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Structural MRI (sMRI) has been widely used to examine the cerebral changes that

occur in Parkinson’s disease (PD). However, previous studies have aimed for brain

changes at the group level rather than at the individual level. Additionally, previous studies

have been inconsistent regarding the changes they identified. It is difficult to identify

which brain regions are the true biomarkers of PD. To overcome these two issues, we

employed four different feature selectionmethods [ReliefF, graph-theory, recursive feature

elimination (RFE), and stability selection] to obtain a minimal set of relevant features and

nonredundant features from gray matter (GM) and white matter (WM). Then, a support

vector machine (SVM) was utilized to learn decision models from selected features.

Based on machine learning technique, this study has not only extended group level

statistical analysis with identifying group difference to individual level with predicting

patients with PD from healthy controls (HCs), but also identified most informative brain

regions with feature selection methods. Furthermore, we conducted horizontal and

vertical analyses to investigate the stability of the identified brain regions. On the one

hand, we compared the brain changes found by different feature selection methods

and considered these brain regions found by feature selection methods commonly

as the potential biomarkers related to PD. On the other hand, we compared these

brain changes with previous findings reported by conventional statistical analysis to

evaluate their stability. Our experiments have demonstrated that the proposed machine

learning techniques achieve satisfactory and robust classification performance. The

highest classification performance was 92.24% (specificity), 92.42% (sensitivity), 89.58%

(accuracy), and 89.77% (AUC) for GM and 71.93% (specificity), 74.87% (sensitivity),

71.18% (accuracy), and 71.82% (AUC) for WM. Moreover, most brain regions identified

by machine learning were consistent with previous findings, which means that these

brain regions are related to the pathological brain changes characteristic of PD and can

be regarded as potential biomarkers of PD. Besides, we also found the brain abnormality
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of superior frontal gyrus (dorsolateral, SFGdor) and lingual gyrus (LING), which have been

confirmed in other studies of PD. This further demonstrates that machine learning models

are beneficial for clinicians as a decision support system in diagnosing PD.

Keywords: ReliefF, graph theory, RFE, stability selection, machine learning, Parkinson’s disease, magnetic

resonance imaging

1. INTRODUCTION

Parkinson’s disease (PD), a serious neurodegenerative disease, is
caused by the deterioration of dopaminergic neurons (Group,
2002; Perez-Lloret and Rascol, 2010). It has been reported
that disrupted dopamine transmission leads to abnormal motor
symptoms and beta oscillations in the subthalamic nucleus (STN)
in patient with PD (Mallet et al., 2008). Moreover, the lack of
dopamine can damage several areas of the brain, producing a
variety of motor and nonmotor symptoms such as resting tremor,
bradykinesia, muscle rigidity, depression, and sleep disorders
(Koller et al., 1989; Morris, 2000; Chaudhuri and Schapira, 2009;
Fox et al., 2011). This disease affects millions of people worldwide
and reduces quality of life and happiness. Therefore, the early
diagnosis and treatment of PD are particularly important. In
general, physicians identify the severity/stage/progression of
PD by medical history and neurological examination (Folstein
et al., 1975; Fahn et al., 1997). However, the results of these
clinical examinations are heavily affected by the knowledge
and experience of clinicians, posing a risk to the accurate
diagnosis and effective treatment of PD (Fahn et al., 1997;
MD et al., 2006; Jankovic, 2008). In order to better diagnose
and treat PD, computer-based data analysis methods have been
gradually applied to the imaging of neurodegenerative diseases
(Hirschauer et al., 2015; Peker et al., 2015; Rana et al., 2015b).
The microstructure of gray matter (GM) and white matter (WM)
in the brains of patients with PD may change at an early
stage of the disease, and structural changes occur earlier than
physiological changes (Rektor et al., 2018). Existing studies have
shown that neuroimaging analyses can reflect changes in brain
microstructure. The development of MRI has made it possible
to study the structure and function of the human brain in a
noninvasive manner. Structural MRI (sMRI) (Heim et al., 2017)
is widely used in the study of neuroimaging due to its advantages
of good contrast and high resolution (Duchesne et al., 2009;
Ziegler and Augustinack, 2013).

Most existing research studies based on sMRI have used
conventional statistical analysis methods to discriminate patients
with PD from healthy subjects. It has been reported that patients
with PD show GM reductions compared with healthy controls
in the bilateral temporal lobe, bilateral occipital lobe, bilateral
parietal lobe, bilateral frontal lobe, bilateral insular lobe, bilateral
parahippocampal gyrus, bilateral amygdala, right uncus, right
precuneus, caudate, and right posterior lobe of the cerebellum
(Price et al., 2004; Summerfield et al., 2005; Agosta et al., 2013;
Xia et al., 2013; Moccia et al., 2016; Gao et al., 2017; Kikuchi
et al., 2017). Price et al. (2004), Agosta et al. (2013), and Moccia
et al. (2016) analyzed WM and observed brain changes in the
regions of the middle temporal gyrus, right superior longitudinal

fasciculus/angular gyrus, and insula. Schwarz et al. (2011)
observed changes in the substantia nigra based on manually
predefined region(s)-of-interest (ROI(s)). However, conventional
statistical analysis often overlooks the correlations among voxels
and focuses on group-level differences rather than individual-
level diagnosis.

In order to address these issues, machine learning methods
have been increasingly applied to neuroimaging in recent years
(ChenZhiHong et al., 2020; Liu et al., 2020). Machine learning
methods have been widely used for classification studies aiming
to distinguish between PD and HC controls (Duchesne et al.,
2009; Long et al., 2012; Lei et al., 2018). In addition to being
sensitive to subtle differences in the brain, machine learning
methods can also be generalized to the diagnosis of individual
patients. In neuroimaging studies, the number of features
(voxels) is often much larger than the number of subjects, which
is a very common problem in machine learning, called the
“curse of dimensionality” (Wang et al., 2017, 2019; Altman and
Krzywinski, 2018). This problem can easily lead to the overfitting
of machine learning models (Guyon and Elisseeff, 2003). Hence,
it is essential to utilize feature selection to capture the most
relevant features and remove redundant ones.

In general, feature selection includes supervised feature
selection and unsupervised feature selection. According to the
different attributes of the features, supervised feature selection
methods can be divided into three categories: (1) filter methods
(Biesiada and Duch, 2005; Sánchezmaroño et al., 2007), which
are based on simple statistical parameters (mean value, variation
and correlation coefficient, etc.) and rank them in terms of
their ability to detect group-level differences; (2) wrapper
methods, which are based on the cost function, and sort all
features based on their degree of correlation (Kohavi and
John, 1997; ChenZhiHong et al., 2020); and (3) embedded
methods (Wang et al., 2015), which select relevant features
by imposing certain “penalties” to obtain a subset of relevant
features. Filtering methods have the benefit of low computational
cost, while wrapper methods are superior to filtering methods
in performance due to their discriminative ability (Lee and
Verleysen, 2007; Chu et al., 2011; Adeli et al., 2016; Cigdem
et al., 2018). Considering the interaction among features,
embeddedmethods have shown excellent performance in pattern
classification research (Wang et al., 2015). Unsupervised feature
selectionmethods construct related features bymeans of linear or
nonlinear combinations of the original prediction features (Lee
and Verleysen, 2007).

An increasing number of feature selection methods are being
applied in the field of neuroscience. Chu et al. (2011) used a
variety of different feature extraction techniques to construct a
classification model, and experiments have revealed that feature
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selection methods can enhance the accuracy of classification.
Cigdem et al. (2018) classified PD and controls using a probability
distribution function based on feature selection methods to build
separate decision models for GM and WM, which achieved
good classification accuracy of 75.00 and 72.50%, respectively.
However, the histogram technology used in that study leads
to the loss of information. Adeli et al. (2016) also utilized an
unsupervised joint feature-sample selection (JFSS) method to
select an optimal subset of samples and features and construct
a reliable diagnosis model, which achieved a classification
accuracy of 81.9%. Rana et al. (2015a) utilized the filtering
feature selection method based on mutual information in
conjunction with a support vector machine (SVM) to construct
the classification model, and the classification accuracy reached
86.67%. However, these studies were based on region-of-interest
(ROI) analysis, which probably neglected some potential brain
changes. Rana et al. (2015b) proposed an unsupervised feature
selection method based on spectral graph theory and ultimately
achieved a classification accuracy of 86.67%. Recently, Babu et al.
(2014) employed a meta-cognitive radial basis function network
(McRBFN) with recursive feature elimination (RFE) to construct
a classification model, which achieved a classification accuracy
of 87.21%.

Previous studies have sought to identify brain changes in
PD based on voxel-based morphometry (VBM), which has
provided the analysis at the level of group to understand the
neurobiology of disease, while it has focused on the disease
diagnosis of individual patients in a clinical context. Group-
level analysis based on statistical analysis fails to implement
individual diagnosis, because it only detects brain differences
between groups. Furthermore, group-level analysis is sensitive
to the acquisition parameters of the sMRI data (Marquand
et al., 2013; Salvatore et al., 2013; Cherubini et al., 2014; Rana
et al., 2015a,b). Due to the robustness of machine learning
techniques, four popular feature selection methods (ReliefF,
graph theory, RFE, and stability selection) (Mwangi et al., 2013;
Tohka et al., 2016) were used to detect the morphological brain
differences characterizing PD on structural brain MRI in our
study. These feature selection methods were used to retrieve
the minimum sets of relevant and nonredundant features from
GM and WM separately. Then, we used SVM to learn the
decision model from the selected features. Moreover, due to the
excellent properties of the feature selection method, we were
able to identify the most discriminative brain regions, and we
evaluated their stability both horizontally and vertically. First,
we compared the brain changes using different feature selection
methods. Then, we conducted a vertical comparison of the brain
changes found by machine learning with the results of previously
reported traditional statistical analyses. The experimental results
showed that machine learning techniques have superior and
robust classification performance in distinguishing patients with
PD from HCs, and most of the identified brain regions are
consistent with previous findings, indicating that they were
stable biomarkers of PD. The remaining sections of the present
study are organized as follows: Section 2 briefly describes the
materials. Section 3 gives a brief description including details

on the preprocessing, feature selection, SVM classification,
and performance evaluation metrics. Section 4 contains the
experimental results and discussion, and section 5 presents
the conclusion.

2. MATERIALS

2.1. Subjects
All data carried in this study came from the Parkinson’s
Progression Markers Initiative (PPMI) datasets (https://www.
ppmi-info.org/data) (Marek et al., 2011). Briefly, PPMI is a public
repository from various centers that provides neuroimaging and
associated clinical information of various modes of PD and
matched control subjects for data sharing and scientific research.
The PPMI cohort includes 600 datasets that comprise 400
participants with PD and 200 healthy subjects. All participants
in PPMI have received approval from the Institutional Review
Board (IRB). Inclusion criteria of patients with PD in the
ppmi datasets were the following: (1) 30 years of age or older.
(2) Patients had at least two of the following signs: resting
tremor; rigidity; and slowness of movements, with at least one
observation of bradykinesia (slowness). (3) Hoehn and Yahr stage
1 or 2 at baseline. Inclusion and exclusion criteria for healthy
controls were as following: (1) 30 years of age or older. (2)
Healthy subjects whose first-degree relatives had idiopathic PD
were excluded. (3) Healthy subjects with a history of neurological
disorders, mental illness, head injuries, or substance abuse
were excluded.

In this study, we use theMRI data acquired by the PPMI study,
in which a T1-weighted, 3D sequence is acquired for each subject
using 3T SIEMENS scanners. We have considered 208 subjects
(112 healthy subjects and 127 patients with PD) available in the
datasets as of September 2019. Among 208 subjects, 18 healthy
subjects and 21 patients with PD MR images were excluded due
to failure of the segmentation method. Furthermore, all subjects
were selected based on the following criteria: (1) All subjects were
aged over 50 years and under 80 years; 14 healthy subjects and
17 patients with PD were excluded. (2) All subjects did not have
depression, with a Geriatric Depression Scale score of < 5; 8
healthy subjects and 12 patients with PD were excluded. (3) All
participant subjects were right-handed; 10 healthy subjects and
9 patients with PD were excluded. (4) patients with PD with
Hoehn and Yahr stage < 3 were retained; 8 patients with PD
were excluded. (5) The disease duration of patients with PD is
greater than 12 months and less than 48 months; 15 patients
with PD were excluded. Finally, 44 gender- and age-matched
healthy subjects with a similar level of education were selected
for comparison.

The disease severity and functional status of each patient
were assessed with the Movement Disorder Society–Unified
Parkinson’s Disease Rating Scale-part III (MDS-UPDRS III) and
Hoehn–Yahr (HY) stage. All subjects were assessed with the
Montreal Cognitive Assessment (MoCA). The disease duration
of patients with PD was defined from the time of symptom onset.
The demographic details of the patients whose data were used in
our study are shown in Table 1.
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TABLE 1 | Demographic information of data used in our study.

Variable PD HC p-values

Gender (M/F) 29/15 27/17 0.658b*

Age (years) 63.95± 8.13 63.89± 7.61 0.968a*

Education (years) 15.61± 2.88 16.07± 3.08 0.476a*

Disease duration (years) 2.81± 1.24 – –

MDS-UPDRS III score 32.14± 9.85 – –

H&Y score 2.05± 0.47 – –

MoCA score 27.66± 2.49 28.23± 1.49 0.197a*

PD, Parkinson’s disease; HC, Healthy controls; M/F, male/female.

MDS-UPDRS III, Movement Disorder Society-Unified Parkinson’s.

Disease Rating Scale-part III.

MoCA, Montreal Cognitive Assessment. H&Y = Hoehn-Yahr staging.
aTwo-sample t-test.
bChi-square test.
∗Statistical analyses have not shown significant difference between healthy controls and

PD according to age, sex, MoCA score, and education year.

2.2. MRI Acquisition
In this study, we used a 3T SIEMENS scanner to obtain
T1-weighted 3D sequences for each subject. T1-weighted
imaging was acquired with the following parameters: acquisition
plane=sagittal, acquisition type = 3D, coil = body, flip angle =
9.0 degrees, matrix X/Y/Z = 240.0/256/176 pixel, manufacturing
model = TrioTim, pixel spacing X/Y = 1.0/1.0 mm, pulse
sequence = GR/IR, slice thickness = 1 mm, and TE/TI/TR =
2.98/900/2300 ms.

3. MACHINE LEARNING METHODS

The whole classification framework, including data
preprocessing, feature selection, and classification is presented
in Figure 1. As shown in the figure, the whole experiment is
divided into three modules: data preprocessing, feature selection,
and feature classification. Among these modules, the purpose
of data preprocessing is to eliminate the effects of geometric
distortion, intensity imbalance, and noise in MRI as a result of
human factors or defects in the acquisition equipment itself.
Since most studies based on neuroimaging have limited data
with very high dimensionality, the classification on original data
directly without feature selection will lead to high computational
cost and over-fitting problem, which make that machine learning
models have poor generalization ability. In order to reduce the
risk of overfitting of the classification model and enhance the
interpretability of the machine learning model, it is necessary to
reduce the dimension of the data and evaluate the importance
of features with a feature selection technique. Finally, a linear
SVM was used to construct the classification model, which
showed significant performance for small data-sets (Vapnik,
1999; Anguita et al., 2011; Peng et al., 2015).

3.1. MRI Data Preprocessing
Voxel-based morphometry (VBM) is an advanced and powerful
quantitative MRI procedure designed to detect the brain
morphological/volumetric changes in brain diseases. Study has

shown (Farokhian et al., 2017) that a VBM analysis using the
Computational Anatomy Toolbox (CAT12) is more robust and
accurate in terms of volumetric alterations than using older
versions of VBM8 toolbox. Since the purpose of this study
is to conduct a horizontal comparison with previous studies
based on VBM8, we still considered to adopt VBM8 to exclude
the impact of irrelevant factors and keep consistency with
previous founding.

The original Digital Imaging and Communications in
Medicine (DICOM) images were converted to 3D NIFTI format
usingMRIcron (https://people.cas.sc.edu/rorden/mricron/index.
html). Further image processing was performed based on
the voxel-based morphometry (VBM) technique with the
VBM8 toolbox (http://dbm.neuro.uni-jena.de) in conjunction
with Statistical Parametric Mapping software (SPM8, Wellcome
Institute of Neurology, University College London, UK)
(http://www.fil.ion.ucl.ac.uk/spm/) running on a Matlab R2013b
platform. The preprocessing included the following steps:
(1) Spatial normalization was performed by resampling and
reorienting 3D T1-weighted MR volume of each subject
using T1 templates from SPM8. (2) Gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) were
obtained by segmentation of all normalized volumes. Meanwhile,
in order to maintain local tissue volume, modulation was
performed simultaneously in the segmentation process. (3)
Spatial smoothing was performed with a 6 mm isotropic full
width at half maximum Gaussian kernel.

3.2. Statistical Analysis
In this study, we applied a two-sample t-test to extract group-
level brain changes from GM and WM separately. Whole brain
analysis was performed with a threshold of uncorrected p < 0.05
and cluster size ≥ 100, which have been verified to effectively
balance false positives and negatives (Altamura et al., 2017;
Lojowska et al., 2018; Mishra et al., 2019). Finally, the statistical
map was utilized as a 3Dmask template to extract different voxels
from the corresponding smoothed GM andWM.

3.3. Feature Selection and Classification
As one of the most important techniques of machine learning,
feature selection has been used to analyze neuroimaging because
it enables the user to conveniently identify areas that differ among
different groups. In this study, we chose four different feature
selection methods to construct the learning framework, and we
explored their classification performance. The detailed algorithm
design is given in the Supplementary Material. The four feature
selection methods, namely, stability selection (Meinshausen and
Bühlmann, 2010), ReliefF (Kira and Rendell, 1992; Robnik-
Šikonja and Kononenko, 2003), spectral feature selection (Zhao
and Liu, 2007), and recursive feature elimination with linear
SVM (Guyon, 2001), are widely used in the field of neuroscience
(Mwangi et al., 2013; Tohka et al., 2016). Subsequently, SVM,
as a powerful classifier based on the principle of structural risk
minimization (Sain, 1997), is used to construct classification
models. The main principle of SVM is to find a hyperplane
that maximizes the margin between two types of objects to
separate measurements.
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FIGURE 1 | The processing pipeline for machine learning in our study.

3.4. Performance Evaluation
We utilized 5-fold cross-validation to verify the effectiveness of
the classification model. We divided the data into five subsets
and sequentially designated each one as a test set to test the
performance of the model trained on the remaining data. In
addition, to further prove the stability of the experimental results,
we conducted 10 iterations of each cross-validation. Finally, the
performance of the learning model was evaluated by calculating
the sensitivity, specificity, and accuracy, which were defined as:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FP + FP + FN

Suppose N represents the number of patients, and M refers
to the number of healthy individuals. N′ is the number of

patients correctly classified, and M′ is the number of healthy
controls correctly classified. TP,TN, FP, and FN are represented
as follows:

TP =
N′

N

TN =
N − N′

N

FP =
M′

M

FN =
M −M′

M

Accuracy, calculated as an arithmetic mean of sensitivity and
specificity, was used to measure the overall performance of the
model in PD classification. In general, sensitivity and specificity
affect each other, and an increase in one of them will inevitably
lead to a decrease in the other.
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TABLE 2 | The classification performance (in percentage) of four machine learning methods on GM.

GM

RetainedFeas OptimalFeas Sen Spec Acc AUC

SPEC 9,396 8,045 86.93 ± 2.41 91.36 ± 2.94 88.61 ± 1.86 89.15 ± 2.53

ReliefF 9,396 7,809 87.29 ± 3.54 92.24± 3.69 89.58 ± 2.39 89.77 ± 3.58

RFE 5,285 2,841 92.42 ± 2.62 85.85 ± 2.46 88.56 ± 1.99 89.14 ± 2.55

STABLASSO 3,547 2368 90.41 ± 3.21 79.55 ± 2.39 84.98 ± 1.99 84.98 ± 2.98

∗RetainedFeas, The number of features retained by different feature selection methods; OptimalFeas, the optimal feature subsets selected from retained features; Sen, sensitivity; Spec,

specificity; Acc, accuracy; AUC, The area under ROC curve. The best performance for each indicator is shown in bold.

TABLE 3 | The classification performance (in percentage) of four machine learning methods on WM.

WM

RetainedFeas OptimalFeas Sen Spec Acc AUC

SPEC 9,922 6,048 72.18 ± 3.77 69.35 ± 3.54 70.39 ± 2.33 70.77 ± 3.65

ReliefF 9,922 5,457 74.87 ± 3.45 68.77 ± 2.95 71.18 ± 2.09 71.82 ± 3.28

RFE 7,937 3,360 69.85 ± 4.24 66.31 ± 4.08 68.16 ± 3.49 68.08 ± 4.16

STABLASSO 5,073 3,233 69.30 ± 4.28 71.93 ± 2.25 70.11 ± 2.90 70.62 ± 3.87

The best performance for each indicator is shown in bold.

TABLE 4 | The classification performance (in percentage) of four machine learning methods with GM and WM.

GM + WM

RetainedFeas OptimalFeas Sen Spec Acc AUC

SPEC 10,740 4,115 89.20 ± 2.31 79.26 ± 4.66 84.20 ± 3.01 84.23 ± 3.74

ReliefF 10,424 3,996 89.66 ± 3.84 80.01 ± 3.10 84.92 ± 1.80 84.84 ± 3.48

RFE 11,372 5,647 86.29 ± 3.07 78.47 ± 4.30 82.37 ± 3.26 82.38 ± 3.96

STABLASSO 4,425 2,753 87.43 ± 2.50 80.67 ± 1.72 84.25 ± 1.43 84.05 ± 1.88

The best performance for each indicator is shown in bold.

4. EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, we evaluated and compared the classification
performance of four different feature selection methods for
GM, WM, and GM+WM to investigate the stability of machine
learning approaches. For GM or WM, the input data are GM or
WM individually, and for GM+WM, the GM andWM have been
stacked together and input to training machine learning models.
Furthermore, distinguishing brain regions have been identified
by feature selection techniques and compared with the findings
of conventional statistical analysis.

All machine learning experiments were conducted on
Windows with a 3.1GHz Intel Core i5 processor (4 cores) and
12GB RAM. The Python programming language was utilized
for the experiments. In this study, spectral feature selection
(SPEC) and ReliefF methods were implemented through scikit-
feature (Li et al., 2018). Stability selection (STABLASSO) was
implemented in stability-selection (Meinshausen and Bühlmann,
2010). Recursive feature elimination (RFE) was implemented

in scikit-learn (Pedregosa et al., 2012). The relevant method
parameters were set as follows: (1) ReliefF: The number
of neighbors samples k is set to 5. (2) STABLASSO: The
LASSO estimator was calculated. We used m = 1,000 iterations.
The experiments were performed with a threshold value of
πth = 0.085. (3) SVM-RFE: Linear SVM is used as the
estimator, and the step parameter is set to 0.1. Leave the rest
of the parameters as default values. Notably, the parameter
C of the linear-SVM classifier played an important role in
all experiments. In this study, we tested different values of
this parameter, with C =

{

10−3, 10−2, 10−1, 100, 101, 102, 103
}

,
and we found that the performance of linear SVM was best
when C = 1 for both GM and WM. Since each feature
selection method requires to assign the number of features
(for SPEC, ReliefF, and RFE) or the minimum threshold of
stability scores (for STABLASSO) to determine the number
of retained features, we retained different numbers of features
based on the percentage of voxels in an iterative manner
and ultimately selected the number of features with the best
classification performance as the optimal number of features for
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SPEC, ReliefF, and RFE. For STABLASSO, due to its expensive
computational cost, the fixed threshold (threshold = 0.085) of
stability scores has been used to determine the optimal number
of features in this study. The optimal numbers of features
(retained features) selected under different methods are listed
in Tables 2–4.

4.1. Stability Analysis Based on
Classification Performance
Tables 2–4 have listed the classification performance of the
four feature selection methods on GM, WM, and GM+WM.
As shown in Tables 2, 3, the highest classification performance
was 92.24% (specificity), 92.42% (sensitivity), 89.58% (accuracy),
and 89.77% (AUC) for GM and 71.93% (specificity), 74.87%
(sensitivity), 71.18% (accuracy), and 71.82% (AUC) for WM.
Therefore, machine learning methods on GM have achieved
better classification performance than those on WM, which has
indicated that PD has a greater effect on the brain regions of GM
thanWM (Feldmann et al., 2010; Ji et al., 2010; Kang et al., 2015).
As seen inTable 4, ReliefFmethod achieved the best classification
performance: 89.66% (sensitivity), 80.01% (specificity), 84.92%
(accuracy), and 84.84% (AUC). In addition, it can be seen that
GM+WM was classified more effectively than WM but less
effectively than GM. In addition, the variation curves of accuracy
with the number of features under the SPEC, ReliefF, and RFE
methods are provided in Supplementary Figures S1, S2.

It should be further noted in Table 2 that the classification
accuracy for GM had a maximum of 89.58% and a minimum
of 84.98%, with a difference of approximately 4.6%. For WM,
the highest accuracy was 71.18%, and the lowest accuracy
was 68.16%, for a small difference of approximately 3%. For
GM+WM classification experiment, the highest classification
accuracy was 84.92%, and the lowest was 82.37%, for a
difference of approximately 2.5%. These small differences have
demonstrated that patients with PD can be stably distinguished
from HCs with machine learning techniques. Furthermore,
the receiver operating characteristic (ROC) curves have been
illustrated in Figure 2. Generally, the effect of a classifier can
also be evaluated by the area under the ROC curve (AUC).
The machine learning methods whose AUCs are closest to 1
can be considered to have the best performance. The AUCs are
given in Tables 2–4, respectively. Similar to the accuracy, the
AUCs of different methods on different modalities also have
subtle differences, and the ROC curves of different methods in
GM/WM/GM+WMwere approxiimately the same.

4.2. Stability Analysis Based on Identified
Brain Regions
In this section, we intended to explore the optimal feature subsets
from retained features for each feature selection method, which
are expected to be PD-associated brain changes in GM/WM. For
this purpose, the most distinguished brain regions were defined
as the optimal feature subsets if their frequency being selected
in cross validation is greater than 80%. For machine learning, the
original dimensions of input data for GMandWMare 11,745 and
19,844, respectively. The number of retained features for feature

selection and optimal feature subsets from retained features
have been listed in Tables 2–4. Moreover, we have compared
the distinguished brain regions of GM and WM based on the
optimal feature subsets with the findings of previous studies and
traditional statistical analysis.

4.2.1. Gray Matter Analysis
There have been numerous prior studies using gray matter to
analyze Parkinson’s disease. Long et al. (2012) found that the
volume of GM was significantly reduced in the Paracentral
lobule (PCL) and significantly increased in the Precentral gyrus
(PreCG) and the bilateral Posterior cingulate gyrus (PCG) in
the PD group. Adeli et al. (2016) found that GM tissue changes
play the most important role in PD classification in most
regions such as the PreCG, Supplementary motor area (SMA),
Superior frontal gyrus (medial, SFGmed), Insula (INS), Median
cingulate and paracingulate gyri (DCG), Calcarine fissure and
surrounding cortex (CAL), Lingual gyrus (LING), Fusiform
gyrus (FFG), Postcentral gyrus (PoCG), Superior parietal gyrus
(SPG), Caudate nucleus (CAU), Lenticular nucleus, putamen
(PUT), Lenticular nucleus, pallidum (PAL), Thalamus (THA),
Superior temporal gyrus (STG), Middle temporal gyrus (MTG),
and Inferior temporal gyrus (ITG). Peng et al. (2017) found
in their study that the most sensitive GM biomarkers for
distinguishing between patients with PD and healthy controls
were the SPG, PCL, and Parahippocampal gyrus (PHG). Santos
et al. (2013) carried out VBM on GM and observed atrophy in
the following brain regions: OLF, Middle frontal gyrus (orbital
part, ORBmid), Inferior frontal gyrus (orbital part, ORBinf),
Superior frontal gyrus, (medial orbital, ORBsupmed), MTG,
STG, INS, and PreCG. On the other hand, Xia et al. (2013)
identified the STG, Superior occipital gyrus (SOG), SPG, Middle
frontal gyrus (MFG), INS, PHG, and Amygdala (AMYG) as
regions with altered GM volume using VBM. Jia et al. (2015)
found in their study that GM volume decreased in the Superior
frontal gyrus (orbital part, ORBsup), MFG, MTG, ITG, SPG,
Inferior parietal, but supramarginal and angular gyri (IPL),
Angular gyrus (ANG), and CAU, while GM volume increased
in the ORBinf, MOG, Anterior cingulate and paracingulate gyri
(ACG), PAL, PUT, and Hippocampus (HIP). Liu et al. (2018)
found that the GM/WM brain regions contributing most to PD
classification were mainly concentrated in the MOG, PUT, CAU,
ORBsup, ACG, PreCG, HIP, Precuneus (PCUN), and PoCG.
Rana et al. (2017) further improved the performance of PD
classification by defining a fusion feature descriptor (FFD) to
capture information and interrelationships between GM and
WM tissues simultaneously. Ultimately, they found that the most
discriminative brain regions were mainly located in the HIP,
DCG, Inferior frontal gyrus (triangular part, IFGtriang), PreCG,
MFG, ORBmid, and ACG. These distinguished brain regions
have been listed in Supplementary Table S2.

In this study, the abnormal brain regions have been illustrated
in Figure 4 and reported based on AAL (Automated Anatomical
Labeling atlas) with 116 brain regions (Tzourio-Mazoyer et al.,
2002). We found that the SPEC method identified the largest
number of features based on brain GM analysis, followed by
ReliefF and RFE, and STABLASSO found the fewest, as seen
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FIGURE 2 | The ROC curve of different methods with different modalities. (A) ROC curves for GM; (B) ROC curves for WM; (C) ROC curves for GM+WM.

in Supplementary Table S5. Furthermore, we note that the
significant brain regions found by SPEC included all the brain
regions found by the other three methods. The brain regions
found commonly by all four methods included the PCUN, CAU,
STG, MFG, MOG, MTG, INS, SFGdor, ORBinf, IPL, and ANG.
Except SFGdor, other brain regions have been reported in the
previous studies. Furthermore, the findings of statistical analysis
on GM have been listed in Supplementary Table S3. It is easy
to find that most brain regions found by statistical analysis
also have been identified by machine learning methods, except
CAL with the cluster size 113. The possible reason is that the
cluster size is too small or the changes in this brain region
is subtle.

4.2.2. White Matter Analysis
Similarly, a great number of studies have been conducted to
analyze the potential value of WM in the classification of

PD. Ding et al. (2011) found that the changes in WM tissue
volume in most regions, including SOG, Inferior occipital
gyrus (IOG), PCG, and PCL, contributed to the improvement
of overall classification performance. Peng et al. (2017) also
found that the most sensitive WM biomarkers for distinguishing
between patients with PD and healthy controls were the
ITG, FFG and MFG. Long et al. (2012) found that brain
regions showing WM volume changes were mainly located in
the PreCG, ORBinf, Rolandic operculum (ROL), OLF, HIP,
AMYG, PoCG, and CAU. On the other hand, the MOG, IPL,
PAL, THA, ITG, CAU, and PUT were identified by Adeli
et al. (2016) as regions whose WM volume was affected.
Rana et al. (2017) further improved the performance of PD
classification by defining a fusion feature descriptor (FFD) to
capture information and interrelationships between GM and
WM tissues simultaneously. Ultimately, they found that the
most discriminative brain regions were mainly concentrated in
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FIGURE 3 | The abnormal brain regions identified by two sample t-test. Color bars indicate t-value. (A) Abnormal regions of GM; (B) Abnormal regions of WM.

the HIP, DCG, IFGtriang, PreCG, MFG, ORBmid, and ACG.
Liu et al. (2018) found that the GM/WM brain regions most
contributing to PD classification were mainly concentrated in
the MOG, PUT, CAU, ORBsup, ACG, PreCG, HIP, PCUN, and
PoCG. These distinguished brain regions have been listed in
Supplementary Table S2.

The distinguished brain regions on WM identified by
machine learning have been shown in Figure 5 and reported
based on AAL listed in Supplementary Table S6. The common
regions found by four feature selection include PoCG, ORBmid,
SFGdor, IOG, and LING. Except for SFGdor and LING,
other regions have been reported in previous findings. The
results detected by statistical analysis have been listed in
Supplementary Table S4 and shown in Figure 3. Similarly,
most regions also have been found by machine learning
methods, while some small regions have not been found,
such as INS (cluster size = 99), IPL (cluster size = 109),
ANG (cluster size = 47), IFGoperc (cluster size = 39), and
SPG (cluster size = 57).

4.3. Discussion
Parkinson’s disease (PD) is the most common neurodegenerative
disorder (Kalia and Lang, 2015). At its core, it is a movement
disease with early prominent death of dopaminergic neurons
in the substantia nigra pars compacta (SNpc) (Kalia and Lang,
2015). Pathologically, it is also characterized by accumulation
of misfolded –synuclein, which is found in intra-cyto-plasmic
inclusions called Lewy bodies (Balestrino and Schapira, 2020).
The gold standard for diagnosis of PD has been the presence
of SNpc degeneration and Lewy pathology at post-mortem
pathological examination (Kalia and Lang, 2015). It has been
reported that the damage of substantia nigra correlated with basal
ganglia dysfunction for patients with PD (Vitali et al., 2020). In
our study, the changes of the caudate nucleus (CAU) in basal
ganglia have also been found in GM, which have emphasized

the relationship between substantia nigra and basal ganglia
again. However, the relationship between the nigral anatomical
changes, evaluated as structural alterations or neuromelanin
signal decrease and the dopaminergic nigro-striatal function
needs to be further clarified (Prange et al., 2019).

Recently, the detection and diagnosis of neurodegenerative
diseases have attracted a great deal of research interest. There
have been a large number of studies on GM and WM changes
in patients with PD. They also identified several brain regions
significantly affected by PD. Zheng et al. (2019) found that
brain GM changes in the left anterior insula were associated
with mild cognitive impairment in PD. In González Redondo
et al. (2014), bilateral areas of atrophy in the middle frontal
gyrus and bilateral GM loss in the medial-superior frontal gyrus
were reported in patients with PD. Significantly increased WM
density in the occipital lobes, posterior cingulate gyrus, and
paracentral lobule was found in PD with olfactory dysfunction
compared with healthy controls (Ding et al., 2011). As reported
in Niethammer et al. (2013), a significant relationship between
the loss of dopaminergic input to the caudate nucleus and the
expression of a cognition-related disease network was found
in unmedicated patients with PD. Gao et al. (2017) revealed
that subcortical atrophy (for example, in the limbic lobe) was
associated with impaired memory in patients with PD.

Although machine learning techniques have attracted great
interest in the field of neuroscience, some researchers still remain
skeptical about the stability and interpretability of machine
learning outputs. As a result, instead of developing a new
machine learning framework, this study focuses on horizontal
comparison of different machine learning methods and vertical
comparison between machine learning techniques and statistical
analysis to enhance the credibility of machine learning. For this
purpose, we applied a typical machine learning framework with
feature selection and feature classification to distinguish PD from
HCs. Four popular feature selectionmethods were utilized to find
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FIGURE 4 | Biomarkers identified on GM by different methods. (A) Biomarkers identified by SPEC; (B) Biomarkers identified by ReliefF; (C) Biomarkers identified by

RFE; (D) Biomarkers identified by STABLASSO.

a set of relevant and nonredundant features. A support vector
machine was employed to build the classification models. An
sMRI dataset was constructed to evaluate the performance of
machine learning methods. Experimental results showed that the
maximum accuracy levels based on GM and WM were 89.58
and 71.18%, respectively, which highlight the role of feature
information in improving classification accuracy. Machine
learning techniques are more effective than traditional statistical
methods at extracting meaningful information from high-
dimensional structural images and achieving stable classification
results. Moreover, machine learning methods overcome the
shortcomings of traditional statistical methods and extend simple
analysis of differences from the group level to the individual

diagnostic level. In addition, machine learning techniques
identifiedmany GM andWMbrain changes that could effectively
distinguish patients with PD from controls. Through further
comparison, most brain changes identified by machine learning
techniques were found to be consistent with previous studies
of structural MRI. At the same time, we also found some
brain regions have not been reported in previous studies on
structural MRI, such as SFGdor for GM and LING, SFGdor
for WM, while SFGdor and LING have been confirmed in
other modality studies. Li et al. (2020) has pointed out the
reduced betweenness centrality in right SFGdor for PD. Auning
et al. (2014) has recovered higher radical diffusivity in LING
on DTI when compared PD and NC. Our findings support
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FIGURE 5 | Biomarkers identified on WM by different methods. (A) Biomarkers identified by SPEC; (B) Biomarkers identified by ReliefF; (C) Biomarkers identified by

RFE; (D) Biomarkers identified by STABLASSO.

that SFGdor and LING may be the important biomarkers
in PD.

In light of the above analysis, the major contributions to the
field by this study concern the following issues: (i) Stability—The
horizontal comparison of different machine learning methods
has demonstrated that machine learning techniques can robustly
classify PD and HCs; (ii) Interpretability—In terms of feature
selection, machine learning techniques are helpful in identifying
the distinct brain changes that can be used as potential
biomarkers of PD; (iii) Consistency—Based on the vertical
comparison, the brain changes found by machine learning
techniques are partly consistent with those found by statistical
analysis. Despite superior performance and ease of utilization,
the machine learning method used in the paper also has a few

disadvantages: (i) Although this study investigated classification
performance on GM and WM by simply concatenating the GM
and WM data, the correlation between the two types of tissues
was ignored; such information could be helpful in improving
the performance of machine learning. (ii) The dataset used
in this study is limited and needs to be further expanded
to make the results more generalizable. (iii) Machine learning
techniques were used to classify PD solely on the basis of
sMRI, and its needs; the same techniques need to be applied
to more neuroimaging modalities to prove their effectiveness.
(iv) Machine learning techniques need to be extended to other
disease investigations to prove their universality. (v) To assess
the stability of the discriminative brain regions, we have focused
only on the brain regions that were identified by all four machine
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learning methods and reported by previous research work at the
same time. However, the biomarkers of PD may also include
some brain regions identified by our machine learning methods
but not reported by previous findings based on conventional
statistical analysis.

In future research work, this study should be expanded
upon in the following directions: (i) It cannot be denied that
the pre-processing of MRI data is crucial for the subsequent
data analysis and VBM analysis with different softwares and
versions are controversial until now. As pointed out in
Farokhian et al. (2017), CAT12 has shown great advantage to
detect the volumetric alterations compared with VBM8, so it
necessitates to conduct further investigation based on CAT12
in the future. (ii) In order to fully consider the correlation
of different modalities, it is necessary to integrate multi-
modal features to capture the information and interrelationship
simultaneously. (iii) In order to further demonstrate the
universality of machine learning, it might be worthwhile to study
the consistency of the results of machine learning techniques on a
larger dataset.

5. CONCLUSION

This study was designed to analyze the changes in GM and
WM brain tissue in PD. In this study, we adopted four popular
feature selection methods to extract a group of the most relevant
and nonredundant features, and we then used linear support
vector machines to construct classification models for WM and
GM. In the experiment, we have achieved stable and satisfactory
classification performance on both GM and WM. The brain
changes identified by feature selection partially corresponded
to previous findings, such as PCUN, CAU, STG, MFG, MOG,
MTG, INS, ORBinf, IPL, ANG in GM and PoCG, ORBmid,
and IOG in WM, which proved the stable performance of
machine learning. Furthermore, machine learning also found
commonly the brain changes in SFGdor and LING, which
have been proved in other studies. These findings have not
only demonstrated the good stability of machine learning
technique, but also the superior ability to explore the brain
changes, and these brain changes can be regarded as potential
biomarkers of PD. These potential biomarkers can help clarify
the neurological mechanisms of PD. Moreover, machine learning
techniques can provide a decision system for the diagnosis

of PD and can be generalized to the diagnosis of other
neurodegenerative diseases.
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