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In Drosophila, olfactory information received by olfactory receptor neurons (ORNs) is

first processed by an incoherent feed forward neural circuit in the antennal lobe (AL)

that consists of ORNs (input), inhibitory local neurons (LNs), and projection neurons

(PNs). This “early” olfactory information processing has two important characteristics.

First, response of a PN to its cognate ORN is normalized by the overall activity of other

ORNs, a phenomenon termed “divisive normalization.” Second, PNs respond strongly to

the onset of ORN activities, but they adapt to prolonged or continuously varying inputs.

Despite the importance of these characteristics for learning and memory, their underlying

mechanisms are not fully understood. Here, we develop a circuit model for describing the

ORN-LN-PN dynamics by including key neuron-neuron interactions such as short-term

plasticity (STP) and presynaptic inhibition (PI). By fitting our model to experimental data

quantitatively, we show that a strong STP balanced between short-term facilitation

(STF) and short-term depression (STD) is responsible for the observed nonlinear divisive

normalization in Drosophila. Our circuit model suggests that either STP or PI alone can

lead to adaptive response. However, by comparing our model results with experimental

data, we find that both STP and PI work together to achieve a strong and robust

adaptive response. Our model not only helps reveal the mechanisms underlying twomain

characteristics of the early olfactory process, it can also be used to predict PN responses

to arbitrary time-dependent signals and to infer microscopic properties of the circuit (such

as the strengths of STF and STD) from the measured input-output relation. Our circuit

model may be useful for understanding the role of STP in other sensory systems.

Keywords: short-term plasticity, presynaptic inhibition, circuit model, olfactory system, Drosophila,

divisive normalization

1. INTRODUCTION

Sensory systems have evolved different strategies to efficiently represent and process physiologically
relevant stimuli in the presence of various biophysical constraints. For example, the olfactory
system is confronted with the challenge that there are numerous odors each consisting of multiple
volatile molecules with a wide range of concentrations. Yet the olfactory system possesses a
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remarkable ability to detect and discriminate odors using a
relatively small repertoire of odor receptors (ORs) through a
combinatorial code, i.e., each odorant is sensed by multiple
receptors and each receptor can be activated by many odorants
(Hallem and Carlson, 2006; Saito et al., 2009; Si et al., 2019).

The functional organization of the olfactory systems across
different species is highly conserved (Su et al., 2009; Hansson
and Stensmyr, 2011; Uchida et al., 2014). In both insects
and vertebrates, an olfactory receptor neuron (ORN) typically
expresses only one type of OR. ORNs that express the same
OR converge to the same glomerulus in the olfactory bulb
(vertebrates) or the antennal lobe (AL, insects). In Drosophila,
peripheral odor information is processed in the AL before
transmitted to higher brain areas by projection neurons (PNs)
(Masse et al., 2009; Wilson, 2013). Each PN typically innervates
one glomerulus. The transfer function between ORN and PN is a
saturating nonlinear function (Bhandawat et al., 2007; Kazama
and Wilson, 2008; Olsen and Wilson, 2008), i.e., a small ORN
input is disproportionally amplified while a strong input saturates
the response. Lateral inhibition by local interneurons (LNs) in
the AL increases the level of ORN input needed to drive PNs to
saturation, the strength of inhibition scales with the total forward
input to the AL, a phenomenon called “divisive normalization”
(Olsen et al., 2010; Carandini and Heeger, 2012), which has been
widely observed across different sensory modalities and brain
regions (Carandini and Heeger, 2012; Ferguson and Cardin,
2020). Divisive normalization in the AL was found beneficial for
efficient odor coding (Olsen and Wilson, 2008; Luo et al., 2010).

Airborne odors are intermittent and have complex spatio-
temporal profiles (Murlis et al., 1992; Vickers et al., 2001). The
ability to detect and respond to temporal variation of odors
is crucial for successful odor-guided navigation (David et al.,
1983; Victor et al., 2019; Demir et al., 2020). This is partially
achieved by the adaptive responses of PNs to time-dependent
inputs from ORNs. In particular, PNs respond transiently to the
onset of a step-function like ORN input and fall back to low
firing rates for the prolonged input, showing highly adaptive
response. For more complex time-dependent ORN inputs, the
response of PNs depends on both the ORN firing rate and
its rate of change (Kim et al., 2011, 2015). Indeed, one of
the hallmark properties of all sensory systems is adaptation,
which is crucial for detecting and tracking time-varying signals
(Wark et al., 2007). For adaptive response inDrosophila olfactory
system, although a phenomenological linear-nonlinear model
was proposed to fit experimental data (Kim et al., 2015), a
mechanistic understanding of how the ORN-PN-LN circuit in
the AL leads to the adaptive response is still missing.

The aim of this study is to understand the mechanistic
origins of both divisive normalization and adaptive response
in Drosophila by modeling dynamics of the AL neural circuit.
From previous studies (Kazama and Wilson, 2008; Martelli and
Fiala, 2019), the synapses between ORNs and PNs in AL exhibit
strong short-term plasticity (STP), which is a form of fast activity-
dependent modulation of synaptic strength (Stevens and Wang,
1995; Abbott et al., 1997; Markram et al., 1998; Dittman et al.,
2000; Wang et al., 2006). Another important factor in the AL
circuit is that inhibition by LNs is due to presynaptic inhibition

(PI) at the axon terminal of ORNs (Olsen and Wilson, 2008). In
this paper, we develop a simple circuit model of the Drosophila
AL that includes both STP and PI. By using analytical methods
and numerical simulations, we study the effects of STP on divisive
normalization and response to time-varying stimuli of PNs.
From direct quantitative comparison of our model results to
experimental data, we show that STP is essential for the observed
highly nonlinear divisive normalization; and both STP and PI
determine the adaptive response observed in experiments.

2. METHODS

2.1. A Circuit Model of the Antennal Lobe
With STP
There are around 50 types of ORNs in Drosophila melanogaster,
each of them expresses one OR. ORNs that express the same OR
converge to the same glomerulus in the AL. A given odor typically
activates several types of ORNs, hence different glomeruli. Each
PN innervates one glomeulus and projects to higher brain areas
like mushroom body and lateral horn. Since most LNs in AL
are GABAergic, we will only consider inhibitory interneurons.
Although LNs have distinct morphologies, innervation patterns,
and response dynamics to odors (Chou et al., 2010; Nagel et al.,
2015; Nagel and Wilson, 2016), for the purpose of this study,
we do not differentiate them in our model. Generally speaking,
LNs innervate different glomeruli and target the boutons of ORN
axons, forming presynatpic inhibition (Figure 1A). We consider
the simplified neural circuit of ORN-PN-LN in the AL, as shown
in Figure 1B. Since ORNs promote the firing of PNs and LNs,
while LNs in turn inhibit the firing of PNs, these neurons forms
an incoherent feedforward loop (IFFL), a motif that has been
widely observed in biochemical networks (Shen-Orr et al., 2002;
Ma et al., 2009; Tu and Rappel, 2018).

For simplicity, we used a mean-field model to describe
the firing rates of the neurons (Dayan and Abbott, 2001;
Trappenberg, 2009; Gerstner et al., 2014). The dynamics of PN
(LN) population firing rate RPN(LN) can be written as:

dRPN

dt
= −

RPN

τE
+ ωEEu+xpR, (1)

dRLN

dt
= −

RLN

τE
+ ωIE

∑
j

Rj, (2)

where R is the firing rate of the cognate ORN that responds to
a particular (private) odorant. The sum

∑
j in Equation (2) is

over all ORNs connected to the LN, including non-cognate ORNs
that respond only to public odorant(s). The timescale τE is the
relaxation time of the firing rate.ωEE andωIE are synaptic weights
of the synapses from ORN to PN and LN, respectively, assumed
to be homogeneous among different ORNs.

The effect of PI is modeled by Equation (1) with a
(dimensionless) variable 0 < p < 1 that represents reduction
of the effective ORN firing rate due to presynaptic inhibition by
LN. The dynamics of p, simplified from previous studies (Zhang
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FIGURE 1 | Illustration of the antennal lobe (AL) circuit model. (A) Simplified neural circuit in the AL of Drosophila. Olfactory receptor neurons (ORNs) that express the

same type of olfactory receptors innervate the same glomeurlus (dashed line region) in the AL. Here, we focus on uniglomerular projection neurons (uPNs). Each of

them sends dendrites into a single glomerulus and receive synaptic input from its cognate ORN. Although each glomerulus might be innervated by different PNs, only

one PN is shown. Glomeuruli are laterally connected by inhibitory local neurons (LNs,magenta), which interact with ORNs and PNs. A private odor only activates a

specific type of ORNs, while a public odor activates a large number of ORNs that innervate different glomeruli. Lower: close-up of the synaptic interactions between

ORN, PN and LN. Both PI and STP are considered in our model. (B) Schematics of the AL circuit with STP effect and PI mediated by LNs.

et al., 2013, 2015), is modeled as:

τp
dp

dt
= −p+

1

1+ ρRLN
, (3)

where ρ is a constant and τp is the relaxation time of p. In the
limit τp ≪ τE, we can use the quasi-steady state approximation

p ≈ 1
1+ρRLN

, which suggests that p decreases with RLN.
The effect of STP can be separated into short-term facilitation

(STF) and short-term depression (STD), which are modeled
by u+ and x in Equation (1), respectively. Following previous
work (Tsodyks et al., 1998), we denote u− (u+) as the
neurotransmitter releasing probability just before (after) the
arrival of a presynaptic spike; and x as the fraction of available
neurotransmitters (Figure 1A). Applying the mean-field model
for STP (Tsodyks et al., 1998), we have the following dynamics
for u− and x:

dx

dt
=

1− x

τD
− xu+pR, (4)

du−

dt
= −

u−

τF
+ U(1− u−)pR, (5)

where u+ = u− + U(1− u−) with U as the increment in release
probability after each spike. Without any presynaptic firing (R =

0), we have x = 1, u− = 0, and u+ = U at steady state.
With presynaptic firing, x decreases and u+ increases before their

steady state values are recovered with time constants τD and
τF respectively. The strength of STF and STD can be measured
by the dimensionless recovery times SF = τF

τE
and SD = τD

τE
normalized by the relaxation time for firing rate τE. The longer
the STP recovery time (τF or τD), the stronger the STP effect
(STF or STD).

In the rest of the paper, we use the neural circuit model
(Equations 1–5) to describe and explain several response
properties of PNs including divisive normalization for constant
(steady state) inputs and adaptive response to time-varying
inputs. In both cases, we compare our model results with existing
experiments and focus on understanding the effects of STP and
PI on the observed behaviors.

2.2. Response of PNs to Triangular-Shaped
Firing Rates of ORNs
In this section, we describe in detail the approximations used
when we study PN’s response to triangular-shaped inputs. First,
we consider a simpler scenario, where ORN’s firing rate increases
linearly without bound, i.e., R = Kt. Then, Equations (1)–
(5) become

dRLN

dt
= −

RLN

τE
+ ωIEKt,

τp
dp

dt
= −p+

1

1+ ρRLN
,
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dRPN(t)

dt
= −

RPN

τE
+ ωEEu+xpKt,

dx

dt
=

1− x

τD
− xu+pKt,

du−

dt
= −

u−

τF
+ U(1− u−)pKt,

u+ = u− + U(1− u−). (6)

To analyze the adaptive behavior of PN responses, we derive an
approximate solution of the above equations. These equations
can be separated into two groups based on the biological
mechanisms they describe: the first two equations describe
presynaptic inhibition and the other equations are related to STP,
which we study separately in the following.

2.2.1. The Presynaptic Inhibition Equations
Solving the first two equations of Equations (6) we obtain:

RLN(t) = ωIEKτE[t − τE(1− e
− t

τE )],

p(t) = e
− t

τp + e
− t

τp

∫ t

0

e
t′

τp dt′

τp{1+ AK[t′ − τE(1− e
− t′

τE )]}
(7)

with initial conditions p(0) = 1 and RLN(0) = 0. Here A =

kρτEω
IE, as defined previously in the steady state solution in the

main text. Since the plateau appears at t ≫ τE, the integrand of
Equation (7) can be approximated as

e
t′

τp

τp{1+ AK[t′ − τE(1− e
− t′

τE )]}
≈

e
t′

τp

τp(1− AKτE)+ τpAKt′
.

The validity of this approximation is supported
by direct numerical integration of Equation (7)
(Supplementary Figure 6). Plugging it back into Equation
(7), we obtain:

p(t) ≈ e
− t

τp +
e
−( t

τp
+

1−AKτE
AKτp

)

AKτp
[Ei(

t

τp
+

1− AKτE

AKτp
)

−Ei(
1− AKτE

AKτp
)], (8)

where Ei(x) =
∫ x
−∞

ex
′

x′ dx
′ denotes the exponential integral. By

asymptotically expanding Ei(x) as Ei(x) = ex

x

∑N−1
n=0

n!
xn , we have

(up to the leading order terms):

p(t) ≈
1

AK(t − τE)+ 1
−

AKτE

1− AKτE
e
− t

τp . (9)

Multiplying Equation (9) by Kt gives the effective input Reff
Equation (14).

2.2.2. The STP Equations
The last four equations in (6) describe the STP mechanism. From
Equation (9), in the limit t≫τp, τE, we have p ≈ (AR(t))−1, which

leaves the effective input Reff = p(t)R(t) approximately constant
in time. We use this approximation to investigate the plateau
behavior of PN response. Plugging it back into Equation (6), we

have u−(t) = τuUReff(1− e−
t

τu ) where 1/τu ≡ 1/τF + ReffU.
The equation for x now becomes:

dx

dt
+ [

1

τx
− (1− U)UR2effτue

− t
τu ]x =

1

τD
,

where 1/τx ≡ 1/τD + (1 − U)UR2effτu + UReff. Introducing

Px(t) = 1/τx − (1− U)UR2effτue
− t

τu , we have

x(t) = e−
∫ t
0 Px(t

′)dt′ + e−
∫ t
0 Px(t

′)dt′
∫ t

0

1

τD
e
∫ t′

0 Px(t′′)dt′′dt′. (10)

Since we are interested in the plateau behavior of PNs, where
t≫τu, τx. We can approximate

∫ t
0 Px(t

′)dt′ as t
τx
. Plugging it back

to Equation (10) and neglecting higher order corrections, we have
x(t) ≈ τx/τD. Similarly,

u+(t)x(t) = (1−U)u−(t)x(t)+Ux(t) ≈
τx

τD
[(1−U)UτuReff+U].

The magnitude of the plateau response of PN can be
approximated by its steady state activity for large t,

RPN(t) = ωEEτEReffu
+(t)x(t) ≈ ωEEτEReff

τx

τD
[(1−U)UτuReff+U],

where Reff = p(t)Kt ≈ 1/A with p(t) given by Equation (9).
We see that the plateau magnitude of RPN is related to R(t) only
through Reff, which is the final value that pR(t) reaches. It is
independent of t and K, therefore the magnitude of PN response
plateau is not affected by the input changing rate K, but only
depends on intrinsic properties of the system.

2.3. Determination of Model Parameters
and Initial Conditions
All model parameters were taken from previous studies or
estimated by fitting to experimental data with their values
constrained in reasonable physiological ranges. In Figure 2, each
line is associated with a public odor at certain concentration.
Since the firing rate due to all ORNs are not available in the
experiment, and only local field potential was measured. We
fitted each line by a independent R̂pub. The resulting R̂pub
are found proportional to local field potentials measured in
experiments (Supplementary Figure 1). The best-fit parameters
(Table 1) were obtained by minimizing the residual sum of
square for all the 16 (DL5) or 15 (VM7) points for each ORN-
PN pair. The qualitative behavior of modeling results in Figure 3

are robust across a wide range of parameters. The parameters
used are based on parameters in Figure 2 with slight adjustment
within physiological range. Parameters in Figures 4, 5 are the
same, which are chosen to fit the plateau height, the peak
response and peak time simultaneously. In all the numerical
simulations of Equations (1)–(5), all the variables except x and
p start from 0. x and p, according to their biological meanings
introduced, all start from 1.
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FIGURE 2 | Comparison between model results (lines) and experimental data (symbols) for PNs that innervate (A) DL5 and (B) VM7 glomeruli. The experimental data

are from Olsen et al. (2010). The PN firing rate shown here is averaged over the first 500 ms as done in Olsen et al. (2010). Darkness of color indicates different

strengths of lateral inhibition due to different fitted public ORN firing rates R̂pub, which are found to be proportional to the measured local field potentials in experiments

as shown in Supplementary Figure 1. Other model parameters are given in Table 1.

TABLE 1 | Model parameters used in Figure 2.

Parameter Meaning DL5 VM7

τE Time constant for excitatory synapse 50 ms 50 ms

ωEE Synaptic weight from ORN to PN 160 nS 105 nS

ωIE Synaptic weight from ORN to LN 10 nS 10 nS

ρ Intrinsic strength for presynaptic inhibition 1.9 ms 2.5 ms

U Increase in release probability for faciliation 0.31 0.24

τD Time constant for STD 368 ms 160 ms

τF Time constant for STF 339 ms 150 ms

3. RESULTS

3.1. STP Is Crucial for the Observed
Nonlinear Divisive Normalization
A PN’s response is suppressed by the firing of LNs, which can be
activated by many ORNs, some of which can respond to a public
odorant other than the cognate (private) odorant (see Figure 1).
This introduces lateral inhibition and reduces the response of
PN to a private odorant in the presence of public odorants. In
Olsen et al. (2010), PN responses to a private odorant (which
activates only the cognate ORN) with a background of different
concentrations of a public odorant (presumably activates many
other ORNs) were measured. As shown in Figure 2 (symbols
are from experiments), the PN response to the private (cognate)
odorant is affected by the level of public odorant (each color
represents a different concentration of the public odorant). This
divisive normalization effect was fitted phenomenologically by a
Hill function in Olsen et al. (2010):

RaPN ≈ Rmax
Rγa

Rγa + K
γa
1/2 + σ γa

, (11)

where RaPN is defined as the average response over the first 500ms
after the stimulus is applied. Note that RaPN is different from the

adapted (steady state) response due to the finite adaptation time
of PNs. In Equation (11), σ is proportional to the sum of the firing
rates of non-cognate (public) ORNs; Rmax is the maximum PN
firing rate; K1/2 is the firing rate of ORN at which PN has the
half maximum response when σ = 0, γa is the Hill coefficient
for the average response. Olsen et al. (2010) were able to fit
their experimental data with γa ≈ 1.5, which indicates a strong
nonlinear effect in divisive normalization (γa > 1). However, the
underlying mechanism of this “nonlinear” divisive normalization
remains unclear.

Here, we use the circuit model to explain the experimentally
observed nonlinear divisive normalization behaviors. By
numerically solving our model (Equations 1–5), we computed
the 500 ms average response RaPN the same way as in the
experiments for different public odorant backgrounds. As shown
in Figure 2, our model fits well with the measured responses
of both PNs that innervate either DL5 or VM7 glomeruli in
different backgrounds of public odorant concentrations that are
fitted as R̂pub in the model. The fitted values of R̂pub are found
to be linearly proportional to the measured local field potentials
in experiments (Olsen et al., 2010; see Supplementary Figure 1),
which further supports the validity of our model. Other best-fit
parameters are listed in Table 1. Most of the parameters for DL5
and VM7 remain approximately the same, however, the two
STP timescales (τD and τF) and the lateral inhibition strength
ρ, which are intrinsic properties of the specific glomerulus,
are different. Quantitatively, both STP timescales (τD and τF)
obtained from our model fitting are consistent with the range of
these timescales measured in experiments (Abbott et al., 1997).
We also find that the sensitivity to lateral inhibition (ρ) is slightly
stronger of VM7 than that of DL5, which is also consistent with
the experiments (Olsen et al., 2010).

The most interesting finding from fitting our model with
the experimental data is that both DL5 and VM7 have strong
STP effects (SF , SD > 1), and both STF and STD strength
are stronger in DL5 than those in VM7. However, the relative
strength between STD and STF, r ≡ SD/SF , remains roughly
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FIGURE 3 | The effects of STP (STF and STD) on the nonlinear divisive normalization in PNs’ responses. (A,B) Steady state responses of PN to different cognate ORN

firing rates for (A) different STD strengths SD and (B) different STF strengths SF . In (A) SF = 2, in (B) SD = 6. (C) The dependence of the effective Hill coefficient γ on

the STF strength (SF ) and the STD strength (SD). The values of SD and SF used in fitting the experimental data for DL5 and VM7 (see Figure 2) are also shown in the

figure. The dotted line corresponds to perfectly balanced STF and STD strength: SD = SF . (D) Steady state responses of PN to cognate ORN firing rates in the

presence of different public firing rates R̂pub. Red dots mark ORN firing rates at the half maximum firing of PNs (R1/2). The inset shows that R1/2 increases linearly with

R̂pub. Other model parameters used here are: U = 0.24, R̂pub = 500Hz,ωEE = 180nS,ωIE = 10nS, τE = 50ms, ρ = 1.8ms.

the same for DL5 (r ≈ 1.08) and VM7 (r ≈ 1.07). Thus, our
results suggest that strong and balanced STD and STF effects are
responsible for the observed nonlinear divisive normalization in
both VM7 and DL5. In fact, our model fails to fit experimental
data without STP. As shown in Supplementary Figure 3, when
we set τD = τF = 0, the PN response curves are roughly linear
to ORN input within the range of the experimental data, which
confirms the crucial role of STP in the observed “nonlinear”
divisive normalization behavior.

To better understand this “nonlinear” effect in divisive
normalization, we leveraged the simplicity of our model to derive
an analytical expression for the steady state response of PNs.
For any constant input (cognate ORN with firing rate R) to
the antennal lobe, the output R∗PN(R), i.e., the firing rate of the
cognate PN, can be determined analytically by solving the steady
state in Equations (1–5):

R∗PN(R) =
τEω

EEUR(θ + τFR)

θ2 + θ(τF + τD)UR+ τDτFUR2
, (12)

where θ ≡ 1+A
∑

j Rj with A ≡ ρωIEτE, and
∑

j Rj = R+ R̂pub

with R̂pub denoting the total input from public ORNs.

In the absence of STP, i.e., when τD → 0 and τF → 0, x = 1
and u+ = U remain constant, the PN response (Equation 12)
reduces to:

R∗PN(R) = τEω
EEU

R

1+ A
∑

Rj
, (13)

where both the numerator and the denominator depend linearly
on R. We thus refer to Equation (13) as “linear” divisive
normalization. In the presence of STP, i.e., when τF 6= 0 and
τD 6= 0, both the denominator and the numerator in Equation
(12) are nonlinear in R, which leads to the “nonlinear” divisive
normalization behavior.

Similar to the empirical Hill function (11), the above steady
state PN response curve exhibits a sigmoidal shape that can
be characterized by three parameters: the maximum response

Rmax
PN ≡ R∗PN(R = ∞) = τEω

EEU(A+τF)
A2+A(τF+τD)U+UτFτD

; the half

maximum input R1/2 defined as R∗PN(R1/2) = Rmax
PN /2; and

an effective Hill coefficient γ ≡ 2
d ln(R∗PN)
d ln(R) |R1/2 . From (13), we

have the linear divisive normalization behavior (γ = 1) in the
absence of STP. In the presence of STP, we have γ > 1, which
can be used to characterize the nonlinearity of the response.
In Figures 3A,B, the PN response function (12) with different
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FIGURE 4 | The responses of PN to linearly increasing inputs (ORN firing rate) with different increasing rate K. The adapted responses are independent of the

increasing rate (K) of the input. Dashed line marks the asymptotic response when t → ∞ as predicted by Equation (15). The inset shows how the peak time and peak

value of PN response depend on the increasing rate (K). Other model parameters used here are: U = 0.24, R̂pub = 0,ωEE = 75nS,ωIE = 21nS, τE = 55ms, ρ = 8ms,

τp = 300ms, τF = 50ms, τD = 100ms.

FIGURE 5 | Adaptive responses of PN to triangle-shaped inputs (ORN spike rates). (A) Upper panel: Simulated triangle-shaped ORNs firing rates with different

increasing rates in the rising phase. The peak inputs (ORN firing rates) are the same for all cases. Lower panel: responses of PNs to triangle-shaped ORNs inputs. For

slow and medium increasing inputs, PNs reach plateau responses. The dotted line shows the average plateau response of PN estimated from experimental data with

the shaded region indicating the standard derivation. (B) The peak responses of PNs increase with the rates of change in input signals. Our model result (solid line)

agrees well with the experiment (dots). (C) PN’s response reaches a peak earlier than that of the input signal. The model result (solid line) has an excellent agreement

with the experiment (dots). Experimental results are from Kim et al. (2015). Parameters used in the model: U = 0.24,Rpub = 0Hz, k = 5Hz/nS,

ωEE = 75nS,ωIE = 21nS, τE = 55ms, ρ = 8ms, τp = 300ms, τF = 50ms, τD = 100ms.
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STP strengths are shown. As expected, for a given input R,
STF enhances the response while STD suppresses it, and the
latter has a stronger effect. The dependence of γ on the STP
strengths SD and SF are shown in Figure 3C. Interestingly, the
Hill coefficient γ is enhanced by both STD and STF. Larger
values of γ are reached by having roughly the same STD and
STF strengths (dotted line in Figure 3C). A careful comparison
between the Hill coefficient γa obtained using 500 ms average
response of PNs (as in the experiments) and the effective Hill
coefficient γ from the steady state response showed that they
are highly correlated and both show similar dependence on SF
and SD (Supplementary Figure 2). Thus, the steady state analysis
confirms the crucial role of STP in generating the experimentally
observed nonlinear divisive normalization.

3.2. Both STP and PI Control the Adaptive
Responses to Time-Varying Stimuli
Odors in the environment are highly intermittent and dynamic
(Murlis et al., 1992; Vickers et al., 2001). The ability to detect and
respond to temporal variation of odor stimuli is crucial for the
survival of many animals. Kim et al. (2015) studied the responses
of PNs to different time-dependent ORN signals that follow
triangle-shaped temporal patterns with different peak times. The
responses of PNs were “asymmetric,” with a faster rising phase,
followed by a plateau and a slower decaying phase, depending on
the rate of change in ORN’s firing rate profile (see Figure 3 in
Kim et al., 2015). Here, we use our model to explain the response
patterns to these time-dependent signals.

We start by considering the response of PNs to a signal that
increases linearly with time, i.e., R(t) = Kt. In the short time
limit t ≪ τp, PI is negligible so the reduction factor p ≈ 1 (see
Equation 3). As a result, the response is linearly proportional to
the input RPN(t) ≈ τEω

EEUKt. In the long time limit t ≫ τp, τE,
p ≈ (AR(t))−1 decreases inversely proportional to the input R(t)
which reduces the effective input pR(t). In fact, the effective input
can be approximated as (see section 2 for detailed derivation):

Reff ≡ pR(t) ≈
Kt

AK(t − τE)+ 1
−

AK2τEt

1− AKτE
· e

− t
τp . (14)

In the long time limit t≫τE, τp, the system adapts by adjusting the
inhibition factor p so that the effective input reaches a constant
R∗eff = A−1 = (ρωIEτE)−1 as t → ∞, which is independent
of the input. The corresponding adapted response can thus be
determined analytically:

R∗PN ≈
τEω

EEUR∗eff(1+ τFR
∗
eff)

1+ UR∗eff(τF + τD)+ UτDτFR
∗
eff

2 , (15)

which takes exactly the same form as the response to an effective
time-independent signal R∗eff as in (12). This is supported by
numerical simulation as shown in Figure 4. The effect of PI
is crucial for canceling out the increasing signal, resulting in
a constant effective input R∗eff. From Equation (15), it is clear
that STP controls (modulates) the adapted response R∗PN in the
same way as it affects the response to a constant signal, i.e., STF
enhances the adapted response and STD suppresses it.

We now study the PN responses to triangle-shaped input
signals similar to those used in experiments (Kim et al., 2015)
with our model. As shown in Figure 5A, the general response
dynamics follows closely the experimentally observed behaviors.
During the rising phase of the input signal, the PN response
activity reaches its peak in a timescale that depends on the rate
of change (K) of the input signal. For small K shown as the
purple line in Figure 5A, the PN response reaches a plateau
before the input reaches its peak due to the adaptive effect of
presynaptic inhibition described above. The shaded region in
Figure 5A (lower panel) shows the range of the experimentally
observed plateau consistent with the model result (purple line).
Note that for higher K the plateau activities depend on the
rates of change in the input signals because they do not have
enough time to reach the adapted value. In the descending
phase of the input signal, the PN activity decreases following
the input.

Quantitatively, the PN response can be described by two
parameters: the peak response, which is defined as the PN activity
at the peak time of the input signal, and the time to reach the
peak response. In Figures 5B,C, we show that the results for these
quantities measured from our model are in excellent agreement
with those obtained from experiments (Kim et al., 2015).

Interestingly, STP alone can also lead to adaptive responses.
As shown in Figure 1B, aside from the IFFL in which the
negative (inhibitory) arm is formed via presynaptic inhibition
(PI) by LN (ORN → LN −→ PN), there is another IFFL
in the circuit with the negative (inhibitory) feedforward arm
formed via STD (ORN −→ x → PN), which can achieve
adaptive response even in the absence of PI. Quantitatively,
for the experimental system studied by Kim et al. (2015),
we find that the adaptive response is more strongly affected
by PI. This can be seen by comparing PN’s response to
triangle-shaped input in three model variants: the standard
model used in Figure 5 with strong PI and moderate STP,
a model with PI only and without STP (SD = SF =

0), and a model with only STP without PI (ρ = 0).
As shown in Supplementary Figure 4, the model response
agrees with experiments qualitatively well even with PI alone,
however, STP is required to achieve quantitative agreement with
experiments. On the other hand, even though a very strong
STD may also cause the system to exhibit adaptive response
(Supplementary Figure 4B), the fit of the STP-only model to
experimental data remains relatively poor even with fine tuning
of the STF and STD strengths (see Supplementary Figures 4B–D

for details).
Our results show that both STD and PI control the adaptive

response albeit via different routes for the feed-forward inhibition
and both of them are needed to explain the experimental
results quantitatively. Given their different timescales and the
fact that the PI mediated inhibition occurs upstream of the
inhibition caused by STD, the more dominant role of PI
suggested by our analysis seems reasonable. However, we believe
that the double IFFL design in the AL circuit may represent
a network architecture that improves the robustness of the
system and STP is needed to modulate the adapted activity [see
Equation (15)].
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4. DISCUSSION

In this study, we developed a simple neural circuit model for
the antennal lobe of Drosophila and systematically studied the
role of STP in early odor information processing. Combining
analytical derivations of a steady-state solution of the model and
numerical simulations, we showed that the model can capture
key characteristics of PNs’ responses to different ORN inputs,
in particular divisive normalization and adaptive responses
to time-varying signals. Comparison with experimental results
revealed that STP is crucial for the observed nonlinear divisive
normalization. We found that there are two IFFLs (one via STP
and the other via PI) in the AL circuit (Figure 1B) and either
of the two IFFLs or together can lead to adaptive response. We
speculate that this sequential IFFL design in the AL circuit may
be desirable for a robust adaptive behavior. Since both divisive
normalization and adaptive response to time-varying inputs are
omnipresent in nervous systems, the effects of STP identified here
may also apply to other sensory modalities and brain regions.

Previous experiments have suggested that STD largely
determines the nonlinear response function of PNs (Kazama
and Wilson, 2008), and PI plays an important role in divisive
normalization (Olsen and Wilson, 2008; Olsen et al., 2010). Our
model extends these studies and showed that STP is crucial for
the observed nonlinear divisive normalization. For stable ORN
input, STF enhances PN’s response while STD suppresses it.
Yet, both STF and STD enhance the nonlinearity of the divisive
normalization (Figure 3). Although the transient response of
PNs to step-like ORN input has been attributed to STD, our
model shows that PI predominately determines PN’s response
to more dynamic ORN input, such as triangle-shaped input
patterns (Figure 5). In fact, our model can predict the response
properties of PNs to arbitrary time-dependent ORN inputs. For
example, when applied to a set of sine-wave ORN inputs with
different frequencies, our model predicts that the amplitude of
PN’s oscillatory response will increase as the frequency gets
higher, while the time advance of PN response peak to ORN
response peak will decrease (see Supplementary Figure 5). These
predictions can be tested by future experiments.

Our model not only reveals the underlying mechanisms for
the observed nonlinear divisive normalization behavior and
adaptive responses to time-varying signals, it also provides a
general framework for relating the microscopic properties of
the system such as time scales and strengths of STP and PI
to macroscopic behaviors such as the input-output relation.
As demonstrated in this work in the cases of VM7 and DL5
glomeruli, we can use our model to infer microscopic properties
of the system from the measured input-output relation. More
specifically, from our model study, the timescales of both STD
(τD) and STF (τF) are predicted to be longer in DL5 than those in
VM7, which can be verified by experiments (Abbott et al., 1997).
The model-based analysis of the input-output response can be
extended to other glomeruli. Our model can also be used to make
predictions for changes in the input-output relation when certain
microscopic properties, e.g., the STP strength (τF and τD) or the
PI strength (ρ) are perturbed. These predictions can be tested in
future experiments.

As we focused on building a minimal model to understand the
underlying mechanism for nonlinear divisive normalization and
adaptive response, we have made several simplifications in our
study. First, our model is a mean-field rate model which neglects
the noise. The nonlinear divisive normalization effect is defined
based on steady state firing rate of PN (Equation 12), which
only depends on the averaged values of variables in Equations
(1)–(5). Additive noise (with 0 mean) in the neural dynamics of
PN and LN will be averaged out and does not affect the steady
state firing of PNs. For the adaptive response of PNs to time-
varying stimuli, additive noise does not change the qualitative
behavior of peak time, peak firing rate and plateau firing rate of
PNs (Supplementary Figure 7).

Second, at the synapse level, our model ignores the STP
effect at the ORN-LN synapses (Nagel and Wilson, 2016),
which can affect the LN response especially its temporal
dynamics. In our circuit model, we only considered one
type of LNs for simplicity. There are several types of LNs
in the antennal lobe with diverse innervation patterns and
physiological properties (Chou et al., 2010; Nagel et al., 2015;
Nagel and Wilson, 2016). For example, a small fraction of
LNs are excitatory. Panglomerular LNs innervate all glomeruli
and have higher spontaneous firing rates than other LNs. They
are inhibited or only weakly excited by odors. Such inhibition
of panglomerular LNs tends to dis-inhibit the entire AL in
the presence of odors (Chou et al., 2010). LNs also show
distinct response dynamics to odors. This temporal diversity of
LNs likely shape the dynamics of PNs to complex ecologically
relevant odor stimuli, such as the response time and the
synchronization of spikes across PNs (Tanaka et al., 2009;
Nagel and Wilson, 2016). Flies can sense temporal features
of odor plume to help navigation (Álvarez-Salvado et al.,
2018; Demir et al., 2020). Future study should address how
the additional complexity of AL circuit affect PN’s response
properties and contribute to the olfactory behavior (Kao and
Lo, 2020). Furthermore, we only considered PNs that innervate
a single glomerulus (uPNs), some PNs do receive input from
multiple glomeruli (mPNs). uPNs and mPNs have different
projection patterns and may carry different aspects of odor
information to the higher brain regions such as lateral horn
and mushroom body (Bates et al., 2020). Future studies that
incorporate these important features (both at the synapse level
and the network level) will further our understanding of the
rich dynamics in the early olfactory information processing
in Drosophila.
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