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The goal of this study was to investigate the effect of audio listened to through
headphones on subjectively reported human focus levels, and to identify through
objective measures the properties that contribute most to increasing and decreasing
focus in people within their regular, everyday environment. Participants (N = 62, 18–
65 years) performed various tasks on a tablet computer while listening to either no
audio (silence), popular audio playlists designed to increase focus (pre-recorded music
arranged in a particular sequence of songs), or engineered soundscapes that were
personalized to individual listeners (digital audio composed in real-time based on input
parameters such as heart rate, time of day, location, etc.). Audio stimuli were delivered
to participants through headphones while their brain signals were simultaneously
recorded by a portable electroencephalography headband. Participants completed four
1-h long sessions at home during which different audio played continuously in the
background. Using brain-computer interface technology for brain decoding and based
on an individual’s self-report of their focus, we obtained individual focus levels over time
and used this data to analyze the effects of various properties of the sounds contained
in the audio content. We found that while participants were working, personalized
soundscapes increased their focus significantly above silence (p = 0.008), while music
playlists did not have a significant effect. For the young adult demographic (18–36 years),
all audio tested was significantly better than silence at producing focus (p = 0.001–
0.009). Personalized soundscapes increased focus the most relative to silence, but
playlists of pre-recorded songs also increased focus significantly during specific time
intervals. Ultimately we found it is possible to accurately predict human focus levels
a priori based on physical properties of audio content. We then applied this finding
to compare between music genres and revealed that classical music, engineered
soundscapes, and natural sounds were the best genres for increasing focus, while pop
and hip-hop were the worst. These insights can enable human and artificial intelligence
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composers to produce increases or decreases in listener focus with high temporal
(millisecond) precision. Future research will include real-time adaptation of audio for
other functional objectives beyond affecting focus, such as affecting listener enjoyment,
drowsiness, stress and memory.

Keywords: artificial intelligence, audio, brain-computer interface, focus, human

INTRODUCTION

The Effect of Sound on Human
Experience
Sounds are all around us, from natural sounds like the wind, to
engineered sounds like music. It is well-established that sounds
have a major influence on the human brain and consequently,
human experience (Levitin, 2006; Sacks, 2010). Sounds can
reduce stress (Davis and Thaut, 1989), support learning and
memory formation (Hallam et al., 2002), improve mood (Chanda
and Levitin, 2013), and increase motivation (Salimpoor et al.,
2015). Sounds can also do the opposite and create aversive
experiences (Schreiber and Kahneman, 2000; Zald and Pardo,
2002; Kumar et al., 2012). One of the most significant effects of
sounds is to impact focus. Focus is commonly demanded by tasks
of daily living and work, and in these areas sounds experienced
as audio through headphones, earbuds or speakers offer a
safe way to increase focus levels and productivity. However,
sounds can be both beneficial or distracting and previous
results have been inconclusive in determining the reasons why
(de la Mora Velasco and Hirumi, 2020).

For example, it has been found that listening to music with
lyrics while reading or working can decrease concentration or
cognitive performance (Shih et al., 2012; Liu et al., 2021), while
several studies have shown oppositely that natural-occurring
sounds such as white noise, or highly composed sound such
as classical music, can be beneficial for increasing focus and
can even improve learning outcomes (Davies, 2000; Chou, 2010;
Angwin et al., 2017; Gao et al., 2020). Therefore, one interesting
question that emerges is: what are the specific properties of
an audio experience that affect human focus levels the most?
Additionally, studies have shown that the effect of audio is often
subjective, where whether one likes a given sound or not is a key
factor in its effect on their experience (Cassidy and Macdonald,
2009; Huang and Shih, 2011; Mori et al., 2014). Although this
finding about the subjectivity of experience of audio reappears
across many studies, psychophysical thresholds are known to
exist and there are clearly natural laws governing much of the
way humans hear and experience sound (Levitin et al., 2012; Nia
et al., 2015; Washburne, 2020).

The potential of audio alone to increase focus, and the
consumer demand for non-pharmaceutical tools that enable
individuals to enhance their own ability to focus has recently
led several companies (including Focus@Will, Endel, Brain.fm,
Mubert, Enophone, Melodia, AIVA, and others) to develop
audio content that is dedicated to increasing focus “on-
demand.” These new audio forms include elements of white
noise, music, and other sonic properties that are functionally

combined to increase a listener’s focus and maintain high
levels of focus over a long duration of time. One of the
challenges in this field is to figure out the physical properties
of sound that contribute to human experience the most
so that design principles can be defined correctly to create
audio that reliably achieves the goal of increasing focus,
opposed to the inverse of causing distractions and impairing
an individual’s ability to focus. Insights about audio properties
therefore have been sought by commercial groups alongside
academic groups in order to learn how to optimally enhance
human focus.

Many scientific studies have explored this question and
looked for the relationship between sound, music, and human
experience using objective measures that empirically assess
properties of audio and their emotional correlates. For example,
Cheung et al. (2019) found that pleasure from music depends on
states of expectation, such as a skipped rhythmic beat, which can
either be pleasurable or discomforting depending on the listener’s
specific circumstance. Sweet Anticipation (Huron, 2006) similarly
maps how music evokes emotions within a theory of expectation
and describes psychological mechanisms that are responsible for
many people’s mixed responses to audio of various types. Other
studies used machine learning methods to map from features of
audio signals to emotions (Yang et al., 2008; Vempala and Russo,
2012; Brotzer et al., 2019; Cunningham et al., 2020; Hizlisoy et al.,
2021). These machine learning studies to date have, however, only
aimed to predict emotions based on the limited valence-arousal
circumplex model, and as far as we know, no attempts have been
made to predict human focus levels exclusively based on audio
signal analysis.

One persistent obstacle to the field’s understanding has been
studies that rely on data with a low temporal resolution. Since
audio content and emotions can change fast, on the order of
tens of milliseconds, the current lack of modeling tools capable
of capturing quick, transient changes in human experience
that accompany changes in sound is a major hindrance to
progress (Larsen and Diener, 1992; Cowen and Keltner, 2017).
Commonly, for example, reports are based on data where there is
a single emotional label per song, while the song lasts 2–3 min
and throughout it there are emotional dynamics that change
dramatically. This mismatch of data can lead to conclusions being
drawn from inadequately small amounts of samples, and worse
than that, inaccurate emotional labels.

Attention and Emotion Decoding From
Brain Signal
Brain decoding technology offers an exceptional opportunity to
solve this issue, since it enables an estimation for the experience
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dynamics at the same time resolution as focus phenomena occur.
Using electroencephalogram (EEG) sensor data, which contains
electrical brain activity measured from the scalp (non-invasive)
on the order of hundreds of measurements per second, many
studies have established that it is possible to capture fast changes
in human emotions and experience, such as stress (Perez-Valero
et al., 2021), arousal (Faller et al., 2019), fatigue (Hu and Yang,
2017), and happiness (Lin et al., 2017). Several studies have
similarly shown the ability to capture focus and attentional state
changes, affirming that this information is present in EEG sensor
data (Jung et al., 1997; Hamadicharef et al., 2009; Micoulaud-
Franchi et al., 2014; Tuckute et al., 2021). While brain decoding
technology has been applied widely to study the effects of
different types of stimuli (e.g., visual, tactile, and auditory) on
human experience within a laboratory environment (Bhatti et al.,
2016; Shahabi and Moghimi, 2016; Asif et al., 2019), as far as
we know, it has not been applied to study the joint effects
of audio and focus at the high temporal resolution needed
to explain both phenomena as they occur in people’s natural,
everyday environments.

In recent years, progress in the development of consumer
brain-computer interface wearable technology such as non-
clinical, non-invasive EEG sensors (such as Muse, NeuroSky,
Emotiv, Bitbrain, etc.), which are intended for personal use,
has led to new research paradigms. Now it is possible to
use comfortable, affordable, wireless, and easy-to-use at-home
measurement devices to collect neuroscientific data “in-the-wild”
at a large scale, which opens up for the first time the opportunity
to measure brain responses from diverse audiences within their
natural habitats. Many of the wearable brain-computer interface
devices offer real-time decoding outputs that are derived from
the raw electrophysiological sensor data. These “off-the-shelf ”
decoding outputs include attention, relaxation, and other states
(Rebolledo-Mendez et al., 2009; Liu et al., 2013; González et al.,
2015; Abiri et al., 2019; Bird et al., 2019). It is important to
note, however, that although decoder algorithms have existed in
the market for consumer uses for several years, verifying their
reliability to accurately capture attention, valence, arousal, stress,
and other attributes of human experience at a high temporal
resolution, advanced research quality has remained a challenge.

Combining Brain–Computer Interface
Technology With Audio Tests to Decode
Focus
In the current study, we used a brain-computer interface
algorithm package, NeuosTM Software Development Kit (Neuos
SDK from Arctop Inc.), for processing data from portable
fabric EEG headbands (Muse-S from Interaxon Inc.) in order
to measure human focus levels in individuals performing tasks
at home while they listened to different audio content through
headphones. The ground truth focus levels we used were based
on each individual’s subjective, self-report. Since the Neuos SDK
product is a relatively new technology, we first evaluated the
validity of the focus outputs within the experimental conditions.
Then, once the algorithm outputs were found to be reliable and
accurate in this context, we use the focus data to compare effects

of different sound stimuli on individuals as they carried out
different tasks.

Next, we exploited the high temporal resolution of the
decoded data to map between raw audio signals and the focus
dynamics. Based on this mapping, we built a model that takes as
an input an audio file and predicts from the properties of sound in
the audio the corresponding focus levels that human listeners will
experience. This high resolution modeling enables us to compare
between new songs, various sounds, and between genres to gain
additional insights about the nature of audio stimuli that drive
human focus the most. These insights can help produce optimal
playlists to increase focus for general audiences, improve design
of custom soundscapes for work and learning environments, and
even adapt audio in real-time based on an individual’s focus levels
to allow them precise influence over their own mental state.

MATERIALS AND METHODS

Participants
Sixty-two participants (40 males, 22 females, 18−65 years),
completed four sessions over a single week at their own home.
All participants were recruited from an opt-in screening panel
and were distributed approximately evenly across the five major
regions of the continental United States (Northeast, Southwest,
West, Southeast, and Midwest). Only participants who reported
normal hearing, normal vision, or vision that was corrected
to normal with contact lenses, were included. We excluded
volunteers who reported using medication that might influence
the experiment and who reported neurological or psychiatric
conditions that could influence results. Participants were native
English speakers and a written informed consent was obtained
from each participant prior to their participation. Participants
received compensation for their time.

Paradigm
Tasks
Participants performed various tasks within a mobile Android
app (“Neuos Central” by Arctop Inc.) while listening to one
of three types of audio and wearing a brain signal measuring
headband (four-channel EEG Muse-S device by Interaxon Inc.).
Each participant received a kit at their home by mail that included
all the equipment needed to participate, including over-ear (Sony
Group Corporation) headphones, headband (Interaxon Inc.) and
tablet computer (Samsung Electronics Co., Ltd.) with the mobile
app installed. Participants recorded four 1 h long sessions, while
listening to different audio types. Sessions included 30 min of a
“Preferred Task” – a task chosen by the participant – followed
by short tasks (“calibration tasks”). These short tasks included
video games (Tetris), math problems (Arithmetics), and word
problems (Creativity) that were used to calibrate the sensors to
the individual. Participants were assigned to groups according to
a pseudorandom schedule that controlled for potential sequence
effects of the tasks and different audio types (Figure 1). The
short tasks calibrated the Neuos SDK decoding algorithms to a
validated performance level for each participant and afterwards
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FIGURE 1 | Schematic illustration of the paradigm in each recording session. Each session started with 30 minutes of a task selected by the participant (“Preferred
Task”), followed by 3 min of arithmetics exercises, 3 min of a creativity task, and two levels of Tetris the video game (each level lasted 1 min regardless of
performance). After each task, participants answered a survey where they reported on aspects of their experience (e.g., focus, enjoyment, and stress) using linear
scale sliders from “Not at all” (0) to “Very” (1). The short tasks were used as calibration tasks and the “Preferred Task” was the test task.

the individually validated model was used to measure each
participant’s focus level across the Preferred Task.

Participants were instructed to choose a Preferred Task that
they could perform in a seated position while listening to audio
through the headphones, and which they would be happy to
repeat in all four sessions. For example, Preferred Tasks that
were chosen included working, reading, knitting and solving
Sudoku puzzles. At the end of each task the participants self-
reported their experience through a survey in the app which used
linearly scaled slider buttons to quantify experience along several
dimensions (e.g., focus level, enjoyment, stress, motivation, etc.).
For the Preferred Task, the survey included reporting on their
focus level during the first and second half of the task separately,
resulting in six self-reported quantitative focus labels per session
(Preferred Task: two labels, arithmetics: one label, creativity: one
label, tetris: two labels).

Audio Stimuli
Each participant experienced four audio conditions over the
4 days of the study: two music playlists by leading digital service
providers Spotify and Apple (downloaded September 2020), one
personalized soundscape engineered by Endel, and silence (no
audible sounds). We selected Spotify’s “Focus Flow” playlist and
Apple Music’s “Pure Focus” playlist to represent the category
of pre-recorded audio designed to increase listener focus. For
soundscapes we selected the mobile app Endel to represent the
category of real-time, engineered audio that contains a mixture of
noise and musical properties. The Endel app “Focus” soundscape
was used by each participant on their own mobile device. All
audio conditions were instrumental and did not include singing
or any audible lyrics. For the condition of silence, participants
wore headphones exactly as they did in the audio conditions but

no music or audible sounds of any kind were played and no
soundscape was generated – participants simply completed the
session in a quiet environment.

Data Processing
Data Acquisition
While participants were listening to audio stimuli and engaging
in the experimental tasks, their electrical brain activity was
recorded using a fabric electroencephalograph (EEG) headband
that was wireless and weighed 41 g (Muse-S device by Interaxon
Inc.). The headband included four dry EEG sensors (sampling
rate: 256 Hz), photoplethysmography (PPG) sensors (for heart
rate) and motion sensors (gyroscope, accelerometer). The brain-
measuring EEG sensors were located on the scalp at two frontal
channels (AF7 and AF8) and two temporal channels (TP9
and TP10), with the reference channel at Fpz. The headbands
were put on by participants themselves with the assistance of
a quality control screen in the app that started each session
by giving participants real-time feedback on the signal quality
of their headband and made it easy for them to adjust the
headband appropriately to acquire the optimal signal (Figure 2).
No technicians or other support staff assisted in the placement
of the headbands – the process was completely automated by
the in-app prompts within the “Neuos Central” app, freeing
the participants to complete sessions at any time or place
of their choosing.

Brain Based Models of Focus
Brain decoding algorithms designed for real-time brain-
computer interfacing (Neuos SDK) was used to transform raw
sensor data into predicted focus dynamics with a time resolution
of 5 Hz (Figure 2). The short tasks (games, word and math
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FIGURE 2 | Schematic illustration of the data processing pipeline. Data acquisition included at-home recordings of four sessions, each with a different background
sound type. Arctop’s Neuos SDK brain decoding technology package was used to predict the focus dynamics at a rate of 5 Hz. Obtaining the brain decoded focus
dynamics synchronously with the sound content enables comparison of focus levels correlated with different physical properties of sound.

problems) were used for calibration of the sensors to the
focus dynamics of each individual, and then a calibrated model
per participant was applied on the Preferred Task data across
all days. The full analysis procedure included data exclusion,
preprocessing, feature extraction, and applying machine learning
models to transform raw data features to decoded focus dynamics
is explained below.

Data Exclusion
Since brain activity and survey data was collected in participants’
own homes, as a quality control step before preprocessing we
first validated the data with respect to headband positioning
(to confirm it was correctly placed), survey responses (to make
sure participants followed the instructions properly) and internet
issues (which occasionally resulted in missing measurements).
This procedure led to 11 participants data being excluded from
further analysis due to the following reasons:

1. Three participants were excluded due to misplacement
of the headband which caused excessive noise in
their recorded data. To identify the misplacement
we simply extracted the standard deviation of the
raw signal (SD > 500 reflects a misplaced channel).
Supplementary Figure 1 shows three examples of the
raw data of problematic participants vs. three examples of
valid participants.

2. Two participants were excluded for not following the
instructions correctly during the Preferred Task.

3. Six participants were excluded due to persistent internet
issues which caused missing or disrupted data.

After data exclusion, a total of 51 participants (mean age = 36,
SD = 8, 17 females and 34 males) were included in the
experimental analysis.

Preprocessing
A band-pass filter (0.5–70 Hz) was applied to each channel
together with a notch filter (60 Hz) to remove line noise. During
the performed tasks, 5 s of EEG data segments were extracted
from the filtered signal using a sliding window with a stride of
200 ms (96% overlap) to obtain a time resolution of 5 Hz of
accurate focus measurements reliably across each task. Headband
motion sensor (gyroscope) data were used to detect the motion
state of each segment (static, medium or high movement) and
segments with substantial movements (medium or high) during
the short calibration tasks were automatically excluded. During
the Preferred Tasks, all segments were included regardless of
movement state in order to obtain continuous dynamics for
the full 30 min.

To validate that the differences in responses to each audio
stream were not due to differences in movement patterns evoked
by the audio, we compared the motion statistics between audio
types. Supplementary Figure 2C shows that during the Preferred
Task, participants were stationary 91% of the time and similarly
for all audio types (Supplementary Figure 2D). To address eye
blinks, which are a normal human function that can corrupt EEG
data, we calculated the number of blinks in each EEG segment.
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Supplementary Figure 2A shows the histogram of the blink
rate across participants (average blinks per minute = 16 ± 6).
Supplementary Figure 2B shows similar rates of eye blinks for
all audio streams, ruling out the possibility that the differences in
the effects of audio were due to differences in eye blink patterns
which may have introduced artifacts to the decoded data.

Feature Extraction
From each EEG segment (epoch) a total of 124 features were
extracted, then to handle outliers and avoid extreme values each
feature underwent a programmatic trimming procedure that
denoised high and low values (extreme values were defined as
above or below 2 SD from the mean). The following features were
used:

a. Average power spectrum features – each segment was
transformed to the frequency domain using Welch
method, and for each channel, the average power in
different frequency bands was calculated (0.5–4, 4–8, 8–
12.5, 12.5–30, 30–47, 52–70, and 30–70 Hz) – a total of 4
channels× 7 bands = 28 features.

b. Ratios between average power for spatial symmetric
channels (frontal: AF7

AF8 and temporal: TP9
TP10 ) – a total of 2

pairs× 7 bands = 14 features.
c. Power spectrum interactions – the power spectrum ratio

between bands ( alpha
delta , beta

theta , theta
alpha (Barachant, 2017) and

engagement index ( beta
alpha+theta ) (Pope et al., 1995) – a total

of 4 channels× 4 interactions = 16 features.
d. Pairwise Pearson correlations between channels in the

above frequency bands – 6 pairs× 7 bands = 42 features.
e. Time domain features – for each channel, the first four

moments (average, standard deviation, skewness, and
kurtosis), entropy and number of zero-crossing points –
total of 4 channels× 6 types = 24 features.

Machine Learning Models
Average features were calculated across each short task (games,
word and math problems) for all valid participants and from all
days, resulting in 816 focus-ranked tasks (51 participants × 4
sessions × 4 ranked subtasks per session). Then, in a cross
validation procedure, multiple random forest regression models
provided by the Neuos SDK software package were trained on
random subsets of participants (80%) to predict the self-reported
focus based on the computed features. For each participant,
from the subset of models for which their data were not part of
training, the single best model was selected based on the Pearson
correlation between the model prediction and the self-reported
focus by that participant during the short calibration tasks. The
selected regression model was then applied to EEG segment data
during their Preferred Task 30 min recordings to get a continuous
brain-decoded gradient of focus dynamics that was accurate.

A Gaussian filter was used to smooth the dynamics of the
brain-decoded focus gradient and all of the presented results and
statistical analysis in this paper are projections of the Gaussian
filtered model outputs on the Preferred Task which was not
part of the training and selection process for each participant.
Figure 3 shows the resulting brain decoded focus levels of two

representative participants across all four sessions during the
Preferred Task period. Model performance was evaluated using
Pearson correlation coefficient between the self-reported focus
and the brain decoded focus values after thresholding the values,
with the area under the ROC curve for binary classification of
low/high focus (Figure 5).

Electroencephalogram signals are non-stationary and can
change dramatically over time (Haartsen et al., 2020; Padilla-
Buritica et al., 2020; Yang et al., 2021). To validate that the
obtained focus dynamics were not influenced by the non-
stationarity of the EEG signal or other forms of signal drift
that can occur with electrophysiological measures, we compared
the averaged focus levels across all sessions during the first
15 min of the Preferred Task to the last 15 min (Supplementary
Figure 3). We found there was no significant difference between
the segments and concluded that the signal processing methods
were robust to this form of signal artifact.

Statistical Methods
For comparisons between average focus levels in response to
the different audio streams, we calculated for each participant
(N = 51) the median focus level while performing the Preferred
Task and conducted a one-way repeated measures ANOVA
(analysis of variance) test. Then, if p < 0.05, paired t-tests
were applied post hoc to compare between pairs of audio
streams using the Holm–Bonferroni correction. Time series
statistical tests were applied to compare focus level dynamics
and discover specific time periods where there was significant
difference. A paired t-test was applied to each second between
focus levels of two audio streams and the p-values were then
corrected for multiple comparisons by setting a threshold for
a minimum significant sequential time-samples. The threshold
was determined by random permutations (1000 iterations)
of participants’ conditions and repeating the statistical test,
resulting in a distribution of significant sequential time samples.
The threshold was set as the 95% percentile of the resultant
distribution (Broday-Dvir et al., 2018).

Audio Signal Decomposition and Feature Extraction
The pre-recorded music playlist conditions (Apple and Spotify)
provided raw audio data that we used to obtain sound property
dynamics in the time and frequency domain. These dynamics
could then be correlated with the obtained focus dynamics
as averaged across participants. Soundscape audio content and
silence conditions were not used in this analysis because
the soundscapes were produced in real-time personally for
each participant, which limited the ability to apply sound
property analysis appropriately across the data set, and the
silent condition yielded no sound features (no microphones
were used during the session from which miscellaneous
sounds might have otherwise been extracted). The audio
features were calculated for each playlist using Python’s library
pyAudioAnalysis (Giannakopoulos, 2015), for example, the
sound signal energy, spectral entropy, and chroma coefficients
were extracted. The features were calculated in short-time
windows of 50 ms with a sliding window of 25 ms. Basic statistics
were then calculated over the sound features in windows of 30 s
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FIGURE 3 | Brain data based focus model dynamics of two representative participants during the Preferred Task performed at each of the four sessions. Each row
represents a session with a different sound stream playing in the background as participants perform their chosen task. Each session included 30 min (x-axis = time
in minutes) of a “Preferred Task” over which their focus level (y-axis = decoded focus) was measured. Participant 29 (A) was reading while Participant 45 (B) was
working.

(e.g., mean and SD), resulting in 136 sound properties (link to
full list). To enable mapping of audio features to the brain model,
the brain decoded focus levels were averaged across participants
and averaged in corresponding 30 s windows (Figure 4) to obtain
a singular collective dynamic that could be used to predict focus
from audio content with the same number of samples as the audio
feature properties.

Obtaining the Sound Decoded Focus Model
To map the relationship between properties of the audio
heard and focus levels measured directly from the brain, we
applied principal component analysis (PCA) to reduce the
dimensionality of the audio features (using 33 dimensions
ultimately, which explained 95% of the data variance). We
then trained a linear regression model to map between the
transformed audio features and the averaged brain decoded
focus levels. The training was done using backward features
elimination where in each iteration the component with the
smallest weight on average was eliminated. To evaluate model
performance, training was done with a stratified cross validation
procedure in which we divided the data set to training
and validation according to the songs played (to avoid time

dependency issues between the sound features). A total of 18
different songs were played during the pre-recorded playlists
(8 songs for Apple, 10 songs for Spotify). In each iteration, 14
songs were used in training and 4 as validation (77/23%). For
each sample and song, the audio decoded score is the average
model predictions calculated across the models it was part of in
the validation set.

RESULTS

Brain-Measured Focus Levels Accurately
Reflect Self-Reported Focus Levels
After calibration tasks established an initial model for each
participant, and before comparing focus levels elicited by the
different audio types, we validated that the underlying brain
decoding technology was accurate and correctly calibrated by
comparing between the brain-based focus predictions and the
self-reported focus values during the test task (the “Preferred
Task”). Figure 5A shows a histogram of the model performance
per participant. The model is evaluated based on the AUC
score (of the ROC curve) for prediction of self-reported focus
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FIGURE 4 | Diagram demonstrating the framework for correlation of time-series focus values with sound properties. (A) Example of a recorded brain data in
microvolts (single channel of EEG) segment, which after applying the preprocessing and trained models on 30 min of recordings, transforms to the brain decoded
focus dynamics [top (C)]. (B) Examples of a sound segment in decibels taken from one of the songs. [Bottom (C)] The sound features (y-axis) dynamics during
30 min of recordings (x-axis).

FIGURE 5 | Validation of focus measurements derived from brain data. (A) Histogram of focus models performance on the test task per participant (N = 51),
evaluated using the area under the ROC curve (AUC-ROC). Black dashed line marks chance level (0.5). (B) Average focus levels per preferred task events vs.
self-reported focus resulted in Pearson correlation of 0.6. Inset shows ROC curves for different values of self-report threshold. (C) Confusion matrix after thresholding
the focus score predictions and self-report. Classification scores for two-classes (low focus vs. high focus) are AUC = 0.87 (area under ROC curve), accuracy = 0.8.
(D) Average brain decoded focus levels vs. average self-reported focus across the four sound types.
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TABLE 1 | Results of a one-way repeated measures ANOVA performed on each
subgroup, comparing the average brain decoded focus levels of each sound
stream during the Preferred Task.

Group N F p

All 51 4.28 (3,150) 0.006

Working 26 3.74 (3,75) 0.014

Not working 25 1.91 (3,72) 0.14

Age >36 26 1.81 (3,75) 0.15

Age <36 25 6.97 (3,72) <0.001

Sound most significantly affected those below 36 years old.

during the Preferred Task (low-high focus) where the chance
guessing level is 0.5 (black dashed line). The average result across
participants obtained was <auc> = 0.83 (N = 51, SD = 0.19), a
strong validation of the brain-measured focus accuracy.

When aggregating tasks from all participants, the Pearson
correlation between the brain decoded focus model and the self-
reported focus was Corr(414) = 0.6, p < 10−4 (Figure 5B). The
inset in Figure 5B shows the ROC curves for different values of
self-reported threshold and the confusion matrix for one of these
thresholds (0.4) resulted in an accuracy score of 0.8 (Figure 5C).
Figure 5D shows the average brain decoded focus level for each
audio type vs. the average self-reported score.

Soundscapes Induce Higher Focus
Levels Compared to Silence
Using the validated focus models which output five
measurements per second (5 Hz), we then compared between
the average focus levels elicited by the audio listed to during the
Preferred Task. The background audio condition was found to
have a significant effect (top row in Table 1, F(3,150) = 4.28,
p = 0.006, statistical methods for details) on the elicited focus level
and the post hoc tests [Holm–Bonferroni correction] revealed
that streaming soundscapes (Endel app) were significantly higher
compared to silence [Figure 6A1 and Supplementary Table 1;
M = 0.090, SE = 0.027, t(50) =−3.38, p = 0.008], while streaming
music using Apple or Spotify did not have an effect [Apple:
t(50) =−2.37, p = 0.11, Spotify: t(50) =−1.24, p = 0.65].

For 35.3% of participants the soundscape session produced
their highest focus level, while for 27.5% of participants the
Apple playlist produced their personal highest focus level. For
19.6% of participants Spotify was best for producing focus and
for 17.6% silence was (Figure 6A2, the details sorted focus levels
per participant are shown in Supplementary Figure 4). To gain
a better understanding of the conditions where audio affected
focus, we next split the participants into subgroups of interest and
repeated the statistical analysis. We first asked whether the focus
level difference is task dependent. During the Preferred Task,
51% of the participants (26) chose to work, while the remainder
(49%) read a book (29.4%), played games (9.8%), or performed
other various tasks (e.g., knitting, 9.8%). To assess the effect of
audio on focus levels during these different tasks, we split the
participants to the ones who worked and those that did other
tasks. We found that for the “working” group, the focus level
elicited by Endel soundscapes was higher compared to silence

[Figure 6B; M = 0.12, SE = 0.04, t(25) = 3.26, p = 0.017], while
for the “not-working” group there was no difference [Figure 6C
and Supplementary Table 1; M = 0.06, SE = 0.04, t(24) = 1.552,
p = 0.447]. These results suggest that the focus level differences
between Endel and Silence are task-dependent, where audio
was particularly beneficial for specific types of tasks, namely,
“working.”

We next split the participants into two age groups according
to the median age (36 years). We found that for the younger
participants (age < 36, N = 25), all audio types were superior
to silence for producing elevated focus levels [Figure 6E and
Supplementary Table 1; M = 0.14, 0.13, 0.12, SE = 0.04, 0.03,
0.03, t(24) = 3.79, 4.49, 3.67, p = 0.004, 0.001, 0.005 for Endel,
Apple, and Spotify, respectively] while for the older participants
(Figure 6D; age > 36, N = 26), there was no difference between
audio and silence. The focus level differences were therefore
found to also be age-dependent.

Time Series Analysis of Focus Dynamics
Reveal Differences Between Audio and
Silence
Exploiting the high temporal resolution of the focus
measurements, we compared the focus dynamics to each
audio stream that played during the 30 min of the Preferred Task
(Figure 7 and Table 2). When comparing Endel’s soundscapes
vs. Silence (Figure 7A), we found that the focus level elicited
by Endel’s soundscape was higher 87% of the time, a separation
whose significance started after 2.5 min of listening. In addition,
although on average there was not a significant difference, the
focus level elicited by Apple’s playlist was higher than Silence
60% of the time, starting at 12.5 min (Figure 7C), and the focus
level elicited by Spotify’s playlist was higher than Silence 27% of
the time, starting at 17 min (Figure 7B). Focus elicited by Endel’s
soundscape was higher than Spotify’s playlist in 37% of the time,
starting at 6 min (Figure 7D).

Focus Levels Can Be Predicted by
Properties of Audio
Seeing that background sound had an effect on focus levels, we go
further and ask whether music and soundscapes can be composed
according to a formula to increase focus levels. Meaning, can we
understand which audio properties drive focus well enough to
predict focus levels from exclusively an analysis of the properties
of the sounds within the audio content?

Leveraging the high temporal resolution of the brain
measurements, we generated a prediction model which predicts
the brain-based focus level from features extracted from the audio
signal alone. Raw audio files containing the Apple and Spotify
sessions were used to extract different sound properties with a
running sliding window of 30 s. The personalized soundscape
session (Endel) was not used in this analysis because the real-
time streaming did not allow saving the raw audio files that
were consistent across participants. We combined multiple audio
features to generate an audio data based model that predicts focus
levels (see section “Materials and Methods”).
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FIGURE 6 | Comparison of the brain decoded focus during the Preferred Task while listening to different sounds. (Top row) Average focus levels for each sound
stream during the Preferred Task for each group of interest, including statistical results. Error bars are standard errors. (Bottom row) Distribution of the best session
(highest focus on average) for each participant per group. The groups of interest are: (A) all participants (51), (B) participants who were working during the Preferred
Task (26), (C) participants who were not working (25-reading, knitting, playing, etc.). (D) Participants above 36 (26). (E) Participants below 36 (25).

FIGURE 7 | Comparing brain decoded focus dynamics during the 30 min of the Preferred Task. Each subfigure shows a comparison between two sound streams,
while the gray areas are the timings with a significant difference (p < 0.05 corrected, see statistical methods for details).
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TABLE 2 | Summary of focus time dynamics comparison, showing for each pair
the percentage of time and time segments with significant difference (where
100% = 30 min).

Pair Significant
difference (%

session)

Significant
segments
(minutes)

Endel-Silence 87 2.5−28

Apple-Silence 60 12.5−30

Spotify-Silence 27 17.5−25.5

Endel-Apple 0

Endel-Spotify 37 6−17

Spotify-Apple 0

Figure 8 shows the audio model performance in predicting
the brain decoded focus levels. As explained in section “Materials
and Methods,” Figure 8A shows the validation correlation
and the training correlation for the backward elimination
procedure, showing the best correlation on the validation set
(<corr> = 0.72) is with four PCA components (PC1, PC2, PC9,
and PC16). In addition, using only a single component (PC1)
yielded a very close result (<Corr> = 0.71). The distribution
of these correlations can be seen in Figure 8B. Comparing the
brain decoded focus scores to the average predicted scores of
each sample (across models the sample was part of the validation
set), yielded a correlation coefficient of Corr(274) = 0.68, p < 1e-
5, and Corr(16) = 0.79, p < 1e-4 when averaging the samples
within each song (black points, Figure 8C). Using the songs
scores, one can apply these prediction models to assemble more
successful playlists for enhancing focus based on existing songs.
Figure 8D shows that if we threshold the sample scores to output
a binary prediction (low/high focus), the audio model reaches
87% accuracy in predicting the brain based focus (area under
ROC curve = 0.91).

For visualization of the decoded dynamics during the 30 min
of the Preferred Task, we next trained the audio model using all 18
songs (without cross validation) and the four PCA components
as features and projected it on the Apple (Figure 9A) and Spotify
(Figure 9B) sessions.

Analysis of Audio Properties Can Be
Used to Understand Song Performance
To gain additional insights about the effects that different audio
types have on human focus, we used the trained audio model to
infer focus values for songs and sounds which were not played
during the brain recording experiment. Meaning, we obtained
a focus score and dynamics for chosen songs based solely on
the properties of the sounds they contained. Here we selected
audio examples that challenged the validity of the audio model
based on their categorical exclusion from the brain recording
experiment. A future approach can include these different
genres as controls for further brain measurement validation
studies. For example, soundscapes which are not personalized
(taken from the playlist: “Focus: Calm Clear Morning”), natural
sounds which are commonly used for increasing focus (such
as white noise, waves, rain, taken from: https://mc2method.

org/white-noise/), and popular songs from other music genres
(classical music, electronic, pop, rock, jazz, and hip-hop)
were used.

Figure 10A shows the predicted focus score based on the
audio model which took into account only the properties of the
audio itself. Songs are sorted from the highest focus evoking song
(Endel – Three No Paradoxes) to the lowest (Dr. Dre – What’s
The Difference). The top two songs are Endel soundscapes which
are not personalized, a finding which strengthens our main result
since it implies that the high focus scores elicited by Endel’s
soundscape were not solely a byproduct of personalization
but also related to the core audio content the personalized
compositions were created from. Figure 10B shows the sorted
focus scores averaged across genres, where notably sounds from
classical music and natural sounds contained properties that
predicted the highest focus levels. In contrast, pop and hip-
hop songs predicted relatively low focus scores. Although we
do not have ground truth focus labels for these songs based
on real human brain data, given the relatively high scores of
the audio which were known to have generated increased focus
objectively in the experimental data, we can conclude that there
is a consistent validity to the model. Future research can gather
ground truth labels for these songs and evaluate the model
mathematically in this context.

Analyzing the average within-song variance across different
genres revealed that the model predicts the largest variance on
average for electronic sounds (Figure 10C), while the lowest
variance was found for natural sounds. The variance can be
interpreted as a range of focus dynamics, where the focus
dynamics of the electronic sounds are observed to change
dramatically during a given song (Supplementary Figure 5),
confirming the preference for a tool which outputs dynamics with
a high temporal resolution when studying such audio content
and not the oversimplification of post-song surveys or other low
resolution methods. Figures 10D,E show the focus dynamics for
the song with the lowest focus evoking score and the highest. The
dynamics for all songs can be seen in Supplementary Figure 5.

DISCUSSION

“The soundscape of the world is changing. Modern man is
beginning to inhabit a world with an acoustical environment
radically different from any he has hitherto known” said the
composer R. Murray Schafer, presaging the time we live in now
when the sounds available to us continue to multiply by the
day. As we have an increasing number of options to modulate
our auditory lives by, a handful of take-aways from this study
standout:

Objective, Brain-Based Measurement of
Focus Is Possible in Everyday
Environments
Although the effects of audio on the human brain can be subtle
in measured brain signals when judging by the changes produced
in raw electromagnetic currents, they are robust and highly
quantifiable with effectively trained algorithms, as shown here.
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FIGURE 8 | Results of predicting brain decoded focus from audio features. (A) Training and validation correlations vs. number of PCA components used as audio
features, using backward elimination in each iteration the component with the smallest weight was eliminated. (B) Histogram of the validation correlations using four
PCA components (PC1, PC2, PC9, and PC16). The average validation score is 0.72. (C) Brain decoded focus (y-axis) vs. audio decoded focus (x-axis) for all
samples and average per song. The audio decoded scores were calculated across iterations they were part of the validation songs. (D) Confusion matrix after
thresholding the focus predictions to classify between low and high focus. Classification accuracy obtained: 88% (area under ROC curve: 0.91).

FIGURE 9 | Comparison of focus model dynamics. Smoothed dynamics of brain decoded focus (dark blue) and audio decoded focus (light blue), during 30 min of
the Preferred Task for Apple (A) and Spotify (B). The audio decoded dynamics here was obtained using a model trained on all data (all songs).

Classifying emotional and attentional responses is particularly
useful when done at the sub-second temporal resolution since
it allows one to track dynamics continuously over time at the
same timescale as the brain functions that impact perception
and behavior. Furthermore, sub-second resolution into reactions
that occur within ecologically valid conditions, like a participant’s
home, model the real world in an everyday manner that is missing

from experiments that take place within laboratories or other
controlled test locations.

In this study we demonstrated that brain decoding algorithms
processing data from a non-invasive, consumer brain-computer
interface device, are able to deliver sub-second temporal
resolution with a high degree of accuracy (approximately
80% match to self-report, Figure 5C) at people’s own homes.
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FIGURE 10 | Projecting new songs into the trained audio model. (A) Sorted focus scores per song obtained by the audio model, colored by genre. (B) Average
focus score per genre, sorted from the genre with the lowest score (hip-hop) to the highest (classical). (C) Average focus variance per genre, sorted from the genre
with the lowest variance (natural) to highest (electronic). Focus dynamics for the song with the lowest focus score (D) and the highest (E).

Since there are inherent biases in subjective self-reporting for
experience (Kahneman et al., 1999; Mauss and Robinson, 2009),
when mapping physiological signals to self-reported experiences,
as done here, there is an upper boundary for accuracy beyond
which any model must be deemed to over fit self-reported
values and incorrectly represent the information observed in
physiological signals. According to a recent review (Larradet
et al., 2020) which summarizes multiple peer-reviewed studies
that predict self-reported emotions from physiological signals,
the average accuracy reported was∼82%. Given this average and
the experimental conditions here – a small number of sensors,
at home recordings, simple self-report scales – the achieved
accuracy was satisfactory for drawing deeper conclusions on
properties of audio since it aligns with state-of-the-art emotion
recognition accuracies in the context of audio as a stimulus
used elsewhere in controlled laboratory environments (Tripathi

et al., 2017, 81.41 and 73.35% for two classes of Valence and
Arousal, respectively).

A key benefit of the current approach is that this method of
high temporal resolution brain measurement can be performed
reliably outside of traditional laboratories. In this current study
not a single laboratory or facility was used for data acquisition.
Instead, 18–65 years olds across the United States received
a kit in the mail that included a head-wearable device, and
they experienced music playlists and personalized soundscapes
while they recorded their own brain signals in the comfort
of their own home at the times of their choosing. In other
words, all participants were in their natural habitat, wearing
headphones and a headband that did not interfere with their
experience, and they went through the study at their own pace,
factors which altogether lend the research a rare degree of
ecological validity.
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Focus Is Increased Most by Personalized
Soundscapes
Within the at-home environment of this study, personalized,
engineered soundscapes were found to be the best at increasing
participant focus levels (Figure 6A). After 2.5 min, on
average, listeners of the personalized soundscapes experienced
a meaningful increase in their focus level, while for music
playlists it took approximately 15 min to gain a similarly
appreciable increase (Figure 7). The audio effect on focus levels
was found to be task dependent, where soundscapes increased
focus levels most in participants who were working (Figure 6B).
For participants who were not working, no significant difference
was found. This result suggests that willful orientation of
attention toward work tasks may have created a brain context
especially suited to modification by audio. While engaged in
work, participants may also have been more prone to distraction
and thus more impacted by the positive uplift of audio compared
to when engrossed in reading or playing a game which may have
contained more intrinsic motivation to stay focused on.

One limitation of this current study is that it did not allow
us to disentangle the effects of personalization of sounds on
the listener, since pre-recorded soundscapes were not tested.
Equivalently, a comparison of personalized soundscapes to
personalized music playlists, where audiences either made
their own playlist for focus or were allowed to skip songs
whenever they wanted, will likely contribute to a more complete
understanding of how audio properties correlate with emotion
and attention changes. Follow-up research will incorporate these
variables. An additional limitation was the inability to reach
conclusions regarding gender-dependent effects which was at
least partially due to this study’s slightly imbalanced data set.
Despite efforts to recruit a balanced group of participants, which
included even outreach to all genders, enrollment was done on
a rolling basis as necessitated by the data collection timeline for
the research and ultimately the female subgroup was statistically
underpowered in the analysis.

In future research, especially for closed loop, real-time
testing, balanced participant sets will be important for reaching
more detailed conclusions. Future research should also address
whether any effects were introduced by the current study design’s
sequence of tasks, since here we did not randomize the order
of Preferred Task and validation tasks. The Preferred Task was
always first and validation tasks after it intentionally, in order to
allow for randomization of the background sound stimuli during
the Preferred Task session which was done across four groups
in this study. In future research it will be helpful to randomize
the task order also to compare how different audio affects focus
levels on different tasks according to a given task’s place within a
sequence of tasks.

Audio Preferences and Focus Effects
Vary Between People
It is important to emphasize that the results reported here are
audio effects on the average focus levels across a United States
based population, and that there was a large variance in this
effect between participants. Evidence for this large variance can

be seen in Supplementary Figure 4 and in the age dependency
effect (Figures 6D,E), where for the younger audience, all sounds
increased focus while for the older audience, the sounds did not
have any effect. These results are consistent with other studies
showing personal preferences are critical for the improvements
possible by audio (Cassidy and Macdonald, 2009; Huang and
Shih, 2011; Mori et al., 2014). Due to this variety observed
together with the highest focus being elicited by the personalized
soundscapes, a next step will include closed-loop selections
of sounds, where iterative sound testing is used per person
to identify the significant parameters for maximizing focus
for that person.

Personalized soundscapes specifically, and personalized audio
in general, should be investigated further for their capacity to
increase productivity, creativity and well-being as these attributes
of human experience are associated with one’s ability to focus. For
clinical populations as well, for example children with ADHD,
the tailoring of sounds for this purpose of increased focus can be
particularly impactful. It is possible that the seamlessness of the
personalized soundscapes tested here, which played continuously
without gaps in the sound like the music playlists had between
songs, was also critical part of the observed effect on focus. At
every juncture of the experience there is more to be learned, but
at a high level, a main finding of this study is that there is a strong
need for personalization of audio in order to most effectively
achieve functional goals like increasing focus.

Brain Decoded Focus Data Enabled a
New Predictive Model Based on Audio
Data Alone
Leveraging the high temporal resolution of the brain decoded
dynamics, a focus prediction model based on the physical
properties of audio was successfully trained, resulting in an
accuracy score of 88% in predicting the brain decoded focus
score from an audio decomposition that assessed 136 different
properties of sounds as unique features (Figure 8). This model
enabled a further examination of how sounds and different genres
effects focus and allowed testing additional conditions, such
as pre-recorded soundscapes and commonly used background
sounds (e.g., white noise), as well as other genres (pop, rock,
jazz, etc.). We found that the model predicted the highest focus
scores for classical music, followed by engineered soundscapes
and natural sounds. These results complement previous studies
which showed natural sounds and classical music to be beneficial
for learning and concentration (Davies, 2000; DeLoach et al.,
2015; Angwin et al., 2017; Liu et al., 2021).

In contrast, the models predicted that genres such as pop and
hip-hop produce lower focus levels (Figures 10A,B). It is possible
that these sounds contain more distractors that attract attention
away from other objects of attention, or that they contain types
of sounds that the brain requires more resources to process
(depending on familiar patterns, surprises, and more), leading to
less resources available to perform other tasks. Sounds in these
genres may also activate the reward system differently (Salimpoor
et al., 2015; Gold et al., 2019), which can increase motivation to
listen intently to the songs themselves rather than orient toward
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other tasks. Understanding the brain mechanisms that underlay
the modified focus from these genres is beyond the scope of
this current research, but the mapping found here can provide
fruitful avenues for future brain imaging experiments that may
be equipped to answer these questions.

The analysis here demonstrates a process in which we utilize
the temporal resolution of brain-computer interface technology
to generate a product where the neurotechnology is eventually
out of the loop, resulting in a stand alone audio model which
takes as an input a raw audio file and outputs a predicted
focus score. This model can be used independently to generate
focus playlists or to compose optimal soundscapes, and can
further be improved by expanding to populations outside the
United States and different age groups. In this way, the current
research hearkens back to Pythagoras, who first identified the
mathematical connection between a string’s length and it is
pitch and believed the whole cosmos was a form of musical
composition (James, 1995). We too see the rich mathematical
models obtained in this study, by mapping audio properties to
human experience, as a glimpse into the natural laws governing
how we feel and think. The better these laws can be understood,
the more empowered individuals will be to modulate their
environments to suit their goals and states of mind. There
remains much to figure out: while we as a species continue to
cause a “shift in the sensorium,” we simultaneously experience
that shift all over daily life and it is not clear where we as a species
are headed. This study showed that audio has a distinct effect on
our focus levels, and paves the way for designing sounds to help
us focus better in the future.

CONCLUSION

We studied the effects of audio on human focus levels
using noninvasive brain decoding technology to gain a better
understanding of the optimal audio properties for increasing
focus levels in listeners. We combined a custom app (“Neuos
Central”), portable fabric EEG-measuring headbands, and brain
decoding technology (Neuos SDK) to enable us to obtain high
temporal resolution focus dynamics from participants at home.
Using the brain decoded focus dynamics, we then analyzed
how various properties of audio impacted focus levels in
different tasks.

We found that while performing a self-paced task for a long
period of time (such as working), personalized soundscapes
increased focus the most relative to silence. Curated playlists
of pre-recorded songs by Apple and Spotify also increased
focus during specific time intervals, especially for the youngest
audience demographic. Large variance in response profiles across
participants, together with task and age dependent effects, suggest
that personalizing audio content in real-time may be the best
strategy for producing focus in a given listener.

Finally, we generated an audio property based focus model
which successfully predicts brain decoded focus scores from
audio file alone as an input. Using this model, we extracted
predicted focus scores from new songs based on audio
decomposition and performed a genre analysis to develop new

intuitions about the experimental findings and the sources of
focus-producing audio content. We found that based on our
model, engineered soundscapes and classical music are the best
for increasing focus, while pop and hip-hop music are the worst.

The approach taken here can be adapted to include other
emotions (e.g., enjoyment, anxiety, happiness, etc.), attentional
parameters (“Flow state,” memory formation, etc.) and can be
used to assess additional content as well (e.g., visual, ambient,
olfactory, etc.), including interactive gaming and e-learning
experiences where personalization and high temporal resolution
measures of brain responses may be especially beneficial.
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