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Reduced integrity of neural pathways from frontal to sensory cortices has been

suggested as a potential neurobiological basis of attention-deficit hyperactivity disorder.

Neurofeedback has been widely applied to enhance reduced neural pathways in

attention-deficit hyperactivity disorder by repeated training on a daily temporal scale.

Clinical and model-based studies have demonstrated that fluctuations in neural activity

underpin sustained attention deficits in attention-deficit hyperactivity disorder. These

aberrant neural fluctuations may be caused by the chaos–chaos intermittency state

in frontal-sensory neural systems. Therefore, shifting the neural state from an aberrant

chaos–chaos intermittency state to a normal stable state with an optimal external

sensory stimulus, termed chaotic resonance, may be applied in neurofeedback for

attention-deficit hyperactivity disorder. In this study, we applied a neurofeedback method

based on chaotic resonance induced by “reduced region of orbit” feedback signals

in the Baghdadi model for attention-deficit hyperactivity disorder. We evaluated the

stabilizing effect of reduced region of orbit feedback and its robustness against noise

from errors in estimation of neural activity. The effect of chaotic resonance successfully

shifted the abnormal chaos-chaos intermittency of neural activity to the intended stable

activity. Additionally, evaluation of the influence of noise due to measurement errors

revealed that the efficiency of chaotic resonance induced by reduced region of orbit

feedback signals was maintained over a range of certain noise strengths. In conclusion,

applying chaotic resonance induced by reduced region of orbit feedback signals to

neurofeedback methods may provide a promising treatment option for attention-deficit

hyperactivity disorder.
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1. INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is a
behavioral disorder underscored by inattention, impulsivity,
and hyperactivity. ADHD is one of the most common
neurobehavioral disorders presenting for treatment in both
children and adolescents (DuPaul et al., 1998; American
Psychiatric Association, 2013). ADHD symptoms may cause
serious psychological and social effects on patients’ quality of life
(Sonuga-Barke et al., 2013). During development in particular,
impulsivity and hyperactivity become less apparent, whereas
attention deficits persist in most patients (Achenbach et al.,
1995; Hart et al., 1995; Mick et al., 2004; Mullane et al., 2011).
Therefore, efficacious treatments to ameliorate attention deficits
in ADHD are a critical unmet need.

Dysfunction in dopaminergic (Tripp and Wickens, 2008;
Volkow et al., 2009; Wu et al., 2012) and noradrenergic neural
systems (Rowe et al., 2005; Konrad et al., 2006; van Dongen-
Boomsma et al., 2010) across extensive brain regions has been
well-described as a biological basis of ADHD. In particular,
deficits in attention function are associated with the reduced
integrity of these neural pathways (Rowe et al., 2005; Konrad
et al., 2006; van Dongen-Boomsma et al., 2010) (reviewed
in Swanson et al., 2007; Mueller et al., 2017). To ameliorate
attention deficits in ADHD, medications that block dopamine
and norepinephrine reuptake such as methylphenidate and
atomoxetine are widely used (Gibbins andWeiss, 2007; Wolraich
et al., 2019) and have been demonstrated to significantly improve
symptoms (Stevens et al., 2013). Nevertheless, their long-term
effects have not been confirmed (Molina et al., 2009; Cunill et al.,
2016).

Neurofeedback is a type of biofeedback involving self-
regulation of brain function. Neurofeedback involves the
detection and measurement of neural activity and the generation
of a recurrent signal to enable enhancement of neural pathways
(Bluschke et al., 2016; Bussalb et al., 2019; Rubia et al., 2019;
Van Doren et al., 2019). Based on the theory of reduced integrity
of neural pathways in ADHD (Rowe et al., 2005; Konrad et al.,
2006; van Dongen-Boomsma et al., 2010) (reviewed in Swanson
et al., 2007; Mueller et al., 2017), neurofeedback techniques have
gained increasing interest as a non-pharmacological treatment
(reviewed in Hammond, 2007; Sitaram et al., 2017; Hampson
et al., 2019) and have been successfully applied to chronically
enhance the reduced integrity of neural pathways in ADHD
(Strehl et al., 2006; Gevensleben et al., 2010; Van Doren et al.,
2019).

In addition to the theory of reduced neural pathway
integrity in ADHD, both clinical and model-based studies have
demonstrated that fluctuations in neural activity contribute to
sustained attention deficits in ADHD (Baghdadi et al., 2015;
Gonen-Yaacovi et al., 2016; Michelini et al., 2018). In clinical
studies, large temporal fluctuations in neural activity were
observed in ADHD patients in conditions both with and without
sensory stimuli (Gonen-Yaacovi et al., 2016); these fluctuations
reflect sustained attention deficits in ADHD (Michelini et al.,
2018). A model-based study by Baghdadi et al. showed that the
temporal fluctuate behaviors in neural activity corresponded to

abnormal temporal profiles of attention levels in ADHD in a
neural network model consisting of excitatory and inhibitory
neural populations in frontal and sensory cortices (Baghdadi
et al., 2015) (this model is termed the Baghdadi model in this
study). Using their model, Baghdadi et al. further ascertained
that these aberrant neural fluctuations arose from chaos-chaos
intermittency (CCI) (reviewed in Anishchenko et al., 2007), in
which an orbit with chaotic behaviors hops among separated
attractor regions (Baghdadi et al., 2015). In particular, in the case
that the feedback of neural pathway from the frontal cortex and
sensory cortex becomes weak, this abnormal CCI neural activity
easily appears (Baghdadi et al., 2015).

According to the non-linear feedback control theory,
appropriate external feedback signals permit the transition of a
system state with abnormal behaviors to a stable state, typified
as chaos-controlling methods (reviewed in Schöll and Schuster,
2008; Nobukawa and Nishimura, 2020). Furthermore, it is
well-established that neural activity underpinning attention-
related functions can be activated by external sensory stimuli
(Moore et al., 2003; Perrin et al., 2004; Vandewalle et al., 2006;
Newman et al., 2016). Therefore, directly stabilizing abnormal
CCI with external sensory stimuli based on non-linear feedback
control may serve as another approach to already established
neurofeedbackmethods that reinforce neural pathways in ADHD
(Hammond, 2007; Sitaram et al., 2017; Hampson et al., 2019). To
stabilize abnormal CCI, the synchronization of CCI against an
external stimulus, termed chaotic resonance (Nishimura et al.,
2000) (review in Anishchenko et al. (2007); Rajasekar and
Sanjuán (2016); Nobukawa and Nishimura (2020)), is a plausible
solution (Nobukawa et al., 2018, 2019b, 2020a; Nobukawa and
Shibata, 2019; Doho et al., 2020). This is because synchronization
against an external stimulus as the intended reference of neural
activity may induce the transition of dysfunctional neural activity
to healthy neural activity.

As a feedback control method to induce chaotic resonance by
external signals, we previously proposed the “reduced region of
orbit” (RRO) feedback method, which reduces the absolute local
maximum and minimum values of non-linear map functions
in dynamical systems to induce attractor-merging bifurcation
where chaotic resonance emerges (Nobukawa et al., 2018). This
method enables the control of chaotic resonance without the need
to adjust internal neural parameters (Nobukawa et al., 2018).
Therefore, by broadening the scope of application of chaotic
resonance, this method opened novel avenues for utilizing
chaotic resonance in neural systems (Nobukawa and Shibata,
2019; Nobukawa et al., 2019b; Doho et al., 2020) (reviewed
in Nobukawa and Nishimura, 2020). In particular, the RRO
feedback method achieves the transition of abnormal neural
activity of bipolar disorder due to imbalance of excitatory and
inhibitory neural populations (E/I imbalance) to healthy state
(Doho et al., 2020).

In this context, we hypothesized that the chaotic resonance
produced by the RRO feedback method would promote an
efficacious neurofeedback method to improve dysfunctional
neural activity in ADHD under pathological impairment of
neural pathway from the sensory cortex to frontal cortex as
well as E/I imbalance. To verify this hypothesis, we applied
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the RRO feedback method to induce chaotic resonance in the
Baghdadi model for ADHD. We then evaluated the stabilizing
effect of RRO feedback and its robustness against noise due to
measurement errors.

2. MATERIALS AND METHODS

2.1. Frontal and Sensory Neural System
Composed of Excitatory and Inhibitory
Neural Populations
The pathology of ADHD involves multiple complicated neural
pathways associated with dopamine (Tripp and Wickens, 2008;
Volkow et al., 2009; Wu et al., 2012) and noradrenaline neural
systems, which project to widespread brain regions (Rowe
et al., 2005; Konrad et al., 2006; van Dongen-Boomsma et al.,
2010). In particular, abnormal frontal cortical activity has been
reported to cause attention dysfunction (Murias et al., 2007;
Cubillo et al., 2012). The abnormal frontal activity in ADHD
patients is associated with reduced inhibitory neural activity and
dopaminergic activity (Barkley, 1997; Nigg, 2001; Spronk et al.,
2008; Volkow et al., 2009; Loskutova et al., 2010; Fisher et al.,
2011). The Baghdadi model (Baghdadi et al., 2015) is a neural
network model that reproduces the abnormal temporal behavior
of attention levels, focusing on the pathological imbalance
between excitatory (glutamatergic) and inhibitory (GABAergic)
neural populations in the frontal cortex (Barkley, 1997; Nigg,
2001; Spronk et al., 2008; Volkow et al., 2009; Loskutova et al.,
2010) and dysfunction of feedback loops from the sensory cortex
to the frontal cortex (Mazaheri et al., 2010; Moriyama et al.,
2012).

An overview of the Baghdadi model is presented in Figure 1.
The temporal behavior of neural activity in the frontal cortex x(n)

FIGURE 1 | Neural network model to reproduce the abnormal temporal

behavior of attention levels, focusing on the pathological imbalance between

excitatory (glutamatergic) and inhibitory (GABAergic) neural populations in the

frontal cortex and dysfunction in the feedback loop from the sensory cortex to

frontal cortex (Baghdadi et al., 2015).

(n = 1, 2, · · · ) is regulated by the competition between excitatory
and inhibitory neural populations (Baghdadi et al., 2015):

x(n+ 1) = F(x(n)), (1)

F(x(n)) = K
(

B tanh(w2x(n))− A tanh(w1x(n))
)

. (2)

Here, F(x(n)) represents the map function for x(n). w1 and A
indicate the synaptic weights of input and output for inhibitory
neural populations, respectively. w2 and B represent the synaptic
weights of input and output for excitatory neural populations,
respectively. The positive and negative values of x(n) correspond
to neural activities in the activate and resting state for neural
population, respectively. K is an attenuation coefficient of
frontal neural activity. In the Baghdadi model, frontal neural
dynamics x(n) is determined by output from the frontal cortex:
B tanh(w2x(n)−A tanh(w1x(n)) and its feedback through sensory
cortex with attenuation K in Equation (2) (Baghdadi et al., 2015).
Therefore, the output term from frontal cortex is multiplied by
K. The setting of K < 1.0 corresponds to the case of the loss of
information of brain activity due to lower attention (Baghdadi
et al., 2015). In this study, we used the parameter set (w1 =
0.2223,w2 = 1.487) (Baghdadi et al., 2015).

2.2. Neural System With External Periodic
Signals and RRO Feedback Signals
The conventional neurofeedback methods enhance the neural
pathway by the repeated daily-temporal-scale training (Strehl
et al., 2006; Gevensleben et al., 2010; Van Doren et al., 2019),
which corresponds to increasing the strength of neural pathway
K from the sensory cortex to the frontal cortex in the Baghdadi
model. In this study, as another approach to directly stabilizing
abnormal CCI, we applied the RRO feedback signals to the
Baghdadi model to induce chaotic resonance for the transition
of the CCI of x(n) to the periodic state. A methodological chart
of the system for this control method is shown in Figure 2. The
frontal cortical neural activity x(n) is controlled by RRO feedback
signals Cu(x) and a periodic input signal S(n) = α sin(2πn/p),
as follows:

x(n+ 1) = F(x(n))+ Cu(x(n))+ S(n), (3)

u(x) = −(x− xd) exp(−(x− xd)
2/(2σ 2)). (4)

Here, C, xd, and σ denote the strength of RRO feedback, the
merging point of two chaotic attractors, and a parameter to
regulate the region of the RRO feedback effect, respectively.
S(n) is an example reference of the desired neural activity
corresponding to the healthy condition, i.e., the neural activity
observed as lower temporal fluctuation in electroencephalogram
(EEG) (Gonen-Yaacovi et al., 2016). We assumed that RRO
feedback signal Cu(x(n)) and periodic input signal S(n) are
implemented by an external sensory stimulus. In this study, we
utilized xd = 0 and σ = 1.0, because the structure of return-
map of Equation (1) has a point symmetry at around x = 0 with
local maximum andminimum values of themap function located
within the region −σ < x < σ (σ = 1.0) (Nobukawa et al.,
2018). For input signal S(n), we used the four p periods: 4, 8, 16,
and 32.
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FIGURE 2 | Neural system with the “reduced region of orbit” (RRO) feedback

signals for inducing healthy neural activity. The frontal cortical neural activity

x(n) is controlled by RRO feedback signals Cu(x) and a periodic input signal

S(n) = α sin(2πn/p).

To develop the RRO feedback signals based on actual frontal
neural activity, the influence of measurement errors on RRO
feedback signals must be evaluated. Therefore, in addition to the
noise-free condition, we evaluated the influence of measurement
errors on RRO feedback signals using Gaussian white noise ξ (n)
(mean, 0; standard deviation, 1.0):

ue(x) = −((x+Dξ (n))− xd) exp(−((x+Dξ (n))− xd)
2/(2σ 2)).

(5)
Here, D exhibits the noise strength.

2.3. Evaluation Indexes
To investigate neural activity, the bifurcation diagram of x(n) was
used. To evaluate the chaotic state of the Baghdadi model, the
Lyapunov exponent was measured by the following (Parker and
Chua, 2012):

λ =
1

τM

M
∑

k=1

ln(
dk(tl = τ )

dk(tl = 0)
). (6)

Here, dk(tl = 0) = d0 (k = 1, 2, · · · ,M) indicates M perturbed
initial conditions to the orbit of x(n) applied at n = n0+ (k−1)τ .
The temporal development during tl ∈ [0 : τ ] is dk(tl = τ ) =
(x(n) − x′(n))|n=n0+kτ . x

′(n) is an orbit-applied perturbation.
The chaotic and periodic state of x(n) correspond to λ > 0 and
λ < 0, respectively.

The CCI of x(n) is induced by attractor-merging bifurcation.
To detect this bifurcation, the conditions F(fmax)+ Cu(fmax) and
F(fmin) + Cu(fmin) were utilized. F(fmax,min) + Cu(fmax,min) =
0 corresponds to the attractor-merging bifurcation point; in

the attractor-merging condition, F(fmax) + Cu(fmax) < 0 and
F(fmin)+ Cu(fmin) > 0 are satisfied (Nobukawa et al., 2018).

To evaluate the synchronization between x(n) and S(n),
we utilized their correlation coefficients with considering time
delay τ :

Corr(τ ) =
Csx(τ )√
CssCxx

, (7)

Csx(τ ) = 〈(S(n+ τ )− 〈S〉)(X(n)− 〈X〉)〉, (8)

Css = 〈(S(n)− 〈S〉)2〉, (9)

Cxx = 〈(X(n)− 〈X〉)2〉, (10)

where 〈·〉 denotes the average in n.X represents the binarized x(n)
value, i.e., X(n) = 1 in x(n) ≥ 0 case and X(n) = −1 in x(n) < 0
to focus on the CCI behavior. In this study, τ was set to the value
for arg maxτCorr(τ ) in each time series of x(n). arg maxτCorr(τ )
was assessed among ten trials using different initial conditions
of x(0).

To evaluate the amount of perturbation for the applied signals
consisting of input periodic signal S(n) and RRO feedback signal
Cu(x), the following perturbation was used:

2 =< S(n)2 + (Cu(x(n)))2 >, (11)

where< · > is the average in n (Doho et al., 2020).2was assessed
among ten trials using different initial conditions of x(0).

3. RESULTS

3.1. System Behavior in Neural Network
Composed of Excitatory and Inhibitory
Neural Populations
ADHD is characterized by an imbalance of the reduction
in inhibitory neural activity caused by dysfunction in the
dopaminergic neural system (Barkley, 1997; Nigg, 2001; Spronk
et al., 2008; Volkow et al., 2009; Loskutova et al., 2010) and
reduced feedback strength from the sensory cortex to frontal
cortex (Moriyama et al., 2012). The neural activity of ADHD
detected by EEG represents larger fluctuation in comparison
with healthy condition (Gonen-Yaacovi et al., 2016). Baghdadi
et al. demonstrated that this larger temporal fluctuation in
ADHD and smaller temporal fluctuation in healthy condition
might correspond to CCI and periodic behaviors in their
proposed model (Baghdadi et al., 2015). First, we demonstrated
the dependence of system behavior on inhibitory synaptic
strength A and attenuation coefficient of frontal neural activity
K in the Baghdadi model. Figure 3A shows the Lyapunov
exponent λ as a function of A and K and attractor-merging
condition F(fmax,min) = 0 in the case of (B = 5.821,w1 =
0.2223,w2 = 1.487). In the region for breaking the attractor-
merging condition, i.e., F(fmax) < 0, F(fmin) > 0 and arising
chaotic activity λ > 0, CCI, which corresponds to abnormal
neural activity in ADHD, emerges. The system behavior under
the conditions of fixed K or A values is depicted in Figure 3B.
The left and right panels of Figure 3B show the dependence
of system behavior on A at K = 1.0 and dependence on
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FIGURE 3 | Dependence of system behavior on inhibitory synaptic strength A and attenuation coefficient of frontal neural activity K in the Baghdadi model. (A)

Lyapunov exponent λ as a function of A and K (B = 5.821,w1 = 0.2223,w2 = 1.487). Black dashed line indicates attractor-merging condition F (fmax,min ) = 0. In λ > 0

in the upper region of the dashed black line satisfying the breaking attractor-merging condition, i.e., F (fmax) < 0, F (fmin) > 0, chaos-chaos intermittency (CCI), which

corresponds to abnormal neural activity in ADHD, is noted. (B) (Left) Dependence of system behavior on A at K = 1.0 corresponding to K value indicated by black

arrow in (A). Bifurcation diagram of frontal neural activity x (top). Lyapunov exponent λ (middle). Attractor-merging condition F (fmax,min) (bottom). (Right) Dependence of

system behavior on K at A = 13.0 corresponding to A value indicated by red arrow in (A). Bifurcation diagram of frontal neural activity x (top). The blue and red dots

indicate the cases with positive and negative initial values x(0), respectively. Lyapunov exponent λ (middle). Attractor-merging condition F (fmax,min) (bottom). Periodic

windows in 12.2 . A . 14.3 (left panel of figure) and 0.87 . K ≤ 1.0 (right panel of figure) correspond to the regions of healthy neural activity.
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K at A = 13.0, respectively, by the bifurcation diagram of
frontal neural activity x, Lyapunov exponent λ, and attractor-
merging condition F(fmax,min). The results demonstrate that CCI
(F(fmax) < 0, F(fmin) > 0, λ > 0) corresponding to abnormal
neural activity in ADHD, which was demonstrated by Baghdadi
et al. (2015), arises in the region 9.8 . A . 12.3 and A & 14.3 in
the dependence on A and 0.85 . K . 0.98 in the dependence on
K. Furthermore, in the adjacent CCI regions, periodic windows
in 12.2 . A . 14.3 and 0.87 . K ≤ 1.0, corresponding to the
regions for healthy neural activity (Baghdadi et al., 2015), exist.

3.2. Controlling Abnormal Neural Activity
Using the RRO Feedback Method
To control CCI behaviors caused by the abnormal imbalance
in excitatory and inhibitory neural activity and the weaker
feedback of neural pathways from the frontal and sensory cortices
shown in Figure 3, RRO feedback signals were applied to the
Baghdadi model according to Equations (3) and (4). Figure 4
shows the map function of the Baghdadi model with RRO
feedback signals and its orbits (see Figure 4A), the time-series
of x(n) (see Figure 4B) in the case with feedback strength

FIGURE 4 | Controlling CCI by “reduced region of orbit” (RRO) feedback signals in the Baghdadi model (A = 13.0,B = 5.821,w1 = 0.2223,w2 = 1.487,K = 0.9). (A)

Map function of the Baghdadi model with RRO feedback signals given by Equations (3) and (4) and its orbits in the case with feedback strength C = 0 (left panel) and

0.5 (right panel). Red and green open circles indicate attractor-merging conditions F (fmax,min)+ Cu(fmax,min) (red: fmax case, green: fmin case). In C = 0 case, the

attractor-merging conditions: F (fmax)+ Cu(fmax) < 0 and F (fmin)+ Cu(fmin) > 0 is satisfied. While, in C = 0.5 case, the attractor is separated due to

F (fmax)+ Cu(fmax) > 0 and F (fmin)+ Cu(fmin) < 0. (B) Time series of x(n) corresponding to the orbits given by (A) in the case with feedback strength C = 0 (left panel)

and 0.8 (right panel). (C) Profile of RRO feedback signals in the case with C = 0.5. CCI in the temporal behavior of x(n) is restricted, and the orbit is confined to either

the negative or positive regions of x(n), depending on the initial value of x(0).
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C = 0, 0.5, and the profile of RRO feedback signals with its
strength C = 0.5 (see Figure 4C). In the C = 0.5 case,
the absolute local maximum/minimum values of map functions
fmax,min were reduced by the effect of RRO feedback signals.
By this reduction, the attractor-merging condition was broken,
i.e., F(fmax) + Cu(fmax) > 0 and F(fmin) + Cu(fmin) < 0;
consequently, x(n) stayed in either the positive or negative region
of x(n). The dependence of the system behavior on RRO feedback
strength C was evaluated in more detail. Figure 5 shows the
bifurcation diagram of x, Lyapunov exponent λ, and attractor-
merging condition F(fmax,min)+Cu(fmax,min) in attenuation K =
0.89, 0.9, 0.91. CCI behavior between positive and negative x
regions (F(fmax)+ Cu(fmax) < 0, F(fmin)+ Cu(fmin) > 0, λ > 0)
was suppressed (F(fmax)+Cu(fmax) > 0, F(fmin)+Cu(fmin) < 0)
in the region of feedback strengthC & 0.23, 0.28, 0.34 in the cases
with K = 0.89, 0.9, 0.91, respectively. Additionally, the periodic
windows appear at around C = 0.05, 0.1, 0.15, in the cases with
K = 0.89, 0.9, 0.91. However, the RRO feedback signal does
not always produce these periodic windows with lower temporal
fluctuation corresponding to healthy condition. Therefore, the
external periodic input S(n) is needed for the transition to the
lower temporal fluctuation, which is dealt in section 3.3.

3.3. Transition of Abnormal Neural Activity
to Healthy State by Synchronization
We investigated synchronization against external periodic input
S(n) induced by RRO feedback signals. The top panel of Figure 6
shows the dependence of correlation coefficient arg maxτCorr(τ )
between x(n) and a periodic input signal S(n) on the strength
of RRO feedback signals C (A = 13.0,B = 5.821,w1 =
0.2223,w2 = 1.487,K = 0.9) in cases of input signal strength
α = 0.01, 0.15. In α = 0.15 and relatively long periods, such
as p = 16, 32, the high synchronization (arg maxτCorr(τ ) ≈
0.3, 0.5 in p = 16, 32, respectively) was produced by RRO
feedback signals at its appropriate strengthC = 0.2. This strength
C = 0.2 corresponded to one for slightly weaker strength of
attractor-merging bifurcation F(fmax,min) + Cu(fmax,min) = 0
at C = 0.28 under condition without the external periodic
stimulus S(n) (see Figure 5). Here, by the additional effect of
S(n), the attractor-merging bifurcation appears at its appropriate
strength C = 0.2. That is, chaotic resonance was interpreted as
being induced by RRO feedback signals and external stimulus
S(n) (Nobukawa et al., 2018, 2019b; Nobukawa and Shibata,
2019). The dependence of perturbation 2 of S(n) and Cu(x(n))
on the strength of RRO feedback signals C is shown in the
bottom panels of Figure 6. The results indicated that 2 to
achieve the high synchronization state was significantly smaller
(2 ≈ 0.02) than the temporal variation in x(n) shown in
Figure 5. As the typical time-series of x(n), Figure 7 shows
the time-series of x(n) under RRO feedback signals Ku(x)
and periodic input signal S(n) corresponding to the case of
α = 0.15, p = 32 in Figure 6. Under small RRO feedback
signals (C = 0.05), the frequency of CCI was too high;
subsequently, CCI did not synchronize to S(n) (correlation
coefficient arg maxτCorr(τ ) ≈ 0.23). In contrast, under the
appropriate RRO feedback strength C = 0.2, the frequency of

CCI was reduced. Using the appropriate CCI frequency, high
synchronization was achieved (arg maxτCorr(τ ) ≈ 0.46). Under
stronger RRO feedback strength (C = 0.4), CCI did not respond
to S(n) (arg maxτCorr(τ ) ≈ 0.06) due to the CCI frequency being
too low. In addition, at C = 0.4 under condition without S(n),
the CCI does not appear (see K = 0.9 case in Figure 5), while
the effect of the external stimulus S(n) leads CCI, although its
frequency is low in C = 0.4 case of Figure 7.

In addition to attenuation K = 0.9, the dependences of
arg maxτCorr(τ ) and 2 at different levels of attenuation K =
0.89, 0.91 were evaluated under the same setting for S(n) (p =
32,α = 0.15 corresponding to Figure 6B) as shown in Figure 8.
As the result, with increasing K, attractor merging bifurcation
point shifts to smaller C values (see Figure 5); subsequently,
the peak of arg maxτCorr(τ ) shifts to smaller C region. At
these attenuation levels, the perturbation 2 to induce peak of
arg maxτCorr(τ ) is significantly smaller (2 ≈ 0.02) than the
temporal variation in x(n) shown in Figure 5.

When determining the RRO feedback signals estimated from
actual frontal neural activity, measurement errors may affect
the accuracy of producing RRO feedback signals. Therefore,
we evaluated synchronization against external periodic input
induced by RRO feedback signals under Gaussian white noise
Dξ (n) given by Equation (5). Here, RRO feedback strength
C is fixed C = 0.2 where arg maxτCorr(τ ) exhibits a peak
in Figure 6B. Figure 9 shows the dependences of correlation
coefficient arg maxτCorr(τ ) and perturbation 2 on noise
strength D (A = 13.0,B = 5.821,w1 = 0.2223,w2 = 1.487,K =
0.9,α = 0.15). The results indicated that arg maxτCorr(τ )
decreased with increasing noise strength D, maintaining
2 ≈ 0.02.

4. DISCUSSION AND CONCLUSIONS

In this study, we developed an efficacious neurofeedback method
based on chaotic resonance produced by RRO feedback signals
in the Baghdadi model for abnormal neural activity in ADHD
with E/I imbalance and impairment of neural pathway from the
sensory cortex to the frontal cortex. We confirmed that the effect
of chaotic resonance shifted aberrant neural activity caused by
abnormal CCI of neural activity to healthy neural activity when
the frequency of reference signals was relatively low. Moreover,
we evaluated the influence of noise due to measurement errors
and observed that the efficiency of chaotic resonance produced
by RRO feedback signals was maintained over a certain range of
noise strengths.

First, we discuss why the synchronization of CCI against
the external reference signal is enhanced at attractor-merging
bifurcation induced by RRO feedback signals, i.e., why chaotic
resonance arises. Near the attractor-merging bifurcation, the
frequency of autonomous CCI is low. In this condition, the
external signal plays a perturbative role and switches neural
activity between positive and negative attractor regions even if
its strength is weak. Therefore, the CCI induced by the external
signal becomes dominant among all CCIs; subsequently, high
CCI synchronization with the external signal is realized. This
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FIGURE 5 | Dependence of system behavior on RRO feedback strength C in the Baghdadi model. (A = 13.0,B = 5.821,w1 = 0.2223,w2 = 1.487,K = 0.9).

Bifurcation diagram of frontal neural activity x (top). Lyapunov exponent λ (middle). Attractor-merging condition F (fmax,min)+ Cu(fmax,min) (bottom). (A) Attenuation

K = 0.89. (B) K = 0.9. Here, magenta and green arrows correspond to the parameter sets for attractor merging (C = 0) and separated (C = 0.5) conditions in

Figure 4. (C) K = 0.91. CCI behavior between positive and negative x regions (F (fmax)+ Cu(fmax) < 0, F (fmin)+ Cu(fmin) > 0, λ > 0) is suppressed

(F (fmax)+ Cu(fmax) > 0, F (fmin)+ Cu(fmin) < 0) in the region of feedback strength C & 0.23, 0.28, 0.34 in the cases with K = 0.89, 0.9, 0.91, respectively.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 September 2021 | Volume 15 | Article 726641

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Nobukawa et al. Stabilizing ADHD Abnormal Neural Activity

FIGURE 6 | Synchronization against external periodic input induced by RRO feedback signals. Dependence of correlation coefficient arg maxτCorr(τ ) between x(n)

and a periodic input signal S(n) = α sin(2πn/p) on the strength of RRO feedback signals C (top). Dependence of perturbation 2 on the strength of RRO feedback

signals C (bottom). (A = 13.0,B = 5.821,w1 = 0.2223,w2 = 1.487,K = 0.9). (A) Case for the input signal strength α = 0.01. (B) Case for the input signal strength

α = 0.15. Here, solid and dotted lines indicate mean and standard deviation, respectively. In α = 0.15 and relatively long periods such as p = 16, 32, the high

synchronization (arg maxτCorr(τ ) ≈ 0.3, 0.5 in p = 16, 32, respectively) is produced by RRO feedback signals at its appropriate strength C = 0.2, where its

perturbation 2 is significantly smaller (2 ≈ 0.02) than the temporal variation in x(n) shown in Figure 5.

tendency is congruent with our previous findings on chaotic
resonance induced by RRO feedback signals (Nobukawa et al.,
2018; Nobukawa and Shibata, 2019; Doho et al., 2020).

Then, we compare the current approach with conventional
neurofeedback methods. The attractor-merging bifurcation
induced by changing the synaptic weights as internal neural
system parameters (see Figure 3) may correspond to the
enhancement of neural pathways induced by the repeated daily-
temporal-scale training used in conventional neurofeedback
(Hammond, 2007; Baghdadi et al., 2015; Sitaram et al., 2017;
Hampson et al., 2019). This is because abnormal CCI of
neural activity is significantly suppressed under the condition
of enhanced synaptic weights of the neural pathway from
the frontal and sensory cortices, as reported in the model-
based study by Baghdadi et al. (2015). In contrast, in our
proposed method, the attractor-merging bifurcation produced
by RRO feedback signals is realized by the external stimulus,
instead of reinforcement through repeated training. Therefore,
the neurofeedback method based on RRO feedback signals may
facilitate the development of promising neurofeedback methods
for ADHD which immediately induce the enhancement of
attention in a single trial of feedback signal application.

The actual external stimulus consisting of the reference signal
for intended neural activity S(n) and RRO feedback signals
Cu(n) to the frontal and sensory cortices must be considered.
Abnormal neural activity of dopaminergic neural networks in
the frontal eye field (FEF) and visual area 4 (V4) are known
to cause dysfunction in covert spatial attention and selective
attention in ADHD (Mason et al., 2003) (reviewed in Noudoost
and Moore, 2011). Moreover, microstimulation to the FEF and
V4 can induce control of covert spatial attention and selective
attention (reviewed in Moore et al., 2003). This microstimulation
may be considered an effective candidate for the actual external
stimulus in the RRO feedback method. However, from the
viewpoint of neurofeedback, the application of stimuli using
invasive methods is unsuitable. In this regard, the presentation
of a blue-light stimulus to the eyes has been reported to affect
neural activity in the brainstem, including the locus coeruleus
and noradrenergic neural networks (González and Aston-Jones,
2006; Vandewalle et al., 2007). Moreover, the use of a blue-
light stimulus reportedly enhances neural activity in right-
hemisphere attention networks (Perrin et al., 2004; Vandewalle
et al., 2006) and directivity of spatial attention (Newman
et al., 2016). Therefore, the application of a blue-light stimulus
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FIGURE 7 | Time-series of x(n) (black line) under RRO feedback signals Cu(x) and periodic input signal S(n) (red line) corresponding to the case of α = 0.15,p = 32 in

Figure 6. (Top) A case of strength of RRO feedback signals C = 0.05. (middle) C = 0.2 case. (Bottom) C = 0.4 case. Under small RRO feedback signals (C = 0.05),

the frequency of CCI is too high; subsequently, CCI does not synchronize to S(n) (correlation coefficient arg maxτCorr(τ ) ≈ 0.23). In contrast, under the appropriate

RRO feedback strength C = 0.2, the frequency of CCI is reduced. Using the appropriate CCI frequency enables high synchronization to be achieved

(arg maxτCorr(τ ) ≈ 0.46). Under stronger RRO feedback strength, CCI does not respond to S(n) (arg maxτCorr(τ ) ≈ 0.06) due to CCI frequency being too low.

may be a practical and effective candidate for implementing
reference signals and RRO feedback signals in neurofeedback.
Additionally, under the appropriate strength of RRO feedback
signal, the synchronization to the reference signal can be achieved
despite weak perturbation where the synchronization cannot
be induced by only input of external stimulus (see Figures 6,
8). Consequently, RRO feedback signals might lead the lower
invasive neurofeedback method in comparison with the case
using only periodic stimulation.

To reduce abnormal CCI of neural activity, a synchronization
mechanism was utilized through chaotic resonance produced
by the RRO feedback method in this study. In addition to this
approach, alternative methods to stabilize chaotic frontal neural
activity should be discussed. Studies on non-linear feedback
control theory have proposed various chaos-controllingmethods,
typified as the Ott–Grebogi–Yorke method (Ott et al., 1990),
delayed feedback method (Pyragas, 1992; Nakajima, 1997), and
H∞ control (Jiang et al., 2005) (reviewed in Schöll and Schuster,
2008). In particular, the delayed feedback method was utilized
in neural systems because this method is realized by feedback
terms based on previous targeted periodic p states (Rosenblum
and Pikovsky, 2004; Nobukawa et al., 2020b). However, the
stabilization cannot be realized under conditions of odd numbers
of real characteristics of map functions multipliers, i.e., Fp(x(n))

where p is an odd number and F corresponds to the map
functions for neural activity observed in the experimental
condition (Ushio, 1996; Nakajima, 1997). To determine whether
this condition is to be avoided, an estimation of the detailed
profile of map multipliers is necessary (Ushio, 1996; Nakajima,
1997); generally, estimating this profile from actual neural
activity is challenging. In our proposed method utilizing chaotic
resonance, the estimation of map multipliers is not required.

Several limitations of this study should be considered. First,
comparison of the results of model-based studies, such as this
study, with empirical studies is crucial to validate the proposed
method. However, in this study, we used a simple neural system
consisting of frontal and sensory cortices. To reproduce the
neural activity in ADHD underpinned by complex neural bases,
more precise and realistic neural network models are required
for comparison and validation. For these evaluations, the use
of spiking neural networks to reproduce realistic neural activity
(Nobukawa et al., 2019a, 2020c) enhances the physiological
validity of RRO feedback methods. Additionally, the model-
based study with high physiological validity is critical to develop
RRO feedback signals corresponding to actual sensory stimulus.
In addition to modeling studies, developing physiological
external stimuli to control neural activity for attention-related
functions, such as the aforementioned blue-light (González and
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FIGURE 8 | Synchronization against external periodic input induced by RRO

feedback signals in cases with attenuation K = 0.89, 0.9, 0.91. Dependence

of correlation coefficient arg maxτCorr(τ ) between x(n) and a periodic input

signal S(n) = α sin(2πn/p) on the strength of RRO feedback signals C (top).

Dependence of perturbation 2 on the strength of RRO feedback signals C

(bottom) (A = 13.0,B = 5.821,w1 = 0.2223,w2 = 1.487, alpha = 0.15,

p = 32). Here, the solid and dotted lines indicate mean and standard

deviation, respectively. With increasing K, attractor merging bifurcation point

shifts to smaller C values (see Figure 5); subsequently, the peak of

arg maxτCorr(τ ) shifts to smaller C region. At the different attenuation levels,

the perturbation 2 to induce peak of arg maxτCorr(τ ) is significantly smaller

(2 ≈ 0.02) than the temporal variation in x(n) shown in Figure 5.

Aston-Jones, 2006; Vandewalle et al., 2007; Newman et al., 2016),
is needed to implement signals to induce chaotic resonance.
Moreover, the clarification of validate range of the measurement
error and its influence to the RRO feedback method in the
actual experimental environment regarding the modeling results
shown in Figure 9 are relevant. In addition to measurement
error, evaluation against delay in the process for producing RRO
feedback signals is a crucial issue in the empirical conditions,
because this delay might affect the ability of chaotic resonance.
For these evaluations, the experimental studies using EEG are
needed. Future research should pursue these avenues.

In conclusion, this model-based study demonstrated that
chaotic resonance controlled by the RRO feedback method
induced the transition of dysfunctional frontal cortical neural
activity underscoring attention deficits to approximate intended
healthy activity. Although several limitations exist, our proposed
neurofeedback method utilizing the mechanism of chaotic
resonance produced by RRO feedback signals can be practically
applied as a promising treatment option for ADHD.

FIGURE 9 | Synchronization against external periodic input induced by RRO

feedback signals under Gaussian white noise Dξ (n). Here, RRO feedback

strength C is fixed C = 0.2, where arg maxτCorr(τ ) exhibits a peak in

Figure 6. Dependence of correlation coefficient arg maxτCorr(τ ) between x(n)

and a periodic input signal S(n) = α sin(2πn/p) on noise strength D (top).

Dependence of perturbation 2 on noise strength D (bottom). Here, the solid

and dotted lines indicate mean and standard deviation, respectively.

arg maxτCorr(τ ) decreases with increasing noise strength D, maintaining

2 ≈ 0.02. (A = 13.0,B = 5.821,w1 = 0.2223,w2 = 1.487,K = 0.9,

α = 0.15).
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