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InverseMuscleNET, a machine learning model, is proposed as an alternative to static

optimization for resolving the redundancy issue in inverse muscle models. A recurrent

neural network (RNN) was optimally configured, trained, and tested to estimate the

pattern of muscle activation signals. Five biomechanical variables (joint angle, joint

velocity, joint acceleration, joint torque, and activation torque) were used as inputs to

the RNN. A set of surface electromyography (EMG) signals, experimentally measured

around the shoulder joint for flexion/extension, were used to train and validate the RNN

model. The obtained machine learning model yields a normalized regression in the range

of 88–91% between experimental data and estimated muscle activation. A sequential

backward selection algorithm was used as a sensitivity analysis to discover the less

dominant inputs. The order of most essential signals to least dominant ones was as

follows: joint angle, activation torque, joint torque, joint velocity, and joint acceleration.

The RNNmodel required 0.06 s of the previous biomechanical input signals and 0.01 s of

the predicted feedback EMG signals, demonstrating the dynamic temporal relationships

of the muscle activation profiles. The proposed approach permits a fast and direct

estimation ability instead of iterative solutions for the inverse muscle model. It raises the

possibility of integrating such amodel in a real-time device for functional rehabilitation and

sports evaluation devices with real-time estimation and tracking. This method provides

clinicians with a means of estimating EMG activity without an invasive electrode setup.

Keywords: recurrent neural network (RNN), muscle modeling, electromyography, static optimization, inverse

problems solution

1. INTRODUCTION

Muscle contractions generate tension and, as a result, a moment about the human joint. Knowing
the muscle forces or activation signals during human movement can assist in understanding
the underlying biomechanical systems (Crowninshield and Brand, 1981). These analyses can
improve movement performance, especially for athletes and patients (Laschowski et al., 2018).
Forward dynamic simulations of a given musculoskeletal model, driven via muscle activations,
yield calculated motions (Figure 1) (Ezati et al., 2019). As depicted in Figure 1, first, the raw EMG
goes through initial filtering steps and a muscle activation dynamic model (Manal and Buchanan,
2003; Desplenter and Trejos, 2018). Second, the resultant activation converts to muscle forces using
muscle contraction dynamics (Heitmann et al., 2012; Heidlauf and Rohrle, 2014; Desplenter and
Trejos, 2018). Third, the muscle forces convert to joint torque using the musculoskeletal geometry
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FIGURE 1 | Forward simulation of a musculoskeletal system with multiple muscles. α and F are the activation signal and the muscle force in the muscle dynamic

model, respectively.

model (Hammer et al., 2019). Finally, the joint torque is used
in the forward dynamic simulation of the torque-driven skeletal
model to obtain the motion (Mehrabi and McPhee, 2019).

Conversely, the inverse dynamic problem yields either
(I) muscle tensions or (II) EMG signals from a predefined
kinematic motion, introducing a redundancy resolution problem
(Anderson and Pandy, 2001; Miller et al., 2013; Shourijeh and
McPhee, 2014; Shourijeh et al., 2017; Bailly et al., 2021). This
redundancy is due to the number of participating muscles
being greater than the number of joint degrees of freedom
(Hirashima and Oya, 2016). The redundancy resolution problem
is commonly formalized as an optimization approach to find
multiple muscle tension combinations for a given joint torque
(Anderson and Pandy, 2001; Shourijeh and McPhee, 2014;
Bailly et al., 2021). This optimization minimizes a function
of muscle forces, muscle activations, and/or metabolic energy
expenditure (Erdemir et al., 2007; Shourijeh and McPhee, 2014).
Various static and dynamic optimization formulations have been
proposed by Anderson and Pandy (2001), Heintz and Gutierrez-
Farewik (2007), Shourijeh et al. (2017), Ezati et al. (2019), and
Shourijeh and McPhee (2014) (Figure 2a). Generally, for model
simplification of the optimization problem, four assumptions
have been considered (Winter, 2009): (A) there is no predefined
history of the co-contraction pattern for the modeled muscles
(assuming previous values have no impact), (B) the maximum
muscle forces are unaltered by the muscle geometry, (C) muscles
do not have dynamics andmay produce any tension immediately,
and (D) the musculoskeletal system satisfies a cost (Anderson
and Pandy, 2001; Erdemir et al., 2007; Shourijeh and McPhee,
2014) (which is a function of muscle stresses, muscle activations,
or metabolic energy expenditure). However, the mentioned
assumptions do not support the observed nature of muscles
(Winters, 1990; Arjmand et al., 2013; Cecchini et al., 2014;
Vilimek, 2014; Dao, 2019) as muscles follow a co-contraction
pattern (Michaud et al., 2020), are defined by a dynamic model
(Siebert et al., 2008), and have a geometry that impacts the
maximum muscle forces (Heidlauf and Rohrle, 2014; Desplenter
and Trejos, 2018).

In conventional dynamic approaches, muscle activations or
EMG signals are determined by an optimization algorithm
(Figure 2a) (Anderson and Pandy, 2001; Shourijeh and McPhee,
2014; Shourijeh et al., 2017). Concurrently, the muscle tensions
and joint moments are calculated by an EMG-driven model
simulation. The optimization cost function is computed using a
comparison of the joint moments with desired joint moments,

calculated by the skeletal model’s inverse dynamic simulation
(Michaud et al., 2020). No inverse muscle model is used,
and optimization tries to find the inputs of the forward
dynamic muscle model to achieve specific joint moments
(Moissenet et al., 2019). The issues here lie in our approximation
of complex skeletal muscle mechanics, which often requires
modeling assumptions and sophisticated geometry/wrapping
models (Winter, 2009; Ellis et al., 2018; Hammer et al., 2019).
Sensitivities and difficulties in fitting and identifying the relevant
muscle parameters (Millard et al., 2019; Serrancolí et al., 2020),
in addition to uncertainties related to experimental data, add
further challenges to this process (Valente et al., 2014). Due
to the mentioned assumptions and challenges, the simulation
results in estimated muscle activations that may not be correct
(Norman-Gerum and McPhee, 2018).

Machine learning is an instrument or model for solving
complicated mathematical problems without knowing the
analytical relationship between the inputs and outputs (Rane

et al., 2019). Supervised machine learning offers an alternative

solution to the optimization, leading to the easing of muscle

redundancy, complexity, and pattern estimation of muscle
tensions (or EMG signals) within a musculoskeletal model (Rane
et al., 2019; Sohane and Agarwal, 2020). This methodology
substitutes the mathematical equations in musculoskeletal
modeling with a network of interconnected artificial neurons
imitating central nervous system function. Experimental data
is used to train the model to find the mapping from joint
moment time-series to a pattern of muscle tensions or EMG
signals. This approach offers a computationally efficient method;
however, it requires collecting and processing a significant
amount of experimental data as well as optimizing the machine
learning model configuration for the highest prediction accuracy,
mapping efficiency, and real-time estimation ability.

Recently, machine learning models have been developed to
estimate skeletal muscle tensions without explicit modeling of
the physical muscle behaviors (Arjmand et al., 2013; Cecchini
et al., 2014; Vilimek, 2014; Dao, 2019; Rane et al., 2019).
Arjmand et al. (2013) constructed artificial neural networks
(ANNs) to predict the trunk muscle forces required during static
lifting. They used five input variables: thorax flexion angle, load
magnitude, the anterior and lateral distances of the reaching
task, and the load handling technique. They disseminated that
ANNs are more accurate than a regression-based mapping of
input-output relationships. Cecchini et al. (2014) also used ANNs
to predict muscle force patterns for an athlete cycling. They
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FIGURE 2 | Inverse simulation of a musculoskeletal system with multiple muscles, using (a) conventional two optimization loops for estimation of muscle forces and

activation signals, (b) machine learning model for muscle force estimation and one optimization loop for activation signals, and (c) machine learning model for

activation signals estimation.

validated the ANN against an independent validation set and
compared two alternative approaches using the Bland-Altman
method (Cecchini et al., 2014). Vilimek (2014) used an ANN
model for estimating themusculotendon forces around the elbow
joint during a flexion/extension movement. Here, the network
model’s input parameters were themorphological and anatomical
musculotendon parameters as well as the measured activation
level. The author used that ANN for one specific muscle, which
showed better results than the ANN for general muscles (Vilimek,
2014). Instead of the previous ANNmodels (Arjmand et al., 2013;
Cecchini et al., 2014; Vilimek, 2014) for considering the dynamic
temporal relationships of the muscle forces, which is a time-series
forecasting problem, recurrent deep neural networks (RDNNs)
have been used by Dao (2019). Dao (2019) used a long short-term
memory model as an RDNN to approximate muscle forces from
kinematic data. Rane et al. (2019) trained a convolutional neural
network on a set of kinematic, kinetic, and electromyographic
measurements from 156 subjects to predict the muscle internal
force magnitudes.

Many previous studies (Arjmand et al., 2013; Cecchini et al.,
2014; Vilimek, 2014; Dao, 2019; Rane et al., 2019) have predicted
muscle tensions only and not activations in their solutions to the
muscle redundancy problem. However, the inverse muscle model
was not evaluated using the machine learning model in these
previous studies (Figure 2b). Commonly, using the previous
solution of the estimated muscle tensions, a second optimization
problem should be used to estimate the muscle activations since
there is no inverse dynamic model of the muscles. Providing
an inverse dynamic model of the muscles with inputs of joint
moments and outputs of activation variables can offer the ability
to compare the subject’s EMG signals via estimated activation

signals. This inverse model completes the inverse dynamic
simulation of the skeletal model for biomechanical analysis, post-
rehabilitation analysis, and sports engineering/optimization.

A successful study by Gonzalez-Vargas et al. (2015) developed

a predictive model to generate muscle-specific excitation patterns

for a given locomotion condition (i.e., speed and elevation) and

a set of weightings characterizing the condition. However, the
proposed pattern regression was used for cyclic gait and required
subject-specific muscle weightings. To date, a couple of studies
predict muscle activations using ANN machine learning and
different kinds of kinematic or kinetic input signals (Heller et al.,
1993; Jonic and Popovic, 1997; Prentice et al., 2001; Tibold and
Fuglevand, 2015). Since the ANN’s performance deteriorates with
small variations in data, Sekiya et al. (2019) used the linear logistic
regression model, but its generalization performance is limited.
Recently, Nasr et al. (2021a) demonstrated that Recurrent Neural
networks (RNN)s could outperform ANNs (forward networks)
for direct muscle modeling (EMG to biomechanical signal).
We plan to use an RNN to predict muscle activities from
biomechanical signals (inverse to the forward model in Nasr
et al., 2021a). To the best of our knowledge, the inverse muscle
model using the recurrent machine learning method is novel and
proposed for the first time (Figure 2c). The contributions of this
paper are as follows:

1. the development of an optimized recurrent neural network
configuration to estimate EMG signals from kinematic and
dynamic data;

2. the evaluation and acquiring of necessary biomechanical data
for the estimation, including joint angle, velocity, acceleration,
joint torque, and activation torque;
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3. the assessment of estimation possibility of EMG channels for a
given joint;

4. the evaluation of the general and subject-based model in the
estimation model; and

5. an explanation of how InverseMuscleNET can be used in
applications for biomechanical analysis (inverse dynamic
musculoskeletal simulation), post-rehabilitation analysis
(comparison of subjects’ EMG signals against those of a
healthy individual via estimated activation signals), sports
engineering/optimization, functional electrical stimulation
control (application of the estimated healthy limb muscle
activation to the functional electrical stimulation probe), and
assessment and biofeedback (Gonzalez-Vargas et al., 2015).

In this paper, firstly, data preparation is introduced. Secondly,
the machine learning model, configuration optimization, and
evaluation algorithms are described. Finally, results are discussed
and evaluated.

2. DATA PREPARATION

Experimental data of object manipulation in the sagittal
plane was used for training the inverse muscle model. The
protocol for data collection and preparation is discussed in the
current section. The motor task is visualized in Figure 3. The
experimental procedure was in accordance with the Declaration
of Helsinki. The university office of research ethics approved the
data collection research (ORE #: 21246).

Whittaker et al. (2018) and Whittaker et al. (2019) collected
the data for a repetitive manual upper-limb task from healthy
right-handed young individuals. The subjects gently lifted an
object (bottle) from a lower target, placed it on the upper target,
and vice versa (Figure 3). In this data collection, 17 right-handed
young individuals [8 Males and 9 Females; 23± 4 years; 72.25±
29.85 (kg) mass; 1.66± 0.16 (m) height] free of upper limb injury
performed the experimental tasks.

The 3D upper-limb motion and muscle EMG signals
were recorded at the same time. As suggested by Avers
and Brown (2018), Noraxon Bipolar Surface circular Ag-AgCl
electrodes (Noraxon Inc, Arizona, USA) with a 20 mm inter-
electrode distance were used to measure the surface EMG
signals from 11 locations over the following right upper-limb
muscles: Serratus Anterior (SERR), Middle Deltoid (MDEL),
Supraspinatus (SUPR), Infraspinatus (INFR), Posterior Deltoid
(PDEL), Pectoralis Major (PECC), Latissimus Dorsi (LATS),
Anterior Deltoid (ADEL), Middle Trapezius (MTRA), Upper
Trapezius (UTRA), and Lower Trapezius (LTRA). The ground
electrode was placed over the clavicle. A Noraxon T2000
telemetered system, TeleMyo, (Noraxon Inc, Arizona, USA),
collected signals from 11 bipolar electrodes. Whittaker et al.
(2018) and Whittaker et al. (2019) positioned the single bipolar
electrode over each muscle. Then, signal quality was tested by
examining the signal amplitude when participants stimulated the
muscle through isometric contractions. The raw EMG signals
were amplified, sampled at a 1,500Hz rate, and finally, digitalized.
Eight Vicon MX20+ cameras (Vicon Motion Systems, Oxford,
U.K.) were used to record the 3D position of retroreflective

FIGURE 3 | A depiction of EMG electrodes and the retroreflective position

marker placements by Whittaker et al. (2018) (top). A drawing of the desired

upper limb motion (bottom). The participants were required to lift and lower a

weighted object between two target locations in the sagittal plane.

markers attached as rigid clusters to the subjects’ forearm, upper
arm, and scapula segments at 50 Hz.

The following sections describe how the upper-limb position,
external load, and EMG signals are used in the data preparation
(Figure 4). These steps prepare the RNN inputs (joint angles,
velocity, acceleration, joint torque, and activation torque) and the
RNN outputs (filtered EMG signals).

2.1. Kinematic Data Estimation
A 10 Hz low-pass filter was used to eliminate the recording
noise in the 3D joint angle (Euler angles for shoulder joint)
data. Joint velocities were calculated using (A) the numerical first
derivative of position (Euler angle), (B) the transformation of
position (Euler angle) derivatives to angular velocity by Equation
(1), and (C) a low-pass filter with a 20 Hz cut-off frequency. Joint
accelerations were estimated using another numerical derivative
(first) of the joint velocities and a 30 Hz low-pass filter. In
this paper, the joint angle θ (t), joint velocity θ̇ (t), and joint
acceleration θ̈ (t) were defined for shoulder joint elevation and
were used as three of the five biomechanical input signals for the
inverse muscle mapping. In Equation (1), which was previously
extracted and verified by Nasr et al. (2021b), q̇, h, p, and q are
the vector of all joint position derivatives, the right-hand side
of the transformation function, the vector of all joint velocities
and the vector of all joint angles (containing Euler angles),
respectively. The number of degrees of freedom is n.

q̇n×1 = h
(

pn×1, qn×1, t
)

n×1
(1)

2.2. Inverse Dynamics Simulation
An upper limb skeletal dynamic model was used within
inverse dynamic simulations to estimate the required
joint moments. The model had 3-DoF of rotation at the
shoulder, only flexion/extension at the elbow, axial rotation
(pronation/supination) of the forearm, and no wrist joint. The
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FIGURE 4 | Schematic of data preparation for training InverseMuscleNET. The inputs of InverseMuscleNET are joint angle, joint velocity, joint acceleration, joint torque,

and activation torque. The outputs of the InverseMuscleNET are the predicted EMG signals.

FIGURE 5 | Schematic of a two-layer NARX network as an RNN learning model for EMG signal prediction. nu and ny are the input signal former values and the output

signal former values, respectively. IW, LW, and b are the input weight, layer weight, and bias of one neuron, respectively.

upper-arm and lower arm body segment inertial parameters
(BSIP) were estimated from Dumas et al. (2007) and adjusted
with subject mass and height. The mentioned dynamic model in
Equation (2) was previously extracted and verified by Nasr et al.
(2021b). In this paper, the shoulder elevation torque was defined

as the human joint torque τh and was used as one of the inputs of
the inverse muscle mapping. In Equation (2), M, F, Q, and p are
the mass matrix, the right-hand side of the dynamic equations
(consisting of Coriolis, centrifugal, and gravitational effects), the
applied wrench (force/torque) from muscles to the joints, and
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the vector of all joint accelerations, respectively.

Mn×nṗn×1 = Fn×1 +Qn×1 (2)

Equation (2) is solved for Q, one component of which is τh.

2.3. Shoulder Muscle Torque Generators
Model
The shoulder elevation joint torque (τh) was converted to an
activation torque using a Muscle Torque Generator (MTG)
model (Inkol et al., 2020). The MTGmodels imitate components
of muscle modeling, for example, the constraint of orientation
and velocity of the muscle, while ignoring the possibility of
actuator redundancy (McNally and McPhee, 2018; Inkol et al.,
2020; Nasr et al., 2020). The MTG model used herein is
represented in Equation (3) where, τact , τa, τv, and τp are the
activation torque, the function of position-scaling, the velocity-
scaling, and the passive torque respectively. The position-scaling,
the velocity-scaling, and the passive functions were adopted
from experimental study by McNally and McPhee (2018). The
activation torque τact was defined for the shoulder flexor/extensor
andwas used as one of the five biomechanical input signals for the
inverse muscle mapping.

τh = τactτaτv + τp (3)

2.4. EMG Data Filtering
Nasr et al. (2021c) studied the optimum steps to filter sEMG
signals when applied to machine learning of muscle models
(same database) and showed that the lowest mean squared
normalized error of machine learning estimation was achieved
with three steps out of 1,504 possible unique methods. The
steps include applying a 70 Hz high-pass filter, rectifying, and
applying a 10 Hz low-pass filter. We considered the order and
configuration of the mentioned steps and tuned the frequencies
of filters to optimize the mapping performance.

The raw EMG data was filtered using seven steps: (1) a 20–
500 Hz band-pass filter (signals lower than 20 Hz were ignored to
eliminate motion artifacts, and higher than 500 Hz were ignored
as they had minor power spectral density Reaz et al., 2006), (2)
a 55–65 Hz band-stop filter (to reduce the 60 Hz noise from
the measurement system), (3) a rectification function of the
signal amplitude (with the absolute value function), (4) a 7 Hz
low-pass filter (to smooth the filtered EMG signal as assessed
by Nasr et al. (2021c), which was tuned from 10 to 7 Hz to
optimize the mapping performance), (5) a normalization of the
signal amplitude by the maximum of the trial, (6) a re-sampling
function (with the 1-D data cubic interpolation method) to a 50
Hz rate, and (7) a curving function or an exponential function
(to mimic the muscle activation signals in biomechanical muscle
models Winters, 1990) (Figure 4).

3. METHOD

3.1. RNN (Recurrent Neural Network)
Machine learning is an adaptive system that trains by using
interconnected nodes or neurons in a layered composition. RNNs

can outperform forward networks for direct muscle modeling
(EMG to biomechanical signals) (Nasr et al., 2021a). This
machine learning configuration can learn the dynamic temporal
relationships of a model due to its built-in recurrent signal (the
feedback from the output) (Gurchiek et al., 2019). Essentially,
an RNN is a deep machine learning network structure that
uses information history (of inputs and outputs) to improve the
network performance and estimate current outputs.

The nonlinear autoregressive with external input neural
(NARX) network was selected as an RNN learning model.
NARX is a recurrent network with feedback connections that
are commonly used in time-series modeling. It predicts the next
output signal value of a nonlinear dynamic system. A schematic
of the NARX network is shown in Figure 5 within a two-
hidden-layer feedforward network. This implementation allows
for multidimensional inputs and outputs. The NARX model
primary equation is:

y (t) = f
[

y (t − 1) , y (t − 2) , · · · , y
(

t − ny
)

, u (t) ,

u (t − 1) , u (t − 2) , · · · , u (t − nu)] (4)

where y (t) is the current output signal which is regressed on
former values of the output signal y

(

t − ny
)

and former values
of the input signal u (t − nu). ny and nu are the number of the
previous values of the output signal and input signal. As shown
in Figure 5, the feedback structure permits the network to store
past information in the hidden state y

(

t − ny
)

and operate on
current sequences y (t). Every single neuron has weights (W)
that act as signal strength modifiers for that neuron. Every layer
has a bias (b) that permits a shift in the activation function by
adding a constant to the input. The weights and the bias are tuned
throughout the learning process. The activation function in the
network defines how the weighted sum of the inputs is converted
into an output from the nodes in a network layer. We tested
different activation functions and picked a sigmoid function
for the hidden layer to provide the highest regression accuracy.
Since the EMG signals had been normalized during signal
processing, we proposed to use a symmetric saturating linear
transfer function for the output activation function. Accordingly,
the estimated output signals are always between 0 and 1.

The four primary configuration parameters of the RNNmodel
are the: (1) number of hidden layers, (2) number of nodes in
each hidden layer, (3) number of input signal former values,
and (4) number of output signal former values. Using many
of these parameters would lead to a high variable model that
would require a time-consuming training process on a large
dataset. One of the goals of this paper is to find the optimum
configuration that can map kinematic and dynamic signals to
EMG signals with limited training time and a limited dataset.

3.2. Model Inputs and Outputs
The datasets consisted of the five input signals and one output
channel for 17 subjects. The inputs of the RNN model are
biomechanical signals such as (1) joint angle, (2) joint velocity,
(3) joint acceleration, (4) joint torque, and (5) activation torque.
The first three kinematic signals (joint angle, velocity, and
acceleration) are calculated in section 2.1. The last two dynamic
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signals (joint torque and activation torque) are calculated in
sections 2.2 and 2.3, respectively. The outputs of the RNN model
are the predicted EMG signals. The filtered EMG prepared in
section 2.4 is used for the model output.

3.3. Model Training and Evaluation
There are two methods for assessing and evaluating a machine
learning model: (I) subject-based estimation and (II) general-
model performance. The subject-based estimation test is used as a
full estimation model. It employs a data set from one subject that
has not been utilized for training purposes. Thus, 14 subjects’ data
sets were used for training, two different subjects’ data sets were
used to validate the model, and one subject’s data set was used
in the estimation test. This method is used to optimize the RNN
configuration in sections 4.1, 4.4 and is used in Figures 9, 12.
The general-model performance was used to evaluate the general
estimation trend, general configuration, and signals’ impact. The
general-model utilized all subjects’ data sets for training and
validation purposes. This method is used for estimation analysis
in section 4.2 and sensitivity analysis of input in section 4.3.

Primarily, out-of-sample (OOS) evaluation was used for the
specific selection of training and validation sets. Specifically,
cross-validation (CV) is a method that comparatively divides the
databank into two sets of training and validation. K-fold CV
acquires k subdivisions having an equal amount of data from
the databank. Each subdivision is used as a validation set and all
other subdivisions as a training set for a regression process. So,
the consequent regression accuracy performance is determined
by the average k regression accuracy (Bollen and Gu, 2005).
For 17 subjects’ data sets, k was set to 17, and the training-
validation process was repeated 17 times. The average, maximum,
and minimum regression accuracy for each of the 17 training-
validation processes were reported in Figure 8. The K-fold CV
was used to assess EMG signals estimation in sections 3.5 and 4.2.

To solve the nonlinear least-squares problem of the mapping
model, the Levenberg-Marquardt backpropagation algorithm
was used. The backpropagation algorithm calculates the Jacobian
of the training performance concerning the weight and bias
variables of the network. The initial adaptive mu, mu decrease
factor, mu increase factor, and maximum mu value were 0.001,
0.1, 10, and 1e10, respectively. The training performance was
evaluated using the mean squared normalized error (MSE)
function. Parallel processing with the MEX 4 workers was used
to make the training process faster. The training time was limited
to 1-h, and the epoch (the number of passes of the entire training
dataset to the model) was set to infinity. The linear regression
of targets relative to outputs (R) was used as the mapping
performance in this paper. A PC with an Intel R© CoreTM i7-3370
CPU @ 3.40GHz and 16.0 GB of memory was used for training
the RNN model.

3.4. Preliminary RNN Configuration
Optimization
The estimation performance relies on the NARX network
configuration, consisting of the number of hidden layers nl, the
nodes in each layer nn, the input signal former values nu, and the
output signal former values ny. These configuration parameters

TABLE 1 | The optimization variables, limits, and steps of RNN configuration.

Variable Symbol Minimum Maximum Step

Number of input signal former values nu 1 10 1

Number of output signal former values ny 1 10 1

Number of hidden layers nl 1 3 1

Number of nodes in each hidden layer nn 10 50 5

depend on the nature of the input signals (biomechanical
signals) and the output signals (EMG signals). This research
tested different possible configurations and evaluated the
estimation accuracy.

For preliminary optimization of the machine learning model’s
configuration, all available biomechanical signals (joint angle,
velocity, acceleration, torque, and activation torque) were used
as the input signals. All the EMG signals were used as the output
signals. The input signal sensitivity and the estimation possibility
of the output signals were analyzed after the preliminary
optimization of the RNN configuration.

The training condition was limited to a maximum of 1-h and
200 maximum epochs. Different NARX network configurations
were tested to evaluate the mapping or pattern estimation of the
RNN model. The minimum and maximum optimization limits,
along with steps, are presented in Table 1.

3.5. EMG Signals Estimation
EMG signals were measured from 11 sites over the right arm
muscles. The goal of this research was to estimate EMG signals
from biomechanical signals. For the mentioned pick and place
motion in the sagittal plane, some of the muscles may not be
required for the mentioned motion. For evaluating the EMG
signals estimation possibility, each EMG signal was selected
as the output of the RNN model, and the estimation error
was calculated as an assessment criterion. This assessment has
been done using the general-model for comprehensive results
and conclusions.

3.6. Input Biomechanical Signal Sensitivity
Analysis
The joint angle, velocity, torque, and activation signal are the
variables in the mathematical muscle model (Winters, 1990).
To evaluate the sensitivity of EMG signals to input signals, the
mapping model was an artificial neural network (ANN) with a
similar configuration to the RNN (same number of hidden layers
and neurons in each hidden layer). The ANN was used instead of
the RNN since the evaluation of direct relationship is required for
the sensitivity analysis. The direct relation means that the model
is trained to map the input to the output without considering
the input and output signal history. Using an RNN for sensitivity
analysis has the same order of results but with higher regression
accuracy.We have provided the results of sensitivity analysis with
the RNN model for dominant signals in each phase.

The sensitivity analysis to input biomechanical signals was
done using a sequential backward selection algorithm for
evaluating the sensitivity and dominant signals. The sensitivity
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analysis algorithm is shown in Figure 6 and consists of the
subsequent steps:

1. Ignore the signal index i ∈ {N}, then use {N − i} of
biomechanical signals as the input of the ANN model and
record the mapping performance with index i.

2. If i < dimR {N} is satisfied, new i=i+1 and then step (1) is
repeated.

3. The signal index j with the lowest mapping error or highest
mapping performance is labeled as the least dominant
biomechanical signal and is deleted from the biomechanical
input pool (new {N} =

{

N − j
}

).
4. If the biomechanical pool is not empty, go to step (1).

3.7. RNN Configuration Optimization
The number of input signals was reduced using the information
from section 3.6. The number of output signals was decreased

FIGURE 6 | Schematic of the sequential backward selection algorithm for

evaluating the sensitivity analysis and dominant biomechanical signals for

estimating the EMG channels.

by employing the results of section 3.5. Since the input and
the output signals were optimized to the dominant and non-
negligible ones, the initial configuration was optimized according
to the new conditions of the input and output signals. The final
RNN configuration optimization was done using the best results
of sections 3.4 and 4.4.

4. RESULTS

The optimum configuration of the RNN model, the analysis of
dominant input signals, and the estimation possibility of the
EMG signals are presented in the following sections.

4.1. Preliminary RNN Configuration
The mentioned algorithm tested 1,701 possible configurations,
and the top 9 configurations are presented in Table 2. The best
performance occurred when the number of layers (nl) was 1,
not 2 or 3. Thus, the mapping of biomechanical signals to EMG
signals should be limited to a linear function. Secondly, the
optimal number of nodes in each layer (nn) was approximately
20 to 30. Fewer or extra nodes in each layer lead to lower
performance. Fewer nodes means a fewer number of weights
and biases, leading to lower regression accuracy. In contrast,
extra nodes in a model require more time and data to train
(Lee et al., 2018). Thirdly, the number of input signal former
values (nu) was between 3 and 6 which shows that the history
of biomechanical signals is important for pattern regression of
EMG signals. Finally, the number of the output signal former
values (ny) was required to be between 4 and 7 to give the
best performance for the mapping. The number of output signal
former values tries to model the dynamics of the EMG signals. It
shows that the current EMG signal value is related to the previous
EMG signal values. We have used the first RNN configuration in
Table 2 for the following evaluation processes.

An example of using the RNN model with the preliminary
optimized configuration for mapping the biomechanical signals
to EMG signals is shown in Figure 7. The validation subject
has not participated in the training pool and represents a full
prediction. As shown in Figure 7, the mapping has a good
prediction of EMG signals in terms of timing and pattern. The

TABLE 2 | Top performance of RNN model configurations.

Configuration Average regression (%)

nl nn nu ny Number of weights Inference time (µs) Training (14 Subjects) Validation (2 Subjects) Test (1 Subject) All

1 20 3 5 1,046 46 91.1 85.5 80.6 89.9

1 20 6 6 1,466 45 90.9 85.5 80.0 89.6

1 25 5 5 1,556 42 91.5 83.6 73.9 89.5

1 20 6 3 1,106 40 92.3 76.1 75.5 89.4

1 25 6 5 1,681 41 91.3 81.1 78.2 89.3

1 25 4 7 1,731 40 90.2 83.4 83.7 89.0

1 20 4 4 1,026 41 90.0 84.6 80.5 88.8

1 30 2 3 1,056 41 90.0 80.2 79.1 88.2

1 20 6 5 1,346 51 86.7 85.5 82.4 86.3
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FIGURE 7 | The performance of the preliminary configuration of InverseMuscleNET on test data to estimate EMG signals for 11 upper limb muscles.

subtle “off-pattern” observed may be due to insufficient data
regarding external forces, like the target reaction load, which
were not measured during the resting period of the experiment
(Whittaker et al., 2018, 2019).

4.2. Evaluation of EMG Signal Estimation
In Figure 8, the performance of biomechanical-EMG mapping
is shown for each EMG signal. The performance of the general
model has different results for each muscle. All regression
(training-and-validation) and 17-fold cross-validation accuracies
are shown in the top and the bottom of Figure 8, respectively.
Although the regression accuracies have minor differences
in both methods, the order of signal regression accuracy is
the same. Signal predictions for each muscle (Figure 8) are
shown from best to worst in the following order: Anterior
Deltoid (ADEL), Infraspinatus (INFR), Middle Deltoid (MDEL),
Pectoralis Major (PECC), Serratus Anterior (SERR), Upper
Trapezius (UTRA), Lower Trapezius (LTRA), Middle Trapezius

(MTRA), Supraspinatus (SUPR), Posterior Deltoid (PDEL),
Latissimus Dorsi (LATS). This result does not mean that
the dominant muscles, i.e., those primarily responsible for
movement, are in the mentioned order. Some dominant muscles
are located deeper under the skin, and recording with a
surface electrode is subject to error and inefficiency. Rather,
the order of dominant EMG contributions is based on the
experimental data, motion, and measurements. For example,
although the Latissimus Dorsi (LATS) EMG signal estimation
performance was the lowest, the RNN model still showed good
temporal predictions, i.e., following the shape of measured
pattern and timing.

4.3. Input Biomechanical Signal Sensitivity
Analysis
The results of the sensitivity analysis of the biomechanical signals
are shown in Table 3. The analysis started from phase 1, which
consists of all the biomechanical signals as the inputs. In the
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FIGURE 8 | The mapping performance of 11 EMG signals for the general-model. All regression (training and validation) accuracies are shown on the top, and the

K-fold cross-validation regression accuracies (average, maximum, and minimum) are shown on the bottom.

TABLE 3 | Sensitivity analysis of 5 input biomechanical signals.

Input signals

Phase Number of

inputs

Joint

angle

Joint

velocity

Joint

acceleration

Joint torque Activation

torque

ANN

regression (%)

RNN

regression (%)

order in

phase

Signals

order

Dominant

Signals

1 5 X X X X X 83.9 91.0

2

4 X X X X 81.6 85.8 1

4 X X X X 82.3 86.6 3

4 X X X X 83.8 87.9 5 5 Joint

acceleration

4 X X X X 82.6 87.0 4

4 X X X X 82.1 86.0 2

3

3 X X X 79.9 83.2 2

3 X X X 80.9 83.9 3

3 X X X 81.0 84.4 4 4 Joint velocity

3 X X X 79.2 82.5 1

4

2 X X 75.8 82.0 2

2 X X 76.0 82.9 3 3 Joint torque

2 X X 69.3 79.0 1

5
1 X 65.5 77.8 2 2 Activation

torque

1 X 58.2 76.9 1 1 Joint angle

second phase, the analysis used four input signals as the inputs.
The mapping performance minorly changed the evaluated
regression from 90.0 to 87.9% when the joint acceleration signal
was ignored. The joint acceleration, therefore, has aminor impact
on the accuracy. For phase 3, four biomechanical signals (all
except joint acceleration) were used for the mapping, and the
joint velocity signals had the most negligible impact. These
phases continued until all signals had been ignored for mapping.
The order of most essential signals to least dominant ones was
established from this protocol: joint angle, activation torque, joint

torque, joint velocity, and joint acceleration. According to the
mapping performance in Table 3, having all the biomechanical
signals for mapping is helpful but not necessary.

4.4. Final RNN Configuration Optimization
The final RNN configuration optimization utilized all five
biomechanical signals and 6 of the 11 EMG signals. The
configuration optimization was similar to section 3.4, but
the 6 EMG signals consisted of Anterior Deltoid (ADEL),
Infraspinatus (INFR), Middle Deltoid (MDEL), Pectoralis Major
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FIGURE 9 | The RNN training (blue), validation (green), and test (red)

performance (MSE) for 134 iterations. The exported model is based on epoch

34. The training stops after 100 iterations after the best validation performance.

FIGURE 10 | Error histogram indicating the difference between actual EMG

signal and estimated output.

(PECC), Serratus Anterior (SERR), and Upper Trapezius
(UTRA). These were selected according to the observations
in section 4.2. Suppose the rest of the signals (those five
with lower regression accuracy) are needed for specific clinical
purposes/applications for different tasks. In that case, more data
with different motions and tasks are required for training. The
training properties were similar to the previous step. However,
the maximum training time was set to 2 h, and the maximum
epoch was set to 200 times. The training could be stopped after
100 epochs if the validation performance had not changed.

In this case, the training was stopped after 134 iterations
instead of 200 iterations since the best performance occurred at
epoch 34 (Figure 9). The regression results for epoch 34 have
been shown in Figure 10. The error histogram in Figure 11

indicates the difference between the measured EMG signal and
the estimated output, which is primarily near zero and has
a normal distribution. The regression accuracy for training,
validation, test, and all sets are 91.0, 82.6, 88.9, and 89.2%,
respectively.

From the optimization, the number of hidden layers (nl) was
1. The machine learning model consisted of two layers, one
hidden layer, and one output layer. The number of nodes in the
hidden layer (nn) was 20. The number of input signal former
values (nu) was 3 and number of the output signal former values
(ny) was 5. Since the sample rate of all input and output signals

FIGURE 11 | Regression or scatter plot of training, validation, test, and all data

to RNN model.

was 50 Hz, the input signals and the feedback signals should
consist of 0.06 and 0.1 s of the vector input (containing current
and previous states).

For example, by feeding the biomechanical signals of the test
subject to the model and having the initial value of EMG signal
at 0 s, the estimation of 6 dominant EMG signals for 60 s has
been presented in Figure 12. As can be seen, InverseMuscleNET
with an optimized configuration could estimate the EMG signals
quite well. The different amplitude of signals shows that the
different subjects’ muscles have varying strengths. The similar
pattern of the estimated and measured signal indicates that
muscle activation follows a similar pattern. Since the EMG signals
have a stochastic behavior, time-varying nature, and are subject
to measurement error, it is impossible to reach 100% accuracy for
the estimation, and the achieved 90% regression is acceptable for
biomechanical analysis.

The model’s accuracy was slightly increased when using the
elbow joint angle, velocity, and acceleration in addition to the
previous shoulder joint angle, velocity, acceleration, torque, and
activation torque. The training, validation, test, and all regression
accuracy increased from 91.0, 82.6, 88.9, and 89.2% to 91.3, 83.3,
88.9, and 90.9%, respectively. The improvement is not much but
can help the accuracy of the estimation model. We propose using
the joint biomechanical variables relevant to the muscles that
impact them.

5. DISCUSSIONS

Optimal control and musculoskeletal modeling have been
studied as potential tools for functional rehabilitation and
sports evaluation. Despite significant progress, musculoskeletal
modeling has encountered some significant problems. The
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FIGURE 12 | The performance of final optimized InverseMuscleNET configuration on test data for the estimation of EMG signals from 6 upper limb muscles.

muscle within a musculoskeletal system is complex and
challenging to model, and the static optimization simulation
requires a time-consuming iterative problem solution based on
some assumptions (Williams and Constandinou, 2014; Bailly
et al., 2021). Altogether, model development and simulation
procedure are time-consuming, costly, and prone to error
(Gonzalez-Vargas et al., 2015). Thus, it is challenging to use the
model in clinical devices. Providing clinicians with a means of
estimating EMG activity without an invasive electrode setup is
the primary objective of this research.

This study intended to discover how to predict muscle
activations accurately and efficiently using a machine learning
model, specifically a recurrent neural network. Machine learning
is an instrument or model for solving complicated mathematical
problems without knowing the analytical relationship between
inputs and outputs (Rane et al., 2019). However, there are a
few disadvantages: it is challenging to determine the optimum
network configuration and train the model; obtaining a rich set
of input signals to solve the problem is also time-consuming.
The main goal was to obtain the muscle activation solution with
minor estimation errors and the fastest training convergence.

Recently, machine learning models have been developed to
estimate skeletal muscle tensions without explicit modeling of
the physical behaviors of muscles (Arjmand et al., 2013; Cecchini
et al., 2014; Vilimek, 2014; Dao, 2019; Rane et al., 2019).
However, an inverse muscle model has not been developed
using a machine learning model. An optimization problem
should be used to estimate the muscle activations since there

is no inverse dynamic model of the muscles. A new modeling
approach, which provides an inverse dynamic model of muscles,
is proposed. This RNN model can offer the ability to compare
the subject’s EMG signals via estimated activation signals. Thus,
clinicians can avoid EMG electrode setups in a laboratory
and use the InverseMuscleNET. This inverse model completes
the inverse dynamic simulation of the skeletal model for
biomechanical analysis, post-rehabilitation analysis, and sports
engineering/optimization. In addition, InverseMuscleNET can
be used within a forward dynamic simulation of the skeletal
model (Figure 13). In a forward dynamic simulation, the human
motor control can be implemented by nonlinearmodel predictive
control (Mehrabi et al., 2017). Other applications include
modeling, functional electrical stimulation control, assessment
and biofeedback, and biped robotic control (Gonzalez-Vargas
et al., 2015).

The inversemusclemodel was a NARXnetwork, selected as an
RNN learning model. The RNN includes a feedback connection
to provide memory capacity for time-varying data. Successfully,
Dao (2019) used an RNN for considering the dynamic temporal
relationships of the muscle forces for the first time. We have
shown that using an RNN could predict muscle activation by
using joint kinematics and kinetics without additional resources.

Moreover, the RNN model was used to estimate muscle
activation with fewer input signals in the sensitivity analysis
section. These fewer input signals demonstrated the flexibility
of the RNN model in the estimation and muscle model. This
model could be trained based on the availability of input data,
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FIGURE 13 | Schematic of using InverseMuscleNET within a forward dynamic simulation of the skeletal model for biomechanical analysis and sports

engineering/optimization.

consisting of joint angle, velocity, acceleration, torque, and
activation torque. It is noteworthy to mention that this RNN
flexibility could not be done with static optimization approaches.

Developing a machine learning model has some challenging
aspects, including (I) determining the optimal configuration and
(II) requiring a rich and representative dataset for training. We
have tested multiple topologies with the same training conditions
to determine the model topology’s optimal configuration. The
number of hidden layers (1), the number of nodes in each
layer (20), the number of input signal former values (3),
and the number of the output signal former values (5)
have been optimized to have the highest mapping accuracy.
Although having a model with more parameters may have
more accuracy, the model may have a delay and require more
data for training. Having fewer parameters in the trained
network allows the network to be saved and straightforwardly
used in real-time.

Forming a rich database for model training was established on
the data collection for a repetitive manual task from 17 healthy
right-handed young individuals (Whittaker et al., 2018, 2019).
Fourteen subjects’ data was used for training, two subjects were
used to validate the model, and one subject was used for testing
the model. Since the validation dataset consisted of 2 subjects,
we can be reasonably confident that the exported model was
not overfitting the training dataset (Ying, 2019) and is general

enough for assessing the upper limb motor task in question.
The training dataset consisted of 14 subjects’ datasets and is
enough for training and finding the general-model since the full
estimation has more than 90% regression accuracy. However,
as the dataset increases, the final model becomes more general,
reliable, and valuable. Since the data is recorded during object
manipulation in the sagittal plane, it is not certain that the model
can be used for other motions. The model is motion-based, and
for a general-model, a large amount of data is required.

Another strength of this study relates to the rich number
of involved muscles. Having access to 11 muscles provides the
opportunity to evaluate the estimation possibility. The dominant
and most accurate estimation occurred with the Anterior
Deltoid (ADEL), Infraspinatus (INFR), Middle Deltoid (MDEL),
Pectoralis Major (PECC), Serratus Anterior (SERR), and Upper
Trapezius (UTRA) for the described task and motion.

Analysis of using five biomechanical signals for the estimation
provides the possibility of sensitivity analysis. The order of most
essential signals to least dominant ones was as follows: joint
angle, activation torque, joint torque, joint velocity, and joint
acceleration. This result demonstrated that the estimation of
activation signals was relevant to joint angle, activation torque,
and joint velocity. The results from the sensitivity analysis concur
with previous classical muscle mathematical model studies. The
muscle pennation angle and muscle-tendon length have been
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found to be sensitive to the joint angle and velocity (Winters,
1990). The maximum muscle force was relevant to the joint
torque (Winters, 1990). Thus, the first three dominant signals
correspond to the primary variables in the classical muscle
mathematical model.

Since we found that the input signal and the feedback signal
should consist of 0.06 and 0.1 s of the vector input (containing
current and previous states) in the optimization of the RNN
configuration process, the estimation of EMG signals relies
on the history of the previous value of EMG signals and the
biomechanical signals.

The estimated and the measured EMG signals in Figure 12

showed that the designed RNN model, in some cases, had slight
differences. Occasionally, the measured EMG signals had small
amplitude differences from the estimated muscle activation.
However, the pattern of the estimated and measured signals is
similar enough for the final applications, which are simulations
or clinics. Sometimes, the measured EMG had high changes
while the estimated variable followed a curved path, but the
two signals had similar patterns. It is noteworthy to mention
that every single computational technique for muscle variable
computations has limitations in analytical expressions and suffers
from unrealistic assumptions in the muscle models. The model
parameters identified with measurements that are subject to
error, require an iterative optimization loop, and results in
estimated muscle activations that may not be correct (Norman-
Gerum and McPhee, 2018).

The main limitation of the mentioned model for inverse
muscle stimulation is the amount of training data. The machine
learning model depends significantly on training data, like the
human brain that tunes the neurons’ weights and bias using
motion and response. As far as we are concerned, there were
14 sets of input/target pairs from fourteen subjects, two to
three subjects’ data for validation, and one set for training.
The data consisted of shoulder flexion/extension movement (the
combination of external load, slow, and a fast motion), each
of them in 12 trials of the pick-and-placing task. Having more
data for more ranges of motion would facilitate a more general
model.

6. CONCLUSION

A model estimating the shoulder muscle activation was
developed using an optimized recurrent neural network. This

estimation was based on biomechanical (kinematic and kinetic)

input signals. This study suggests that the classical static
optimization of the dynamic model could be replaced with an
inverse muscle model using a machine learning model. This
approach could increase potential decision support tools for
functional rehabilitation with real-time estimation and muscle
activation or EMG signal tracking.
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