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Alzheimer’s disease (AD) is a neurodegenerative ailment, which gradually

deteriorates memory and weakens the cognitive functions and capacities of

the body, such as recall and logic. To diagnose this disease, CT, MRI, PET,

etc. are used. However, these methods are time-consuming and sometimes

yield inaccurate results. Thus, deep learning models are utilized, which are

less time-consuming and yield results with better accuracy, and could be used

with ease. This article proposes a transfer learning-based modified inception

model with pre-processing methods of normalization and data addition. The

proposed model achieved an accuracy of 94.92 and a sensitivity of 94.94. It

is concluded from the results that the proposed model performs better than

other state-of-the-art models. For training purposes, a Kaggle dataset was

used comprising 6,200 images, with 896 mild demented (M.D) images, 64

moderate demented (Mod.D) images, and 3,200 non-demented (N.D) images,

and 1,966 veritably mild demented (V.M.D) images. These models could be

employed for developing clinically useful results that are suitable to descry

announcements in MRI images.

KEYWORDS

feature visualization, modified inception, classification, confusionmatrix, Alzheimer’s

disease

Introduction

Alzheimer’s disease (AD) is a neurological condition that damages the neurons

and slowly deteriorates memory and hampers basic cognitive functions and

abilities. This disease is detected by monitoring changes in the brain, which

eventually result in neuron loss and their connections. According to the WHO,

around 50 million people suffer from dementia, and nearly 10 million new

cases of AD are reported every year. Ultimately, AD destroys the part of

the brain that controls breathing and heart monitoring, eventually leading to
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fatality. AD involves three stages: very mild, mild, and

moderate (Feng et al., 2020; Rallabandi et al., 2020). However,

an individual affected by AD begins to show symptoms at

the moderate stage. This disease affects the communication

between neurons.

In the mild stage, progressive deterioration eventually

hinders independence, with patients unable to perform most of

the common activities of daily living. Speech difficulties become

evident due to an inability to recall vocabulary, which leads

to frequent incorrect word substitutions. Reading and writing

skills are also progressively lost. Complex motor sequences

become less coordinated with time as the disease progresses,

so the risk of falling increases. During this phase, memory

problems worsen, and the patients may fail to recognize even

close relatives. Long-termmemory, which was previously intact,

becomes impaired. Moreover, old age alone does not cause

AD, several health, environmental, and lifestyle factors also

contribute to AD (Ebrahimi-Ghahnavieh et al., 2019; Talo et al.,

2019; Nakagawa et al., 2020), including heart disease, lack of

social engagement, and sleep (Hon and Khan, 2017; Aderghal

et al., 2018; Islam and Zhang, 2018).

This study utilizes a novel modified inception-based model

that classifies AD into four sub-categories: V.M.D, M.D, Mod.D,

and N.D. The model was run on a large MRI dataset (Jha

et al., 2017). The following research points can be inferred from

the study:

1. A modified inception v3 model was implemented to

classify AD into four classes.

2. This model was modified by adding six convolutional

layers, four dense block layers, two dropout layers, one

flattening layer, and one layer with an activation function.

3. Image enhancement and augmentation processes were

utilized to expand the image quantities in the dataset.

The proposed model was implemented using an Adam

optimizer and 1,000 epochs.

Background literature

Most of the research work has applied the binary

classification of AD (Jha et al., 2017; Aderghal et al., 2018;

Ebrahimi-Ghahnavieh et al., 2019; Rallabandi et al., 2020)

and a smaller dataset to design their proposed model, which

may not be adaptable. The researchers (Hon and Khan,

2017; Talo et al., 2019; Feng et al., 2020; Nakagawa et al.,

2020; Rallabandi et al., 2020) working on a large dataset

have implemented two output-based classifications (Ali et al.,

2016) or classifications of binary inputs (Bin. C) (Kang

et al., 2021), which resulted in only marginal accuracy (Li

et al., 2021). Table 1 compares the existing state-of-the-

art models.

Materials and methods

This model classifies AD into ND, VMD, MD, and Mod D

classes (Sarraf and Tofighi, 2016). The proposed model utilizes

the Kaggle dataset containing 6,200 AD images. The model

involves augmentation of data (Zhao et al., 2017) and extraction

of features using a modified inception model (Fan et al., 2008),

as shown in Figure 1. The model is executed using the Keras

package in Pythonwith Tensorflow, which is used at the backend

of Intel(R) Core (TM) i5-6400 CPU 2.70 GHz processors and

12GB RAM.

Input dataset

The database used in this study consists of a total of 6,200 AD

images that are retrieved from the Kaggle database. It comprises

grayscale images of 896 MD, 64 Mod D, 3,200 ND, and 1,966

VMD images, with a dimension of (208 × 176 × 3) pixels.

The dataset for evaluation is divided in such a way that 80%

of the image samples are utilized for training the model and

the remaining 20% are utilized for testing the model (Filipovych

et al., 2011). Figure 2 shows the database of MRI images. Table 2

shows the publicly available AD dataset.

Table 3 shows the dataset description in which the number of

training images, testing images, and validation images are given

for AD classes. The total number of images in the dataset is

6,200, of which 179 are MD, 12 are Mod.D, 640 are ND, and 448

are VMD images. The complete dataset is divided into training

and validation (Misra et al., 2009; Moradi et al., 2015).

Normalization

Data normalization preserves the numerical stability of the

modified inception model (Serra et al., 2016; Rathore et al.,

2017). The MRI images have values ranging from 0 to 255.

By utilizing the normalization technique, the images in the

proposed model are trained faster (Rashid et al., 2022).

Augmentation

To enhance usefulness, a dataset with the maximum number

of samples is required, but numerous site, privacy, and data

restrictions often accompany while acquiring the dataset.

Therefore, to overcome these issues, augmentation of data

is performed, which increases the original data quantity.

Augmentation includes flipping (FL), rotation (Ro), and

brightness (Bss). Both vertical (VF) and horizontal flipping (HF)

techniques (Dhankhar et al., 2021; Juneja A. et al., 2021; Juneja S.

et al., 2021) are shown in Figure 3. The Ro technique, as shown

in Figure 4, is implemented in an anticlockwise direction by an
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TABLE 1 Literature survey of existing models.

Ref. Journal Techniques Aim Challenges of the approach

Rallabandi et al.

(2020)

Informatics in

Medicine Unlocked

Non-Linear SVM with 2D

CNN

To develop an automated

technique to classify normal,

early and late mild AD

individuals

Dataset contained 1,167 brain MRI images. It utilized Bin.C

and showed 75% accuracy

Feng et al. (2020) International

Journal of Neural

Systems

3D CNN-SVM To distinguish Mod. D and

M.D individuals from N.D

individuals, for improving

value-related care of Mod. D

individuals in medical

facilities

Dataset contained 3,127, 3T T1-weighted MRI brain images.

It utilized classification of three inputs and showed 88.9%

accuracy. It also aims to focus on regressing Mod. D

individuals to healthy individuals predict Mod. D

progression and improve in diagnosis of AD in future

Nakagawa et al.

(2020)

Brain

Communications

Cox, DeepHit To diagnose conversion time

from normal individual to AD

individual by using deep

survival analysis model

Dataset contained 2,142, T1-weighted images. It utilized

classification of three inputs and showed 92.3% accuracy. It

aims to diagnose the group of M.D individuals that would

convert to AD in future

Ebrahimi-

Ghahnavieh et al.

(2019)

IAICT GoogleNet, AlexNet,

VGGNet16, VGGNet19,

SqueezeNet, ResNet18,

ResNet50, ResNet101,

inceptionv3

To detect AD on MRI scans

using D.L techniques

Dataset contained 177 images. It utilized Bin.C and showed

84.38% accuracy. To comprise PET scans in the system to

examine several aspects of AD

Talo et al. (2019) Computerized

Medical Imaging

and Graphics

AlexNet, VGGNet16,

ResNet18, ResNet34,

ResNet50

To diagnose MRI images into

N.D and Mod.D

Dataset contained 1,074; T2-weighted MRI images and it

utilized classification of multiple inputs and showed 95.59%

accuracy

Islam and Zhang

(2018)

Brain Informatics inceptionV4, ResNet, ADNet To diagnose AD by utilizing

Deep-CNN ensemble

Dataset contained 416; T1-weighted sMRI scans and it

utilized classification of multiple inputs and showed 93.18%

accuracy. To predict AD from proposed model other brain

diseases

Aderghal et al.

(2018)

CBMS Data Augmentation, CNN To classify AD analysis by

using Cross-Modal Transfer

Learning

Dataset contained 416; sMRI image scans and it utilized

Bin.C and showed 82.1% accuracy. To utilize a longitudinal

dataset and implement cross modal method based on ROI

spatial optimization

Hon and Khan

(2017)

BIBM CNN, Transfer Learning To classify AD by using cross

modal transfer learning

algorithms

Dataset contained 6,400 brain images and yielded 92.3%

accuracy while utilizing binary classification

Jha et al. (2017) Journal of

Healthcare

Engineering

DTCWT, PCA, (FNN) To develop a CAD system to

early diagnose AD individulas

Dataset contained 416; T1- weighted image scans and it

implemented binary classification and yielded an accuracy of

90.06%. To test 3D-DTCWT, wavelet packet analysis, utilize

ICA, LDA and PCA

Ali et al. (2016) International

Journal of

Computer

Applications

VGG16, inceptionV4 To classify AD by utilizing

transfer learning algorithms

in pre-trained models

Dataset contained 416; MRI AD and MCI image scans were

utilized and utilized Bin.C and showed 74.12% accuracy by

scratch and 92.3% by transfer learning algorithms

Kang et al. (2021) CBM 2D-CNN, VGG16 To classify AD by using

ensemble based CNN

Dataset contained 798; T1-weighted image scans and it

utilized Bin.C and showed 90.36% accuracy. To distinguish

AD fromMCI images by using 2D-CNN

Li et al. (2021) BMRI SVM, CNN To distinguish MCI from AD

by using SVM classifier with

linear kernel

Dataset contained 1,167; T1-weighted image scans and it

utilized Bin.C and showed 69.37% accuracy. To distinguish

AD fromMCI images by using SVM-CNN

Venugopalan et al.

(2021)

SR SVM, k-NN, CNN To distinguish MCI from AD

by using SVM and k-NN

Dataset contained 1,311; T1 and T2 weighted image scans

and utilized Bin.C and showed 75% accuracy. To distinguish

AD fromMCI images by using SVN-CNN, KNN
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FIGURE 1

Proposed Alzheimer’s disease detection model.

FIGURE 2

Alzheimer’s disease: (A) M.D, (B) Mod.D, (C) N.D, and (D) V.M.D.

angle of 90 degrees each. Bss, as shown in Figure 5, is also applied

to the image dataset by taking brightness factor values as 0.3

and 0.7.

Table 3 exhibits the number of images before and after data

augmentation. Furthermore, a disproportion in the number of

images was found in every class. To improve this disproportion

(Sharma et al., 2022c), augmentation of data was performed, as

mentioned before. After their execution, the samples increased

from 6,200 to 10,760 images, which represent the updated

images. This is applied only to the training images. Before

augmentation, the training images of MD, Mod D, ND, and

VMD were 896, 64, 3,200, and 1,966, respectively. After the

augmentation, the total number of training images became

10,760, which represents the total number of images of training

and validation data after augmentation.

Feature extraction using the modified
inception model

In the proposed model, input images with a dimension

of 208 ∗ 176 pixels were applied, as shown in Figure 6. The

TABLE 2 Publicly available Alzheimer’s disease dataset.

Dataset Classes Class name Class images Total images

OASIS 4 N.D 292 416

V.M.D 24

M.D 28

Mod.D 72

ADNI 3 ND 159 469

MD 157

Mod.D 153

Harvard

Medical

School

4 Mod.D 378 1,680

Kaggle 4 M.D 896 6,126

Mod.D 64

V.M.D 1,966

N.D 3,200

modified inception architecture consisted of 12 blocks. In the

first and second blocks, two inception layers of size 3 and

one max pooling layer of size 2 with 32, 64, and 128 filters,
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TABLE 3 Alzheimer’s dataset description.

S.No. Alzheimer Training Validating Before After Training Validating

images images augmentation augmentation images images

1 M.D 717 179 896 2,688 2,150 538

2 Mod.D 52 12 64 640 512 128

3 N.D 2,560 640 3,200 3,500 2,800 700

4 V.M.D 1,518 448 1,966 3,932 3,145 787

FIGURE 3

FL applied to the dataset: (A) original, (B) HF, and (C) VF.

FIGURE 4

Ro applied to the dataset: (A) original, (B) 90 degrees anticlockwise, (C) 180 degrees anticlockwise, and (D) 270 degrees anticlockwise.

respectively; in the third and fourth blocks, two convolution

layers with 32 filters; and in the fifth and sixth blocks with one

convolution layer with 256 and 128 filters, respectively, were

applied. These layers were followed by a dropout layer with 128

filters. The seventh and eighth layers consisted of 256 and 512

filters, respectively, followed by another dropout layer with 128

filters. Then, the flattened layer was connected with 512 filters,

and the ninth, 10th, 11th, and 12th dense layers consisted of 512,

128, 64, and 32 filters, respectively. At last, the fully connected

layers were implemented, and the classified output was obtained.
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FIGURE 5

Bss applied to the dataset: (A) original image, (B) with Bss factor 0.3, and (C) with Bss factor 0.7.

FIGURE 6

Modified inception architecture.

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2022.1000435
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Sharma et al. 10.3389/fncom.2022.1000435

TABLE 4 Filter visualization for every convolution layers.

First convolution layer

inception_v3_input inception_v3 inception_v3_1 max_pooling2d sequential sequential_1

Last convolution layer

Filter for first convolution layer

sequential_2 sequential_3 dropout sequential_4 sequential_5 dropout_1

Filter for last convolution layer

sequential_2 sequential_3 dropout sequential_4 sequential_5 dropout_1

Table 4 exhibits the filter visualization image of every

convolution layer. The single kernel or filter for each

convolutional layer is mentioned.

The images are filtered with the help of kernels, as given

in Table 5 as it displays the feature-visualized images of each

convolutional layer (Chugh et al., 2022; Dhiman et al., 2022).

It displays the first and last feature-visualized images for every

convolutional layer (Sharma et al., 2022a,b).

Results

Various tuning parameters were applied to AD images, like

optimizer, batch size (BS), and epochs, which modified neural

network features and thus minimized the losses. The Adam

optimizer was used in this model. BS specifies managed images

in a single iteration. BS 32 was utilized in these models. A

total of 1,000 epochs were used in these models. The Adam

optimizer was used for training the deep learning algorithms

as it includes both functionalities of AdaGrad and RMSProp

optimizers. Large BS results in heavy computational processes

during deep learning model training, whereas small BS results in

a faster computational process. Hence, there is always a trade-

off between large and small BS. The number of epochs should

be more so that error can be minimized during model training;

however, a large number of epochs increase the computational

time. In this study, the simulation of the proposed model is

carried out using 1,000 epochs. Table 8 shows the name of

hypertuning parameters and their values.

Confusion matrix

Figure 7 shows the confusion matrix, which represents

classification predictions. The accuracy of the entire model is

94.92%. The confusion matrix parameters are converted by

classification report. These confusion matrix parameters are

given as follows:

a. Accuracy (Acc) is the ratio of true predictions to observed

predictions, as in Equation 1:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

b. Precision (Prec) is the ratio of correct positive predictions

to the total positive predictions, which can be given by

Equation 2:

Precision =
TP

TP + FP
(2)

c. Specificity (Spec) is the ratio of correct negative predictions

to the total negatives, which can be given by Equation 3:

Specificity =
TN

TN + FP
(3)
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TABLE 5 Images after each dense block.

Filter for first convolution layer

inception_v3_input inception_v3 inception_v3_1 max_pooling2d sequential sequential_1

Filter for last convolution layer

inception_v3_input inception_v3 inception_v3_1 max_pooling2d sequential sequential_1

Filter for first convolution layer

sequential_2 sequential_3 dropout sequential_4 sequential_5 dropout_1

Filter for last convolution layer

sequential_2 sequential_3 dropout sequential_4 sequential_5 dropout_1

FIGURE 7

Confusion matrix for the modified inception model.
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FIGURE 8

Graph of confusion matrix parameters with F1-Score.

TABLE 6 Confusion matrix constituents of the modified inception

model with the Adam optimizer.

AD type Precision Sensitivity Specificity F1-score

N.D 97.51 97.97 99.16 97

V.M.D 100 100 100 100

M.D 92.19 90.93 97.31 91

Mod.D 90 90.86 96.74 91

Avg. precision 94.93 – – –

Avg. sensitivity – 94.94 – –

Avg. specificity – – 98.3 –

94.75

d. Sensitivity (Sens) is the ratio of correct positive predictions

to the total positives, which is given by Equation 4:

Sensitivity =
TP

TP + FN
. (4)

Figure 7 displays the confusion matrix for the modified

inception model. The accuracy value of the proposed model is

94.92%.

Figure 8 exhibits the precision, sensitivity, and specificity

values for all AD classes for a batch size of 32 with the Adam

optimizer. In Figure 8, V.M.D exhibits a maximum precision of

100%, followed by ND, with a maximum precision of 97.51%.

TABLE 7 Confusion matrix constituents of the modified inception

model with the Adadelta optimizer.

AD Type Precision Sensitivity Specificity

N.D 94.23 96.13 97.52

V.M.D 100 100 100

M.D 91.7 88.57 95.21

Mod.D 84.43 86.61 92.5

Avg. precision 92.59 – –

Avg. sensitivity – 92.83 –

Avg. specificity – – 96.31

Also, V.M.D exhibits a sensitivity of 100%, followed by N.D,

with a sensitivity of 97.97%. Furthermore, V.M.D displays a

specificity of 100%, followed by N.D with a specificity of 99.16%.

The average Prec, Sens, and Spec of a batch size model of 32

with Adam, Adadelta, and SGD optimizers are exhibited in

Tables 6–8, respectively.

A comparison of all the optimizers is shown in Table 9,

where the SGD optimizer showed better average precision,

average sensitivity, and average specificity than both Adam and

Adadelta optimizers.

Similarly, the average Prec, Sens, and Spec of a batch size

of 64 in the inception model with Adam, Adadelta, and SGD

optimizers are exhibited in Tables 10–12, respectively. By adding
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TABLE 8 Confusion matrix constituents of the modified inception

model with the SGD optimizer.

AD type Precision Sensitivity Specificity

N.D 97.62 98.6 99.2

V.M.D 100 100 100

M.D 94.5 92.27 98.33

Mod.D 91.7 92.5 96.2

Avg. precision 95.9 – –

Avg. sensitivity – 95.84 –

Avg. specificity – – 98.43

TABLE 9 Confusion matrix constituents of the modified inception

model with the SGD optimizer.

Optimizers Avg. precision Avg. sensitivity Avg. specificity

SGD 95.9 95.84 98.43

Adam 94.93 94.94 98.3

Adadelta 92.59 92.83 96.31

TABLE 10 Confusion matrix constituents of the modified inception

model with the Adam optimizer.

AD type Precision Sensitivity Specificity

N.D 91.6 92.5 96.3

V.M.D 100 100 100

M.D 90.11 88.7 95.17

Mod.D 85.7 86.2 92.8

Avg. precision 91.85 – –

Avg. sensitivity – 91.86 –

Avg. specificity – – 96.06

Avg. F1-score – – –

TABLE 11 Confusion matrix constituents of the modified inception

model with the Adadelta optimizer.

AD type Precision Sensitivity Specificity

N.D 89.38 91.13 93.71

V.M.D 100 100 100

M.D 87.32 88.57 94.93

Mod.D 84.43 85.14 91.17

Avg. precision 90.28 – –

Avg. sensitivity – 91.21 –

Avg. specificity – – 94.95

Gaussian NB to the last layer of the inception model of a

batch size of 32 with the Adam optimizer, the results denote

a significant increase in performance parameters, as shown in

Table 13.

TABLE 12 Confusion matrix constituents of the modified inception

model with the SGD optimizer.

AD type Precision Sensitivity Specificity

N.D 95.13 96.5 97.51

V.M.D 100 100 100

M.D 93.91 90.2 95.8

Mod.D 89.18 89.82 92.13

Avg. precision 94.55 – –

Avg. sensitivity – 94.13 –

Avg. specificity – – 96.36

TABLE 13 Confusion matrix constituents of the modified inception

model with the Gaussian NB classifier.

AD type Precision Sensitivity Specificity

N.D 97.8 98.21 99.38

V.M.D 100 100 100

M.D 96.25 91.97 98.5

Mod.D 93.12 93.8 96.41

Avg. precision 96.79 – –

Avg. sensitivity – 95.9 –

Avg. specificity – – 98.57

Discussion

For the training of the proposed model, the Adam

optimizer was utilized. Confusion matrix parameters and

training performance parameters for the model are shown in

Figure 8. From Figure 9, it can be inferred that this model

obtained the comparatively highest parametric values with a

Prec of 94.93%, a Sens of 94.94%, a Spec of 98.3%, and a

yielded Acc of 94.92%. Model accuracy was used for evaluating

classification models, and model loss was used for optimizing

parameter values. Figure 9A displays the graphs of training

accuracy and validation accuracy for the modified inception

model, from which it can be inferred that training accuracy

was better than validation accuracy for all the epochs. Figure 9B

shows the graphs of the training area under the curve (AUC) and

validation area under the curve, from which it can be deduced

that the AUC for training data was 1, whereas the AUC was

<1 for validation data. Figure 9C shows the graphs of training

loss and validation loss for the modified inception model, from

which it can be inferred that validation loss is high only at the

800th epoch; otherwise, its value is <0.5.

From Table 14, it can be deduced that at the 1,000th epoch,

the training Acc value is maximum at BS 32, that is, 95.11%,

whereas training loss is minimum, that is, 0.3483. Furthermore,

at the 1,000th epoch, the training Acc value is maximum at

BS 64, that is, 93.57%, whereas training loss is minimum, that

is, 0.3442.
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FIGURE 9

Modified inception model graphs containing (A) model accuracy, (B) model AUC, and (C) model loss.

TABLE 14 Training performance of the modified inception model with

the Adam optimizer.

Epoch Train Train Validation Val

value loss accuracy loss accuracy (%)

For batch size 32

200 0.0182 0.9964 0.2894 0.9413

400 0.0111 0.9969 0.3890 0.9482

600 0.0067 0.9987 0.3421 0.9502

800 0.0022 0.9996 0.7948 0.9419

1,000 0.0017 0.9998 0.3483 0.9517

For batch size 64

200 0.0212 0.9836 0.3577 0.9223

400 0.0152 0.9897 0.3463 0.9267

600 0.0082 0.9923 0.3861 0.9109

800 0.0065 0.9946 0.3458 0.9291

1,000 0.0023 0.9971 0.3442 0.9357

Performance evaluation with previous
implementations

Results obtained from the model are displayed in Table 10

which shows that the model achieved better parametric values

than previous models due to several pre-processing methods.

However, some studies have utilized comparatively larger image

datasets to validate their models (Hon and Khan, 2017; Talo

et al., 2019; Feng et al., 2020; Nakagawa et al., 2020; Rallabandi

et al., 2020). Furthermore, Bin.C was achieved in most studies;

previous studies have also performed tertiary or multiclass

TABLE 15 Comparison with previous implementations.

Authors Database ImagesTechniques Weighted

Acc

Rallabandi et al.

(2020)

ADNI 1,167 SVM with D.L 75%

Feng et al. (2020) ADNI 3,127 2D-CNN with D.L 82.57%

Nakagawa et al.

(2020)

ADNI 2,142 Cox model with D.L 92%

Ebrahimi-

Ghahnavieh et al.

(2019)

ADNI 177 DenseNet-201

ResNet50

84.38%

81.25%

Talo et al. (2019) Harvard

Medical

School

1,074 VGG16 92.49%

Islam and Zhang

(2018)

OASIS 416 ResNet50 93.18%

Aderghal et al.

(2018)

OASIS 416 Cross-Modal Transfer

Learning

83.57%

Hon and Khan

(2017)

Kaggle 6,400 VGG16 92.3%

Jha et al. (2017) OASIS 416 DTCWT and PCA

with FNN

90.06%

Ali et al. (2016) OASIS 416 VGG16 92.3

Kang et al. (2021) ADNI 798 2D-CNN, VGG16 90.36%

Li et al. (2021) ADNI 1,167 SVM, CNN 69.37%

Venugopalan et al.

(2021)

ADNI 1,311 SVM, k-NN, CNN 75%

Proposed

methodology

Kaggle 6,400 Transfer Learning

Based Modified

inception Model

94.92%
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classification (Talo et al., 2019; Feng et al., 2020; Nakagawa et al.,

2020). Table 15 displays the comparison between the proposed

and existing models.

Conclusion

In this study, the effectiveness of the proposed model for the

discovery of announcements has been completely estimated. The

dataset for the announcement was acquired from Kaggle by one

of the authors (Sarvesh Dubey). The results were attained after

the training and analysis of these models. Furthermore, by duly

working the optimizer and images, these results demonstrated

the effectiveness of the proposed models. Acc and Sens of 94.92

and 94.94 independently were achieved with the proposedmodel

with the Adam optimizer. The study models performed better in

both training and testing, with similar results.

A possible limitation would be to guarantee reproducibility;

however, this issue could be solved by using a large brain

MRI dataset. A transfer learning-based approach places the

convolution information into machine learning parts and the

AD images into deep learning parts before adding both the

results of the processes. This study helps for a more accurate

opinion for the development of D.L model. Different transfer

learning-based models and optimization processes would also

be employed to further enhance the effectiveness of the

proposed model. Medical image analysis is one of the grueling

tasks with useful computational methods on the scale of

imaging operations.
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