum of active neural networks

whose dynamics are yet to be fully understood. One way to model these activities

is to use dynamic neural fields which are mathematical models that approximately

describe the behavior of these congregations of neurons. These models have been

used in neuroinformatics, neuroscience, robotics, and network analysis to understand

not only brain functions or brain diseases, but also learning and brain plasticity. In

their theoretical forms, they are given as ordinary or partial differential equations with

or without diffusion. Many of their mathematical properties are still under-studied. In this

paper, we propose to analyze discrete versions dynamic neural fields based on nearly

exact discretization schemes techniques. In particular, we will discuss conditions for the

stability of nontrivial solutions of these models, based on various types of kernels and

corresponding parameters. Monte Carlo simulations are given for illustration.

Keywords: dynamic neural fields, discrete, stability, simulations, neurons

1. INTRODUCTION

To model a large amount of cells randomly placed together with a uniform volume density and
capable of supporting various simple forms of activity, including plane waves, spherical and circular
waves, and vortex effects, Beurle (1956) proposed a continuous model consisting of a partial
differential equation, that can capture some neurons behaviors like excitability at the cortical level.
Amari (1977) and Wilson and Cowan (1972) subsequent modifications did allow for new features
such as inhibition. This essentially gave birth to the theory of dynamic neural fields (DNFs) with
far reaching applications. The literature on the DNFs is rather rich, and the trends nowadays
are toward cognition, plasticity, and robotics. In cognitive neuroscience for instance, DNFs have
enabled analyses of Electroencephalograms (Nunez and Srinivasan, 2006), short term memory
(Camperi andWang, 1998), visual hallucinations (Ermentrout and Cowan, 1979; Tass, 1995), visual
memory (Schmidt et al., 2002). Durstewitz et al. (2000) have proposed neurocomputational models
of working memory using single layer DNFs and shown that the temporal dynamics they obtained
compare well with the in vivo observations. Simmering et al. (2008) and Perone and Simmering
(2019) used DNFs to achieve spatial cognition by successfully simulating infants’ performance
in some tasks. Quinton and Goffart (2017) used nonlinearities in DNFs to propose a unifying
model for goal directed eye-movements that allow for the implementation of qualitatively different
mechanisms including memory formation and sensorimotor coupling. Plasticity in neuroscience
can be thought of as the ability of the brain to adapt to external activities by modifying some of
its structure. Connections between plasticity and DNFs have been made in studies on intrinsic
plasticity, see Strub et al. (2017) or parallel works such as Neumann and Steil (2011), Pozo and
Goda (2010), and the references therein. Robotics has been a great niche for DNFs with the works
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of Bicho et al. (2000), Erlhagen and Schöner (2001), Erlhagen
and Bicho (2006), and Bicho et al. (2010).

To recall the theoretical aspects of DNFs, let � ⊆ R
d be a

manifold where d is positive integer. In the presence of neurons
located on � at time t arranged on L layers, the average potential
functionVk(xk, t) is often used to understand the continuous field
on the kth layer. Vk(xk, t) is the average membrane potential of
the neuron located at position xk at time t of the kth layer. When
L = 1, V(xk, t) can also be understood as the synaptic input or
activation at time t of a neuron at position or direction xk. It
satisfies the equation (see Amari, 1977) which is given as

∂Vk(xk, t)

∂t
= −Vk(xk, t)

+
L
∑

ℓ=1

∫

�

Wkℓ(xk, xℓ)G
(

Vℓ(xℓ, t)
)

dxℓ + Sk(xk, t) ,

(1)

where Wkl(xk, xℓ) is the intensity of the connection between a
neuron located at position xk on the kth layer with a neuron a
position xℓ on the ℓth layer, G[Vℓ(xℓ, t)] is the pulse emission
rate (or activity) at time t of the neuron located at position xℓ

on the ℓth layer. G is often chosen as a monotone increasing
function. Sk(xk, t) represents the intensity of the external stimulus
at time t arriving on the neuron at position xk on the kth layer, see
Figure 1 below.

Most of the mentions of discrete systems involving DNFs are
of Euler forward type discretization—see Erlhagen and Bicho
(2006), Quinton and Goffart (2017), and Beim and Hutt (2014)—
with simulations as the main objective. Stability analysis of

FIGURE 1 | A representation of the DNFs with four layers and 34 neurons. The

green dots are the neurons with intra-layer connections represented by the red

lines, and inter-layer connections represented by the dashed lines.

solutions of DNFs in the sense of discrete dynamical systems
are either understudied or often ignored. Beim and Hutt (2014)
studied an heterogeneous aspect of DNFs and found existence
of attractors and saddle nodes for solutions of (1). There are
also discussion of DNFs as neural networks. For instance, Sussilo
and Barack (2013) discussed continuous time recurrent neural
network (RNN) as differential equation of the form

∂Vk

∂t
= −Vk +

M
∑

j=1

LkjG
(

Vj

)

+ ηk , (2)

where Vk is an M dimensional state of activations and G(Vj)

are the firing rates, and ηk =
I
∑

j=1

Bkjuj represents the external

stimulus received from I inputs uj and synaptic weights Bkj.
The weights Lkj are selected from a normal distribution. In a
sense, the Equation (1) can be considered a continuous time
(recurrent neural networks) RNN. Authors such as Elman (1990)
and Williams and Zipser (1990), and most recently, Durstewitz
(2017)—see Equation (9.8) therein, have discussed discrete time
RNN formulated as a difference equation of the form

V
(i)
n+1 = G



Wi0 +
M
∑

j=1

WijV
(j)
n + η(i)n



 . (3)

where G is a monotone increasing function, Wi0 is a basic
activity level for the neuron at position xi, the Wij’s are weights
representing the connection strength between neuron at position

xi and neuron at position xj, and η
(i)
n is some external stimulus at

time n arriving on the neuron at position xi. So essentially, after
discretization, (1) may yield not only a discrete time dynamical
system, but also a RNN. In fact, Jin et al. (2021) considered a
discrete equivalent in the space for Equation (1) for L = 2
while maintaining the time as continuous and discussed it in the
context of unsupervised learning which could help understand
plasticity in the brain. The two main goals of this paper are:

1. to propose a discrete dynamic neural field model that is
both numerically convergent and dynamically consistent. The
model is based on nearly exact discretization techniques
proposed in Kwessi et al. (2018) that ensure that the discrete
system obtained preserves the dynamics of the continuous
system it originated from.

2. to propose a rigorous and holistic theoretical framework to
study and understand the stability of dynamic neural fields.

The model we propose has the advantage of being general
and simple enough to implement. It also captures different
generalizations of DNFs such as predictive neural fields (PNFs)
and active neural fields (ANFs). We further show that the
proposed model is in effect a Mann-type (see Mann, 1953)
local iterative process which admits weak-type solutions under
appropriate conditions. The model can also be written as a
recurrent neural network. Stability analysis shows that in some
case, the model proposed can be studied using graph theory.
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The remainder of the paper is organized as follows: in section
2, we propose our nearly exact discretization scheme for DNFs. In
section 3.1, we make a brief overview of the essential notions for
the stability analysis of discrete dynamical systems, in section 3.2,
we discuss the existence on nontrivial fixed solutions for DDNFs,
in sections 3.3 and 3.4, we discuss stability analysis for a one
and multiple layers discrete DNFs. In section 3.5, we propose
simulations and their interpretation for neural activity and in
section 4, we make our concluding remarks.

2. MATERIALS AND METHODS

2.1. Discrete Schemes for DNFs
For sake of simplification, we will use the following notations:
given a positive integer L, and integers 1 ≤ k, ℓ ≤ L, Mk,Mℓ, we
consider indices 1 ≤ ik ≤ Mk, 1 ≤ jℓ ≤ Mℓ. We put

V
(k)
i,n : = Vk(xi, tn)

S
(k)
i,n : = Sk(xi, tn)

αn : = 1− φ(hn)

βk : =
|�|
Mk

W
(k,ℓ)
ij : = Wkℓ(xi, yj)

, (4)

where hn = tn+1 − tn, and φ(hn) = 1 − e−hn is the time scale of
the field. We obviously assume that all the layers of the domain
� have the same time scale. |�| represents the size of the field �

that henceforth we will assume to be finite. xi represents a point
on the kth layer and yj a point on the ℓth layer. Mk represents
the number of interconnected neurons on the kth layer of the

domain �, and βk = |�|
Mk

represents the spatial discretization

step on the kth layer of the domain �. When L = 1, we will

adopt the notations V
(1)
i,n = Vi,n, S

(1)
i,n : = Si,n and W

(1,1)
ij : =

Wij. Henceforth, for sake of clarity and when needed, we will
represent vectors or matrices in bold.

To obtain a discrete model for DNFs, we are going to use
nearly exact discretization schemes (NEDS) (see Kwessi et al.,
2018). We note that according to this reference, Equation (1) is
of type T1, therefore, the left-hand-side will be discretized as

V
(k)
i,n+1 − V

(k)
i,n

φ(hn)
.

For the right-hand-side, we write a Riemann sum for the integral
in Equation (1), over the domain � as

L
∑

ℓ=1

|�|
Mℓ

Mℓ∑

j=1

W
(k,ℓ)
ij · G

(

V
(ℓ)
j,n

)

+ S
(k)
i,n .

This means that, for a given L ∈ N, for integers 1 ≤ k ≤ L, Mk,
and 1 ≤ ik ≤ Mk, a discrete dynamic neural field (DDNFs)model
can be written as

V
(k)
i,n+1 = αnV

(k)
i,n + (1− αn)

L
∑

ℓ=1

Mℓ∑

j=1

βℓ ·W(k,ℓ)
ij · G

(

V
(ℓ)
j,n

)

+ (1− αn)S
(k)
i,n . (5)

Staying within the confines of the layers’ architecture proposed
by Amari (1977), in a DDNFs with L ≥ 3, we observe that
the activity on neurons located on the bottom (or top) layer
depends on the interconnected neurons on that layer and their
connections to the layer above (or below). First, we define

Lk =









{1, 2} if k = 1
{

k− 1, k, k+ 1
}

if 1 < k < L

{L− 1, L} if k = L

.

Middle layers are connected to two layers, one above and one
below. This means that at time tn, a neuron at position xi on the

first layer receives external input S
(1)
i,n , intra-layer signals W

(1,1)
ij

fromM1 neurons on the first layer, and inter-layer signalsW
(1,2)
ij

from M2 neurons on the second layer. Likewise, a neuron at

position xi on the Lth layer receives external input S
(L)
i,n , inter-layer

signals W
(L−1,L)
ij from ML−1 neurons on the (L − 1)th layer, and

intra-layer signals W
(L,L)
ij from ML neurons on the Lth layer. For

1 < k < L, we have W
(k,ℓ)
ij = 0 if ℓ /∈ Lk and W

(k,ℓ)
ij 6= 0 if

ℓ ∈ Lk. This means that at time t = tn, a neuron at position

xi on the kth layer receives external input S
(k)
i,n , inter-layer signals

W
(k−1,k)
ij from Mk−1 neurons on the (k − 1)th layer, intra-layer

signals W
(k,k)
ij from Mk neurons on the kth layer, and inter-layer

signalsW
(k,k+1)
ij fromMk+1 neurons on the (k+ 1)th layer.

Further, Equation (5) has a matrix notation which helps with
the study of stability analysis. Indeed, let M = max

1≤k≤L
Mk and

d = L × M, let X = (X1,X2, · · · ,XL) ∈ �, where for 1 ≤
k ≤ L, Xk =

{

(xk1, xk2, · · · , xkM)
}

represents the positions of
Mk neurons on the kth layer. We are assuming without loss of
generality that xki = 0 ifMk < i ≤ M to have a full L×Mmatrix.
Now consider the matrix

Vn(X) =

[

V(1)
n (X),V(2)

n (X), · · · ,V(L)
n (X)

]

,

formed by the column vectors V
(k)
n (X) =

(

V
(k)
1,n,V

(k)
2,n, · · · ,V

(k)
M,n

)T
. In this case, Equation (5) can be

written in a matrix form as

Vn+1(X) = F(Vn(X)) =
[

f1(Vn(X)), f2(Vn(X)), · · · , fL(Vn(X))
]

,
(6)

with an element-wise notation

[fk(Vn(X))]i = αnV
(k)
i,n + (1− αn)

∑

ℓ∈Lk

Mℓ∑

j=1

βℓ ·W(k,ℓ)
ij · G(V(ℓ)

j,n )

+(1− αn)S
(k)
i,n ,
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for 1 ≤ i ≤ M and for 1 ≤ k ≤ L. For more complex layers’
architectures, the interested reader can refer to De Domenico
et al. (2013) and the references therein, where tensor products
are used instead of matrices.

2.2. Pulse Emission Rate Functions
Amari (1977) proved the existence of nontrivial solutions for
DNFs when G is the Heaviside function. Further studies have
shown that in fact this is true for a large classes of functions
G. As we stated earlier, functions G satisfying the Hammerstein
conditions G(v) ≤ µ1v+µ2 are good candidates. However most
practitioners use either the Heaviside function or the sigmoid
function. For some θ > 0 and v0 ≥ 0, the sigmoid function, is
defined as G1(v, v0) = (1+ e−θ(v−v0))−1, and Heaviside function
is defined as G2(v, v0) = I(v0 ,∞)(v) , see Figure 2 below. Here
IA is the indicator function and is given as IA(x) = 1 if x ∈ A
and IA(x) = 0 otherwise. This shows that the assumption that
G be nonnegative and increasing is not unrealistic. In fact we
can transform many functions to bear similar properties of the
Heaviside and sigmoid functions, see for instance Kwessi and
Edwards (2020).

FIGURE 2 | An illustration of the pulse emission rate functions G1(v) and G2 (v)

for v0 = 0.

REMARK 1. We observe that the choice of the sigmoid activation
function G1(v) = (1 + e−θ(v−v0))−1 is widely preferred in the
literature for its bounded nature. Another reason is the fact that it is

also suitable when the X
(i)
n are binary, that is, they may take values

0, 1, where 0 and 1 represents, respectively active and non active

neurons at time n. In this case, G1



Wi0 +
M
∑

j=1

WijX
(j)
n + η(i)n



 =

Pr
(

X
(i)
n+1 = 1

)

would represent the probability that there is an

activity on neuron at position xi at time n+ 1.

2.3. Connection Intensity Functions
There are a variety of connection intensities functions (or
kernels) that one can choose from. This include a Gaussian kernel

Gau(x, y, σ ) = 1
σ
√
2π

e
− 1

2σ2
‖x−y‖2

, the Laplacian kernel defined

as Lap(x, y, σ ) = 1
2σ e

− 1
σ ‖x−y‖, or the hyperbolic tangent kernel

Thyp(x, y,β , r) = 1 + tanh(βxT · y + r) where ‖·‖ is a norm
in R

d. Note that as defined, the hyperbolic tangent kernel is not
symmetric, however, for a suitable choice of β and r, one may
obtain a nearly symmetric kernel. Indeed, if r < 0 and β is close

to zero, we have Thyp(x, y,β , r) ≈ (1 + tanh(r))e−β‖x−y‖2 , see
for instance Lin and Lin (2003). This kernel is very useful in
non-convex problems and support vector machines.
In practice however, it is very common to select the function
W(x, y) as the difference between either of the functions
above, which results in a “Mexican hat” shaped function, that
is, either W(x, y) = σ+Gau(x, y, σ1) − σ−Gau(x, y, σ2), or
W(x, y) = σ+Lap(x, y, σ1) − σ−Lap(x, y, σ2), or W(x, y) =
σ+Thyp(x, y,β1, r) − σ−Thyp(x, y,β2, r). Figure 3 below is an
illustration of these kernels for selected parameters. This choice
will ensure that neurons within the same cell assembly are
connected reciprocally by high synaptic weights σ+, whereas
neurons not belonging to the same assembly are connected by
low synaptic weights σ− (see for instance Durstewitz et al., 2000;
Quinton and Goffart, 2017; Wijeakumar et al., 2017; Jin et al.,
2021).

3. EXISTENCE AND STABILITY OF
NONTRIVIAL SOLUTIONS OF THE DDNFs

3.1. Stability Analysis
We recall the essential notions for the stability analysis of a
discrete dynamical system Vn+1 = F(Vn) where F :R

d → R is
continuously differentiable map.

DEFINITION 2.

(i) A point V∗ is said to be a fixed point for F if F(V∗) = V∗ .
(ii) The orbit O(V) of a point V is defined as O(V) =

{Fn(V),where n ∈ Z+} with Fn = F ◦ F ◦ · · · ◦ F
︸ ︷︷ ︸

n times

.

(iii) The spectral radius ρ(A) a matrix A is a maximum of its
absolute eigenvalues.

(iv) A fixed point V∗ for F is said to be stable if there exists a
neighborhood of V∗ whose trajectories are arbitrarily close to
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FIGURE 3 | An illustration of the connection intensity functions defined above

for σ+ = 4.5, σ− = 1.5, σ1 = 1, σ2 = 4.5,β1 = 0.1,β2 = 0.5, and r = −0.1.

V∗, that is, for all ǫ > 0, ∃δ > 0 : |V − V∗| < δ H⇒
∣
∣Fn(V)− V∗

∣
∣ < ǫ .

(v) A fixed point V∗ for F is said to be attracting if there exists a
neighborhood of V∗ whose trajectories converge to V∗, that is,
for all ǫ > 0, ∃δ > 0 : |V − V∗| < δ H⇒ lim

n→∞
Fn(V) = V∗ .

(vi) A fixed point V∗ for F is said to be asymptotically stable if it is
both stable and attracting.

(v) A fixed point V∗ for F is said to be unstable if it is not stable.

THEOREM 3. Let Vn+1 = F(Vn) be a discrete dynamical system
with a fixed point V∗ and let A = JF(V∗) be its Jacobian matrix.

1. If ρ(A) < 1, then V∗ is asymptotically stable.
2. If ρ(A) > 1, then V∗ is unstable.
3. If ρ(A) = 1, then V∗ may be stable or unstable.

3.2. Existence of Nontrivial Fixed Solutions
for the DDNFs Model
A nontrivial solution for the DNFs is a non constant solution for

which the left-hand side of Equation (1) is equal to zero. For the
DDNFs, it can be formulated in the following way: for a given xi
on the kth layer, the DDNFs in (5) has a nontrivial fixed point

V
(k)
i,∗ if for all n ≥ 1, we have V

(k)
i,n+1 = F(V

(k)
i,n ) = V

(k)
i,n : = V

(k)
i,∗ .

This is satisfied when

V
(k)
i,n =

∑

ℓ∈Lk

Mℓ∑

j=1

βℓ ·W(k,ℓ)
i,j · G(V(ℓ)

j,n )+ S
(k)
i . (7)

The right-hand side of Equation (7) is a Riemann sum for

L
∑

ℓ=1

∫

�

Wkℓ(x, y)G(Vℓ(y, t))dy+ Sk(x) .

So the existence of a nontrivial fixed point for the continuous
DNFs Equation (1) implies the existence of a non trivial fixed
solution for the DDNFs. According to Hammerstein (1930),
such a nontrivial solution exists if W(x, y) is symmetric positive
definite andG satisfiesG(v) ≤ µ1v+µ2, where 0 < µ1 < 1,µ2 >

0 are constants.
We will use a different approach to prove existence of nontrivial
solution of DNFs. Let (S,A,µ) be a measure space. We will
consider the space L1(S) of equivalent classes of integrable
functions on S, endowed with the norm

∥
∥f
∥
∥ =

∫

S

∣
∣f (x)

∣
∣ dx, where

dx = µ(dx).

DEFINITION 4. A stochastic kernel W is a measurable function
W : S× S → R such that

1. W(x, y) ≥ 0,∀x, y ∈ S ,

2.

∫

S
W(x, y)dy = 1,∀x ∈ S .

DEFINITION 5. A density function f is an element of L1(S) such
that f : S → R such that

∫

S fdµ = 1.

DEFINITION 6. AMarkov operator P on L1(S) is a positive linear
operator that preserves the norm, that is, P : L1(S) → L1(S) is
linear such that

1. Pf ≥ 0 if f ≥ 0 and f ∈ L1(S) ,
2.
∥
∥Pf

∥
∥ =

∥
∥f
∥
∥ .

REMARK 7.

We note that f ≥ 0 (and Pf ≥ 0) represents equivalent classes of
integrable functions on S that are greater or equal to 0 except on a
set of measure zero and thus the inequality should be understood
almost everywhere.
We also note that when an operator P satisfies the second condition
above, it is sometimes referred to as a non-expansive operator.

THEOREM 8. (Corollary 5.2.1–Lasota and Mackey, 2004). Let
S ≡ (S,A,µ) be measure space and P : L1(S) → L1(S) be a
Markov operator. If for some density function f , there is g ∈ L1(S)
such that Pnf ≤ g, for all n, then

there is a density f∗ such that Pf∗ = f∗ .

Now we use Definitions 4, 5, and 6 and Theorem 8 above to state
our result on the existence of nontrivial fixed solution of DNFs.

THEOREM 9. Let S : = � =
∏d

i=1[ai, bi] ⊂ R
d. Consider a

DNFs with no external stimulus [S(x) = 0]. If W(x, y) is positive
and bounded, then the DNFs (and consequently the DDNFs) has
at least one nontrivial fixed solution V∗.

PROOF. Let A = B(S) be the Borel σ -algebra on S generated

by the family
{
∏d

i=1(li, ui) : ai < li < ui < bi

}

and µ be the
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associated Borel measure. A nontrivial solution V(x) for the
DNFs satisfies the equation

V(x) =
∫

S
W(x, y)G(V(y))dy, for all x ∈ S .

Consider the linear operator P defined on S as

Pf (x) =
∫

S
W(x, y)f (y)dy, where f (x) = G(V(x)) .

Clearly, P is a Markov operator and we have

∀n ≥ 1, Pnf (x) =
∫

S
Wn(x, y)f (y)dy ,

withW1(x, y) = W(x, y) andWn+1(x, y) =
∫

S
W(x, z)Wn(z, y)dz

for n ≥ 1. Moreover, by the positivity and boundedness of W,
there exists M > 0 such that for a density function f , we have

Pnf (x) ≤ M,∀n ≥ 1. By the above Theorem, there exists a
density f∗ such that Pf∗ = f∗. We conclude by observing that
f∗(x) = G(V∗(x)) = V∗(x) for some function V∗(x) defined on
� and thus a nontrivial solution for the DNFs and DDNFs exists.
That is, V∗ is a fixed point of G.

One major limitation of the above theorem is that it only
applies to positive connectivity functions W(x, y) which would
exclude a wide range of DNFs, for example, competing DNFs
use almost exclusively negative weight functions as well as DNFs
for working memories, see for instance Zibner et al. (2011). One

remedy could be to prove the existence of weak fixed solutions
of (5) using iterative processes without a positivity restriction.
Indeed, let � be a nonempty, closed and convex subset of l2, the
space of infinite sequences v = (v1, v2, · · · ) such that ‖v‖22 =
∑∞

n=1 |vn|2 < ∞. We recall that l2 is a Hilbert space with the
inner product 〈v,w〉 =

∑∞
n=1 vnwn.

DEFINITION 10. Consider a map T :� → l2. Suppose there is
constant C such that

∥
∥T(v1)− T(v2)

∥
∥
2
≤ C ‖v1 − v2‖2. Then

1. T is called a Lipschitz map if C > 0 .
2. T is called a contraction map if 0 < C < 1 .
3. T is called a non-expansive map if C = 1 .

DEFINITION 11. Let T :� → l2 be either a contraction or a
non-expansive map. A Mann-type iterative process is a difference
equation on � defined as

{

V0 ∈ �

Vn+1 = αnVn + (1− αn)T(Vn)
. (8)

THEOREM 12. Suppose � is a subset of l2 andW(x, y) is bounded
by W0. If G(v) is Lipschitz with Lipschitz constant K such that
W0C ≤ 1, then the DDNFs (5) is a Mann-type iterative process
with at least one weak solution.

PROOF. Here, we denote Vn to mean Vn(X) introduced earlier.
We start by rewriting certain quantities in vector and matrix
form. Let d = L×M where as above,M = max

1≤k≤L
Mk and let Sn =

{

Ski,n, 1 ≤ k ≤ L, 1 ≤ i ≤ M
}

. Let G
(

V
(ℓ)
n

)

=
(

G(V
(ℓ)
j,n )
)

1≤j≤M

and Ŵ
(k,ℓ)
i =

(

βℓW
(k,ℓ)
i,j

)

1≤j≤M
, where as above, we complete the

vectors with zeros forMℓ < j ≤ M. Thenwe have the dot product

Ŵ
(k,ℓ)
i · G

(

V(ℓ)
n

)

=
Mℓ∑

j=1

βℓW
(k,ℓ)
ij G(V

(ℓ)
j,n ), 1 ≤ i ≤ M, ℓ ∈ Lk .

Similarly, let Ŵ
(k)
i =

(

Ŵ
(k,ℓ)
i

)

ℓ∈Lk
and G(Vn) =

(

G(V
(ℓ)
n )
)

ℓ∈Lk
.

We also have the dot product

Ŵ
(k)
i · G(Vn) =

∑

ℓ∈Lk

Ŵ
(k,ℓ)
i · G

(

V(ℓ)
n

)

, 1 ≤ i ≤ M .

Now we consider the matrix Ŵ =
[

Ŵ(1),Ŵ(2), · · · ,Ŵ(L)
]T

formed

by block matrices Ŵ(k) =
(

Ŵ
(k)
1 ,Ŵ

(k)
2 , · · · ,Ŵ(k)

M

)

for 1 ≤ k ≤ L.

We observe that (5) is a Mann-type process written as

{

V0 ∈ �

Vn+1 = αnVn + (1− αn)T(Vn)
, (9)

where T is the linear map on� defined as T(Vn) = Ŵ·G(Vn)+Sn.
It follows that for Un,Vn ∈ �

∥
∥T(Vn)− T(Un)

∥
∥
2
=
∥
∥Ŵ
[

G(Un)− G(Vn)
]∥
∥
2

≤ W0

∥
∥G(Un)− G(Vn)

∥
∥
2

≤ CW0 ‖Un − Vn‖2 , since G is Lipschitz .

Since by hypothesis CW0 ≤ 1, T is either a contraction or a non-
expansive map. It is known (see Mann, 1953) that in this case, the
Mann-type iterative process (9) has at least one weak solutionV∗,
that is, there exists V∗ ∈ � such that limn→∞〈Vn,V〉 = 〈V∗,V〉
for all V ∈ l2.

The second equation in (9) is a generalization of Equation (7)
in Quinton andGoffart (2017) and according to their description,
it can be considered a predictive neural field (PNF) where T(Vn)
is an internal projection corresponding to the activity required to
cancel the lag of the neural field Vn for a specific hypothetically
observed trajectory, by exciting the field in the direction of the
motion, ahead of the current peak location, and inhibiting the
field behind the peak.

3.3. Stability Analysis of Hyperbolic Fixed
Solutions
To discuss stability analysis for the DDNFs in (5), we are
going to separate the analysis into a single-layer system and a

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2021 | Volume 15 | Article 699658

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kwessi Discrete Dynamics of Dynamic Neural Fields

multiple-layers system. For simplification purposes, we consider
the following notations when necessary:

K
(k,ℓ)
ij : = W

(k,ℓ)
ij G′(V(ℓ)

j,∗ ), K
(k,ℓ)
i,· : =

1

Mℓ

Mℓ∑

j=1

K
(k,ℓ)
ij .

If L = 1 and for any M1 > 0, we will write Kij : = K
(1,1)
ij and

Ki,· : = K
(1,1)
i,· .

If L > 1 and Mk = Mℓ = 1 for all 1 ≤ k, ℓ ≤ L, we will write

K(k,ℓ)
: = K

(k,ℓ)
11 .

3.3.1. Single-Layer DDNFs Model
Let xi ∈ �. Suppose that there areM neurons interconnected and
connected to the neuron located at xi. Let Wij be the intensity of
the connection between the neuron at xi and the neuron at xj. Let

µi =
|�|
M

M
∑

j=1

WijG
′(Vj,∗) = |�|Ki,·

be the weighted average rate of change of pulse emissions

received or emitted by the neuron at xi, where Vi,∗ : = V
(1)
i,∗ is a

nontrivial solution of Equation (5) with L = 1. Some authors like
Lin et al. (2009) specify the type of connection, by dividing the
connectivities or synaptic strengthsWij into a group of receptive
signals called “feed backward” and a group of emission signals
called “feed forward.” Here we make no such specification. Recall
that αn = 1 − φ(hn) = e−hn . Henceforth, we fix hn = h > 0 for
all n so that 0 < α : = αn = e−h < 1.

THEOREM 13. Let � ⊆ R be a bounded region. Let M be a
positive integer. Let x = (xi)1≤i≤M be a vector of M interconnected
points on � via a connectivity function W(·, ·).
Let V∗(x) = (Vi,∗)1≤i≤M be a nontrivial fixed point of the DDNFs
on �.

If max
1≤i≤M

|µi| < 1, then V∗(x) is asymptotically stable.

PROOF. We have βl = β = |�|
M . Let xi ∈ � and let Vi,∗

be a nontrivial fixed point of the DDNFs with one layer. Let
1 ≤ j ≤ M and xj ∈ �. The DDNFs with one layer in Equation
(5) can be written as

Vn+1(x) = f (Vn(x)) = (V1,n+1,V2,n+1, · · · ,VM,n+1) ,

and element-wise as

Vi,n+1 = αVi,n + (1− α)
|�|
M

M
∑

j=1

WijG
(

Vj,n

)

+ Si,n .

The function f :RM → R is a continuously differentiable
function since the functionG :R → R is, and given 1 ≤ i, p ≤ M,
we have that

∂f (Vn(x))i

∂Vp,n
=

∂Vi,n+1

∂Vp,n
= αδip + (1− α)

|�|
M

M
∑

j=1

WijG
′(Vj,n)δjp

= αδip + (1− α)
|�|
M

WipG
′(Vp,n) ,

where δij is the Kronecker symbol with δij = 1 if i = j and δij = 0
if i 6= j. It follows that

∂f (Vn(x))i

∂Vp,n
=









α + (1− α) |�|
M WiiG

′(Vi,n) when p = i

(1− α) |�|
M WipG

′(Vp,n) when p 6= i

.

We define the adjacency matrix as the Jacobian matrix A =
Jf [V∗(x)] where A = (aij) with aij = ∂f (V∗(x))i

∂Vj,n
. A is a M × M

matrix and let ρ(A) be its spectral radius. Therefore, we have

ρ(A) ≤ ‖A‖∞ = max
1≤i≤M

M
∑

j=1

∣
∣aij
∣
∣

≤ max
1≤i≤M

M
∑

j=1

[

αδij + (1− α)

∣
∣
∣
∣

|�|
M

WijG
′(Vj,∗)

∣
∣
∣
∣

]

= max
1≤i≤M



α + (1− α)

∣
∣
∣
∣
∣
∣

|�|
M

M
∑

j=1

WijG
′(Vj,∗)

∣
∣
∣
∣
∣
∣





= max
1≤i≤M

[

α + (1− α) |µi|
]

=
[

α + (1− α) max
1≤i≤M

|µi|
]

.

Since 0 < α < 1, the last equality is equivalent to

min

{

1, max
1≤i≤M

|µi|
}

< ‖A‖∞ < max

{

1, max
1≤i≤M

|µi|
}

.

It follows that if max
1≤i≤M

|µi| < 1, then we have that ρ(A) ≤

‖A‖∞ < max

{

1, max
1≤i≤N

|µi|
}

= 1 and consequently, V∗(x) is

asymptotically stable.

REMARK 14.

The condition max
1≤i≤M

µi < 1 links the size of the domain � and

other parameters such as the rate of change of the pulse emission
function G, the connectivity function W(x, y) and the number of
connected neurons M. Indeed, µi = |�|Ki,·. Therefore, achieving

max
1≤i≤M

µi < 1 requires max
1≤i≤N

Ki· <
1

|�|
. This means that to ensure

stability of the fixed solution V∗(x), it is enough to have weighted
rates of change of pulse emission Kij = WijG

′(V∗(xj)) be bounded
by 1 for each neuron. This condition is obviously true if the neuron
at xi is not connected with the neuron at xj sinceWij would be zero.
In fact the latter corresponds to the trivial fixed solutionV∗(x) = 0.
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3.3.2. Special Case of Single Layer Model With a

Heaviside Pulse Emission Function
Suppose the pulse emission function G(x) is the Heaviside
function G2(v, v0). There are two possible approaches to discuss
the stability of the nontrivial solution. First, we observe that the
derivative G′

2(v, v0) of G2(v, v0) exists in the sense of distribution
and is given as G′

2(v, v0) = δ(v0) where δ(v0) is the Dirac
measure at v0. It can be written as G′

2(v, v0) = 0 if v 6= v0
and G′

2(v, v0) = ∞ if v = v0. This means that for a nontrivial
solution, the adjacency matrix A defined above is reduced to the
diagonal matrix A = diag(α). It follows that ρ(A) = α < 1 and
the nontrivial solution V∗(x) is asymptotically stable. Another
approach is to note that Equation (5) with one layer (L = 1) can
be written as

Vi,n+1 = αVi,n + Yi,n+1, 1 ≤ i ≤ M , (10)

where

Yi,n+1 : = (1− α)



Si,n +
|�|
M

M
∑

j=1

Wijλj,n



 ,

with

λj,n =

{

1 if Vj,n > 0

0 if Vj,n < 0
.

Moreover, we have

Vi,n+1 = αn+1Vi,0 +
n
∑

k=0

αkYi,n−k .

Suppose that for all n ∈ N and for all x ∈ �, Sn(x) and W(x, y)
are bounded by say S andW, respectively. Let Ym = (1− α)[S+
|�|W]. For all 1 ≤ i ≤ M, for xi ∈ �, and n ∈ N we have
∣
∣Yi,n+1

∣
∣ ≤ Ym, and

∣
∣Vi,n+1

∣
∣ ≤ αn

∣
∣Vi,0

∣
∣+ Ym ·

1− αn+1

1− α
.

This shows that lim
n→∞

Vi,n exists and V(x) = lim
n→∞

Vn(x) defines

the state of the field overtime. If lim
n→∞

Vn(x) < 0, then the field

settles to an inhibitory phase overtime, and if lim
n→∞

Vn(x) > 0,

the field settles in an excitatory phase overtime. In general Si,n =
ν+Ui,n where ν is a negative real number referred to as the resting
level that ensures that the DNFs produce no output in the absence
of external input Ui,n. If Ui,n ≡ 0 and V0(x) < 0 for all x ∈ �,
then Vi,n+1 = αn+1Vi,0 + ν, since λi,n−k = 0 for all k = 0, · · · , n
and for all 1 ≤ i ≤ M. Hence we will have lim

n→∞
Vi,n = ν, see

section 3.5.1 below for an illustration.

3.4. Multiple-Layers DDNFs Model
Let 1 ≤ k,m ≤ L. Consider the DDNFs with L layers given
above and let xi, xp on the kth layer.

V
(k)
i,n+1 = F(V

(k)
i,n ) = αV

(k)
i,n + (1− α)

∑

ℓ∈Lk

Mℓ∑

j=1

βℓ ·W(k,l)
ij · G(V(ℓ)

j,n )

+ (1− α)S
(k)
i,n .

Consider a fixed point solution V
(k)
i,∗ . Given a layer 1 ≤ k ≤ L and

a neuron at position xi on it, there are two sources of variability

for the potential V
(k)
i,n+1 = [fk(Vn(X))]i: firstly, the variability due

to the Mk neurons on the kth layer connected to the neuron
at position xi, and secondly, the variability due to the neurons
located on possibly two layers (k − 1) and (k + 1) connected to
the kth layer. Therefore, let 1 ≤ m ≤ L and let xq be a point on
themth layer. By the chain rule, we have

∂[fk(Vn(X))]i

∂V
(m)
q,n

=
∂[fk(Vn(X))]i

∂V
(k)
p,n

·
∂V

(k)
p,n

∂V
(m)
q,n

= 8
(k,k)
i,p,n · 1(k,m)

p,q,n ,

where the variability on the kth layer is

8
(k,k)
i,p,n = αδip + (1− α)βkW

(k,k)
ip G′(V(k)

p,n) .

From Equation (7), we obtain the variability due to layers k − 1
and k+ 1:

1
(k,m)
p,q,n =

∂V
(k)
p,n

∂V
(m)
q,n

=













1 ifm = k

βmW
(k,m)
pq G′(V(m)

q,n ) ifm ∈ Lk\
{

k
}

0 ifm /∈ Lk

.

Let M =
L
∑

ℓ=1

Mℓ. We recall that K
(k,ℓ)
ij : = W

(k,ℓ)
ij G′(V(ℓ)

j,∗ ). Now

we consider aM ×M super-adjacency matrix A = JF(V∗(X)) =(

A(k,m)
)

1≤k,m≤L
, whereA(k,m) is aMk×Mm blockmatrix defined

as A(k,m) =
(

a
(k,m)
ij

)

, where a
(k,m)
ij = 8

(k,k)
i,j · 1(k,m)

i,j with

8
(k,k)
i,j = αδij+ (1−α)βkW

(k,k)
ij G′(V(k)

j,∗ ) = αδij+ (1−α)βkK
(k,k)
ij ,

(11)
and

1
(k,m)
i,j =













1 ifm = k

βmW
(k,m)
ij G′(V(m)

j,∗ ) = βmK
(k,m)
ij ifm ∈ Lk\

{

k
}

0 ifm /∈ Lk

.

(12)
Consequently, A(k,m)

= 0 ifm /∈ Lk, where 0 represents the zero
matrix. Therefore, the super-adjacency matrix can be written as

A =













A(1,1) A(1,2) 0 0 · · · 0 0

A(2,1) A(2,2) A(2,3) 0 · · · 0 0

0 A(3,2) A(2,3) A(3,4) · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · A(L−1,L−2) A(L−1,L−1) A(L−1,L)

0 0 0 · · · 0 A(L,L−1) A(L,L)













.
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Clearly, A is a block tridiagonal matrix that reduces to a block
diagonal matrix if the pulse emission rate function G is the
Heaviside function and to singleM×M diagonal matrix if L = 1.
There is a rich literature on the subject of tridiagonal matrices
and the research is still on-going. There is no close form formula
for the eigenvalues of A since they are not obvious to calculate,
except for some special cases.

3.4.1. Special Case: Single Neuron Multiple-Layers

DDNFs
It special case that is worth mentioning since all L layers have
exactly one neuron and they are interconnected. In fact in this
case, Mk = 1,βk = |�| for 1 ≤ k ≤ L, and the super adjacency
matrix reduces to an L× L tridiagonal matrix

A =












a1 b1 0 0 · · · 0 0
c1 a2 b2 0 · · · 0 0
0 c2 a3 b2 · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · cL−2 aL−1 bL−1

0 0 0 · · · 0 cL−1 aL












,

where from Equations (11) and (12), one has

ak = 8
(k,k)
11 · 1(k,k)

11 = α + (1− α) |�|K(k,k), for 1 ≤ k ≤ L

bk = 8
(k,k)
11 · 1(k,k+1)

11 =
[

α + (1− α) |�|K(k,k)
]

|�|K(k,k+1),

for 1 ≤ k ≤ L− 1

ck−1 = 8
(k,k)
11 · 1(k−1,k)

11 =
[

α + (1− α) |�|K(k,k)
]

|�|K(k−1,k),

for 2 ≤ k ≤ L .

We observe that K(k,k) is the weighted rate of change of the
pulse emission function on the kth layer, and K(k,k+1) can be
regarded as the transitional weighted rate of change of the pulse
emission function from layer k to layer k + 1. Likewise, K(k−1,k)

is the transitional weighted rate of change of the pulse emission

function from layer k − 1 to layer k. From Molinari (2008), the
eigenvalues of A are given by the equation

det(A−λIL) = tr

(
2
∏

k=L

(

ak − λ −bk−1ck−1

1 −λ

)

·
(

a1 − λ 0
1 0

)
)

= 0 .

(13)
Suppose further that a1 = a2 = · · · = aL = a, b1 = b2 =
· · · , bL−1 = b, and c1 = c2 = · · · cL−1 = c. This means
that the weighted rates of change of the pulse emission function
K(k,k) = K0 for 1 ≤ k ≤ L, K(k−1,k) = K1 for 1 ≤ k ≤ L − 1,
and K(k,k+1) = K2 for 2 ≤ k ≤ L. From Kulkarni et al. (1999),
the eigenvalues of A will given by

λk = a− 2
√
bc cos

(
πk

L+ 1

)

, 1 ≤ k ≤ L .

Now for 1 ≤ k ≤ L, put

µk =
[

α + (1− α) |�|K0

]
[

1− 2 |�|
√

K1K2 cos

(
πk

L+ 1

)]

.

We therefore have the following result.

THEOREM 15. Suppose we are in the presence of a DDNFs with
L layers with M = 1 point each, interconnected via a positive
connectivity function W and a rate pulse emission rate function
G whose rate of change is identical on all layers. Then

1. The fixed point V∗(X) is asymptotically stable if and only if
max
1≤k≤L

|µk| < 1.

2. The fixed point V∗(X) is unstable if and only if max
1≤k≤L

|µk| > 1.

3. The fixed point V∗(X) is maybe stable or unstable if
max
1≤k≤L

|µk| = 1.

PROOF. By hypothesis, a = α + (1 −
α) |�|K0, b = [α + (1− α) |�|K0] |�|K1, and c =
[α + (1 − α) |�|K0] |�|K2, for some K0,K1,K2 > 0. For
1 ≤ k ≤ L, the eigenvalues are given as

λk = a− 2
√
bc cos

(
πk

L+ 1

)

FIGURE 4 | Closed graph with 10 layers for a = 4,b = 3, c = 5, c0 = 7,b10 = 10.
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= a− 2

√

a2 |�|2 K1K2 cos

(
πk

L+ 1

)

= a

[

1− 2 |�|
√

K1K2 cos

(
πk

L+ 1

)]

= [α + (1− α) |�|K0]

[

1− 2 |�|
√

K1K2 cos

(
πk

L+ 1

)]

= µk.

From Thereom 3, the proof is complete.

REMARK 16.

1. It is worth observing that in case L = 1 and M = 1, then
K1 = K2 = 0 and thus µ1 = α + (1 − α) |�|K0. We see
that |µ1| < 1 if |�|K0 < 1 yielding the condition obtained in
the one-layer-model.

2. We also note that in fact max
1≤k≤L

|µk| = [α +

(1 − α) |�|K0]
[

1+ 2 |�|
√

K1K2

]

and therefore the stability

condition [α+ (1−α) |�|K0]
[

1+ 2 |�|
√
K1K2

]

< 1 links all
the parameters of system.

3. This special cases is also important in that we can imagine a
large number of neurons supposedly placed on individual layers

FIGURE 5 | Here Ui,n = 0 and G(v) = G1 (v). (A–D) We observe from all graphs that Vn(x) quickly settles to the resting level ν = −0.5 confirming the theoretical results

in section 3.3.2.
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and interconnected in a forward or backward manner only and
each receiving external input. In case the first and last neurons
are connected so that the system forms a weighted closed graph,
like in Figure 4, where the thickness represents the weights.

Then the super-adjacency matrix given as

A =












a1 b1 0 0 · · · 0 c0
c1 a2 b2 0 · · · 0 0
0 c2 a3 b2 · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · cL−2 aL−1 bL−1

bL 0 0 · · · 0 cL−1 aL












.

According to Molinari (2008), the eigenvalues are given by

det(A− λIL) = (−1)L+1

(
L
∏

i=1

bi +
L−1
∏

i=0

ci

)

+ tr

(
2
∏

i=L

(

ai − λ −bi−1ci−1

1 −λ

)

·
(

a1 − λ bLc0
1 0

)
)

= 0 .
(14)

3.4.2. Special Case: Single Neuron Two-Layer DDNFs
We now discuss a single neuron two-layer DDNFs. In this case,
we still have Mk = 1 for k = 1, 2 and L = 2. It follows that

the super-adjacency matrix is given as A =
(

a1 b1
c1 a2

)

where from

FIGURE 6 | Here Ui,n = 0 and G(v) = G2 (v). From (A), we observe that system alternating between inhibitory and excitatory phases. (B,D) Show that for fixed

x = 9.548, the system converges overtime. In (C), we clearly see the oscillatory regime of the system in the space domain for fixed n = 98.
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Equations (11) and (12), we have

a1 = α + (1− α) |�|K(1,1),

b1 =
[

α + (1− α) |�|K(1,1)
]

|�|K(1,2),

a2 = α + (1− α) |�|K(2,2),

c1 =
[

α + (1− α) |�|K(2,2)
]

|�|K(2,1).

Let

θ = 1− |�|2 K(1,2)K(2,1) ,

µ0 = |�|
[

K(1,1) + K(2,2)
]

,

µ =
[

α

(

K(1,1) + K(2,2)
)

+ (1− α) |�|K(1,1)K(2,2)
]

.

We have the following stability result.

THEOREM 17. Consider a two-layer DDNFs with one neuron
each. Then the nontrivial solution V∗(X) is asymptotically stable
if and if the following conditions are satisfied:

1. 0 < θ < 1 ,
2. µ < 1 ,
3. (µθ + 2− µ0)

2 < 4θ(µθ + 1− µ0) .

PROOF. By the determinant-trace analysis, see for instance Elaydi
(2007), it is enough to prove that the above conditions are
equivalent to

∣
∣tr(A)

∣
∣− 1 < det(A) < 1 .

FIGURE 7 | Here Ui,n = (2π )−1/2e−
1
2 ·x

2
i and G(v) = G1(v). From (A), we observe that system has an excitatory phase around 0 and an inhibitory phase farther away.

(B,D) Show that for fixed x = 2.111, the system converges overtime. In (C), we clearly observe a high level excitation occurring around 0, and the system settling

back to its resting phase farther away from 0 for fixed n = 38.
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The determinant of the super-adjacency matrix is

det(A) = a1a2 − b1c1

= a1a2

[

1− |�|2 K(1,2)K(2,1)
]

=
[

α2 + α(1− α) |�| (K(1,1) + K(2,2))

+ ((1− α) |�|)2K(1,1)K(2,2)
] [

1− |�|2 K(1,2)K(2,1)
]

=
[

α2 + (1− α) |�|
[

α(K(1,1) + K(2,2))

+ (1− α) |�|K(1,1)K(2,2)
]] [

1− |�|2 K(1,2)K(2,1)
]

=
[

α2 + (1− α)µ
]

θ .

Also

tr(A) =
∣
∣tr(A)

∣
∣ = a1 + a2 = 2α + (1− α) |�|

[

K(1,1) + K(2,2)
]

= 2α + (1− α)µ0 .

Therefore since θ < 1 and µ < 1, we have that det(A) < 1. Let
P(α) : = det(A)−tr(A)+1 = θα2+(µθ+2−µ0)α+µθ+1−µ0.
The discriminant of P(α) is1 = (µθ+2−µ0)

2−4θ(µθ+1−µ).
Therefore P(α) is positive if 1 < 0 with θ > 0, that is,
(µθ + 2− µ0)

2 − 4θ(µθ + 1− µ) with θ > 0 .

REMARK 18.

1. We note that the inequality θ < 1 must be strict, otherwise
the third condition in the theorem would be false. To see why,
observe that θ = 1 H⇒ L = 1 thus K(2,2) = 0. Hence
µ0 = |�|K(1,1) and µ = αK(1,1). Therefore, (µθ + 2 −
µ0)

2 < 4θ(µθ + 1 − µ0) ⇐⇒ (αK(1,1) + 2 − |�|K(1,1))2 <

4(αK(1,1) + 1 − |�|K(1,1)), that is,
(

(α − |�|)K(1,1) + 2
)2

<

4(α − |�|)K(1,1) + 1) which is impossible since the latter would
be equivalent to saying ((α − |�|)K(1,1))2 < 0.

2. We observe that the condition 0 < θ < 1 requires
|�|2 K(1,2)K(2,1) < 1. What is striking about it is that is

FIGURE 8 | Here Ui,n = (2π )−1/2e−
x2
i
2 and G(v) = G2(v). This case is similar to the second case above. From (A), we observe that system also alternates between

inhibitory and excitatory phases. (B,D) Show that for fixed x = −18.79, the system converges overtime. In (C), we clearly the oscillatory regime of the system in the

space domain for fixed n = 86. The system in this case is more frequently inhibitory than excitatory.
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achieved if max
{

K(1,2),K(2,1)
}

< 1
|�| , similarly to Remark

14 above.

3.5. Simulations
There are multiple parameters that affect the stability of a fixed
point solution to the DDNFs: the choice of the kernel function
W(x, y), the pulse emission rate function G, parameters such
the size of the field |�|, the time scale function φ(h), and the
number of points per layer M, and the length of time N. In
these simulations, we will consider the � = [−20, 20], h =
0.8,N = 100,M = 200, and the W(x, y) = σ+e−0.5(x−y)2/σ 2

1 −
σ−e−0.5(x−y)2/σ 2

2 , with σ+ = 4, σ− = 1.5, σ1 = 1, and
σ2 = 4.5. We select a resting phase ν = −0.5. To initialize

our dynamical system, we will choose Vi,0 = −1.5 for i =
1, 2, · · · ,M. In Figures 5–8, below, (a) is the three dimension

representation of Vn(x) : = V(x, n), (b) represents Vn(x) as
a function of n for a given x value, (c) represents Vn(x) as

function of x for a given n value, and (d) represents the cobweb
diagram for a given x value, namely a plot of Vn+1(x) vs.

Vn(x) for which the green dot represents the starting point

V0(x) = −1.5 and the red arrows connecting the points

with coordinates [Vn(x),Vn(x)] and [Vn(x),Vn+1(x)] to show

the evolution of the dynamical system overtime. Convergence

occurs when the arrows stop evolving, and oscillations occurs
when they circle around indefinitely. In the multi-layer case, we
let L = 250.

FIGURE 9 | Here Ui,n = 0 and G(v) = G2 (v) with L = 200 and M = 1 neuron per layer. From (A), we observe that system quickly excitatory and settles into constant

state overtime. (B,D) Show that for fixed k = 293, the system converges overtime. In (C), we clearly see the constant state for n = 76.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 699658

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Kwessi Discrete Dynamics of Dynamic Neural Fields

3.5.1. Single-Layer With Heaviside Function and No

External Input
In this simulation, we consider single-layer DDNFs withUi,n = 0
with a Heaviside pulse emission function, see Figure 5 below.

3.5.2. Single-Layer With Sigmoid Function and No

External Input
In this simulation, we consider single-layer DDNFs withUi,n = 0
but with a sigmoid pulse emission function, see Figure 6 below.

3.5.3. Single-Layer With Heaviside Function With

Gaussian External Input
In this simulation, we consider single-layer DDNFs with a
Heaviside Pulse emission function with a Gaussian external input

Ui,n = (2π)−1e
1
2 x

2
i , see Figure 7 below.

3.5.4. Single-Layer With Sigmoid Function With

Gaussian External Input
In this simulation, we consider single-layer DDNFs with a
Sigmoid Pulse emission function with a Gaussian external input

Ui,n = (2π)−1e
1
2 x

2
i , see Figure 8 below.

3.5.5. Multiple-Layer With Sigmoid Function With No

External Input
In this simulation, we consider Multiple-layer DDNFs with a
Sigmoid pulse emission rate function with no external input,
Ui,n = 0, see Figure 9 below.

3.5.6. Multiple-Layer With Sigmoid Function With

Gaussian External Input
In this simulation, we consider Multiple-layer DDNFs with a
Sigmoid pulse emission rate function with a Gaussian external
input, Ui,n = 0, see Figure 10 below.

3.5.7. Effect of α

In this simulation, we consider VN(x,α) where N = 100 for
different values of α. Since the convergence to the fixed solution
is quick, we expect VN(x,α) to be independent of α at n =
N = 100, in that any cross-section of the three dimensional plot
VN(x,α) should be the same. This is shown in Figure 11 below

for a G(v) = G1(v) and Ui,n = (2π)−1/2e−
x2i
2 .

4. DISCUSSION

In this paper, we have proposed a discrete model for dynamical
neural fields. We have proposed another proof of the existence of
nontrivial solutions for dynamic neural fields. We have discussed
its stability of nontrivial solutions of dynamic neural field for
some particular cases. The simulations we propose capture very
well the notion of stability on dynamic neural field. Below are
some observations drawn from this analysis.

1. We observe that the cases of no external input Ui,n with
one layer and multiple neurons and multiple layers with
one neuron each are very similar, albeit the shape of the

FIGURE 10 | Here Ui,n = (2π )−1/2e−
x2
i
2 and G(v) = G2(v) with L = 200 and M = 1 neuron per layer. From (A), we observe that system is quickly excitatory and settles

into constant “Gaussian” state overtime. (B,D) Show that for fixed k = 114, the system converges overtime. In (C), we clearly see the “Gaussian” state for n = 45 with

peaks located at around L = 250.
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FIGURE 11 | Here Ui,n = (2π )−1/2e−
x2
i
2 and G(v) = G2(v) with L = 1 and

M = 200 neuron per layer. We see that the cross-sections are as in Figure 7

above and the “flaps” at the end represent the case where α = 1, which

amounts to the constant case.

potential function V
(k)
i,n . In fact, this is not surprising since

multiple layers with one neurons each amount to one layer
with neurons connected like in a graph.

2. An important observation is that of the stability conditions
depend on the knowledge of a nontrivial solution V∗ for the
DDNFs. Two things to note about V∗(X) are:

(a) We can not obtain V∗(X) in a close form. We may
however rely on estimates like the one proposed in Kwessi
(2021). Even in the latter case, using an estimate may
proved delicate because of limited accuracy.

(b) If one cannot use a true value for V∗(X), one may use
the properties of the pulse emission functions such as the
Heaviside or sigmoid functions that are in most cases in
applications bounded.

3. We note the size of the domain � is an important parameter

for the shape of V
(k)
i,n .

4. As for the types of kernels, we note that Gaussian and
Laplacian kernel tends to produce similar results that are
sometimes very different from those produced by hyperbolic
tangent kernels.

5. We note that the choice of α = e−h is similar to an Euler

forward discretization with e−h =
dt

τ
where dt ≪ τ . This

choice is made for simplification purposes and also out of
an abundance of caution due to the fact for certain one-
dimension systems, the Euler forward discretization have been
shown not to always preserve the true dynamics from the
ordinary differential equation, see for instance Kwessi et al.
(2018).

6. Another important note is that the parameter α = 1
was not found to be a bifurcation parameter, thus
the bifurcation diagram will not be given for sake
of simplicity.

7. We acknowledge that in the two special cases discussed
for multiple-layers DDNFs, so far, at least theoretically, the
results apply only to positive connectivity functions W(x, y)
because we rely on results previously established in the
current literature. Simulations however suggest that they
may also extend to negative connectivity functions and it
would a worthwhile exercise to see how to establish these
results theoretically.
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