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While abundant in biology, foveated vision is nearly absent from computational

models and especially deep learning architectures. Despite considerable hardware

improvements, training deep neural networks still presents a challenge and constraints

complexity of models. Here we propose an end-to-end neural model for foveal-peripheral

vision, inspired by retino-cortical mapping in primates and humans. Our model has an

efficient sampling technique for compressing the visual signal such that a small portion

of the scene is perceived in high resolution while a large field of view is maintained in low

resolution. An attention mechanism for performing “eye-movements” assists the agent

in collecting detailed information incrementally from the observed scene. Our model

achieves comparable results to a similar neural architecture trained on full-resolution

data for image classification and outperforms it at video classification tasks. At the

same time, because of the smaller size of its input, it can reduce computational effort

tenfold and uses several times less memory. Moreover, we present an easy to implement

bottom-up and top-down attentionmechanismwhich relies on task-relevant features and

is therefore a convenient byproduct of the main architecture. Apart from its computational

efficiency, the presented work providesmeans for exploring active vision for agent training

in simulated environments and anthropomorphic robotics.

Keywords: space-variant vision, active vision, foveal vision, peripheral vision, deep learning-artificial neural

network (DL-ANN), bottom-up attention, top-down attention

1. INTRODUCTION

The biological visual system has served as a template and inspiration in Computer Vision in
many ways. Improvements in hardware allowed Deep Learning and specifically Convolutional
Neural Networks (CNNs) to gain a lot of interest from the research community, which now
dominate visionmodels in this field (O’Mahony et al., 2019). The layered structure and information
processing mechanisms, that CNNs rely on, resemble more closely biological systems than
previously used machine learning approaches. This research has achieved human and even
superhuman performance in many benchmarks, such as hand-written digit recognition, image
classification and so on Ciresan et al. (2012) and Chen et al. (2015).

Despite the success story of modelling the biological visual system by deep neural networks,
there are several qualitative differences in properties as well as in performance. Such differences
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can be found in the learning architecture, with feed-forward
Artificial Neural Networks (ANNs) dominating the field of
Deep Learning, as well as the homogeneous resolution and
rectangular shape of the visual data used for training, in contrast
to the space-variant sampling in the human retina. Despite the
improvement of performance of ANNs over classical Computer
Vision, biological vision retains dominance in many visual
problems such as object detection and classification with object
occlusions, noisy data and in cluttered scenes (Dodge and Karam,
2017; Geirhos et al., 2018). Additionally, the good performance
of ANNs comes at a significant computational cost, that requires
dedicated hardware for training and inference. Most current
image and video datasets reflect these limitations and provide
only low-resolution images, as training in high resolution is
computationally challenging. This complicates applications of
object classification at a distance, essential for processing security
camera footage, traffic control and so on. Deep architectures
further complicate this issue as video memory limitations of
GPU units quickly render training impossible. In summary,
despite many similarities, there are major discrepancies between
the biological template and ANNs used to model function
and performance.

Of specific interest for the present study are the space-variant
sampling by the human retina paired with the mechanisms
of generating sequences of fixations and the ability to focus
processing in a highly energy efficient manner. The fovea, a
small region on the retina around 1.5 mm in diameter (Polyak,
1941; Riordan-Eva et al., 2011), densely packed with cone
photoreceptors, allows for perceiving visual details with high
acuity. It accounts for a relatively small portion of about 1◦ of
eccentricity from the center of the field of view. The neighboring
parafoveal region, still rich in cone cells, extends to about 4–5◦

and provides slightly lower spatial resolution. Together, fovea
and parafovea, lie in the macula lutea, and contribute to what
is commonly referred to as central vision. Beyond the macula,
a rapid decrease in cone cell density is observed, responsible
for the low acuity in our peripheral vision. By sampling the
visual signal in a space-variant manner, instead of uniformly,
a balanced solution allows the ventral stream in the visual
cortex to only process a small area in high resolution while
retaining a large field of view with lower spatial resolution in
the periphery (Daniel and Whitteridge, 1961; Cowey and Rolls,
1974). Furthermore, such sampling is cost efficient with respect
to the ability to retain sufficient detail while reducing processing
requirements. It has been estimated that processing costs for
the brain are reduced by a factor of 350 times less than a
hypothetical full-resolution visual signal received at the human
retina (Weber and Triesch, 2009). While the high-resolution part
of vision covers only a small portion of the perceived scene,
saccadic eye-movements, driven by visual attention, allow for
incremental collection of additional detail information. Thus,
given the mostly static nature of our world and a short-term
memory mechanism, space-variant vision compensates for the
lack of uniform high acuity across the field of view. In summary,
the limited spatial resolution at higher eccentricity might not be
a bug, but a feature allowing focused energy efficient sampling of
visual information.

Here, we propose an end-to-end deep neural network
model of the ventral visual stream, inspired by the sampling
mechanisms of the primate retina and the cortical magnification
effect (Daniel and Whitteridge, 1961; Cowey and Rolls, 1974)
in the visual cortex. Our method demonstrates a significant
reduction in processing and memory costs due to the drastically
smaller size of the neural network input and can be used for
efficient object recognition and object tracking by an agent.
We show that despite sampling only a 10th of the image
pixels, with a single saccade the model provides comparable
classification accuracy and even outperforms a full-resolution
network on video classification where it can exploit the sequential
information, thus overcoming object occlusions or saccades to
a wrong location. Furthermore, in order to efficiently guide
eye movements, we propose an easy to implement attention
mechanism based on feature saliency that can be used in
a bottom-up manner to detect salient objects or top-down
for locating or tracking a specific object by the agent. We
believe that this research can assist advancements of active
vision in anthropomorphic robotics and agent training in
simulated environments.

2. RELATED WORK

2.1. Retinal Circuitry
Retinal Ganglion Cells (RGC) represent the last layer of neuronal
cells in the retina that transmits the visual signal through the
optic nerve and to the brain. Various types of RGCs have been
identified in the retina (Field and Chichilnisky, 2007; Petrusca
et al., 2007). Most prominently they can be classified into Parasol
and midget cells. Parasol cells have larger receptive field (RF)
size and have a greater presence in the periphery of the retina
(Dacey and Petersen, 1992). They are specialized for low spatial
resolution, motion detection and participate in achromatic vision
(Livingstone and Hubel, 1988; Croner and Kaplan, 1995). In
comparison, midget cells are characterized by smaller RFs than
Parasol cells and have greater concentration in the fovea, where
they receive input from just a single cone cell (Dacey and
Petersen, 1992). They are specialized for high spatial acuity and
color vision (Livingstone and Hubel, 1988). The dendritic tree
diameter of both RGCs increase with eccentricity (Dacey and
Petersen, 1992), intensifying the information compression even
further than the distribution of photoreceptors. Thus, the signal
from the ganglion cell layer, foveated due to distribution and RF
size, represents the sole output of the retina and is of particular
interest to the purposes of this paper.

2.2. Computational Methods for Foveation
Foveated sampling in the retina and the cortical magnification
effect in the visual cortex are largely ignored in most
computational models. However, there are a few exceptions that
explore foveation techniques for visionmodels. One suchmethod
is the Exponential Cartesian Geometry (ECG) (Bandera and
Scott, 1989; Scott and Bandera, 1990), proposed by Bandera and
Scott. It serves the function of a foveation mechanism and is
based on the principle of image pyramids. A central crop is made
from the original image that retains its original high resolution
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and serves as the fovea. Then a number of rings are defined,
surrounding the fovea—each one in a lower resolution achieved
by downsampling the ring portion of the image to a lower
resolution. This family of methods have successfully been used
for object detection (Camacho et al., 1996; Arrebola et al., 1997,
1998), object tracking (Gomes et al., 2010) and segmentation
(Camacho et al., 2003). Gomes et al. use ECG to perform fast
parallel feature extraction (Gomes et al., 2010) and then perform
object tracking using an ANN. The image pyramid structure of
ECGs, however, have some downsides. They require specialized
pyramid image algorithms in order to process the multiple
scaled images. Although there are some implementations of such
algorithms for ANNs (He et al., 2015; Fu et al., 2019; Pang et al.,
2019), they introduce additional complexity and place constraints
on the network architecture, which can be used only for specific
tasks. Furthermore, working on multiple, separate image inputs
creates additional problems for object recognition if an object is
not located in a single ring but is split among two or more rings.

To avoid the complexity of working with multiple image
scales, ECGs can be simplified by only using images in two
resolutions – a uniformly downsampled image representing
peripheral vision and a small high-resolution crop representing
central vision. Such a model has been proposed by Karpathy
et al. (2014) for large-scale video classification. This model has
two streams—a high-resolution crop taken from the center of the
image and a low-resolution downsampled version of the original
image. The crop is used for classification, while the peripheral
stream provides context. This approach takes advantage of the
photographer’s bias (Tseng et al., 2009)—an assumption that
in human produced videos the region of interest is primarily
located near the center of the image. This, however, is only a
viable method when processing human made video signal and
cannot be used for general purpose vision. Zhang et al. (2019)
and Xia et al. (2020) propose an alternative that uses an attention
mechanism to determine the location of the crop. First, the
downsampled image is used by a CNN that produces a saliency
map. This saliency map is then used in order to determine the
location at which the high-resolution crop is taken. The crop,
in turn, is used by another CNN that processes fine details.
Although these models do not truly foveate the visual signal,
they have good performance but have the disadvantage that
at least two CNNs need to be trained separately. The same is
valid for the forward pass of the model—it happens in several
operations, some of which are non-differentiable and require
separate networks. In comparison, our model is trained and
tested in a single forward pass that processes central, peripheral
information and determines location for the next saccade.

The models described so far used multi-resolution images
to functionally approximate the principles of biological vision.
Several models take a step toward biologically more plausible
foveation technique. This is accomplished by using a single image
and applying Gaussian blur to remove high spatial frequencies
from its periphery (Almeida et al., 2017; Melício et al., 2018;
Deza and Konkle, 2020). Almeida et al. (2017) demonstrate that
foveation does not hinder object localization and classification
performance over a certain size of the non-blurred fovea; and
Deza and Konkle conclude that the blurring technique leads to

a better generalization for scene recognition (Deza and Konkle,
2020). The main drawback of these models, however, is that even
though they remove high frequencies from the periphery, the
number of pixels in the foveated image remains the same as the
original. There is no compression of the signal and therefore no
decrease of computation costs.

A well-known method that mimics the retinal sampling more
closely and additionally compresses the signal is the log-polar
mapping (Daniel and Whitteridge, 1961; Schwartz, 1977, 1984).
Sampling from a conventional image with coordinates x,y maps
to a rectangular plane in the log-polar domain with coordinates
ρ (eccentricity) and θ (angle). This type of mapping emulates the
distribution of RGC cells in the retina and reduces the number
of pixels in the transform. The resulting rectangular shape is
also suitable for use with ANNs and because of the nature
of the transformation, under certain conditions, is invariant
to scale and rotation (Schwartz, 1984). For these reasons, the
log-polar transform is a very popular foveation technique in
many vision models (Wallace et al., 1994; Colombo et al.,
1996; Kanan, 2013; Aboudib et al., 2016; Akbas and Eckstein,
2017; Ozimek et al., 2019; Daucé et al., 2020), as well as for
specific tasks such as image registration (Wolberg and Zokai,
2000; Sarvaiya et al., 2009) and object detection and tracking
(Jurie, 1999; Metta et al., 2004). Due to its biological plausibility
and well-established place in similar vision models, we use this
method as a baseline for performance of our model. While log-
polar sampling (Figures 2A,B) accurately represents sampling
in the retina, however, the log-polar transform produces severe
spatial deformations and discontinuities (Figure 2C) that create
difficulties for object recognition, as we later show in section 4.

Foveal Cartesian Geometry (FCG) (Martínez and Robles,
2006) was introduced as an alternative to log-polar transform
with a highlight on avoiding some of the disadvantages present
in previously mentioned computational methods in this chapter.
It approximates the log-polar sampling by using a pseudo log-
polar grid (Averbuch et al., 2001) instead. The difference is that
pixels are sampled from concentric squares around the fovea
(Figure 2D), instead of circles. The result can then perfectly
fit into a rectangular shape with no gaps and only slight
deformations on the diagonals (Figure 2F). Thus, FCG reduces
the size of the foveated image, emulating retinal sampling, and
preserves spatial relations between sampled pixels. In contrast
to log-polar transform, this technique is also linear. FCG has
been used for object tracking and detection (Martínez and
Robles, 2006), as well as in a cortical magnification model
(Aboudib et al., 2015), although none of them use ANNs. Despite
some indications that Cartesian foveation performs better with
CNNs than log-polar mapping (Torabian et al., 2020), not much
research has been done on the topic and we believe it to be a
fruitful one for computational vision.

Thus, most described methods have one or more drawbacks.
Primarily, space-variant sampling presents difficulties for
providing a suitable input for ANNs, which are the state-of-
the-art method for information processing in Computer Vision.
Such is the case with log-polar sampling, as well as the ECG
and multi-resolution methods that require separate streams for
low- and high-resolution information that need to be integrated.
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Another property, pivotal for retinal sampling, is the proper
distribution of processing power to accompany information
reduction. For example, the Gaussian blur method removes high
spatial frequencies at high eccentricity without reducing the
number of pixels in the image. As a result, the same amount of
processing power is designated equally to regions of fine and
coarse detail. Lastly, log-polar transform and FCG exhibit some
spatial deformations but do not have the other two drawbacks.
These two methods are best suited for a deep learning model
and therefore a main subject of the present study. As spatial
deformations are greater in the log-polar transform technique,
we use it as a baseline sampling method and base our model on
FCG. We compare both techniques empirically in section 4.

3. METHODS

3.1. Model
A general scheme of the proposed model is shown in Figure 1. It
consists of 3 main parts. First, the raw image input is sampled
by the FCG sampling matrix (Figures 2D,E) with the starting
position at the image center. Then, the foveated image is used
as input to a standard image classification CNN architecture. The
CNN produces two outputs—a classification prediction, used for
error minimization at training, and the activation of the feature
maps in the last convolutional layer, averaged on the features axis.
The latter output we refer to as attention map M. Since locality
and spatial relations between features are preserved in a CNN,
we use the most salient features as an indication of a region of
interest. Finally, the sampling matrix is translated to the most
salient region on field of view and the process is repeated for the
next time step. While we define the foveation and attention steps
in more detail in the next two subsections, here we provide some
details about how the neural network is constructed, trained
and tested.

We use a standard classification CNN architecture with
softmax output for class probabilities. There are a few restrictions
on the CNN. We use batch normalization and Rectified Linear
Unit (ReLU) activation function after convolutional layers in
order to produce features that the attention mechanism can take
advantage of. Both have been shown to speed up convergence
and prevent exploding/vanishing gradient problem (Hochreiter,
1991) when training deep neural networks (Ioffe and Szegedy,
2015; Xu et al., 2015; Santurkar et al., 2018). For these reasons
they are a standard component of almost all modern CNN
architectures. Optionally, a Global Average Pooling layer can
be used to extract features from the last convolutional layer.
Although this component is not compulsory, it speeds up
inference and has been shown to provide a regularization effect
when used instead of a fully connected layer near the end
of a CNN (Lin et al., 2013). In our model it also provides
an easy and simple way of performing top-down attention by
constructing Class Activation Maps (Zhou et al., 2016). All three
components are standard and regularly used in modern CNN
architectures. This combination allows our model to perform
object recognition on the foveated image and provide means
for bottom-up and top-down attention in a single forward
pass of the network. Thus, the most salient object could be

examined in detail (bottom-up) or a specific object could be
tracked (top-down).

Our model has two variations depending on the signal being
classified—a single image or a sequence of images (video input).
On single images we perform the following procedure in both—
training and testing phase. First, the image is foveated, with a
centered sampling matrix, and processed by the CNN. Once
we acquire the bottom-up attention map M, we translate the
samplingmatrix to the location on the raw image that is indicated
as most salient. The image is foveated again with fovea placed
in the suggested region and the result is processed by the CNN
for a second time. We log both results in order to measure how
classification improves after the fovea is centered at the region of
interest. In order to adapt the network for video classification, we
make a simple adjustment to the architecture by adding a LSTM
recurrent layer (Hochreiter and Schmidhuber, 1997) before the
softmax output. Training and testing is performed identically,
with the exception that the sampling matrix is applied only
once per frame. This model can take advantage of the sequential
information of the video and compensate for cases in which the
fovea is mistakenly positioned at a wrong place or the object
of interest is occluded in one or more successive frames. Since
the CNN processes foveated input, instead of full images, no
pretrained networks could be used in the experiments. All models
have been trained with gradient descent for at least 50 epochs
with early stopping (Yao et al., 2007).

The CNN we use is based on the Xception architecture
(Chollet, 2017), adapted to the size of the input and requirements
of the model. For example, a global average pooling layer is used
instead of a fully connected layer between the last convolutional
layer and the softmax output. In order to avoid overfitting in
versions of the model that train on smaller sized foveated images
or a smaller dataset, we additionally decreased the number of
weights in the network. All networks are trained with the original
hyperparameters for at least 50 epochs with an early stopping
mechanism. No fine-tuning and no pretrained weights were used
in the experiments, since such weights are currently unavailable
for foveated data.

3.2. Foveation
As a foveation mechanism, we use the FCG method, computed
according to the algorithm in Table 2 in Martínez and Robles
(2006). The mapping is from coordinates in the raw image
domain to coordinates of the foveated domain (x, y) ⇒ (u, v).
We refer to this mapping as a sampling matrix (visualized in
Figure 2D). The inverse mapping is given simply by a reverse of
coordinate pairs (u, v) ⇒ (x, y). These mappings are computed
only once. When foveating an image, pixel values are simply
extracted at the relevant coordinates. In order to perform an
“eye-movement” we translate the position of the sampling matrix
by adding integer values 1x ∈ Z and 1y ∈ Z to the (x, y)
coordinates in the image domain. Ideally, in an open-world
environment, positioning the sensors outside of the current field
of view will result in sampling some sensory information. As we
test on 2-dimensional images or videos, though, we cannot rely
on the same principles. Therefore, when the sampling matrix
is displaced from the center of the image, some sampled values
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FIGURE 1 | Diagram of the proposed model. The raw image input is foveated with FCG and classified by the CNN. Attention map is extracted from the last

convolutional layer and used for bottom-up attention utilizing salient features from the observation. A Global Average Pooling (GAP) layer is used before the

classification output layer. Its usage assists the top-down attention mechanism in augmenting the attention map such that features specific to certain class(es) of

objects are inhibited or prioritized. The maximum intensity in the attention map is then used to determine the location to which the fovea should move in the next time

step.

FIGURE 2 | FCG foveation, used in our model (A→D→E→F). Log-polar transform (A→B→C) is provided for comparison. Notice that (B), (D) and (E) illustrate

coordinates of the sampled pixels, represented by their true RGB value. The black background is meant to provide contrast for better visualization and is discarded

during foveation. (A) Original image. (B) Log-Polar sampling. (C) Log-polar transform. (D) FCG sampling. (E) FCG sampling with jitter. (F) FCG foveated image. (G) A

channel indicating sampled pixel positions.
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might lie outside its scope. In order to distinguish such cases from
actual sensory input in the regular 0–255 range, we assign a value
of –1.

It has been reported that the irregular sampling grid outside
the foveal region in the retina prevents aliasing artifacts in
vision (Yellott, 1983). In order to take advantage of such
benefits, we introduce some jitter in the sampling coordinates
of the peripheral rings of FCG (visualized in Figure 2E). While
this irregular placement is beneficial for preventing aliasing
distortions, from statistical sampling theory we know that it,
unfortunately, also has negative effect on signal reconstruction.
It has been shown, however, that a non-uniform sampling grid
can still provide perfect reconstruction given the positions of
sampling points are known (Strohmer, 1997). The human visual
system does in fact possess mechanisms for determining cone
positions (Hirsch and Miller, 1987; Ahumada Jr and Mulligan,
1990). In order to provide such information to our model, an
additional channel δ(x, y) is added to the original image, as
described in Wang and Veksler (2018), where the position of
each pixel is indicated by the Euclidean distance between its
coordinates and the center of the image. The image is then
foveated using the jitter FCG sampling along all 4 channels.
Foveation of the δ channel is visualized in Figure 2G. Based on
the above-mentioned studies we test the effects of an irregular
sampling grid in terms of classification accuracy in section 4.

3.3. Attention
In order to guide eye-movements, a space variant model needs
an attention mechanism. Here, we propose a mechanism for
bottom-up and top-down attention with minimal requirements
on the architecture and explain how eye-movements are guided
and performed by the model. While most models train an
attention mechanism separately from the main objective, here we
present a method that exploits task-relevant features in the CNN
in order to perform saccadic movements.

3.3.1. Bottom-Up Attention

The task of a convolutional layer is to extract features from the
previous layer and organize them in feature map units. Every
filter that constructs a feature map is applied at each location
of the given input—a property responsible for translation
invariance in CNNs (Kayhan and Gemert, 2020). For this reason,
features preserve their relative location throughout the network
depth. Thus, by detecting the location of salient features we
can localize potential regions of interest in a single forward
pass. Salient features we define as features that contribute, or
provide evidence, to the objective of the network. In our case
this is classification, but the principle can be applied to other
objectives as well, such as reconstruction, regression and so on.
It is important to note that even if a set of features, e.g., in
the periphery, does not lead to a correct classification, they still
indicate a region of interest that can be explored by the fovea in
a next time step, and therefore help improve classification over
time. For example, if a fur texture is registered in the periphery
that leads to the incorrect recognition of a dog, the agent can
make a saccade to this location and correctly identify the source
of the pattern as, e.g., a cat or a coat, instead.

In order to detect salient features, we use the mean of the
last convolutional layer’s activations across the features axis
and receive a two-dimensional attention map M (visualized at
the bottom of Figure 1). We use this map as an indicator of
salient features and then direct the fovea toward the location
of the highest intensity in M. This process is made possible by
two principles in the neural architecture. First, ReLU activation
functions are used in the network that pass positive values
unchanged and map non-positive values to 0. This leads to the
restriction of activations in the non-negative range where greater
activations are more impactful on subsequent layers. The usage
of max pooling layers in the network additionally contributes
to this bias over high values associated with the propagation of
informative features. Second, we use batch normalization after
convolutional layers, similar to the saliencymechanism described
in Itti et al. (1998). This layer normalizes separately the output
of each feature map and thus eliminates amplitude differences
between them. This allows us to construct M without giving
priority to arbitrary filters over others in terms of intensity.
Both, ReLU functions and batch normalization, are standard
components of most modern CNNs and are therefore mostly not
restrictive on the choice of architecture.

Now that we know high intensities in M indicate salient
features, we need a mechanism that extracts a location for the
next saccade. First, we map locations in the attention mapM(i, j)
to locations in the foveated image8(u, v); and thenmap locations
from the foveated domain 8(u, v) to the image domain I(x, y).
As we use Log-Polar transform as a baseline sampling technique,
for simplicity, we will use coordinates denoted by (u, v) for both
mappings (FCG and Log-Polar), instead of the classical (ρ, θ) in
Log-Polar:

(u, v) =

(

log
(
√

(x− xf )2 + (y− yf )2
)

, arctan

(

y− yf

x− xf

) )

(1)
where xf and yf are coordinates of the focus point on the
image, usually the image center. Since inverse mapping from
the foveated domain to the image domain is known for both
techniques, the attention mechanism is indifferent to how the
image was foveated. We also define 8inv to be the inverse
mapping function for coordinates (u, v) ⇒ (x, y) from the
foveal domain to the image domain as described in Martínez
and Robles (2006) for FCG and in Qi et al. (2009) for Log-Polar
transform. Using these notations, we calculate the most salient
location (umax, vmax) in 8 by scaling coordinates of the highest
intensity location in M to 8’s dimensionality. 8inv(umax, vmax)
then gives us coordinates (xmax, ymax) in the image domain,
where a saccade is made in the next time step.

3.3.2. Top-Down Attention

In order to implement top-down attention in our model, we
use Class Activation Maps (CAM) (Zhou et al., 2016). CAM
requires a Global Average Pooling (GAP) layer between the last
convolutional layer Cn and the softmax output of the network.
This layer is used in many standard CNN architectures and
provides benefits to training, independent of its purpose in
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this model. However, this component only provides us with
a convenient simplification for the purposes of this paper.
Alternative methods like Grad-CAM (Selvaraju et al., 2017) or
excitation backpropagation (Zhang et al., 2018) can be used with
no modifications to the ANN architecture.

The GAP layer provides a direct interface to augmenting the
attention map M such that it shows the contribution to each
specific class’ score. GAP pools feature maps fk into k units
(one for each), that are in turn connected to the softmax output
through weights. If fk(i, j) denotes the output of each feature map
in Cn at each spatial location, the class activation map for each
classification output unit is given by:

Mc(i, j) =
∑

k

wc
kfk(i, j) (2)

where wc
k
is the weight corresponding to class c at unit k.

Extracting the most probable location from Mc for class c is
indicated by the highest intensity unit and can be extracted in
the same manner as in the bottom-up approach. This way, even
if features indicative of this class are not the most salient ones
in the bottom-up direction, an agent can bias its eye-movement
strategy in order to prioritize for a specific task. For example,
when looking for a needle in a haystack, features of the needle,
e.g., metallic color, will be prioritized over others.

4. EXPERIMENTAL RESULTS

In order to validate the performance of the proposed model
and examine its properties, we test on two different datasets.
The first one is ImageNet (ILSVRC2010) (Russakovsky et al.,
2015), containing images in 1,000 classes. We use this dataset
in order to test for object recognition performance on single
images. The second dataset-Core50 (Lomonaco and Maltoni,
2017), contains videos in 10 categories of 5 similar objects each,
resulting in 50 classes. This dataset we use tomore elaborately test
the attention mechanism and how the model performs on video
classification tasks. While images in ImageNet might suffer from
photographer’s bias, the objects in Core50 are smaller and appear
at various positions in the image. As a preprocessing step, all raw
images are scaled to 256× 256 pixels with three color channels.

4.1. Computational Efficiency
A fundamental property of foveated vision is the reduction of
sensory input and therefore computational costs required for
processing the signal. Here we examine how the FCG sampling
affects the size and computational costs of the neural network.
We train two versions of our model for each dataset - one on full
sized images, and one on FCG foveated images. The size of the
foveated input is 81× 81 pixels≈10% of the pixels in the original
256× 256 pixel images. The results and resource consumption of
these networks are shown in Figure 3.

The foveal model trained on ImageNet is ≈10.06 times faster,
uses ≈2.49 times less memory and has only 0.39% decrease in
accuracy compared to the model trained on full size images. The
foveal model trained on Core50 is ≈9.23 times faster, uses ≈4.16
times less memory and has a 1.53% decrease in accuracy. Using

foveated images thus clearly reduces processing requirements of
the architecture approximately 10-fold in terms of speed and
2.5–4.2 times in terms of memory consumption for the given
foveation factor, at the price of small decrease in accuracy.

4.2. Classification Performance
Now that we confirmed that using foveated signal our model
has a notable improvement in computational costs, we wanted
to explore its performance on image and video classification
tasks. First, we compare the effects of using FCG and Log-Polar
transform under equivalent image reduction factor. We denote a
model trained on 81× 81 pixel FCG foveated images as FCG_10,
considering 81× 81 = 6,561≈10% of pixels of the raw image were
sampled. Similarly, amodel trained on Log-Polar foveated images
of size 70× 94 = 6,580≈10% of the original image pixels, we shall
refer to as LogPolar_10. The training and testing procedure for
both models is the same, as described in subsection 3.1:

1. A raw image is foveated with a fovea placed in the center of
the image;

2. The foveated image is passed through the CNN;
3. The source image is sampled for a second time with fovea

moved to a new location, suggested by the bottom-up
attention mechanism;

4. The new foveated image is passed through the CNN;
5. The second classification result is logged and used as

performance metric.

This way each model is given only one chance to locate a region
of interest and view it in higher resolution. For the purposes of
the test, we treat separate video frames in Core50 as standalone
images. No sequential information is available to either model.
Results of this experiment are shown in Figure 4A. FCG_10
outperforms LogPolar_10 by 14.06% on ImageNet and 13.15%
on Core50.

While the model performs well on static images, foveation still
leads to some loss of accuracy compared to full resolution images.
Allowing the model to perform one or two additional saccades
per image compensates for this effect as seen in Figure 4B. Effects
on the ImageNet dataset are less prominent as one saccade is
already enough to match full-image results. This might be due
to most objects being centered and bigger in size.

Making additional saccades, however, comes at a
computational cost. For this reason, we test our model on
video classification, available only for the Core50 dataset. In
this scenario, the model is allowed to process video frames in a
sequence. Our intuition is that even though some information
is inevitably lost during sampling, a short-term memory
mechanism can improve performance by incremental collection
of additional information through eye-movements. This
can help correct for a failure of the periphery to accurately
identify a region of interest, as well as other interfering
factors, like object occlusions. We make a few changes to the
training/testing procedure. First, a LSTM layer is added before
the softmax output of the CNN. The resulting model we shall
call FCG_vid_10. Second, the fovea is only centered on the
first frame of a video. Its position in each successive frame is
determined by the results from the previous one. As a result,
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FIGURE 3 | Computational cost of neural networks trained on foveated images (red and cyan) and full size images (shaded). The size of each circle indicates video

memory consumption. Both, memory and floatpoint operations, are presented for a batch of 1 image.

FIGURE 4 | Classification performance. (A) Classification of FCG and Log-Polar foveated images when performing a single saccade. Results for full-resolution image

classification are provided as a baseline. (B) Effects on performance of the FCG sampling model when multiple saccades are made per image. (C) FCG foveated

videos and full resolution videos where sequential information is utilized by the model. The sampling matrix is only repositioned in each successive frame in

FCG_vid_10 (i.e., a single sampling position per frame). Static image FCG_10 and full-resolution image classification are provided for comparison.

the sampling matrix only has a single position per frame,
opposed to classifying static images where the fovea is centered
at first and then repositioned in each image. Video frames
are used as input in sequences of 10, and the location of the
fovea for subsequent frames is guided completely by bottom-up
attention. The sequence length was chosen to maximize both
models - trained on foveated data and full-resolution images.
Further increase in the length of the sequence did not lead
to improvements in performance. Results of this experiment
can be seen in Figure 4C. While a model trained on full
resolution videos has accuracy 76.94% (95% CI 76.41–77.47%),
FCG_vid_10 scores 78.57% (95% CI 78.05–79.09%). Thus,
although our model suffers a 1.53% decrease of accuracy in
image classification, it outperforms full resolution input by
1.63% in video classification.

4.3. Sampling
In order to test how the sampling sparsity affects performance of
the model, we constructed a new FCG foveation mapping, where
fovea and periphery are both reduced by half. The resulting foveal
image is of size 59× 59= 3,364 pixels, which is≈5% of the area of
the source image. We call the model trained on the new foveated
sampling rate FCG_5. Results are presented in Figure 5, as well
as examples of the neural network input size. The decrease of
accuracy is only 4.51% on ImageNet and 8.57% onCore50 despite
the drastic decrease of pixels sampled from the source images.
FCG_5 even outperforms the LogPolar_10 model by 6–10%. It is
thus evident that FCG sampling scales sampling rate and network
size to performance, demonstrating good flexibility of its usage.

In order to see how sampling affects classification, we
performed tests with two types of sampling - classical FCG
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FIGURE 5 | Effect of sampling sparsity on performance. FCG with 5% of

pixels sampled, 10% sampled, and full resolution images. LogPolar_10 results

are provided for comparison.

TABLE 1 | Effects of jitter and information about sampling coordinates on the

performance of the model.

Method ImageNet Core50

Accuracy

[%]

95% CI

[%]

Accuracy

[%]

95% CI

[%]

FCG_10 64.00 63.58-64.42 60.27 59.65-60.89

FCG_10 + jitter 63.31 62.89-63.73 60.18 59.56-60.80

FCG_10 + jitter + coord 64.09 63.67-64.51 60.66 60.04-61.28

FCG_10 + coord 65.17 64.75-65.59 61.68 61.06-62.30

The bold value indicates highest accuracy method for each dataset.

(Figure 2D) and with some jitter added to the coordinates of
“photoreceptors” in the periphery (Figure 2E). The purpose of
the latter one is to emulate the irregular sampling grid of the
human eye. As non-uniform sampling is known to lead to
difficulties for learning, it has been suggested that making the
sampling point coordinates known to the algorithm can increase
performance. We test this hypothesis in our model by adding
an additional channel to the foveated image, indicating distance
of each coordinate to the center of the image (depicted in
Figure 2G). The methods we compared are: 1) FCG sampling,
which is uniform in the fovea and locally uniform in the
periphery (Figure 2D); 2) FCG+ jitter-uniform in the fovea and
non-uniform in the periphery (Figure 2E); 3) FCG + jitter +

coordinates channel (Figures 2E,G); and 4) FCG+ coordinates
channel (Figures 2D,G). As the results in Table 1 indicate, the
approximating the irregular sampling grid of the retina leads
to a small but not significant decrease in accuracy compared
to basic FCG sampling. However, adding a coordinates channel
does indeed significantly boost the performance of both types
of sampling, while the greatest effects are on the locally uniform
FCG sampling.

4.4. Attention
To further investigate the detection properties of the periphery,
we study how the model uses the attention mechanism to make
saccadic movements. We use the Core50 dataset, as positions of
objects there are known, and they vary more than in ImageNet.
We perform image classification on every frame in the test set
and record how the distance of the center of the fovea changes
in relation to the center of the object displayed. In order to
perform a saccade, the fovea is first centered on the image and
the resulting foveation is used to determine the next position
of the sampling matrix. As the source images are of size 256
× 256 px, most objects are located in a 128-pixel radius from
the center, except for a few that are displayed in the corners of
the image. The largest possible distance is, at most ≈181 px-half
the length of the diagonal. Using our experimental paradigm, we
find that the attention mechanism draws the fovea closer to the
classified objects in the majority of the cases (Figure 6A). After
an “eye-movement” 96% of the object centers are located within
60 px, and 75% of the object centers are closer than 42 px to
the fovea center. As a result, the initial distribution (Figure 6A
top) is squished dramatically with a mean around the 30px bin
(Figure 6A right). We find that accuracy increases with 12.13%
after one saccade, where accuracy improvement is a function
of the distance shortened after the saccade (Figure 6B). This
provides evidence that even if an object is misclassified at the
starting position of the sampling matrix, the majority of objects
were correctly located within a region of interest, and accuracy
improved once the high-resolution fovea moved closer. Thus, the
efficiency of the bottom-up attention mechanism for performing
“eye-movements”İ is evident.

In addition to the bottom-up attention, we demonstrate the
application of Class Activation Maps in the top-down direction
for our model (Figures 7A,B). The figure shows an example of
a cluttered scene with 3 objects—a red marker, scissors and a
yellow marker. In each row of Figure 7B, the sampling matrix
is centered, and one saccade is made. The attention map of the
model was upsampled for better viewing and an inverse mapping
to the source image domain was made (resembling Figure 2E).
The result was then interpolated for better visualization and
superimposed on the source image, visualizing an attention
heatmap. The first row of the figure shows the bottom-up
direction, where the red marker appears to have the most salient
features. Therefore, a saccade is made in its direction (row 1,
column 2). We denote the bottom-up attention mapM and class
activation mapsMr ,My, andMs for the classes of the red marker,
yellowmarker and scissors, respectively, constructed as described
in subsubsection 3.3.2. The bottom three rows in the figure show
a top-down attention bias by using only Mr , My, and Ms. The
attention mechanism then guides the fovea to three different
locations on the image, correctly locating the desired objects.
In row 2, we demonstrate inhibition of attention to a specific
stimulus. This is done by acquiring a top-down map Mcustom =

M − Mr , which suppresses any features of the red marker and
indicates the yellow marker as the second most salient stimuli
in the photo. This arithmetic can be done for conjunctions of
different class activation maps in order to place or withdraw
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FIGURE 6 | Effects of a single saccade on the displacement of the fovea from classified objects and the resulting change in accuracy. The fovea starting position is

always in the center of the image. (A) Kernel density estimate of the euclidean distance between the centers of classified objects and the fovea center before and after

a saccade. Distributions of the distances are shown for before (top) and after the saccade (right). (B) Change in classification accuracy resulting from the saccade.

Accuracy change is calculated by subtracting the average accuracy of all samples that fall within a grid cell before a saccade was made, from the average accuracy in

this cell after a saccade.

importance depending on the current task of the agent. Once an
object is correctly located and classified, the agent can therefore
suppress its location in the activation map, or even inhibit the
whole class. Thus, we demonstrate the ability of the agent to
explore its environment incrementally or search for a specific,
desired object in a cluttered scene, even if this object is not salient
in the bottom-up direction.

5. DISCUSSION

In this work we presented an end-to-end neural vision model of
the ventral visual stream, inspired by the sampling mechanisms
of the primate retina. We showed that by foveating the visual
signal it performs comparably in accuracy for image classification
and outperforms models with full-resolution input in video
classification. At the same time, there is a dramatic decrease
in computational costs, as speed is increased 10-fold and
memory required is reduced several times. Additionally, we
show empirically that Foveal Cartesian Geometry outperforms
Log-Polar transform foveation on classification tasks and under
similar foveation constraints. We demonstrated an easy to
implement, inbuilt attention mechanism based on feature
saliency in the bottom-up direction and show how top-down
attention can be utilized for incremental exploration and goal-
driven search.

One issue of the proposed model is that the foveation
mechanism is not a viable option for embodied robotics in
the current state. FCG can be used in virtual environments
or simulations for training agents. In order to use FCG in

robotics, however, a high-resolution image needs to be obtained
first, which is undesirable since most of it will be discarded
anyway. However, there are some hardware implementations
which produce very similar results and can be used instead
of FCG. A more closely related implementation is an array of
cameras, like in Carles et al. (2016), that can be arranged to
reproduce a similar foveation effect. Another solution is using
a camera lens (Kuniyoshi et al., 1995; Martinez et al., 2001),
inspired by the human eye that can project the signal to a classic
CCD or CMOS chip. A broader overview of other hardware
implementations and patents of sensors for foveal vision is
presented in Weber and Triesch (2009).

Another topic which has not been discussed so far in this work
is the usage of a classification CNN as the basis of the model.
The class outputs are not necessary for the bottom-up attention
mechanism, but they are crucial for the top-down mechanism
to function. However, different objectives are equally plausible
for the vision model, as long as there is a semantically separable
representation that can be linked to attention. For example,
a β-VAE (Higgins et al., 2017) model can be used, instead.
This neural network is an autoencoder that learns interpretable
factorized representations of independent data generative factors.
The hidden units are not classes, but independent factors learned
in an unsupervised manner. They have the property of being
semantically interpretable and can serve the same purpose as
the class output units in our model. Instead of classes like
“cat” or “dog,” they usually encode features like pose, shape,
illumination and other independent factors of the observed
data. Furthermore, it has been suggested that ventral stream
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FIGURE 7 | An example of the top-down attention mechanism. (A) Preprocessing steps - original image (top), positioning of the sampling matrix (middle) and the

resulting foveated image used as input to the model (bottom). The black background (middle image) is meant to provide contrast for better visualization and is

discarded during foveation. (B) Effects of attention (rows) on saccadic movements (columns). Each cell contains 4 images: foveated image at the current foveal

position, used as model input (left-top); the resulting attention map, upsampled for improved viewing (left-middle); attention map superimposed on the model input

(left-bottom); and the attention map superimposed on the source image (right). A white “x” indicates the location of the highest intensity pixel in the attention map, i.e.,

location of the next saccade.

representations in the primate brain encode very similar factors
likely to be obtained through unsupervised learning instead of
categorization (Christensen and Zylberberg, 2020). In this sense,
further future efforts are needed in order to extend our work to a
more general-purpose vision model.

The irregular grid of photoreceptors outside the human
fovea is theorized to reduce aliasing artifacts in vision at

the cost of vision impediment (Yellott, 1983). Results from
literature, however, show that such reduction is not observed
in humans and could be compensated by keeping information
about photoreceptor locations on the grid (Strohmer, 1997).
Our results confirm that irregular sampling leads to small
reduction of performance, which can be in fact compensated
by providing information about sampling positions to the
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neural network. This finding shows that performance of the
semi-irregular sampling in FCG can be enhanced by supplying
an additional channel to the visual input. Furthermore, we
showed that even more intense jitter, similar to the one
observed in biological systems, would not affect vision crucially,
which on one hand confirms biological findings, and on the
other—makes requirements on building a sampling matrix
less rigid. In effect, such sampling could be collected by a
multitude of crudely assembled sensors in future developments
of artificial retinas, compatible with self organized assembly seen
in biological systems.

In recent years foveation gained a lot of attention from
research in the fields of signal compression and reconstruction.
Some clear directions are for Virtual Reality rendering (Guenter
et al., 2012; Patney et al., 2016; Hsu et al., 2017), video
streaming (Lee et al., 2001; Lee and Bovik, 2003) and gaming
(Illahi et al., 2017, 2020). However, few vision models have
been proposed that use foveation. Deep convolutional networks
are currently the state-of-the-art methods for vision models.
Even when carefully constructed, models like (Wallace et al.,
1994; Colombo et al., 1996; Aboudib et al., 2015, 2016)
that do not use CNNs can rarely compete in terms of
performance. Aboudib et al. (2016) for example follows very
similar principles to our model, despite the lack of a top-down
mechanism. The use of log-polar sampling they use prevents
the deployment of CNNs and allows only for shallow machine
learning algorithms.

Daucé et al. (2020) make a compromise, instead. They
feed a foveal crop to a CNN and use log-polar sampling
with a shallow ANN as an attention mechanism, emulating
a dorsal stream. This method, however, is hard to train,
as correct foveal classification is necessary as a metric for
training the attention mechanism, but a functional attention
mechanism is needed in order to train the foveal network
in turn. Thus, the model has to be trained offline with a
reinforcement learning technique. Another model (Jaramillo-
Avila et al., 2019) implements a very similar to FCG foveation
technique and deploys bottom-up and top-down attention
mechanisms for object detection in mobile robots. They use a
CNN to process the foveated image but the attention mechanism
they use is based purely on saliency heuristics and is not
learned. It also requires a full resolution image and uses
several image pyramids in order to compute the bottom-up
saliency map.

As our model is primarily focused on the ventral “What”
pathway, a natural next step would be to extend the model
with a dorsal “Where” pathway. Rod cells, for example,
contribute mostly to the dorsal stream. Although they are
believed to saturate under photopic conditions, it has recently
been discovered that they escape saturation and participate
in day light vision in mice (Tikidji-Hamburyan et al., 2017).
As it is very hard to separate the signal of rod cells,
this matter is challenging to study. It is currently not
known if this is also the case for humans. Regardless
of biological plausibility, however, such an addition to a

vision model might present some advantages for better
spatial attention in the periphery. Rod cells are much less
foveated and their signal could provide a coarse-grained low-
resolution information that compensates for distortions caused
by foveation. Additionally, spatial awareness of the agent can be
improved with a more elaborate short-term memory mechanism
and motion sensitivity—another feature usually associated with
the dorsal pathway.

6. CONCLUSION

In this paper we proposed a new deep learning vision model
inspired by the structural organization of the primate retina.
The information reduction provided by the foveation technique
allows for an energy efficient way to perceive a visual scene and
acquire detailed information incrementally. Parts of the observed
scene can be explored with high resolution, while the agent
retains a large field of view in low resolution. Moreover, we
provided an easy to implement attention mechanism that allows
for saccadic “eyemovements” to be performed in order to acquire
more detailed information from different parts of the scene in
a sequential manner. We believe this shift in paradigm from
classical machine vision can assist development of embodied
active vision agents in simulated environments or in the field of
cognitive robotics.
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