
ORIGINAL RESEARCH
published: 23 December 2021

doi: 10.3389/fncom.2021.799977

Frontiers in Computational Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 799977

Edited by:

Song Deng,

Nanjing University of Posts and

Telecommunications, China

Reviewed by:

Huyong Yan,

Chongqing Technology and Business

University, China

Jin Dong,

Oak Ridge National Laboratory (DOE),

United States

Tianchen Wang,

University of Notre Dame,

United States

*Correspondence:

Wenyuan Wu

wuwenyuan@cigit.ac.cn

Received: 22 October 2021

Accepted: 22 November 2021

Published: 23 December 2021

Citation:

Bai Y, Liu Q, Wu W and Feng Y (2021)

cuSCNN: A Secure and

Batch-Processing Framework for

Privacy-Preserving Convolutional

Neural Network Prediction on GPU.

Front. Comput. Neurosci. 15:799977.

doi: 10.3389/fncom.2021.799977

cuSCNN: A Secure and
Batch-Processing Framework for
Privacy-Preserving Convolutional
Neural Network Prediction on GPU
Yanan Bai 1,2, Quanliang Liu 2,3, Wenyuan Wu 1* and Yong Feng 1

1Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent

Technology, Chinese Academy of Sciences, Chongqing, China, 2University of Chinese Academy of Sciences, Beijing, China,
3Chongqing School, University of Chinese Academy of Sciences, Chongqing, China

The emerging topic of privacy-preserving deep learning as a service has attracted

increasing attention in recent years, which focuses on building an efficient and practical

neural network prediction framework to secure client and model-holder data privately

on the cloud. In such a task, the time cost of performing the secure linear layers is

expensive, where matrix multiplication is the atomic operation. Most existing mix-based

solutions heavily emphasized employing BGV-based homomorphic encryption schemes

to secure the linear layer on the CPU platform. However, they suffer an efficiency and

energy loss when dealing with a larger-scale dataset, due to the complicated encoded

methods and intractable ciphertext operations. To address it, we propose cuSCNN, a

secure and efficient framework to perform the privacy prediction task of a convolutional

neural network (CNN), which can flexibly perform on the GPU platform. Its main idea

is 2-fold: (1) To avoid the trivia and complicated homomorphic matrix computations

brought by BGV-based solutions, it adopts GSW-based homomorphic matrix encryption

to efficiently enable the linear layers of CNN, which is a naive method to secure matrix

computation operations. (2) To improve the computation efficiency on GPU, a hybrid

optimization approach based on CUDA (Compute Unified Device Architecture) has been

proposed to improve the parallelism level and memory access speed when performing

the matrix multiplication on GPU. Extensive experiments are conducted on industrial

datasets and have shown the superior performance of the proposed cuSCNN framework

in terms of runtime and power consumption compared to the other frameworks.

Keywords: privacy-preserving, convolutional neural network, homomorphic encryption, GPU computation, deep

learning, cloud computing

1. INTRODUCTION

Deep learning (DL) has been applied to lots of fields [e.g., visual recognition (He et al., 2016),
medical diagnosis (Shen et al., 2017), risk assessment (Deng et al., 2021a,b), and a recommender
system (Shi et al., 2020; Wu et al., 2021a,b)], which achieves a superior performance in comparison
with human cognition. The DL with a complex neural network (DNN) structure usually requires
massive data for training a high-accuracy model. To alleviate the cost of using DL models,
cloud providers (e.g., Amazon, Alibaba, Microsoft) are now providing Deep Learning as a
Service (DLaS) that offers DL model training and inference APIs for clients. For example,

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.799977
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.799977&domain=pdf&date_stamp=2021-12-23
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:wuwenyuan@cigit.ac.cn
https://doi.org/10.3389/fncom.2021.799977
https://www.frontiersin.org/articles/10.3389/fncom.2021.799977/full

Bai et al. cuSCNN

Google AI1 provides a series of APIs for AI services (e.g., image
classification, personalization recommendation, etc.). By calling
these APIs, the client can upload their plaintext data to the cloud,
then receive the analysis results (e.g., predication or classification
task) by paying certain fees, as shown in Figure 1. Due to the fact
that users’ queries often involve personal privacy information,
such as X-ray images or user’s behavior trajectory data (Wu et al.,
2020), a natural yet essential question about the protection of
privacy has been raised: if massive personal data are collected for
model training and prediction, will the disclosing of user-sensitive
information increase? (Riazi et al., 2019; Liu et al., 2020).

Although those cloud providers claim that they will never
leak or use users’ data for commercial purposes, the increasing
number of user data leaks tell us that there is no guarantee
on what they promised (Abadi et al., 2016). An intuitive
solution to protect user’s privacy during DL inference is to give
users propriety to download the model from the server and
run the model on their platform locally. Nevertheless, this is
an undesirable result for the model-holder (e.g., company or
hospital) for at least two reasons: (1) The well-trained DL model
is considered as the core intellectual property for companies,
which is built on the massive collection of data. To avoid the
loss of profits, companies require confidentiality to preserve their
competitive advantage. (2) The well-trained DL model is known
to reveal information about the underlying data used for training.
In the case of medical data, this reveals sensitive information
about other patients, violating their privacy and perhaps even
HIPAA regulations (Assistance, 2003).

Therefore, the target of our work is to design a privacy-
preserving service framework where both the model-holder and
client can use the well-trained DLmodel and private data without
worries. Two important requirements should be considered:

1. For protecting the privacy of the data owner, their sensitive
queries should not be revealed to the model-holder;

2. For the proprietary of the model-holder, the DL model
should not be revealed to users, in order to preserve their
competitive advantage.

Following this mainstream, several solutions based on various
secure computing technologies have been proposed, such as
homomorphic encryption (HE)-based (Dowlin et al., 2016),
multi-party computing (MPC)-based (Rouhani et al., 2018), and
mixed-based solutions (Juvekar et al., 2018). Among them, HE
(Gentry and Craig, 2009) is an intuitive yet promising way
to evaluate it, which considers the whole neural network as a
function and evaluates it in the ciphertext domain thoroughly,
such as CryptoNet (Dowlin et al., 2016). Secure multi-party
computing is another option for secure function evaluation.
Secret sharing (SS) (Shamir, 1979) and garbled circuits (GC) (Yao,
1986) are two representational methods. They can transform a
neural network model into an oblivious form and evaluate it
with secure two-party computation, such as MinONN (Liu et al.,
2017). Besides, mixed-based solutions have been proposed to

1https://ai.google/

obtain better performance with trade-off for each advantage, such
as Gazzle (Juvekar et al., 2018).

We notice that the CNN inference task requires a lot of
inner product operations to finish the convolutional layer.
The existing mix-based methods usually adopt the Chinese
Remainder Theorem (CRT)-based Single Instruction Multiple
Data (SIMD) schemes to execute inner product operations of
privacy-preserving CNN. However, it is time-consuming, since
rotating operations in privacy-preserving CNN are required
to sum up the results among slots. Different with the above
solutions, we adopt the GSW-based method to design the matrix
multiplication method in the ciphertext space, which is the
main motivation of this study. The advantage of the GSW-
based solution is that the ciphertext operation is a natural
matrix operation without the expensive rotate-and-add strategy.
Furthermore, with the rapid development of graphics processing
hardware, a GPU is becoming the standard for cloud providers,
where CUDA programming makes it possible to harness the
computation power of GPU efficiently. Therefore, the use of
GPU technology to accelerate matrix multiplication is another
important motivation of this study.

On this basis, we introduce cuSCNN, a practical realization of
a mixed-based framework that supports the privacy-preserving
prediction of convolutional neural networks (CNNs). CNN
is one of the most popular neural network architectures in
DL. Generally, a CNN model consists of convolutional layers,
activation, pooling, and fully connected layers. Convolutional
and fully connected layers have linear properties, while activation
and pooling are non-linear layers. For cuSCNN, it employs HE to
perform the linear operations (e.g., homomorphic addition and
multiplication) in each layer, while conducting the non-linear
activation functions and pooling operations collaboratively by
employing HE and GC jointly. The main contribution of this
paper is as follows:

• We propose cuSCNN, an efficient and privacy-preserving
neural network prediction framework that keeps user and
server data secure. We employ the optimized homomorphic
matrix computations for the linear operations in CNN, while
adopting GC technology to execute the non-linear operations.
Our secure matrix-based computation implements linear
operations in the batch mode when dealing with a large-
scale dataset.
• We introduce an efficient and natural GSW-based

homomorphic matrix encryption scheme to support secure
matrix multiplication and addition operations. Furthermore,
we propose a hybrid optimization approach to matrix
multiplication on GPU to improve the computation efficiency,
which combines dual-optimization for I/O and computation.
• We implement cuSCNN on real-world data with varied

CNN models and evaluate its performance on the industrial
dataset. The experimental results show the superiority and
effectiveness of cuSCNN in terms of runtime and power
consumption, compared with state-of-the-art works.

The rest of this paper is organized as follows. Section 2 gives
the preliminaries. Section 3 overviews the cuSCNN framework.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 December 2021 | Volume 15 | Article 799977

https://ai.google/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

FIGURE 1 | The privacy question of the deep learning model deployed on an untrusted cloud.

Section 4 gives the implementation details of the cuSCNN
framework. Section 5 evaluates the performance of cuSCNN.
Finally, section 6 concludes this paper.

2. PRELIMINARIES

2.1. Related Work
2.1.1. Privacy-Preserving Neural Network Inference

Framework
As the representative solution of homomorphic encryption-
based solutions, CryptoNets (Dowlin et al., 2016) can evaluate
the trained neural network in the ciphertext domain via utilizing
leveled homomorphic encryption (LHE). However, the most
critical limitation of CryptoNets is that the computational
complexity drastically increases as the depth of layers in the
NN model increases. Moreover, due to only adopting the LHE,
non-linear functionalities such as the ReLU activation function
in CryptoNets cannot be supported. To support the non-linear
functionalities and pooling operations, DeepSecure (Rouhani
et al., 2018) leverages GC as its backbone cryptographic engine.
It can support various activations in the DL model. However,
since multiplication is an atomic operation in the DL model
and the number of Boolean gates in the multiplication circuit
grows 2x times concerning the bit width of operands, together
with multiple interactions between participants, DeepSecure
requires an extensive communication overhead when performing
secure privacy-preserving prediction. MiniONN (Liu et al., 2017)
transforms a neural network model into an oblivious form and
evaluates it with secure two-party computation. In detail, it
utilizes the GC to compute the non-linear activation function

while incorporating SS and HE-based methods to run the linear
operations in the DNN model. Moreover, GAZELLE (Juvekar
et al., 2018) is another mixed-protocol solution that uses an
intricate combination of HE and GC to carry out the inference
phase of the DNN model, which utilizes the GC to perform
the non-linear activation function and uses lattice-based HE
with packing technology to execute linear operations. As a
result, GAZELLE improves the runtime of private inference and
reduces communication between the user and the cloud. To
improve the efficiency of the ciphertext computations, FALCON
(Li et al., 2020) exploits the Fast Fourier transform to accelerate
the homomorphic computations in the convolutional and fully
connected layers. Unlike the method mentioned above, we
introduce GSW-based secure matrix computations to implement
the linear layers and leverage the GPU to accelerate the
computation efficiency of the proposed approach.

2.1.2. Matrix-Based Homomorphic Encryption

Scheme
Matrix-based computations are the core yet time-consuming
operations in the neural network. In this context, some matrix-
based homomorphic encryption schemes have been proposed.
Based on the SIMD technology, Wu and Haven et al. proposed
a safety inner product method on packed ciphertexts (Wu
and Haven, 2012). Lu et al. (2016) modified the matrix-vector
multiplication for secure statistical analysis over HElib. Duong
et al. (2016) proposed a homomorphic matrix multiplication
scheme on the packed ciphertext over RLWE. Later, Mishra
et al. (2017) designed an enhanced version of the matrix
multiplication, but there were useless terms in the ciphertexts.
Besides, it is only suitable for a one-depth homomorphic

Frontiers in Computational Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

TABLE 1 | Meaning of notation in the homomorphic encryption scheme.

Notations The meaning

‖x‖∞ The maximum norm of x

‖x‖2 The Euclidean norm of x

< x, y > The inner product of two vectors x and y

xi The ith element of vector x

[X||Y] ∈ Z
m×(n1+n2) The column concatenation of X with Y, where

X ∈ Z
m×n1 ,Y ∈ Z

m×n2

[

Y
X

]

∈ Z
(m1+m2)×n The row concatenation of X ∈ Z

m1×n with

Y ∈ Z
m2×n

Xi The ith column vector of X

X(p :q, r : s) The submatrix consisting of rows p to q and

columns r to s of the matrix X.

a
U
← D a is chosen from set D uniformly at random

Ir The identity matrix with size of r × r

Xij ∈ {0, 1}
r×r The matrix with 1 in the position (i,j) and 0 in the

others

λ Security parameters, the scheme can resist 2λ

attacks

modq Modulus q with the range of values is

[−(q− 1)/2, (q− 1)/2]

round(x) Rounding x ∈ R

⌈x⌉ Rounding up x ∈ R

⌊x⌋ Rounding down x ∈ R

multiplication scenario, due to the significant expansion rate of
ciphertexts. Wang et al. (2017) modified Duong’s methods for
flexible matrix computation, but their modification was much
less efficient for matrices of larger size. Jiang et al. (2018)
presented a novel matrix encoding method that can encrypt
more than one matrix in a single ciphertext and adapted an
efficient evaluation strategy for generic matrix operations via
linear transformations. However, the methods mentioned above
were all constructed based on the second-generation HE scheme
with unnecessary key switching, which suffers efficiency and
precision loss when dealing with large-scale data. Hiromasa
et al. (2016) first conducted a GSW-FHE scheme for matrix
homomorphism computations (i.e., HAO). They optimized the
bootstrapping technique proposed by Alperin-Sheriff and Peikert
(2014). However, all these improvements target binary plaintext,
which dramatically restricts its application in the real world.

2.2. Notations and Definitions
Assume that vectors are in column form and are written using
bold lower-case letters e.g., x, while bold capital letters are used
to denote matrices, e.g., X. We introduce gadget matrix G and
the function G−1 by lemma 1. In order to facilitate readers to
understand, the meanings of the notations mentioned in the
encryption scheme are shown in Table 1.

Lemma 1 (Micciancio and Peikert, 2012). Let matrix C ∈

Z
n×m
q , there are a fixed and primitive matrix G ∈ Z

n×nl
q and a

deterministic, randomized function G−1 that can be calculated by:

Z
n×m
q → Z

nl×m
q such that X

R
← G−1(C) is sub-Gaussian with

parameter O(1) and always satisfies GX = C.

Let l = ⌊log q⌋ + 1 and gT = (20, 21, . . . , 2l−1), In is the
unit matrix with n rank, then the gadget matrix can be defined
as G := In ⊗ gT ∈ Z

n×nl
q .

2.3. GSW-Based Homomorphic Matrix
Encryption Scheme
Generally, a HE scheme consists of four algorithms HE=(Keygen,
Enc, Dec, Eval) and can be illustrated as follows:

• KeyGen(params): Given the security parameter λ, the main
function of KeyGen(params) is to produce a secret key sk, a
public key pk, and a public evaluation key evk.
• Encpk(m): Based on the created public key pk, the encryption

algorithm encrypts a plaintextm ∈ M into a ciphertext c ∈ C.
• Decsk(c): Using the created secret key sk, it can recover the

original plaintextm from the ciphertext c.
• Evalevk(f , c1, . . . , cl): Under the ciphertext space C with the

evaluation key evk, the ciphertext cf can be calculated by using

the function f :Ml →M to c1, . . . , cl

The original GSW scheme is proposed by Gentry, Sahai, and
Waters (Gentry and Craig, 2009). It adopts the approximate
eigenvector method based on the plaintext space M to construct
the ciphertext spaceC. Based on this scheme, Bai et al. proposed a
homomorphic matrix encryption scheme (Bai et al., 2020), which
can be described as follows:

Given the security parameter λ and the multiplication depth
of circuit L, l = ⌊log q⌋ + 1. The integer modulus is q =
q(λ, L) := 2l−1, the lattice dimension n = n(λ, L), and the noise
distribution χ = χ(λ, L) follows a sub-Gaussian distribution
over Z. Meanwhile, let m = m(λ, L) : = O((n + r)l), and N : =

(n + r)l. G = In+r ⊗ gT ∈ Z
(n+r)×N
q can be calculated, where

gT = {20, 21, . . . , 2l−1}.

• HE.KeyGen(n, q,χ ,m): The key generation method mainly
includes two parts, i.e., the secret key sk and public key pk:

- For sk, it first samples a secret key matrix S̄ ← χ r×n, then
the secret key matrix can be obtained as follows:

S :=
[

Ir|| − S̄
]

∈ Z
r×(n+r)
q (1)

- For pk, it first generates a uniformly random matrix A
U
←−

Z
n×m
q , noise matrix E

R
←− χ r×m, and Rij

U
← {0, 1}m×N (for

all i, j = 1, . . . , r), then the public key matrix B is:

B :=

[

S̄A+ E

A

]

∈ Z
(n+r)×m
q (2)

Pij := BRij +

[

MijS

0

]

G ∈ Z
(n+r)×N
q (3)

Hence, the output of keygen(n, q,χ ,m) is sk : = S, pk : =
{

Pi,j,B||1 ≤ i, j ≤ r
}

.

• HE.SecEnc(sk,M): Sample the randommatrix Ā
U
← Z

n×N
q and

E
R
← χ r×N , then the ciphertext C can be computed by :

C :=

[

S̄Ā+ E

Ā

]

+

[

MS

0

]

G ∈ Z
(n+r)×N
q (4)

Frontiers in Computational Neuroscience | www.frontiersin.org 4 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

• HE.PubEnc(pk,M): Sample a random matrix R
U
← {0, 1}m×N ,

and the ciphertext can be denoted by

C := BR+

r−1
∑

i=0

r−1
∑

j=0

Mi,j · Pi,j ∈ Z
(n+r)×N
q (5)

• HE.Dec(S,C): The processing of the decryption algorithm can
be described as follows:

Step 1: Compute the matrixH = SC ∈ Z
r×N
q ;

Step 2: Denote the matrix H′i,j ∈ Z
r×rl
q , where i ∈

{1, 2, . . . , r}, and j ∈
{

1, 2, . . . , rl
}

. Meanwhile, the noise
matrix E′ has the same size asH′. Hence,

H′ = E′ +







M0,0 · · · 2
lM0,0 · · · M0,r · · · 2

lM0,r

...
...

...
...

...
...

Mr,0 · · · 2
lMr,0 · · · M0,r · · · 2

lM0,r






(6)

Step 3: Recover each element (i.e., mi,j) in the plaintext
matrix M via the function Dec1Num(H′(i, jl :(j + 1)l − 2)),
where 1 ≤ i ≤ r and 1 ≤ j ≤ r. The implementation details of
Dec1Num can be found in Bai et al. (2020).
• HE.MatAdd(C1, C2): Given the two ciphertext matrices C1 ∈

Z
(n+r)×N
q and C2 ∈ Z

(n+r)×N
q , the homomorphic matrix

addition can be defined as:

Cadd = C1 + C2 ∈ Z
(n+r)×N
q (7)

• HE.MatMult(C1,C2): ForC1,C2 ∈ Z
(n+r)×N
q , it first computes

G−1(C2) ∈ 0, 1N×N , then outputs:

Cmult := C1 · C2 = C1G
−1(C2) ∈ Z

(n+r)×N
q (8)

To implement the privacy-preserving linear operations in
cuSCNN, two kinds of homomorphic computation should be
supported: HE.MatAdd and HE.MatMul. HE.Mat means that we
can encrypt the plaintext matrix as approximate eigenvalues of
the ciphertext matrix correspondingly, where the secret key is
the eigenvector. Since the ciphertext calculation of GSW is based
on the matrix computation, which cannot cause the expansion
of the ciphertext dimension, it can significantly eliminate the
unnecessary key conversion brought by BGV-based solutions.
HE.MatAdd represents the homomorphic addition between two
matrixes in the ciphertext domain, while HE.MatMul means the
homomorphic multiplication between two matrices.

2.4. GPU-Based Computing
A graphics processing unit (GPU) is a specialized electronic
circuit designed to rapidly manipulate and alter memory to
accelerate the creation of images in a frame buffer intended
for output to a display device. GPU adopts a large number
of computing units and ultra-long pipelines, but it only has
straightforward control logic and eliminates cache. Their highly
parallel structure makes them more efficient than CPUs for
algorithms that process large data blocks in parallel. CUDA
(an acronym for Compute Unified Device Architecture) is

a parallel computing platform and application programming
interface (API) model created by Nvidia, which allows GPU to
be compatible with various programming languages (e.g., C++,
Fortan, and Python) and applications. The CUDA platform is
a software layer that gives direct access to the GPU’s virtual
instruction set and parallel computational elements to execute
compute kernels. In CUDA, kernels are functions that are
executed on GPU, which are executed by a batch of threads.
Meanwhile, the batch of threads is organized as a grid of thread
blocks. Thus, a GPU with more blocks can execute a CUDA
program in less time than a GPU with fewer blocks. As shown
in Figure 2, threads in a block are organized into small groups
of 32 called wraps for execution on the processors, and wraps
are implicitly synchronous; however, threads in different blocks
are asynchronous. CUDA assumes that the CUDA kernel, i.e.,
CUDA program, is executed on a GPU (drive), and the rest of the
C program is executed on the CPU (host). CUDA threads access
data frommultiple memory hierarchies. Each thread has a private
register and local memory, and each thread block has shared
memory visible to all threads within the same thread block. All
threads can access global memory.

3. THE cuSCNN FRAMEWORK

In this section, we design a privacy-preserving CNN prediction
framework. Consider a cloud-based medical diagnosis scenario
where a user wants to know his health status from an X-ray
image. In our setting, we have two roles:

1. The cloud service provider (S) holds trained classifier models
and has resources for storage and processing. He has a
business interest in computation and making predictions on
encrypted data from clients.

2. Clients (C) are the customers of the service provider.
He uploads his private image to the cloud server via
API interference and receives the result by paying specific
service fees.

3.1. Overview
We introduce the execution flow of cuSCNN at a high level.
Suppose that client C owns the input data (e.g., an X-ray image)
and the server S holds a convolutional neural network model.
For client C, the input is private. For server S, the details of
the trained CNN model are also private, which includes the
weights of convolutional and fully connected layers. The target
of cuSCNN is to preserve privacy for the client and server when
performing the CNNmodel.

Hypothesis: Both S and C are semi-honest Paverd et al. (2014),
we presume they follow the cuSCNN protocol and never deviate
from it, although they might attempt to infer more information
based on the data they receive and transmit. Specifically, C
leaks no information about the input contents, intermediate
calculation result, and classified results to the cloud. The input
data are factual, never using fake data. For the cloud server, the
weights of the CNN model are kept secret from the client, but it
does not hide the model architecture.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

FIGURE 2 | CUDA kernel and memory hierarchies.

FIGURE 3 | Security interactive computation protocol of cuSCNN.

There are two phases of the framework, including off-line
and online phases. In the off-line phase, the cloud generates
shares r and r′ used for Yao’s garbled circuit. Besides, the
cloud encrypts these shares and their weight matrices using the
client’s public key. In the online phase, the convolutional and
fully connected operations are linear computations, while the

activation functions are non-linear. The execution flow of the
proposed cuSCNN is indicated in Figure 3.

• Evaluate linear layers (i.e., Conv and FC layer): For i ∈
[1, 2, ...l], l is the number of hidden layers, C firstly encodes
the input data into matrix Mi, then it encrypts Mi via
calling the public-key encryption algorithm, denoted by
ct.Mi = PubEnc(pk, Mi), and uploads ct.Mi to the cloud
server S. S utilizes the encryption scheme to execute matrix-
matrix multiplication in convolutional layers and vector-
matrix multiplication fully connected layers.

Take the Conv layer, for instance, C feeds the convolutional
layer with an encrypted input matrix ct.Mi, S computes Yi =

Wi ·ct.Mi.W is the filter’s matrices. The fully connected layer is
similar except for homomorphic vector-matrix multiplication.
• Evaluate non-linear functions (i.e., activation and pooling

layer): S and C perform designed secure computation
protocols, i.e., Yao’s garbled circuit to keep data secure.
Concretely, for layer i, S homomorphically adds encryption
of the share ri to obtain the encryption of Yi + ri, and send
it to the client. The client decrypts it using his private key to
obtain the plaintext Yi + ri. Next, Yi + ri is held by the client
and ri and r′i are held by the server as inputs are conducted in
garbled circuit evaluation. The output of it is f (Yi) + r′i (the
activation function is denoted by f). Then the client encrypts
it using their public key and transmits the ciphertext to the
server, the server homomorphically adds the encryption of the
share r′i to get the encryption of f (Y)i.

3.2. Neural Networks Architecture
In DL, CNN is a popular category of neural network, most
commonly applied to analyzing visual imagery. It usually consists
of an input and output layer, as well as multiple hidden layers.
In most cases, a CNN takes an input and processes it through a
sequence of hidden layers to classify it into one of the potential

Frontiers in Computational Neuroscience | www.frontiersin.org 6 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

TABLE 2 | Layers description of CNN.

Layers Description

Layer-1[Conv-1] Input image: 28× 28, kernel size: 5× 5, stride:

(1,1), number of output channels: 5, padding =

VALID, activation = ReLU.

Layer-2[FC-1] Fully connecting with 5× 3× 3 = 845 inputs and

100 outputs, activation = ReLU.

Layer-3[FC-2] Fully connecting with 100 inputs and 10 outputs

activation = softmax.

classes. Hidden layers typically consist of a series of linear
(e.g., convolutional, fully connected) layers and non-linear (e.g.,
activation function and pooling) layers.

For the Conv layer, the convolution operator forms the
fundamental basis of the convolutional layer. It has convolutional
kernels with size k × k, a stride of (s, s), and a mapcount of h.
Given an image I ∈ R

w×w and a convolution kernel W ∈ R
k×k,

the convolved image Y ∈ R
dk×dk can be computed as follows:

Y = Conv(I,W)i′ ,j′ =
∑

0≤i,j≤k

Wi,j · Is·i′+i,s·j′+j (9)

where the range of (i′,j′) is [0, ⌈
(w− k)

s
⌉ + 1], and ⌈·⌉ denotes

the least integer greater than or equal to the input. For multiple
kernel cases, it can be expressed as:

Y = Conv(I,W) =
(

(Conv(I,W(0)), · · · ,Conv(I,W(h−1))
)

∈ R
dk×dk×h (10)

For the FC layers, it connects nI nodes to nO nodes, which can
form as the matrix-vector multiplication of an nO × nI matrix.
Note that the output of the convolutional layer has a form of
tensor, so it should be flattened before the FC layer.

4. cuSCNN DESIGN

We next utilize a commonly used CNN in privacy protection
work (Dowlin et al., 2016; Rouhani et al., 2018) to describe the
design details. The network topology contains one convolutional
layer, one fully connected layer with ReLU activation function,
and the second fully connected layer applying the softmax
activation function for probabilistic classification. Table 2

describes our neural networks to the MNIST dataset and
summarizes the parameters.

4.1. Encryption of Images
We assume that a neural network is trained with the plaintext
dataset in the clear. For the CNN architecture in Table 2, w = 28,
k = 5, dk = 13, s = 2, and h = 5. Suppose that the client
has a two-dimensional image I ∈ Z

w×w. For 0 ≤ i, j < 5,
0 ≤ i′, j′ < 13, by taking the elements Is·i′+i,s·j′+j, we extract
the image feature to an extended matrix M with the size of
25 × 169. For bias, we add the vector [1, . . . , 1]169 to the first

row. For a matrix M with the size of 26 × 169, it is blocked
into bnum = 7 sub-matrices Mb for parallel computation, where
bnum = ⌈Ni/(k

2 + 1)⌉,Ni = dk × dk. Since this CNN can deal
with 846 images in FC-1, we design the framework to compute
846 images at once to achieve this maximum throughput. At the
encryption phase, the client C encrypts the Mb using the public
key of a HE scheme.

For PubEnc(pk, Mb), we first sample a random matrix R ←

{0, 1}m×N uniformly, then the encrypted image can be computed
by (11).

ct.Mb = PubEnc(pk,Mb) := BR+
∑

0≤i,j≤r

M[i, j] · P(i,j) ∈ Zq,

(11)

4.2. Encryption of Trained Model
The model provider encrypts the trained prediction model values
such as multiple convolution kernel values W and weights
(matrices) of FC layers.

The provider begins with a procedure for encrypting the
multiple convolutional kernels. Each kernel is extended into a
one-row vector of size k2, and the bias is connected to the first
column. Hence, h kernels are expanded into a matrix with a size
of 5 × 26. Then the provider pads (k2 + 1) − h (i.e., 21) rows
with zeros to form a square matrix. Finally, the model provider
encrypts the plaintext matrix into a ciphertext, denoted by ct.W1.

Next, the first FC and the second layer are specified by 100 ×
846 and 10 × 101 matrices. They can pad 746 and 91 rows with
zeros to become two square matrices. Then the model provider
encrypts the two matrices respectively, and the ciphertexts are
ct.W2 and ct.W3.

4.3. Homomorphic Evaluation of Neural
Networks
The public cloud takes ciphertexts of the images from the data
owner and the neural network prediction model from the model
provider at the prediction phase. Since the data owner uses a
batch of 864 different images, the FC-1 layer is specified as a
matrix multiplication: Z100×846 × Z

846×846→ Z
100×846, and the

FC-2 layer is represented as a matrix multiplication: Z10×101 ×

Z
101×101 → Z

10×101. The FC-1 layer inputs 846 computational
image results to the FC-2 layer, and the FC-2 layer can deal with
101 images at once, so the FC-2 layer needs to execute nine times
to finish the 846 image prediction task.

Homomorphic Conv-1 layer: For 0 ≤ i < 846, 0 ≤ j < 7,

the public cloud takes the ciphertexts ct.M
(i,j)

b
and ct.W1, and it

performs the following computation on‘ciphertexts:

ct.C1←
∑

0≤i<846,0≤j<7

Mult(ct.M
(i,j)

b
, ct.W1) ∈ Z

(n+r)×N
q . (12)

Secure activation layer: In order to protect the convolutional
result Y and safely compute the activation function, the
framework adopts Yao’s garbled circuits method similar to
GAZALLE and FALCON. The ReLU function is defined by
f (x) = max(x, 0), the cloud generates sharing r in the

Frontiers in Computational Neuroscience | www.frontiersin.org 7 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

preprocessing phase, C and S share the input x additively, i.e.,
S holds r, while C holds max(x, 0) − r. The two parties jointly
compute GT and MUX circuits to get f (x) + r′, which is sent to
C. C loads the 846 images to form a square matrix M2, then we
encrypt it into ciphertext ct.M2 and send it to the cloud.

The FC-1 layer: The cloud firstly performs a homomorphic
addition operation to remove sharing, and then it carries out the
homomorphic matrix multiplication:

ct.C2← Mult(ct.M′2, ct.W2) ∈ Z
(n+r)×N
q . (13)

Next, the cloud and the user conduct the activation operation by
the garbled circuit. Afterward, the user sends the ciphertext ct.C3

to the cloud.
The FC-2 layer The homomorphic evaluation in FC-2 is

similar to FC-1, except for executing nine times to finish 846
image predictions.

ct.C
(i)
3 ← Mult(ct.M′

(i)
3 , ct.W3) ∈ Z

(n+r)×N
q , 0 ≤ i < 9. (14)

The activation operation of FC-2 is a softmax function, since yi =
ezi+r

′

∑num_out
j=1 e

zj+r
′ =

ezi
∑num_out

j=1 e
zj
, where zi is the ith i ∈ [1, num_out]

input elements of the last fully connected layer, D decrypts the
ciphertext and gets the prediction result directly.

Please note that the plaintext of the scheme is a square matrix,
and the length of the input vector is set to 846 (5× 13× 13+ 1)
in the example. Thus, to maximize the use of plaintext space
to improve operating efficiency, we need the number of input
images to be 846. In the general case, the number of input images
takes the max length of the fully connected layers input vectors in
the proposed framework.

4.4. Hybrid Optimization Approach on GPU
for Efficient Matrix-Based Computation
To improve homomorphic matrix multiplication efficiency and
utilize the powerful computing ability of GPU, we propose
a hybrid optimization approach to execute the homomorphic
matrix multiplication on GPU.

Given two matrices A and B with the size of r × r, the
straightforward way is to open a thread for computing each
element of its output matrix C. For parallel matrix multiply
operation, each thread loads a row ofA (i.e.,A(i, :)) and a column
of B (B(:, j)), then cij can be computed via making an inner
product of these two vectors (i.e., cij = A(i, :) · B(:, j)). However,
the delay in accessing the shared memory on the GPU is quite
significant (almost 100 clock cycles). For example, suppose that
the matrix elements are stored in the memory following the
rows first way, then a row of A can be saved in the memory
continuously, and it can utilize the super large shared memory
bandwidth of the GPU to load multiple elements with a short
accessing delay. However, for the matrix B with a large size r,
the memory address of elements in a column is internal with r
elements. It means that most of the data are useless except the
required column of elements in a load time. As a result, the
memory access efficiency of this parallel method is appalling,
since it is almost impossible for this access mode to hit the
cache line.

To address this problem, we introduce a partitioning
algorithm for matrix multiplication computation on GPU. For
the partition method as shown in Figure 4A, the key is to
determine how to maximize the use of limited shared memory
space. The shared memory (SM) is an on-chip cache located on
the GPU, which can be as fast as the first level cache, and threads
in the same thread block can exchange data through SM. The
only disadvantage is that the capacity of SM is limited. To use
this small piece of high-speed memory, we divide the matrix into
a set of small pieces in each dimension. Suppose that the slice size
is T, the output matrix C00 can be written as:

C00 =

bk−1
∑

i=0

A0,i · Bi,0 (15)

where bk = ⌈
r

T
⌉ is the block numbers of matrices A and B.

Note that the small slice matrix will degenerate into a single
element when the small slice size T becomes 1. If the small piece
is regarded as an element, the size of the whole matrix is reduced
by T times.

Each piece of the output matrix C can assign a thread block
with a group of threads to compute the result, where each thread
corresponds to an element in the piece. In detail as shown in
Figure 4B, each thread stores one element of block B(:, j) and
one column of Cij in its register. A(i, :) is stored in the shared
memory of Block(0,0), which can be accessed by the threads
in Block(0,0). Instead of using the inner product to perform
matrix multiplication, we adopt the outer product to optimize
the computation. For example, it first performs the outer product
between the first column of A(:, 0) and the first row of B(0, :)
and updates Cij. Then the Cij is updated via A(:, 1) and B(1, :).
Executing the iterations in a similar way until T times, the
updated Cij can be obtained. Finally, each thread stores one
column of Cij from its register to global memory.

As we know, the time complexity of naive matrix
multiplication is O(r3). Due to leveraging the proposed
partition method, the big matrices A and B can be divided into
bk blocks with slice size T. For each slice, the time complexity
is O(T) when calling T threads to perform it in parallel. Hence,
the total time complexity of the proposed matrix multiplication
on GPU is O((bk)2 × T).

4.5. Security Analysis
We prove that the encryption scheme defined above is IND-CPA
secure under the LWE hardness assumption.

Theorem 1. For any adversary A there exists an adversary such
that AdvCPA(A) < 2AdvLWE(B) .

Proof: G0: A challenger C first initializes the encryption scheme
and setup parameters, then generates a public key pk and a
private key sk. The adversaryA obtains the public key and selects
two challenge plaintexts m0 and m1 from the plaintext space,
and sends them to the challenger C. C chooses b ∈ [0, 1] at
random, and encrypts mb using the public key, then sends the
ciphertext to adversary A. The adversary guesses the plaintext

Frontiers in Computational Neuroscience | www.frontiersin.org 8 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

FIGURE 4 | Hybrid optimization approach on GPU.

corresponding to the ciphertext and outputs b′. If b = b, the
adversary attacks successfully, and the advantage of the adversary
is AdvCPA(A) = |Pr[b = b′ in G0]− 1/2|.

G1: In G1, the public key pk : = P(i,j),B used in G0 is

substituted by a uniform random matrix B ← Z
(n+r)×m
q ,

and P(i,j) is substituted by a uniform random matrix P′
(i,j)
←

Z
(n+r)×N
q . It is possible to verify that there exists an adversary

B with the same running time, such that |Pr[b = b′ in G1] −
Pr[b = b′ in G0]| ≤ AdvLWE(B), since the circular security
and LWE assumption, to distinguish B and B′, P and P′ for B
is almost impossible.

G2: In G2, the value in the generation of the challenge
ciphertext C is substituted with uniform random elements to
form matrix C′ in G1. The adversary distinguishes C and C′

which is as hard as solving the LWE problem, so there exists
an adversary B with the same running time as that of |Pr[b =
b′ in G2]Pr[b = b′ in G1]| ≤ AdvLWE(B). Notice that in G2, the
values in C from the challenge ciphertext are independent of bit
b, hence, Pr[b = b′ in G2] = 1/2.

In summary, AdvCPA(A) < 2AdvLWE(B).

5. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experiments on a real
network to evaluate the effectiveness of the proposed cuSCNN.
We mainly focus on the following questions (RQs):

• RQ1: How the performance of the proposed matrix
multiplication method performs;
• RQ2: How the proposed homomorphic matrix encryption

scheme performs compared to the existing methods;
• RQ3: How the performance of cuSCNN on each layer

compares to the state-of-the-art networks.

5.1. Experimental Settings
We implement cuSCNN in C++. Specifically, we use cuBLAS
library to implement thematrix multiply operations on GPU, and
utilize the ABT framework to implement Yao’s garbled circuits.
For the homomorphic matrix encryption scheme, we set the
plaintext module q = 230 (i.e., l = 30), which has a 30-
bit length and is enough for all the intermediate values. The
generation noise follows sub-Gaussian distribution with variance
var = q/8m, n = 600, the security level can achieve 128.

We tested cuSCNN on two computers, both of which are
equipped with Intel Xeon(R) E5-2680 CPU with 4 2.40 Hz
cores, and a GeForce GTX 1080Ti GPU. The operation system
is CentOS 7.9. One of them worked as client C, and the other
play as server S. We took experiments in the LAN setting similar
to previous work (Juvekar et al., 2018; Li et al., 2020). Each
experiment was repeated 100 times and we report the mean in
this paper.

The MNIST database (Modified National Institute of
Standards and Technology database) is a dataset of images
representing handwritten digits by more than 500 different
writers. It is commonly used as a benchmark for machine
learning systems. The MNIST database contains 60,000 training
images and 10,000 testing images. The format of the images is
28 × 28 and the integer value of each pixel represents a level of
gray with a range 0 to 255. Moreover, each image is labeled with
the digit it depicts.

5.2. Performance of Matrix Multiplication
on GPU
In this part, we test the timing performance of proposed
optimization methods on matrix multiplication, which is the
core and time-consuming operation in DL-based applications.
In our method, the matrix tile size (T) is a key factor. We set
the matrix size to 1,024 (i.e., r = 1, 024), and the range of

Frontiers in Computational Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

FIGURE 5 | Performance of matrix multiplication methods on GPU.

tile size is [2, 4, 8, 16, 24, 32]. The test results are shown in
Figure 5A. We can observe that the runtime of the proposed
method varies with different matrix tiles, and the optimized
performance is achieved when the matrix tile size is 8. On the
one hand, the inner reason is that the number of threads in each
block is decreasing, but the amount of shared memory required
in each block is not decreasing, after continuously increasing
the matrix tile size. As a result, it will reduce the number of
active threads in a streaming multiprocessor (SMP) due to the
limited total number of blocks. That is, the occupancy will be
reduced. In addition, calculating more elements per thread uses
more registers. The number of registers in each thread will
in turn affect the number of active threads in SMP, and then
affect occupancy.

Then, we evaluate the proposed matrix multiplication method
with two baselines on GPU. In detail, we adopt three different
methods to execute matrix multiplication, including the naive
way (i.e., GPU-Naive), I/O optimization (i.e., GPU-IO) method,
and our optimization method. The GPU-Naive method
only adopts the straightforward method to perform matrix
multiplication, without considering the effect of matrix split and
reunion in memory, while the GPU-IO method adopts the block
matrix multiplication with matrix split, without considering the
matrix reunion in memory. Figure 5B is the running time of
HE.MatMult with different methods. We find that: (1) Our
proposed optimization method has the best effectiveness with
varying matrix size, since the running time of our methods is the
lowest compared to the othermethods; (2) with increasingmatrix
size, our method can maintain stable execution efficiency with
little running time increased. That is because our method can
effectively reduce the influence of IO bandwidth on performance
by jointly using shared memory and registers. Furthermore, it
has a higher computation efficiency via the fine-grained blocking
method. Therefore, it can make more efficient use of GPU
hardware computing resources.

TABLE 3 | The comparison result of homomorphic matrix encryption schemes.

Matrix size Method Enc(s) HE.MatAdd(s) HE.MatMult(s) Dec. (s)

32× 32

seIMC 6.998 7.345 10.639 0.0768

Jiang’s 0.09 0.01 15.592 0.0543

Ours 0.679 0.204 0.946 0.067

64× 64

seIMC 7.82 8.21 12.287 0.312

Jiang’s 0.196 0.01 37.793 0.705

Ours 0.8 0.233 1.24 0.222

128× 128

seIMC 9.843 10.402 15.824 1.305

Jiang’s – – – –

Ours 1.127 0.291 1.525 0.862

Bold values indicate our methods have a lower running time than the comparison

methods.

5.3. Performance of Homomorphic Matrix
Encryption Scheme
In this part, we test the performance of our method compared
with Jiang’s scheme (Jiang et al., 2018) and seIMC (Bai et al.,
2020). For Jiang’s method, it is a BGV-based secure matrix
computation scheme that includes a novel matrix encoding
method and an efficient evaluation strategy for basic matrix
operations (e.g., matrix addition and multiplication). For seIMC,
it is a GSW-based secure matrix computation scheme. We set
the security level of seIMC and Jiang to 80 in this experiment.
To achieve this security level, the cyclotomic ring dimension of
our homomorphic encryption is chosen as n = 450, based on
the estimator of Albrecht et al. (2015). The parameter settings
of Jiang’s and SeIMC schemes are the same as in Jiang et al.
(2018) and Bai et al. (2020). Table 3 is the comparison results
of the three mentioned secure matrix computation schemes.
From the result, we find that: (1) Compared to the BGV-based
scheme (i.e., Jiang’s scheme) and SeIMC, the running time of our

Frontiers in Computational Neuroscience | www.frontiersin.org 10 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

TABLE 4 | Benchmarks of cuSCNN in Conv and FC layers.

Layer Input Filter/output
Time (ms)

Time per image (ms)
Setup Online Total

Conv layer (28× 28× 1, 846) (5× 5× 1, 5) 2696.9636 0.0074 2696.971 3.19

FC layer
(846, 846) (100, 846) 820.523 0.077 820.6 0.97

(101, 846) (10, 846) 760.109 0.091 760.2 0.9

FIGURE 6 | Performance comparison of privacy-preserving neural network frameworks in runtime and power consumption.

GSW-based scheme is faster in terms of homomorphic matrix
multiplication and decryption. (2) GSW-based solutions can deal
with a large-scale matrix, while Jiang’s scheme fails to cope
with it. Hence, the results demonstrate that our secure matrix
computation solution is more suitable for real applications with
large-scale data.

5.4. Performance Evaluation for cuSCNN
In this part, we evaluated our cuSCNN framework in an
individual layer, and compared it with state-of-the-art methods.
By using the proposed homomorphicmatrix encryption to secure
matrix computations, Conv and FC layers are themain advantage
in cuSCNN. For the implementation of cuSCNN, we replace
implementations of Conv and FC layers in GAZELLE with
proposed optimization methods, while we also adopt the GC to
perform the ReLU operation.

Runtime of each layer required for cuSCNN are presented
in Table 4. Furthermore, we set T = 8 for all of the matrix
multiplication operations on GPU.

In Table 4, we present the timing result of Conv and FC
layers with different input sizes. We notice that: (1) Due to
adopting the GPU to accelerate the online computing part,
the running time of the online part is less then 1 ms either
in the Conv layer or FC layer. Hence, the dominant cost
of evaluating cuSCNN is that of performing the setup part,
including the memory switch between CPU and GPU, the
assignment, and initialization operations. (2) Compared to the

FC layer, cuSCNN spends almost 3× more time executing the
Conv layer’s convolutional operations.

Finally, we evaluate the performance of the cuSCNN
framework on the MNIST dataset, compared to the previous
approaches. For comparison with previous approaches, we
adopt the same CNN network architecture for all mentioned
models. The CNN model takes a gray scale image with size
28 × 28 as input and has one Conv, two FC, and two ReLU
layers. As the comparison framework is performed on a CPU
perform, to conduct a fair comparison, we present the runtime
(including computation time and communication time) and
power consumptions of different models when dealing with
10,152 images. The images are able to predict with 99.1%
accuracy. For the power consumption of each approach, we
adopt a similar method as proposed in Tian et al. (2018).
The compared results are shown in Figure 6. From the figure,
we can find that: (1) Compared to the existing MPC-based
framework, the mixed frameworks can enjoy a better runtime
and power consumptions, which can trade-off the advantage
of different secure computation technologies, as shown in
Figure 6A. (2) The performance of cuSCNN outperforms
GAZELLE in terms of runtime and power consumption, as
shown in Figure 6B. That is because cuSCNN adopts the
matrix-matrix multiplication to perform the Conv and FC
layers, while GAZELLE utilizes the matrix-vector multiplication
to finish these layers. Thus, cuSCNN can execute a set
of images in one iteration. With the advantage of GPU’s

Frontiers in Computational Neuroscience | www.frontiersin.org 11 December 2021 | Volume 15 | Article 799977

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

powerful computing ability, cuSCNN designed a hybrid parallel
approach to implement the homomorphic matrix computations
in Conv and FC layers. Therefore, it demonstrates that cuSCNN
has a higher efficiency in executing the privacy-preserving
neural networks.

6. CONCLUSION

The increasing popularity of cloud-based deep learning poses a
natural question about privacy protection: if massive personal
data are collected for model training and prediction, will this
result in a rise in disclosing sensitive information? This paper
focuses on tackling the privacy-preserving deep learning problem
of a client that wishes to classify private images utilizing a
convolution neural network (CNN) trained by a cloud server.
Our target is to build efficient protocols whereby the cloud server
executes the prediction task but also allows both client andmodel
data to remain private. We find that matrix-based computations
are the core operations in the neural network prediction
task. However, the existing solutions have the limitations of
computational efficiency and perform in a serial mode. To track
it, this study proposes cuSCNN, a secure and efficient framework
to perform the privacy prediction task of a convolution neural
network, which utilizes the HE and GC jointly in a batch mode.
The hybrid optimization approach is proposed to accelerate the
execution of securematrix computations on GPU to deal with the
large-scale dataset. Extensive experiments conducted on the real
network show that cuSCNN achieves a better performance on
running time and power consumption than the state-of-the-art
methods, when dealing with the larger-scale dataset. In the next
step, we will conduct comprehensive experiments on different

GPUs to evaluate the performance of the proposed method,
including at the server level, desktop level, and embedded levels.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

YB completed the framework’s design, implemented the
encryption scheme, and wrote and revised this paper. QL
performed the optimization method on GPU for matrix
multiplication. WW gave the main idea of the experiment flow
design. YF made constructive suggestions on the organization,
writing, and revision of the paper. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported in parts by the National Key
Research and Development Project (2020YFA0712303), in parts
by Chongqing Research Program (cstc2019yszx-jcyjX0003,
cstc2020yszx-jcyjX0005, cstc2021yszx-jcyjX0004), in parts by
Guizhou Science and Technology Program ([2020]4Y056) and
NSFC (11771421), in parts by Youth Innovation Promotion
Association of CAS (2018419), in parts by the Key Cooperation
Project of Chongqing Municipal Education Commission
(HZ2021017, HZ2021008), in parts by CAS “Light of West
China” Program.

REFERENCES

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K.,

et al. (2016). “Deep learning with differential privacy,” in Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security,

(Vienna), 308–318.

Albrecht, M. R., Player, R., and Scott, S. (2015). On the concrete hardness of

learning with errors. J. Math. Cryptol. 9, 169–203. doi: 10.1515/jmc-2015-0016

Alperin-Sheriff, J., and Peikert, C. (2014). “Faster bootstrapping with polynomial

error,” in Annual Cryptology Conference (Santa Barbara, CA: Springer), 297–

314.

Assistance, H. C. (2003). Summary of the Hipaa Privacy Rule.Office for Civil Rights

(Washington, D.C.).

Bai, Y., Shi, X., Wu, W., Chen, J., and Feng, Y. (2020). seimc: a gsw-based secure

and efficient integer matrix computation scheme with implementation. IEEE

Access 8, 98383–98394. doi: 10.1109/ACCESS.2020.2996000

Deng, S., Cai, Q., Zhang, Z., and Wu, X. (2021a). User behavior analysis based on

stacked autoencoder and clustering in complex power grid environment. IEEE

Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2021.3076607

Deng, S., Chen, F., Dong, X., Gao, G., and Wu, X. (2021b). Short-term load

forecasting by using improved gep and abnormal load recognition.ACMTrans.

Intern. Technol. 21, 1–28. doi: 10.1145/3447513

Dowlin, N., Giladbachrach, R., Laine, K., Lauter, K. E., Naehrig, M., andWernsing,

J. (2016). “Cryptonets: applying neural networks to encrypted data with high

throughput and accuracy,” in Proceedings of the 33rd International Conference

on International Conference on Machine Learning (New York, NY), 48, 201–

210.

Duong, D. H., Mishra, P. K., and Yasuda, M. (2016). Efficient secure matrix

multiplication over lwe-based homomorphic encryption. Tatra Mountains

Math. Publ. 67, 69–83. doi: 10.1515/tmmp-2016-0031

Gentry and Craig (2009). Fully homomorphic encryption using ideal lattices. Stoc

9, 169–178. doi: 10.1145/1536414.1536440

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (Las Vegas), 770–778.

Hiromasa, R., Abe, M., and Okamoto, T. (2016). Packing messages and optimizing

bootstrapping in gsw-fhe. IEICE Trans. Fundam. Electron. Commun. Comput.

Sci. 99, 73–82. doi: 10.1587/transfun.E99.A.73

Jiang, X., Kim, M., Lauter, K., and Song, Y. (2018). “Secure outsourced matrix

computation and application to neural networks,” in Proceedings of the

2018 ACM SIGSAC Conference on Computer and Communications Security

(Toronto), 1209–1222.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A. (2018). “{GAZELLE}: A

low latency framework for secure neural network inference,” in 27th {USENIX}

Security Symposium ({USENIX} Security 18) (Baltimore, MD), 1651–1669.

Li, S., Xue, K., Zhu, B., Ding, C., Gao, X., Wei, D., et al. (2020). “Falcon: a fourier

transform based approach for fast and secure convolutional neural network

predictions,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (Seattle, WA), 8705–8714.

Liu, A., Shen, X., Xie, H., Li, Z., Liu, G., Xu, J., et al. (2020). Privacy-preserving

shared collaborative web services qos prediction. J. Intell. Inform. Syst. 54,

205–224. doi: 10.1007/s10844-018-0525-4

Liu, J., Juuti, M., Lu, Y., and Asokan, N. (2017). Oblivious neural network

predictions via minionn transformations, 619–631.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 December 2021 | Volume 15 | Article 799977

https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1109/ACCESS.2020.2996000
https://doi.org/10.1109/TITS.2021.3076607
https://doi.org/10.1145/3447513
https://doi.org/10.1515/tmmp-2016-0031
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1587/transfun.E99.A.73
https://doi.org/10.1007/s10844-018-0525-4
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Bai et al. cuSCNN

Lu, W.-J., Kawasaki, S., and Sakuma, J. (2016). Using fully homomorphic

encryption for statistical analysis of categorical, ordinal and numerical data.

Cryptol. Arch. doi: 10.14722/ndss.2017.23119

Micciancio, D., and Peikert, C. (2012). “Trapdoors for lattices: Simpler, tighter,

faster, smaller,” in Annual International Conference on the Theory and

Applications of Cryptographic Techniques (Zagreb: Springer), 700–718.

Mishra, P. K., Duong, D. H., and Yasuda, M. (2017). “Enhancement for secure

multiple matrix multiplications over ring-lwe homomorphic encryption,” in

International Conference on Information Security Practice and Experience

(Melbourne: Springer), 320–330.

Paverd, A., Martin, A., and Brown, I. (2014). Modelling and Automatically

Analysing Privacy Properties for Honest-But-Curious Adversaries. Univ. Oxford

Tech. Rep.

Riazi, M. S., Rouani, B. D., and Koushanfar, F. (2019). Deep learning on private

data. IEEE Secur. Privacy 17, 54–63. doi: 10.1109/MSEC.2019.2935666

Rouhani, B. D., Riazi, M. S., and Koushanfar, F. (2018). “Deepsecure: scalable

provably-secure deep learning,” in Proceedings of the 55th Annual Design

Automation Conference (San Francisco), 2, 1–6.

Shamir, A. (1979). How to share a secret. Commun. ACM 22, 612–613.

doi: 10.1145/359168.359176

Shen, D., Wu, G., and Suk, H.-I. (2017). Deep learning in

medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248.

doi: 10.1146/annurev-bioeng-071516-044442

Shi, X., He, Q., Luo, X., Bai, Y., and Shang, M. (2020). Large-scale and

scalable latent factor analysis via distributed alternative stochastic

gradient descent for recommender systems. IEEE Trans. Big Data.

doi: 10.1109/TBDATA.2020.2973141

Tian, W., He, M., Guo, W., Huang, W., Shi, X., Shang, M., et al. (2018). On

minimizing total energy consumption in the scheduling of virtual machine

reservations. J. Netw. Comput. Appl. 113, 64–74. doi: 10.1016/j.jnca.2018.03.033

Wang, L., Aono, Y., and Phong, L. T. (2017). “A new secure matrix multiplication

from ring-lwe,” in International Conference on Cryptology and Network Security

(Hong Kong: Springer), 93–111.

Wu, D., and Haven, J. (2012). Using homomorphic encryption for large scale

statistical analysi, FHE-SI-Report. Univ. Stanford Tech. Rep. TR-dwu4.

Wu, D., He, Y., Luo, X., and Zhou, M. (2021a). A latent factor

analysis-based approach to online sparse streaming feature selection.

IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2021.3096

065

Wu, D., Luo, X., Shang, M., He, Y., Wang, G., and Wu, X. (2020).

A data-characteristic-aware latent factor model for web services qos

prediction. IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.3014

302

Wu, D., Shang, M., Luo, X., andWang, Z. (2021b). An l1-and-l2-norm-oriented18

latent factor model for recommender systems. IEEE Trans. Neural Netw. Learn.

Syst. doi: 10.1109/TNNLS.2021.3071392

Yao, A. C. (1986). “How to generate and exchange secrets,” in 27th Annual

Symposium on Foundations of Computer Science (Toronto: IEEE), 162–167.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Bai, Liu, Wu and Feng. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 December 2021 | Volume 15 | Article 799977

https://doi.org/10.14722/ndss.2017.23119
https://doi.org/10.1109/MSEC.2019.2935666
https://doi.org/10.1145/359168.359176
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1109/TBDATA.2020.2973141
https://doi.org/10.1016/j.jnca.2018.03.033
https://doi.org/10.1109/TSMC.2021.3096065
https://doi.org/10.1109/TKDE.2020.3014302
https://doi.org/10.1109/TNNLS.2021.3071392
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	cuSCNN: A Secure and Batch-Processing Framework for Privacy-Preserving Convolutional Neural Network Prediction on GPU
	1. Introduction
	2. Preliminaries
	2.1. Related Work
	2.1.1. Privacy-Preserving Neural Network Inference Framework
	2.1.2. Matrix-Based Homomorphic Encryption Scheme

	2.2. Notations and Definitions
	2.3. GSW-Based Homomorphic Matrix Encryption Scheme
	2.4. GPU-Based Computing

	3. The cuSCNN Framework
	3.1. Overview
	3.2. Neural Networks Architecture

	4. cuSCNN Design
	4.1. Encryption of Images
	4.2. Encryption of Trained Model
	4.3. Homomorphic Evaluation of Neural Networks
	4.4. Hybrid Optimization Approach on GPU for Efficient Matrix-Based Computation
	4.5. Security Analysis

	5. Experimental Evaluation
	5.1. Experimental Settings
	5.2. Performance of Matrix Multiplication on GPU
	5.3. Performance of Homomorphic Matrix Encryption Scheme
	5.4. Performance Evaluation for cuSCNN

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

