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Hodgkin-Huxley (HH)-type model is the most famous computational model for simulating

neural activity. It shows the highest accuracy in capturing neuronal spikes, and its

model parameters have definite physiological meanings. However, HH-type models are

computationally expensive. To address this problem, a previous study proposed a spike

prediction module (SPM) to predict whether a spike will take place 1 ms later based on

three voltage values with intervals of 1 ms. Although SPM does well, it fails to evaluate

the informative features of the spike. In this study, the feature prediction module (FPM)

based on simple artificial neural network (ANN) was proposed to predict spike features

including maximum voltage, minimum voltage, and dropping interval. Nine different

HH-type models were adopted whose firing patterns cover most of the firing behaviors

observed in the brain. Voltage and spike feature samples under constant external input

current were collected for training and testing. Experiment results illustrated that the

combination of SPM and FPM can accurately predict the spiking part of different HH-type

models and can generalize to unseen types of input current. The combination of SPM

and FPM may offer a possible way to simulate the action potentials of biological neurons

with high accuracy and efficiency.

Keywords: spike, Hodgkin-Huxley model, spike features prediction, artificial neural network, spike prediction

module, feature prediction module

1. INTRODUCTION

Neurons communicate with each other in the form of spikes. Spikes of neurons are of great
importance in the brain as they contribute to efficient neural information processing and facilitate
the transmission of information (Bean, 2007). The generation of spikes depends in large part
on voltage-gated ion channels (Berger and Crook, 2015). Neurons embedded with voltage-gated
ion channels can almost always generate spikes. Under different densities or combinations of ion
channels, they can perform a diversity of firing behaviors, e.g., spiking, bursting, subthreshold
oscillation, and mixed-mode (Goldman et al., 2001).

For decades, many computational models have been proposed to simulate the firing behaviors
of neurons. These models can be mainly classified into two categories: 1) simplified model without
ion channels, and 2) detailed model with ion channels. Representative models in the first category
include integrate-and-fire (IF) model (Lapique, 1907; Abbott, 1999), leaky IF model (Stein, 1967),
adaptive IF model (Brette and Gerstner, 2005), resonate-and-fire (RF) model (Izhikevich, 2001),
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FitzHugh-Nagumo (FHN) model (FitzHugh, 1961; Nagumo
et al., 1962), Hindmarsh-Rose (HR) model (Hindmarsh and
Rose, 1984), Izhikevich model (Izhikevich, 2003), and map-
based (MB) model (Rulkov, 2002). While representative models
in the second category include Hodgkin-Huxley (HH) model
(Hodgkin and Huxley, 1952) and Morris-Lecar (ML) model
(Morris and Lecar, 1981).

Simplified models are convenient for numerical calculations
and have been widely used in simulating large-scale brain
networks or neural circuits. However, as ion channels are the
building blocks of spike generation, given their lack of ion
channels, simplified models might be inaccurate when capturing
spike features of neurons; moreover, parameters in these models
have little electrophysiological meanings. Therefore, parameter
tunings are time-consuming.

On the contrary, detailed models are much more accurate
in characterizing spike features of neurons. The ML model is
a special case of the HH model, which aims at simulating the
oscillatory behavior of barnacle muscle fiber (Morris and Lecar,
1981). In the remaining part of this paper, detailedmodels refer to
the HH-type models. HH-type models embedded with different
ion channels can generate various firing behaviors, reproducing
spikes similar to experimental data, and parameters included
in these models have definite physiological meanings. However,
because of their inconvenience for numerical calculations,
HH-type models are difficult to carry out large-scale brain
network simulations.

Previous studies have tried to accelerate the calculation of
the HH-type models in several different ways. For example,
researchers increased the time step in numerical schemes, e.g.,
from 0.01 to 0.1ms. However, this is not an optimal approach as it
may lead to lower simulation accuracy. Recently, another method
has been proposed: library-based numerical method Sun et al.
(2009). Specifically, plenty of spike samples from the classical
HH model under different stimulus intensities were collected
to build a library (spike database). When performing network
simulation, spike sequences of the corresponding HH neurons
can be estimated from the library. However, this method is
still not good enough as it can only reproduce raw statistical
information of spikes, e.g., average firing rate, interspike interval
distribution, and power spectra of voltage traces, and cannot
capture the spike timing information of neurons, which is more
informative. Moreover, as they only tested their method using the
classical HH model, the generalization ability of the method is
still unknown. Ionic neuron models have many different types
besides classical HH-type and firing activities produced by these
neurons are rather diverse and changeable. Previously, Cao et al.
proposed a spike prediction module (SPM) to use three voltage
values (intervals of 1 ms) to decide whether or not a spike will
take place 1 ms later (Cao et al., 2018). Although SPM does
well, the features of the spike have not been evaluated. In this
study, a novel method named feature prediction module (FPM)
was proposed to predict informative spike features including
maximum voltage, minimum voltage, and dropping interval.
To the best of our knowledge, we are the first to explore the
task of spike feature prediction with a simple artificial neural
network. Spike features and voltage data were collected from nine

different HH-type models whose firing patterns cover most of the
firing behaviors observed in the brain. Then, we constructed the
FPM based on the SPM. For three sequential voltages (interval
of 1 ms), the SPM was first used for spike predictions; if a
spike is predicted, then the voltages will be imported to the
FPM to predict spike features; otherwise, the voltages will be
updated and imported to the SPM again (as shown in Figure 1

for more details).

2. MATERIALS AND METHODS

2.1. Overview of the Method
The schematic of all the processes in the method is illustrated in
Figure 1.

(1) Three sequential voltage data with 1 ms interval were
extracted from a given neuron model.

(2) The SPM was used to judge whether there would be a spike
of 1 ms later (Cao et al., 2018).

(3) If the output of SPM is bigger than 0.5, then the
input voltages would be imported to the FPM, where we
introduced a three-layer artificial neural network (ANN) to
do predictions. Specifically, three units were used in the input
layer, corresponds to the three input voltage values; ten units
were used in the hidden layer to extract features from the
input layer; three units were used in the output layer, which
corresponds to three spike features (see Vmax, Vmin, and
Twidth in Figure 2).

(4) While if the output of SPM is smaller than 0.5, then the input
voltages would move forward with 0.01 ms to acquire new
voltage samples and import them to the SPM again.

(5) Following step (3), we predict the spike features and
calculate the loss (mean squared error, MSE). After
that, we observed whether the stop time is reached; if
yes, the whole process would stop; otherwise, voltage
samples would be extracted from a new start time: t +

3ms + Twidth (t denotes time corresponds to V1), and
does classifications and predictions again until the stop
time is reached.

2.2. Three Typical Features in Neuronal
Spikes
Spikes are the basic and crucial units in reflecting neuronal
activities. Figure 2A demonstrates a typical spike, marked with
three indices,Vmax,Vmin, and Twidth, which denote themaximum
voltage, minimum voltage, and dropping interval (time interval
between Vmax and Vmin) of the spike, respectively. V1, V2,
and V3 are three sequential voltage values before Vmax, with
an interval of 1 ms. V1, V2, and V3 were then imported
to FPM, with Vmax, Vmin, and Twidth as output, ten artificial
neurons were used in the hidden layer of FPM, as shown
in Figure 2B.

2.3. Neuron Models
Spike data (Vmax, Vmin, Twidth, V1, V2, and V3) were collected
from nine different ionic neuron models: regular spiking neuron
with and without adaptation (RS_Adaptation Ermentrout,
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FIGURE 1 | The schematic shows all the processes in the method. Collected sequential V1, V2, and V3 were first imported to the spike prediction module (SPM) to

judge whether these three values can be used to predict spike features; if the output of SPM is higher than 0.5 (threshold), then V1, V2, and V3 were imported to the

feature prediction module (FPM) to do feature predictions. After that, new V1, V2, and V3 were collected start from t+ 3ms+ Twidth until the stop time is reached; while

if the output of SPM is lower than 0.5, V1, V2, and V3 were moved forward with 0.01 ms to get new V1, V2, and V3 and imported to the SPM to do classifications.

These procedures were repeated until reaching the stop time.

FIGURE 2 | Three typical features of a spike and the FPM structure. (A) The Vmax , Vmin, and Twidth denote the maximum voltage, minimum voltage, and dropping

interval of the spike (the difference between tmax and tmin), respectively, V1, V2, and V3 denote three sequential voltage values with an interval of 1 ms before Vmax .

(B) The structure of FPM, with V1, V2, and V3 as input and Vmax , Vmin, and Twidth as output. One hidden layer is used with ten artificial neurons.

1998 and RS_NoAdaptation Fohlmeister and Miller, 1997), fast
spiking neuron with and without adaptation (FS_Adaptation
Gouwens et al., 2010 and FS_NoAdaptaton Wang and
Buzsáki, 1996), bursting excitatory neuron (Bursting_RS
Golomb et al., 2006), bursting inhibitory neuron (Bursting_FS
Golomb et al., 2007), phasic spiking neuron (Rothman and
Manis, 2003; Gai et al., 2009), Class I firing excitable (Traub
and Miles, 1991) and Class II firing excitable (Hodgkin
and Huxley, 1952) neurons. Besides, the mixed mode can
also be generated by Bursting_RS under certain stimulus
intensity (Figure 3). These ten firing patterns cover most
of the firing behaviors observed experimentally in different
brain regions.

Detailed mathematical expressions for each neuron were
described using the classical HH equation:

Cm
dV

dt
= −Ileak + Iinj −

∑

ion

Iion (1)

where Cm is the membrane capacitance, Ileak is the
leak current, Iinj is the external input current with four
modes: constant, slope, sinusoidal, and noise.

∑
ion Iion

is the summation of ionic currents. Iion is illustrated in
equation 2.

Iion = gmaxm
pnq (V − Eion) (2)
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FIGURE 3 | Ten typical firing patterns reproduced by nine different ionic models.

gmax is the maximal conductance of the corresponding ion
channel, m and n are gating variables controlling the open and
close states of ion channels, while p and q are the numbers of
gating variables needed. Eion is the reversal potential of each
ion channel. Detailed expressions of these ion currents
and electrophysiological parameters of RS_Adaptation,
RS_NoAdaptation, FS_Adaptation, FS_NoAdaptation,
Bursting_RS, Bursting_FS, Phasic spiking, Class I excitable,
and Class II excitable were separately referred from Hodgkin
and Huxley (1952), Traub and Miles (1991), Wang and Buzsáki
(1996), Ermentrout (1998), Fohlmeister and Miller (1997),
Golomb et al. (2006), Golomb et al. (2007), Rothman and Manis
(2003), Gai et al. (2009), and Gouwens et al. (2010).

2.4. Collection of Spike Features and
Voltage Samples for Training and Testing
For each specific model in Section 2.3, a corresponding dataset
was built to train and evaluate the FPM. In the training stage,
constant current with different intensities was used as the
external input current to generate spike trains with different
firing frequencies. For every spike, Vmax, Vmin, and Twidth,
and sequential V1, V2, and V3 were collected in the data set.
Here, the time interval between V1, V2, V3, and Vmax is 1
ms. To test the generalization ability of the proposed model,
three additional current stimuli were introduced during testing.
Specifically, constant, slope, sinusoidal, and Gaussian white noise
stimuli were used to evaluate the performance of FPM. The noise
current mode was set as four levels, denoted as 1, 2, 3, and 4,

TABLE 1 | The sample size of the feature prediction module (FPM) training and

testing data set used for each neuron model.

Training Testing

Constant

current

Constant

current

Slope

current

Noise

current

Sinusoidal

current

2,400 2,400 2,400 9,600 2,400

by controlling the sigma of Gaussian distribution to make the
noise current range cover 25, 50, 75, and 100% current range used
in constant stimuli. The sample size of the training and testing
data set for each neuron model is listed in Table 1. It should be
mentioned that all the samples have labels.

In this study, voltage data of the nine neuron models
were calculated in Python using the fourth-order Runge-
Kutta algorithm with time integration of 0.01 ms.
Construction of the FPM was realized in a Python-based
package-PyBrain.

3. RESULTS

3.1. Performance of the FPM in Training
and Testing
Voltage samples were regulated to the same distribution
range for training and testing the FPM. Seventy percent
of data in the training set were randomly selected for
training, and the remaining 30% was used for validation.
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FIGURE 4 | Training and validation error of FPM to the iteration number of nine models.

After iteration for 1,000 times, the FPM has been trained
well enough. Figure 4 illustrates the change of MSE
during training.

To examine the performance of FPM in testing data, we
calculated prediction errors and accuracy of all the models
under constant, slope, sinusoidal, and noise stimuli, where the
noise stimuli were set as four levels. Here, prediction error was
calculated using root mean square error (RMSE), while accuracy
was calculated using the coefficient of determination (R2) from
the regression analysis. As shown in Table 2, for the three
spike features (Vmax, Vmin, and Twidth), the proposed method
shows low prediction errors and high prediction accuracy on
nine different neurons whose firing patterns cover most of the
firing behaviors observed experimentally in the brain. Also,
it is worth noting that the proposed method achieved good
performance on the three current types that had not been used
in training.

These results show that for a given sequential V1, V2, and V3,
the trained FPM performs very well in predicting the features
of the subsequent spike and demonstrates the robustness of the
proposed model.

3.2. Visualization of the Performance of
SPM and FPM in Spike Prediction
To intuitively demonstrate the performance of the proposed
method, we visualized its prediction results under different
external input currents. Figure 5 demonstrates representative
neuron activities showing the performance of SPM and FPM
in classification and prediction under noise current mode
(noise level=4), from which we can see that the predictive
values (blue stars) almost coincide with the true values (red
circles). The predicted spike features under constant, slope,
sinusoidal, and noise (level=1, 2, 3) modes are presented in the
Supplementary Material.

4. DISCUSSION

4.1. Contributions of This Study
Neuron models used in spiking neural networks can be divided
into simplified models without ion channels, represented by the
LIF model, and detailed models with ion channels, represented
by the HH-type model. LIF models are computationally efficient
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TABLE 2 | Prediction errors and accuracy using samples from the library in the FPM.

Models Current type
RMSE

(Vmax)

RMSE

(Vmin)

RMSE

(Twidth)

R2

(Vmax)

R2

(Vmin)

R2

(Tswidth)

RS_Adaptation constant 4.63× 10−3 3.17× 10−3 2.38× 10−3 1.00 1.00 1.00

slope 4.91× 10−3 1.76× 10−2 1.70× 10−3 1.00 1.00 1.00

sinusoidal 3.66× 10−3 5.02× 10−4 2.38× 10−3 1.00 1.00 1.00

noise level=1 5.98× 10−4 4.84× 10−3 1.72× 10−3 1.00 1.00 1.00

level=2 8.17× 10−4 6.57× 10−3 1.65× 10−3 1.00 1.00 1.00

level=3 3.26× 10−4 8.98× 10−3 1.61× 10−3 1.00 1.00 1.00

level=4 1.67× 10−3 5.84× 10−3 1.78× 10−3 1.00 1.00 1.00

RS_NoAdaptation constant 1.26× 10−2 1.34× 10−2 8.85× 10−3 1.00 1.00 1.00

slope 1.20× 10−2 1.30× 10−2 8.85× 10−3 1.00 1.00 1.00

sinusoidal 1.94× 10−2 2.86× 10−2 9.90× 10−3 1.00 1.00 1.00

noise level=1 3.23× 10−3 7.33× 10−3 3.48× 10−3 1.00 1.00 1.00

level=2 1.15× 10−3 4.70× 10−3 4.99× 10−4 1.00 1.00 1.00

level=3 3.86× 10−3 4.24× 10−3 5.52× 10−4 1.00 1.00 1.00

level=4 8.04× 10−3 5.81× 10−3 6.95× 10−4 1.00 1.00 1.00

FS_Adaptation constant 4.78× 10−1 1.52× 10−1 9.34× 10−3 1.00 1.00 1.00

slope 4.78× 10−1 1.52× 10−1 9.35× 10−3 1.00 1.00 1.00

sinusoidal 4.80× 10−1 1.55× 10−1 9.43× 10−3 1.00 1.00 1.00

noise level=1 4.65× 10−1 2.16× 10−1 5.90× 10−3 1.00 1.00 1.00

level=2 4.61× 10−1 2.16× 10−1 5.89× 10−3 1.00 1.00 1.00

level=3 4.58× 10−1 2.15× 10−1 5.88× 10−3 1.00 1.00 1.00

level=4 4.37× 10−1 2.05× 10−1 5.44× 10−3 1.00 1.00 1.00

FS_NoAdaptation constant 1.93× 10−1 1.91× 10−1 2.65× 10−2 1.00 1.00 1.00

slope 1.93× 10−1 1.90× 10−1 2.64× 10−2 1.00 1.00 1.00

sinusoidal 1.86× 10−1 1.78× 10−1 2.22× 10−2 1.00 1.00 1.00

noise level=1 7.01× 10−2 6.50× 10−2 4.64× 10−3 1.00 1.00 1.00

level=2 16.80× 10−2 7.56× 10−2 4.67× 10−3 1.00 1.00 1.00

level=3 7.70× 10−2 9.90× 10−2 8.92× 10−3 1.00 1.00 1.00

level=4 8.56× 10−2 1.11× 10−1 4.97× 10−3 1.00 1.00 1.00

Bursting_RS constant 1.18× 10−2 6.77× 10−3 1.34× 10−3 1.00 1.00 1.00

slope 1.10× 10−2 6.20× 10−3 1.33× 10−3 1.00 1.00 1.00

sinusoidal 3.87× 10−4 6.29× 10−3 2.33× 10−4 1.00 1.00 1.00

noise level=1 1.00× 10−3 8.85× 10−3 9.01× 10−3 1.00 1.00 1.00

level=2 1.48× 10−3 1.49× 10−2 3.75× 10−2 1.00 1.00 1.00

level=3 1.38× 10−3 1.28× 10−2 8.89× 10−3 1.00 1.00 1.00

level=4 1.57× 10−3 2.69× 10−2 3.34× 10−2 1.00 1.00 1.00

Bursting_FS constant 2.67× 10−2 2.27× 10−2 9.34× 10−4 1.00 1.00 1.00

slope 2.58× 10−2 2.35× 10−2 9.08× 10−4 1.00 1.00 1.00

sinusoidal 2.56× 10−2 1.12× 10−2 7.89× 10−4 1.00 1.00 1.00

noise level=1 3.13× 10−2 2.41× 10−2 9.21× 10−4 1.00 1.00 1.00

level=2 3.35× 10−2 2.60× 10−2 7.50× 10−4 1.00 1.00 1.00

level=3 2.36× 10−2 3.27× 10−2 4.77× 10−4 1.00 1.00 1.00

level=4 1.19× 10−2 4.14× 10−2 5.86× 10−4 1.00 1.00 1.00

Phasic_Spiking constant 6.26× 10−2 8.23× 10−4 2.67× 10−3 1.00 1.00 1.00

slope 6.24× 10−2 7.81× 10−4 2.67× 10−3 1.00 1.00 1.00

sinusoidal 1.06× 10−1 3.02× 10−3 2.55× 10−3 1.00 1.00 1.00

noise level=1 4.69× 10−3 7.50× 10−4 3.32× 10−3 1.00 1.00 1.00

level=2 1.70× 10−2 2.33× 10−4 3.30× 10−3 1.00 1.00 1.00

level=3 2.81× 10−2 7.49× 10−4 3.29× 10−3 1.00 1.00 1.00

level=4 3.92× 10−2 3.16× 10−3 7.97× 10−4 1.00 1.00 1.00

(Continued)
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TABLE 2 | Continued

Models Current type
RMSE

(Vmax)

RMSE

(Vmin)

RMSE

(Twidth)

R2

(Vmax)

R2

(Vmin)

R2

(Tswidth)

Class I excitable constant 8.48× 10−4 4.10× 10−3 3.94× 10−4 1.00 1.00 1.00

slope 6.91× 10−4 3.95× 10−3 4.05× 10−4 1.00 1.00 1.00

sinusoidal 5.40× 10−3 2.37× 10−3 1.09× 10−4 1.00 1.00 1.00

noise level=1 7.95× 10−4 5.89× 10−3 1.94× 10−3 1.00 1.00 1.00

level=2 9.04× 10−4 4.75× 10−3 1.72× 10−3 1.00 1.00 1.00

level=3 9.09× 10−5 3.63× 10−3 1.69× 10−3 1.00 1.00 1.00

level=4 7.17× 10−4 3.97× 10−3 1.78× 10−3 1.00 1.00 1.00

Class II excitable constant 1.31× 10−1 4.10× 10−2 1.38× 10−3 1.00 1.00 1.00

slope 1.31× 10−1 4.10× 10−2 1.38× 10−3 1.00 1.00 1.00

sinusoidal 1.59× 10−2 1.70× 10−3 1.52× 10−3 1.00 1.00 1.00

noise level=1 3.63× 10−2 9.36× 10−3 1.37× 10−3 1.00 1.00 1.00

level=2 2.95× 10−2 8.55× 10−3 1.36× 10−3 1.00 1.00 1.00

level=3 1.62× 10−2 3.47× 10−4 5.42× 10−3 1.00 1.00 1.00

level=4 1.34× 10−3 2.82× 10−3 5.36× 10−3 1.00 1.00 1.00

and have been used in simulating large-scale brain networks
and scenarios like dealing with asynchronous event-based spatio-
temporal information (Yang et al., 2021a). However, LIF models
might be inaccurate when obtaining spike features as they fail
to capture detailed ion channel information. While HH-type
models can simulate spike features more accurately, they suffer
from computational complexity. In this study, we focus on HH-
type neurons and built an artificial neural network, FPM, to
provide novel insights of predicting subsequent spike features
(Vmax, Vmin, and Twidth). While the previously proposed SPM
can predict a spike event, the FPM can successfully predict
informative spike features (Vmax, Vmin, and Twidth) for ten firing
patterns that cover most of the firing behaviors observed in
the brain. Also, it can be well generalized to different unseen
input current scenarios. Experimental results demonstrate that
the combination of SPM and FPM can successfully predict the
spiking part of nine different HH-type neuron models, offering a
possible efficient way of simulating action potentials of biological
neurons with high accuracy.

4.2. Diverse Firing Patterns in Neurons
Firing patterns exhibited by neurons reflect what coding
strategies or manners these neurons adapt to encode input
signals. During the past decades, a diversity of firing patterns
has been observed in biophysical experiments (summarized
in Izhikevich, 2004), e.g., spiking, bursting, and oscillation.
Besides, spiking can be further classified into regular spiking
(with and without adaptation), fast spiking (with and without
adaptation), and phasic spiking, etc., while bursting can be
further classified into regular bursting, fast bursting, phasic
bursting, and rebound bursting, and so on. Based on the
properties of frequency response (f) to different injected current
(I), f-I curves and dynamical firing structures, firing behaviors
of neurons can be classified into Class I, Class II, and
Class III types. In this study, to test the effectiveness of our
proposed method, nine ionic models which can generate most

of the firing patterns mentioned above have been considered,
including RS_Adaptation, RS_NoAdaptation, FS_Adaptation,
FS_NoAdaptation, phasic spiking, Bursting_RS, Bursting_FS,
mixed-mode, and class I and class II excitable neurons. The
obtained results not only demonstrate the reliability of our
method in predicting spike features but also show the generality
of our method in applying to diverse neuron models or
firing patterns.

4.3. Other Methods in Solving HH
Equations
For a long period, numerical methods used to solve differential
equations or models were Euler, Runge- Kutta, and some other
revised versions. To achieve higher accuracy in solving equations,
relatively smaller time steps were usually employed, e.g., 0.01
and 0.005 ms. However, the reduction of time steps would
sacrifice the computation speed. For models with few equations,
computational speed may not be a problem, while for models
with plenty of equations, computation speed will be very critical.

This problem is especially serious in simulating large-scale
neural network models. To address this problem, a novel library-
based method has been proposed to accelerate the speed of
action potential calculations (Sun et al., 2009). However, it can
only acquire raw statistical information of spikes and is not
able to capture the relative spike timing information. Also, its
generalization ability is unknown as the method has only been
tested in the classical HH model.

In this study, our proposed method has been tested in various
ionic neuron models. Experimental results demonstrate that the
proposedmethod not only performs well in accurately simulating
action potentials of neurons but also shows good generalities to
different HH-type neuron models and firing patterns.

4.4. Extensions of the Current Study
Our proposed method performed well in predicting spike
features in many neuronal models. We speculate that
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FIGURE 5 | Nine neuron models showing the performance of SPM and FPM in prediction under noise current stimuli mode (level=4). Black crosses denote voltage

values for spike prediction, red circles denote true values, and blue stars denote predictive values.
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the combination of SPM and FPM may contribute to an
overall acceleration in the adoption of the HH equation.
Specifically, the SPM and FPM can be used to effectively
predict the spiking parts during fast voltage-changing
periods, when the voltage is relatively stable and changes
slowly, a larger time step can be implemented to speed up
the computation.

While a previous study has tried to approximate the
characteristics of a multi-compartment neuron by a temporally
convolutional neural network with five to eight layers (Beniaguev
et al., 2021), for situations that can be handled with point
neurons, our proposed method can be effectively applied
to predict the spiking part of each neuron. Also, the
proposed method may be extended to large-scale network
simulation by replacing traditional HH-type neurons with
simple ANNs.

Although our proposed method performed well in
predicting spike features in many neuronal models, there
are still some insufficiencies that need to be improved in
further studies. In this study, all neuron models considered
are point neuron models. It is unknown if the method
can be extended to more complicated situations like
CerebelluMorphic (Yang et al., 2021c) and large-scale
biophysically meaningful neural networks with multi-
compartmental neurons (Yang et al., 2021b). Further studies
are needed.
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