
TYPE Original Research

PUBLISHED 15 November 2022

DOI 10.3389/fncom.2022.1004988

OPEN ACCESS

EDITED BY

M. Hassaballah,

South Valley University, Egypt

REVIEWED BY

Amandeep Kaur,

Central University of Punjab, India

Halimjon Khujamatov,

Tashkent University of Information

Technology, Uzbekistan

Tayyab Khan,

Jawaharlal Nehru University, India

*CORRESPONDENCE

Gousia Habib

er.gousiya91@gmail.com

RECEIVED 27 July 2022

ACCEPTED 28 September 2022

PUBLISHED 15 November 2022

CITATION

Habib G and Qureshi S (2022)

GAPCNN with HyPar: Global Average

Pooling convolutional neural network

with novel NNLU activation function

and HYBRID parallelism.

Front. Comput. Neurosci. 16:1004988.

doi: 10.3389/fncom.2022.1004988

COPYRIGHT

© 2022 Habib and Qureshi. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

GAPCNN with HyPar: Global
Average Pooling convolutional
neural network with novel NNLU
activation function and HYBRID
parallelism

Gousia Habib* and Shaima Qureshi

Department of Computer Science and Technology, National Institute of Technology Srinagar,

Srinagar, India

With the increasing demand for deep learning in the last few years, CNNs

have been widely used in many applications and have gained interest in

classification, regression, and image recognition tasks. The training of these

deep neural networks is compute-intensive and takes days or even weeks

to train the model from scratch. The compute-intensive nature of these

deep neural networks sometimes limits the practical implementation of

CNNs in real-time applications. Therefore, the computational speedup in

these networks is of utmost importance, which generates interest in CNN

training acceleration. Much research is going on to meet the computational

requirement and make it feasible for real-time applications. Because of its

simplicity, data parallelism is used primarily, but it performs badly sometimes.

In most cases, researchers prefer model parallelism to data parallelism, but

it is not always the best choice. Therefore, in this study, we implement a

hybrid of both data and model parallelism to improve the computational

speed without compromising accuracy. There is only a 1.5% accuracy drop

in our proposed study with an increased speed up of 3.62X. Also, a novel

activation function Normalized Non-linear Activation Unit NNLU is proposed

to introduce non-linearity in the model. The activation unit is non-saturated

and helps avoid the model’s over-fitting. The activation unit is free from the

vanishing gradient problem. Also, the fully connected layer in the proposed

CNNmodel is replaced by the Global Average Pooling layers (GAP) to enhance

the model’s accuracy and computational performance. When tested on a

bio-medical image dataset, the model achieves an accuracy of 98.89% and

requires a training time of only 1 s. The model categorizes medical images

into di�erent categories of glioma, meningioma, and pituitary tumor. The

model is compared with existing state-of-art techniques, and it is observed

that the proposed model outperforms others in classification accuracy and

computational speed. Also, results are observed for di�erent optimizers’,

di�erent learning rates, and various epoch numbers.

KEYWORDS

Global Average Pooling, NNLU, CNN, AMsgrad, SGD, ADAM, hybrid parallelism, max-

pooling

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.1004988
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.1004988&domain=pdf&date_stamp=2022-11-15
mailto:er.gousiya91@gmail.com
https://doi.org/10.3389/fncom.2022.1004988
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2022.1004988/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

1. Introduction

Training neural networks are time-consuming and labor-

intensive, restricting the use of deep learning systems in various

real-time applications. Thus, there is a requirement for faster

learning, particularly when considering CNN parallelization.

Stochastic gradient descent (SGD) and its variants are frequently

employed for deep learning model training. Nevertheless, the

major issue of SGD is that it spreads the gradient information

uniformly in every direction, which is not appropriate for use

in applications with impoverished gradient scaling. In these

circumstances, it is very difficult to control the learning rate

α, while training to ensure that it eventually reaches the local

minimum.

Changing the decay rate is complex and it depends on the

dataset. Convolutional neural networks have made significant

progress recently in object classification and detection (Ren

et al., 2015; Han et al., 2018), image classification (Haralick et al.,

1973; Kim et al., 2008), texture classification (Huang et al., 2014;

Pang et al., 2017), hand gesture recognition (Stanescu et al., 2016;

Yang et al., 2018), bio-medical image analysis (Huang et al.,

2014; Pang et al., 2017), speech recognition (Stanescu et al.,

2016; Yang et al., 2018), natural language processing (Stanescu

et al., 2016; Yang et al., 2018), and other sophisticated deep

learning models. These models necessitate a large quantity of

data for the training, prompting considerable computation. To

reduce the huge computation requirements, distributed systems

and clusters are commonly used to make the training process

more parallel. Data parallelization and model parallelization are

the primary techniques to achieve parallelization. The graphical

representation of the training approach hierarchy shown in

Figure 1 is the best way to visualize it.

Various parallelization methods are data parallelism,

batch parallelism, domain parallelism, model parallelism,

spatial partitioning, channel filter partitioning, layer-wise

FIGURE 1

Parallelization hierarchy.

portioning, and hybrid parallelization. These methods are

broadly elaborated in Habib and Qureshi (2020b). The current

paper is divided into different sections. Section 2 describes the

main contributions of the study. Section 3 provides the related

study. Sections 5 and 6 provide experimental details, results,

and discussion. Section 7 concludes the paper. To the best of

our knowledge, this is the first paper implementing hybrid

parallelism with novel activation function NNLU and GAP layer

for detection and classification of bio-medical images.

2. Main contributions of the study

2.1. Motivation behind novel activation
function

2.1.1. Challenges

The activation function of a CNN introduces a desired non-

linearity into the network. Non-linearities introduced between

consecutive layers can generate a more expressive model, which

is ideal for deep networks. The output should not be a simple

linear combination of the input to have discriminating power

encoded into weights of the convolutional kernels. To avoid

the vanishing gradient problem during gradient descent training

of deep neural networks, a function lacking sign symmetry

(anti-symmetric) is used which gives only positive output

values. The error flow through back-propagation might drop

exponentially when applying the sigmoid activation function

till it vanishes. This can be mitigated by using derivatives

of positive values. The most common activation function

in the convolutional layer is the Rectified Linear Unit or

ReLu. The error flow through back-propagation might drop

exponentially when applying the sigmoid activation function

till it vanishes. This can be mitigated by using derivatives of

positive values.

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

2.1.2. Suggested solution

To avoid the vanishing gradients problem during gradient

descent training of deep neural networks, an anti-symmetric

function that gives only positive output values is used.

The proposed novel activation function is taken from the

derivation of the diffusion equation based upon some essential

properties such as normalized and unsaturated functions

showing improvement over the most popular ReLu activation

function. A detailed description of the function is given in the

next section.

2.2. The motivation behind introducing
Global Average Pooling layer (GAP layer)

2.2.1. Challenges

The feature maps of the last convolutional layers of CNN

are vectorized and are given as input to fully connected layers,

followed by a soft-max logistic regression layer. These vectorized

convolutional structures are then combined with classic neural

networks. As the fully connected layer is prone to over-fitting,

dropout can be used as a regularizer, making half of the

activations of the fully connected layers zero at random during

training. This increases the generalization of the neural network

and significantly reduces over-fitting. However, using dropout is

not always a feasible solution.

2.2.2. Suggested solution

The flattened layers in CNN, are replaced by Global Average

Pooling layers. In the last Conv. layer, one feature map for

each relevant category of the classification task is generated.

Rather than adding fully connected layers on the top of feature

maps, the Soft-Max layer takes the average of each feature

map. Another, advantage of this approach is that there is

no parameter to optimize Global Average Pooling, so over-

fitting is avoided. Global Average Pooling sums out the spatial

information, making it more robust for the spatial translation of

inputs. It can be seen as a structural regularizer that explicitly

forces feature maps to have confidence.

2.3. The motivation behind introducing
HyPar (fusion of data and model
parallelism)

2.3.1. Challenges

The outstanding achievement of CNNs in computer

vision, text classification, satellite imagery, and game playing,

have demanded increased computational requirements for the

training. These models take days even weeks to train from

scratch on the latest GPUs. Many existing parallelization

techniques have come across to improve the training of CNNs.

Most of the techniques employ data parallelism for the training

acceleration of CNNs. But this technique poses some critical

challenges. The main problem with this type of parallelism is

that it only works for models with fewer parameters. There is

a gradual loss of performance as the parameter size increases.

Furthermore, as the mini-batch size increases beyond the N-

value, the inference accuracy of the trained neural network

begins degrading, resulting in an overall network performance

reduction.

Another commonly usedmethod is model parallelism which

splits the entire network into disjoint sets, and each disjoint

set is allocated to the dedicated device to improve the training

efficiency. The model parallelism strategy considers only intra-

layer computation, assuming that data already exists in memory

since it is a fine-grained parallelism strategy. Compared to data-

parallel techniques, it involves more data transfer operations and

incurs more computational costs. To get rid of this overhead, the

underlying architecture for the deep neural system needs to be

carefully designed before training starts.

2.3.2. Suggested solution

Ahigher degree of parallelism is achieved by combining both

data parallelism and model parallelism. This is known as hybrid

parallelism. Due to the different complexity of various layers of

CNN, the Hybrid parallelism technique partitions the CNN’s

so that convolutional layers and pooling layers exploit data

parallelism, and fully connected layers exploit model parallelism.

3. Related study

The exceptional performance of CNNs in computer vision

systems, text categorization, space photography, and game-

playing has necessitated significant computing speedup for CNN

training. These CNNs may require days or even weeks to

get trained from scratch on modern processing units. Many

existing parallelization approaches have already been developed

to enhance CNN training. The majority of approaches use data

parallelism to accelerate CNN training. However, as previously

stated, the method presents some significant problems. Another

widely used approach is parallel model training. The entire

network is divided into disjointed sections, and each set is

assigned to a dedicated device for enhanced learning.

Jiang et al. (2020) suggested a parallelization technique

known as layer-wise parallelism, which allows each layer to

use an independent parallelization strategy. Optimization of

each layer is done by the use of graph search. They use

two distinct graphs to describe the parallelization challenge

properly. The device and computation graphs reflect all the

existing hardware resources and interconnectivity of devices.

The latter discusses the allocation of CNN networks to a device

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

graph. The proposed cost model analyses the individual run

time parallelization efficiency using the dynamic graph-based

search method. This also helps in determining the optimum

parallelization approach. Layer-wise parallelism outperforms

existing state-of-the-art methods in terms of communication

cost, throughput, and scalability with the addition of more

devices (Deliège et al., 2021).

Existing solutions, such as Tensor Flow and MXNET,

only focus on one parallelization approach simultaneously,

necessitating a huge amount of data to scale (Wang et al.,

2018). The authors suggested a method for determining the

best tiling strategy for partitioning tensors while minimizing

communication costs across devices. The suggested method

combines data and model parallelization (SOYBEAN). The

SOYBEANmethod uses an automated parallelization technique.

When implemented on Alex Net and VGG, the authors

discovered that SOYABEAN outperforms data parallelism by

1.54 (Christlein et al., 2019).

These authors suggested a novel parallelization training

approach called SOAP (Jia et al., 2019). This method employs

CNN parallelization in the sample, operation, attribute, and

parameter dimensions. SOAP uses the Flex Flow deep learning

platform, which determines the best parallelization approach for

a given system. The optimum parallelization approach predicted

by this framework is three times faster than prior techniques.

The suggested technique is tested on 6 deep learning models

with two GPU clusters. The suggested platform improved

learning efficiency by 3.8x over state-of-the-art approaches. It

has also been demonstrated that the technique improves the

scalability of many devices (LeCun et al., 1998).

The authors showed that model parallelism grows with the

size of the mini-batch (Oyama et al., 2020). As the mini-batch

size increases, the inaccuracy decreases gradually. As a result, the

parallelism is severely limited by the mini-batch size. This may

be mitigated by using hybrid parallelism. They also utilized a 3D

CNN to predict cosmogenic variables from three-dimensional

mass distribution by utilizing HyPar on 128 GPUs and making

use of a sample that was 64 times the size of the original

sample. Their suggested approach enables clients to employ

model partitioning and spatial dimensions of samples for each

CNN layer. This increases versatility and provides excellent load

balancing across multiple GPUs. The authors achieve 171 TFlops

training acceleration on the Cosmo Flow framework by using

hybrid-parallelism on 128 Tesla V 100 GPUs (Krizhevsky et al.,

2012).

With the increasing amount of data sets, it is important

to train CNNs effectively with decreased learning time and

large dataset scalability (Dryden et al., 2018). The use of a big

dataset necessitates a significant size of memory which is one

of the challenges that must be addressed. Data parallelism by

default is not a viable option since it splits samples inside the

mini-batch and restricts adaptability to the large size of mini-

batches, enforcing high memory cost, and making real-time

deployment of conv models challenging. They suggested a novel

convolution technique incorporating samples and spatial tensor

decomposition. The author also created a performance model

for CNNs and proposed a method for determining the optimum

parallelization approach. The suggested method is tested using

the ResNet-50 model for image detection and classification. The

authors revealed that the suggested technique outperformed

prior parallelization approaches in terms of performance and

provides strong scalability. Also, the method permitted training

on massive inaccessible data (Simonyan and Zisserman, 2014).

A novel technique for dividing neural networks for effective

execution in distributed parallel paradigms has been suggested

(De Campos Jr et al., 2020). The suggested approach is

responsible for optimizing the inference rate and reducing the

number of communicating nodes in a neural network. They

experimented with a limited number of steps using LeNet5

with increased inference rate maximization. For partitioning

LeNet5, the proposed approach delivers 38% more inferences

per second than the most popular partitioning frameworks, such

as TensorFlow and Metis. The authors utilized nine techniques

for partitioning CNN to analyze the effect of the convergence

rate inside a distributed environment for resource constrained

devices. DN2PC IoT partitions neural networks as graphs in

a distributed way across numerous IoT devices to achieve

maximum convergence rate and minimize intercommunication

costs between different devices. The suggested method is

also in charge of efficiently handling the network’s memory

requirements, which are shared by CNN parameters and biases.

The suggested technique leads to appropriate partitioning for

IoT devices. DN2PC IoT also made the system more versatile

and enabled the inclusion of additional goal functions (Szegedy

et al., 2015).

Due to limited bandwidth, memory, and power constraints,

CNN accelerators struggle to provide superior quality resolution

for both image and video on edge devices (Hunag et al., 2019).

As a result, efficient micro-architecture in terms of computation

power and memory cost for such embedded devices is critical

for speeding up inference. The authors suggested the ERNet

hardware-based network optimized image and video resolution

depending on hardware restrictions. They developed FBISA

and a coarse-grained instruction set architecture to overcome

restricted power constraints. Finally, the authors proposed

an embedded CNN processor (eCNN) that combines ERNet

with FBISA in a more adaptable and scalable design. They

demonstrated that ERNet has superior quality, resolution, and

de-noising of up to 4K Ultra-HD 30 frames per second while

using DDR-400 and 6.94W (Xiong et al., 2019).

Because of the extensive usage of CNN in a variety of

disciplines, it is critical to increased throughput and efficiency.

To attain these goals, hardware acceleration is extensively

researched in academic and industrial settings. Most of the

time, several accelerators are utilized to improve throughput and

energy economy while speeding up CNN training. One of the

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

difficulties in these methods is determining the optimal way to

offer computation and data transfer across multiple accelerators.

The authors suggested HyPar as the best approach for predicting

layer-wise parallelism in deep networks by using an array of

accelerators. The suggested method divides the input and output

feature maps, gradient tensors, error tensors, and kernel tensors.

The optimization task’s main goal is to determine the optimum

feasible partition to maximize throughput while minimizing

communication costs across accelerators. The authors used a

communication model to calculate the cost of communication.

Hierarchical layer-wise dynamic programming is used to

estimate the partitioning for each layer. The suggested approach

has linear time complexity. The suggested model is tested on 10

CNN models including LeNet5, and VGG 19. They determined

that model parallelism performs badly, while data parallelism is

not always the best. Hybrid-parallelism can outperform both.

According to their findings, HyPar increases the performance

by 3.39X and has an efficiency gain of 1.51X over default data

parallelism. It also has a performance gain of 2.40X over one

weird trick (Szegedy et al., 2017).

Python’s Ray Library, an innovative inherent library

supplied by Python, is utilized to parallelize CPU cores for plant

disease detection (Datta et al., 2020). The authors compared

research utilizing several deep learning architectures such

as AlexNet, VGG16, and Umarex. The authors’ comparison

analysis revealed that training CNN for image classification

on parallelized CPU cores significantly reduced computation

time. Because of their computationally expensive processing

layers, deep learning architectures pose a significant challenge

in practical implementation (Datta et al., 2020).

Facial expression recognition is a crucial and active research

issue in computer vision (Deb et al., 2020). The authors

employed two benchmark parallel CNN networks designed for

computational speed performance, viz AlexNet and VGG16.

These two network models were employed to extract features

before SVM is utilized to conduct multi-class classification. The

authors discovered that AlexNet had an accuracy rate of 86.06%

while VGG16 had an accuracy rate of around 80%. Deep models

were trained to identify facial expressions, including neutral,

smile, surprise, squint, disgust, and scream (Deb et al., 2020).

They developed a strategy for detecting and removing

malware, which is in demand for interconnected devices

(Bakhshinejad and Hamzeh, 2020). For malware detection, the

authors created a unique technique based on CNNs parallel

architecture. The technique utilized raw bytes from executable

files, eliminating the requirement for extraction of high-level

features (Bakhshinejad and Hamzeh, 2020).

4. Motivation

Due to the remarkable success of deep learning techniques in

various fields such as computer vision, satellite imagery, medical

image analysis, and cosmology, training acceleration of CNNs

is of utmost importance and has become a crucial problem.

At present high-performance computing (HPC) configured

with high-end CPUs and GPUs are utilized to accelerate CNN

training, however, they still cannot meet the computational,

memory, and energy requirements. It is a hot research topic

for those organizations having an ample amount of data for

training. Google has also issued the latest edition of the TPU

(Strubell et al., 2019) after its 1st edition (Jouppi et al., 2017)

for the maximization of CNN inference. A lot of research is

ongoing on the acceleration of DNN training; some researchers

consider the accelerator, which only focused on maximizing

inference and not on CNN training. Only some of the existing

accelerators (Kim et al., 2016; Song et al., 2017) are taking

into consideration CNN inference as well as DNN training

acceleration. Current accelerators such as Neuro-cube (Kim

et al., 2016) perform partitioning of models among HMC vaults,

but parallelism between HMC is not considered. Pipe layer

(Song et al., 2017) explored the concept of intra-layer parallelism

to enhance training performance, but data movements for both

inter-layer and intra-layer parallelism are still to be explored.

To meet the expectation of high throughput and high energy

efficiency, CNN training acceleration models (Simonyan and

Zisserman, 2014; He et al., 2016) and with ample amount of

data needs exploration of coarse grain parallelism rather than

fine-grain parallelism within a layer. Existing solutions cannot

completely resolve the problem, which is still an open problem

(Chen et al., 2014a,b, 2016; Lu et al., 2017). They only consider

intra-layer parallelism and assume data is present in memory

already. The assumption is accepted for standalone accelerator

processing of an individual layer, as the focus is only on fine-

grained computation within a layer. Recent research trends

and efforts on hybrid or mixed parallelism (Krizhevsky, 2014;

Song et al., 2017; Wang et al., 2018) and layer-wise parallelism

motivate us to develop a solution for processing massive

amounts of data with deeper models. This can be achieved by

exploration of layer-wise or mixed parallelism to increase its

computation time without compromising the accuracy, which

is the most important parameter in bio-medical image analysis.

5. Proposed methodology,
optimization techniques employed

5.1. Novel activation function

The activation function is taken from the derivation of the

diffusion equation based upon some essential properties such

as normalized and unsaturated functions showing improvement

over the popular ReLu activation function. It helps fix the

dying ReLu problem, and being normalized and balanced makes

learning faster than already existing activation functions. The

activation function is normalized, balanced, and centerd at 0,

which makes optimization faster, unlike the sigmoid function,

whose curve is S-shaped but not centerd at 0, which makes

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 2

Plots of activation functions for di�erent α’s.

optimization harder. The function takes both negative as well

as positive values. The mathematical formula of the proposed

activation function is given by Equation (1), and the first and

second order derivatives of the proposed activation function are

given by Equations (2) and (3), respectively.

µα(x) =
1

2
√

απ
exp

(

−
x2

4α

)

, −∞ < x <∞ (1)

µ′α(x) = −
x

4α
√

απ
exp

(

−
x2

4α

)

, −∞ < x <∞ (2)

µ′′α(x) =
−x2 + 2α

8α2
√

απ
exp

(

−
x2

4α

)

, −∞ < x <∞ (3)

On varying standard deviation (α) of the data, we got a

family of graphs, for example, for α = 0.2, 0.5, 1, 2 the respective

graphs obtained are plotted in Figure 2.

5.2. Data augmentation

Data Augmentation involves generating more training data

when insufficient data is available. This generates data by

applying transformations such as color jittering, translation,

rotation, and change of orientation by using different angles. It

is known that CNN robustly detects and classifies objects, even if

aligned in various orientations, an important property of CNNs

called translational invariance. CNN is invariant to translations,

viewpoints, size, or illumination. This forms the basis for data

augmentation. Sometimes, a limited dataset may be available

containing images taken in a restrained environment. But

our application may have numerous conditions such as scale,

illumination, and location. In such situations, CNN is trained

with additional synthetically modified data. Figure 3 illustrates

how different images can be generated from a single image by

performing rotations at different angles.

5.3. Transfer learning

The concept behind transfer learning is simply that the

model has already learned generic features from a large

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 3

Image with di�erent orientations.

ImageNet dataset. It can be a generic model for computer

vision tasks. There are two ways to customize our pre-trained

model, either by using feature extraction or by using fine-tuning.

Simply, transferring features from pre-trainedmodels trained on

upstream tasks, then fine-tuning themodel on downstream tasks

is the basic concept behind transfer learning. This actually saves

the inference time compared to training from scratch.

5.3.1. Feature extraction

It utilizes generic features already learned by the pre-trained

model to extract more specific features from the unseen data

sample.

5.3.2. Fine-tuning

The model’s initial layers are frozen, and the top layers of

this frozen model are trained in conjunction with recently added

classifier layers and the base model’s final layers. This allows us

to fine-tune the higher-order features of the original model by

making it more suitable for certain applications.

5.3.3. Global Average Pooling

The main motive behind adding Global Average Pooling

(GAP) to the base model is that the former computes the average

output of each feature map of the proceeding layer and makes

the model ready for the final classification layer. This layer

greatly helps in reducing the data and does not contain any

trainable parameters such as Max Pooling. GAP helps in the

stabilization of validation accuracy, which is a sign of overfitting.

Thus, GAP in association with the base model helps reduce the

overfitting of the model and the overall computation time of the

CNNmodel.

5.3.4. Regularization technique (dropout)

In association with L2 and L1 regularization, dropout

is another popular and powerful regularization technique

employed in our proposed CNN model. Dropout simply turns

off some neurons with some probability P during training of

CNN. Usually, a dropout of 0.5 or 0.25 is used in the majority

of CNNs. When P = 0.5, half of the neurons are inactive and

not considered a part of CNN. P = 0.25 means 25% of neurons

are not active. With the implementation of dropout, the neural

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 4

CNN model with GAP layer and hybrid parallelism.

network’s complexity becomes less and helps reduce the over-

fitting of the CNNmodel.

5.4. The architecture of the proposed
model

The architecture of the intended model based on AlexNet

[33] is given in Figure 4. The model consists of one 11× 11, two

5 × 5, and three 3 × 3 Conv layers, two normalization layers,

eight ReLU layers, and three fully connected layers, with one

fully connected layer replaced by the Global Average Pooling

layer (GAP). The model consists of the proposed diffusion

based non-linear activation instead of ReLu, very similar to

the ReLu non-saturated activation layer followed by every

convolutional layer in the proposed model. The model consists

of one dropout layer to avoid over-fitting and one softmax

layer to output the probability distribution. Input images of

dimensions 224 × 224 × 32 are fed to the model for end-

to-end classification. The model performs multi-classification

and provides the corresponding category such as glioma,

meningioma, and pituitary tumor. The introduction of the

GAP layer in the model considerably improves generalization

performance and helps in the reduction of model over-fitting.

Also, it enhances the overall computational performance of the

model. After the introduction of the novel activation function

and GAP layer, the classification accuracy and training time

improve significantly.

The Conv layer performs a considerable number of

computations, therefore, it is the layer that requires the most

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 5

CNN parallelization techniques. (A) Data parallelism. (B) Model parallelism. (C) Hybrid parallelism (S,P). (D) Hybrid parallelism (S,A,P). S, sample; A,

attribute; P, parameter parallelism.

processing power. Input to the fully connected layer is actually

output coming from the pooling layer or Conv layer and is again

fed to the fully connected layer. Thus, the fully connected layer

is responsible for generating output or performing flattening,

demanding huge memory requirements. These computational

and memory-intensive constraints of the convolutional layer

and fully connected layer make the practical implementation of

the CNN cumbersome, particularly in real-time applications.To

mitigate such issues, parallelism is of utmost importance to

reduce computational costs. Most of the time, researchers

either employ data parallelism or model parallelism. Model

parallelism performs worst, and data parallelism cannot be

regarded as best. Thus, we prefer an amalgam of data and

model parallelism known as hybrid parallelism (HyPar). HyPar

implements both data parallelism at the Conv layers and

model parallelism at the full connected layers to improve the

CNN model’s overall efficiency and reduce the overall memory

cost. A high-level view of all three types of parallelization

techniques is given in Figure 5. Data parallelism performs

vertical partitioning, and model parallelism performs horizontal

partitioning. Hybrid parallelism performs both horizontal as

well as vertical partitioning across either sample and parameter,

or sample attribute and parameter.

5.5. Feature extraction

The convolutional layer performs the automatic feature

extraction. Generic features like edges, curves, lines, and

contours are inherited by the ImageNet database using

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 6

Feature extraction at di�erent convolutional layers using di�erent kernels.

transfer learning. The initial layers of the model are frozen,

and these inherited generic feature vectors are utilized. The

hyperparameter tuning for the rest of the layers of the CNN

model is done in order to perform the specific feature extraction.

More specific features are extracted from higher conv layers. The

snapshot of the features extracted at different Convo layers is

given in Figure 6. The figure shows clearly how the extracted

features are visible at lower convolutional layers. Upon reaching

higher convolutional layers, the features become more abstract

and are not distinguishable.

5.6. Implementation details and
experimental evaluation

The dataset used for experimental evaluation consists of a

total of 30640 T1 weighted contrast-enhanced images collected

from 233 patients with three categories of tumors: glioma,

meningioma, and pituitary tumor. It consists of 7,080 slices of

meningioma, 14,260 slices of glioma, and 9,300 slices of pituitary

tumor. Pre-trained VGG-19 model is used for experimental

evaluation and classification of three types of tumors. In this

study, Amazon AWS with corresponding CPU instances is

used. The machine’s configuration for implementing hybrid

parallelization is given as 8 high-frequency Intel Xenon E5-2670

processors, NVIDIA Grid K520 CPU with 1536 CUDA cores,

and 4GB of video memory. The supporting libraries such as

CUDNN 7.4.1, GCC 7.3.1 spectrum, and MPI 2019.01.30 are

used for the message passing system during communication

of GPUs and NCCL 2.4.2. The rest of the experiments are

done using Google Colab with supporting GPU and TPU

configurations.

The proposed study can be applied to any deeper neural

network such as VGG-16, Resnet-50, and Resnet-XT, and

any dataset can be used to verify the observations. For

simplicity, we have implemented a neural network model

based on a pre-trained VGG-19 network fine-tuned as our

requirement. We have used a large-scale brain tumor dataset

for experimental evaluation. Our main motive in this study is

to optimize the network to have improved computation time

for the task mentioned above without degrading the accuracy.

Model parallelism outperforms using many neurons, and data-

parallelism outperforms in the case of a large number of weights.

In CNN, about 90% of computations are performed with

convolutional layers and consist of only 5% of the parameters.

In contrast, a fully connected layer consists of 95% of the

parameters and is responsible for 5–10% of the computations.

Therefore, the better choice is to use data-model parallelism

in CNN. The algorithm for data parallelism for Conv layers,

and model parallelism for fully connected layers is given as:

Algorithm for data parallelism

Data parallel SGD (parameters, data, n) do

Distribute data on all available nodes, so every

node holds its subset of the dataset.

For each node, I ∈ (1, 2, 3, n) in parallel, do

ki ← SGD(parameters, data)

Aggregate gradients from all nodes k, as
(

1
n

∑n
j=1[kj]

)

Return k

end

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 7

Hybrid parallelism.

The validity of data parallelism can be verified

mathematically as:

∂Loss

∂ω
=

∂

[

1
n

∑n
i=1 g(ui, vi)

]

∂ω
=

1

n

n
∑

i=1

∂g(ui, vi)

∂ω

=
m1

n

∂

[

1
m1

∑m1
i=1 g(ui, vi)

]

∂ω
+ · · ·

+
mk

n

∂

[

1
mk

∑mk−1+mk
i=mk−1+1

g(ui, vi)
]

∂ω

=
m1

n

∂p1

∂ω
+ · · · +

mk

n

∂pk
∂ω

Where, ω represents a hyperparameter, ∂Loss
∂ω

is true gradient

batch size n,
∂pk
∂ω

is the gradient of the small batch in GPU node

k, ui, vi represent features and labels of data point i, g(ui, vi) is

loss for data point i calculated from the forward propagation, n

total number of data points, k total number of GPUs nodes, mk

is the number of data points assigned to GPU/node k,m1+m2+
· · · +mk = n. Whenm1 = m2 = · · · = mk =

n
k
than

∂Loss

∂ω
=

1

k

[

∂p1

∂ω
+

∂p2

∂ω
+ · · · +

∂pk
∂ω

]

(4)

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

TABLE 1 Hyperparameters of the proposed model.

Layers Kernel size No of filters Output calculation

Conv 1 11× 11× 3 64 224× 24× 64

Pool 1 3× 3 2 112× 112× 64

Conv 2 5× 5× 64 Stride = 2 256 112× 112× 256

Pool 2 3× 3 2 56× 56× 256

Conv 3 3× 3× 256 256 56× 56× 256

Conv 4 3× 3× 256 256 56× 56× 256

Conv 5 6× 6× 256 4,096 56× 56× 4096

Pool 3 2× 2 2 28× 28× 4096

Conv 6 6× 6× 256 4,096 28× 28× 4096

Pool 4 2× 2 2 14× 14× 4096

Fc 1 1× 1× 4096 4,096 4,096

Global Average Pooling layer

Fc 2 1× 1× 4096 3 4,096

FIGURE 8

Proposed CNN training graph.

5.7. Model parallelism for fully connected
layers

The algorithm for this approach is given by:

Model parallel SGD (parameters, data, n) do

Partition the kernels, feature maps or layers

across GPU nodes and assigning them to devices

Implement an automatic movement of tensors

between GPUs whenever required

Automatically pipeline the execution strategy to

take full advantage of all the GPU’s.

end

The illustration of the implementation of hybrid parallelism

for both Conv and fully connected layers is shown in Figure 7.

The proposed network parameters are given in Table 1. We

have used a stride of 1 for Conv layers and a stride of 2 for

pooling layers. Also, padding of width 1 is used for all the layers.

FIGURE 9

Proposed CNN+Novel NNLU training graph.

FIGURE 10

Proposed CNN+Novel NNLU+GAP layer training graph.

Bias =0.1, weight initialization= Xavier, α = 0.333, drop out= 0.5,

batch size = 128, and default optimizer =Adam.

6. Results and discussions

After training the proposed CNN model with given ground

truths, the former can classify the given dataset into three

types of tumors: glioma, meningioma, and pituitary tumor. The

training graphs of the proposed model with the loss curves,

accuracy curves, and validation loss and accuracy are given in

Figures 8–10.

The proposed model outperforms others in classification

accuracy and provides a classification accuracy of 98.89% when

both NNLU and GAP layers are used. It also has a classification

rate of 84% for end-to-end classification without introducing

NNLU and the GAP layer. The training time of the basic

proposed model is 18 mins and 5 s, and when the GAP layer and

transfer learning are used, the training time reduces to 3 s. GAP

and NNLU help in reducing the over-fitting of the model and

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 11

Proposed method classification accuracy and comparison with existing methods.

FIGURE 12

Time complexity comparison.

improve the classification accuracy rate compared with existing

methods (Habib and Qureshi, 2020a).

The overall performance metric is recorded and compared

with existing methods. The method is observed to outperform

others in classification accuracy as given in Figure 11. The

computational speed of the proposed method is recorded

and can also be seen in Figure 12. The proposed method is

compared with existing methods (Habib and Qureshi, 2020a)

and outperforms them.

The analysis of training accuracy is further done for

various optimization methods, and the accuracy is observed

for different epochs. The results are recorded and shown as in

Figures 13, 14.

The major limitation of the existing state of art methods

is that although they perform well in terms of classification

accuracy, they lag as far as computational speed is concerned.

To mitigate the issue, hybrid parallelization is implemented

with the proposed model to improve the computational

speed. The improved computational speed with the proposed

parallelization strategy is achieved by using four GPUnodes with

varying batch sizes. Observations are given in Table 2.

Here, m and n denote the effective batch sizes in

convolutional layers and the fully connected layers, respectively.

Model accuracy is given when various parallelization techniques

are employed. When one epoch of training is computed on

multiple GPUs, it is observed that the training time is reduced

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

FIGURE 13

For epoch 30.

FIGURE 14

For epoch 50.

TABLE 2 Speedup with varying batch sizes and cross entropies.

No. of nodes Batch size (m, n) Cross entropy Speed up Training time in seconds (s)

1 (56, 56) 2.521 1.2X 122

2 (128, 128) 2.524 1.53X 184

2 (128, 56) 2.523 3.59X 65

3 (512, 512) 2.614 3.60X 60

3 (512, 128) 2.645 3.62X 15

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

TABLE 3 Performance of proposed Model+NNLU+GAP layer.

Parallelization scheme Number of nodes α Min. training loss Min. val. loss Max. val. accuracy (%)

Data parallelization 2 0.0001 0.2030161 0.7956214 81.5732

Model parallelization 2 0.0002 0.2023145 0.8241562 81.052

Hybrid parallelization 2 0.0005 0.20002365 0.815673 97.37

FIGURE 15

Performance metric comparison graph.

due to better utilization of hardware resources. Also, the

performance analysis of various parallelization techniques is

given in Table 3. The results in the table are recorded by varying

alpha and keeping the number of nodes as 2.

The graphical visualization is given in Figure 15 below.

After applying parallelization techniques, the computational

time and training speed are improved due to efficient hardware

resource utilization, with an accuracy drop of 1.5%.

6.1. Empirical analysis

6.1.1. Computation cost

SGD is used on each machine, achieving an error of less than

ǫ. The computation time of SGD on every individual machine is

given as: O
(

P log 1
ǫ

)

where P denotes the parameter size and O
(

P log 1
ǫ

)

denotes the

number of iterations required for convergence.

The computation time required for the aggregate operation of

gradients is:

Total number of communication rounds = log k (5)

In each epoch summation of parameters is done, which is S =
O(P) on a single processor.

With N number of Processors Sum = O
(

P
N + log k

)

Computation time = O

(

P

N
+ log k

)

+ O

(

P log
1

ǫ

)

(6)

6.1.2. Communication cost

SGD is locally calculated on each machine, so it incurs

no communication cost for SGD. As every individual machine

updates its parameters locally, all in one communication is

performed to send the updated parameters to the parameter

server, where the average is computed.

Communication Cost = L

(

k

2
+

k

4
+ · · ·

)

+
kP

B

(

1

2
+

1

4
+

1

8
+ · · ·

)

(7)

= O(Lk)+ O

(

kP

B

)

(8)

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

TABLE 4 Time complexity and communication cost comparison.

Proposed algorithm Existing algorithm

Computation time =

O
(

P
N
+ log k

)

+ O
(

P log 1
ǫ

)

Computation time =

O
(

P log k log 1
ǫ

)

+ O
(

P log 1
ǫ

)

Communication cost =

O
(

Nk
)

+ O(Pk)

Communication cost =

O
(

Pk log 1
ǫ

)

Communication time = O (N) Communication time =

O
(

P log 1
ǫ
log k

)

For N number of parameter servers, the total Communication

cost is given by O(Nk)+ O(Pk).

Total Communication time = O(kN) = O(N) (9)

where N = D
K .

Finally, the proposed method is compared with the state-of-

the-art methods in terms of computation time, communication

cost, and communication time and are summarized in Table 4 as:

From the comparison table, it is clear that the computation

time and the communication time are better in our proposed

technique than in other state-of-the-art methods. Computation

power can be further improved by using more powerful

models such as vision transformers (Han et al., 2022; Shin

et al., 2022). Besides adding more computational power, we

can even get better models for real time applications with

constrained resource requirements by having a closer look

at the compression techniques (Chen, 2022). The attention

mechanism in CNNs can improve further computation power

of the proposed model (Guo et al., 2022).

7. Conclusion, limitations, and future
scope

In this study, a novel activation function is proposed

together with a new hybrid parallelization technique.We present

a CNN model in which the Global Average Pooling layers

entirely replace one of the fully connected layers. This helps in

overcoming the over-fitting problem in the network and also

improves the training time and classification accuracy. Also, to

speed up the proposed network, a hybrid parallelization strategy

is implemented that significantly reduces the training time and

improves the computation speed by 4.73X when a batch size of

(512,128) is used. A slight accuracy drop of 1.5% is observed.

Experimental results show that data and model parallelism

perform almost the same. Hybrid parallelism outperforms both

of these and yields a validation accuracy of approximately 85%

with minimum training loss.

CNNs have achieved remarkable success when applied to

computer vision tasks due to strong inductive bias. But at

the same time, they consume not only large computational

resources but also a lot of memory resources. That limits their

implementation in practical applications such as embedded

devices and edge devices. CNNs are less computationally

efficient as compared to vision transformers. In future CNNs,we

intend to replace them with these more powerful models. In the

future, CNNs can be replaced by these powerful models. Also,

in the future, we will pay more attention to the compression of

CNNs and will make them compressed and sparse, which makes

their application more suitable for resource constrained devices.

The introduction of an attention mechanism in CNNs can also

make them more powerful for computer vision tasks.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found below: https://figshare.

com/articles/dataset/brain_tumor_dataset/1512427.

Ethics statement

Written informed consent was not obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article.

Author contributions

Both authors involved in full contribution of the research

work. Both authors contributed to the article and approved the

submitted version.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Frontiers inComputationalNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

References

Bakhshinejad, N., and Hamzeh, A. (2020). Parallel-CNN network for malware
detection. IET Inform. Sec. 14, 210–219. doi: 10.1049/iet-ifs.2019.0159

Chen, Q. (2022). A Survey on Accelerating Sparse CNN Inference on GPUs. Delft
University of Technology.

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., et al. (2014a). Diannao:
a small-footprint high-throughput accelerator for ubiquitous machine-learning.
ACM SIGARCH Comput. Arch. News 42. 269–284. doi: 10.1145/2654822.2541967

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., et al. (2014b). “Dadiannao:
a machine-learning supercomputer,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture (IEEE), 609–622. doi: 10.1109/MICRO.2014.58

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2016). Eyeriss: an energy-
efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J.
Solid State Circ. 52, 127–138. doi: 10.1109/JSSC.2016.2616357

Christlein, V., Spranger, L., Seuret, M., Nicolaou, A., Král, P., and Maier,
A. (2019). “Deep generalized max pooling,” in 2019 International Conference
on Document Analysis and Recognition (ICDAR) (Los Alamitos, CA: IEEE),
1090–1096. doi: 10.1109/ICDAR.2019.00177

Datta, D., Agarwal, R., David, P. E. (2020). Performance enhancement of
customer segmentation using a distributed python framework, ray. Int. J. Sci.
Technol. Res. 9, 130-139. Available online at: https://www.ijstr.org/final-print/
nov2020/Performance-Enhancement-Of-Customer-Segmentation-Using-A-
Distributed-Python-Framework-Ray.pdf

Datta, D., Mittal, D., Mathew, N. P., and Sairabanu, J. (2020). “Comparison
of performance of parallel computation of CPU cores on CNN model,” in 2020
International Conference on Emerging Trends in Information Technology and
Engineering (IC-ETITE) (IEEE), 1–8. doi: 10.1109/ic-ETITE47903.2020.142

De Campos Jr, A., Pozo, A. T. R., and Duarte Jr, E. P. (2020). Parallel multi-
swarm PSO strategies for solving many objective optimization problems. J. Parallel
Disturb. Comput. 126, 13–33. doi: 10.1016/j.jpdc.2018.11.008

Deb, S. D., Choudhury, C., Sharma, M., Talukdar, F. A., and Laskar,
R. H. (2020). “Frontal facial expression recognition using parallel CNN
model,” in 2020 National Conference on Communications (NCC) (IEEE), 1–5.
doi: 10.1109/NCC48643.2020.9056011

Deliége, A., Istasse, M., Kumar, A., De Vleeschouwer, C., and Van
Droogenbroeck, M. (2021). Ordinal pooling. arXiv preprint arXiv:2109.01561.
doi: 10.48550/arXiv.2109.01561

Dryden, N., Maruysama, N., Moon, T., Benson, T., Yoo, A., Snir, M., et al. (2018).
Aluminum: An Asynchronous, GPU-Aware Communication Library Optimized for
Large-Scale Training of Deep Neural Networks on HPC Systems. Livermore, CA:
Lawrence Livermore National Lab.

Guo, M.-H., Xu, T.-X., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., et al. (2022).
Attention mechanisms in computer vision: a survey. Comput. Visual Media. 8,
331–368. doi: 10.1007/s41095-022-0271-y

Habib, G., and Qureshi, S. (2020a). Biomedical image classification using CNN
by exploiting deep domain transfer learning. Int. J. Comput. Digit. Syst. 10, 2–11.
doi: 10.12785/ijcds/100197

Habib, G., and Qureshi, S. (2020b). Optimization and acceleration of
convolutional neural networks: a survey. J. King Saud Univers. Comput. Inform.
Sci. 34, 4244–4268. doi: 10.1016/j.jksuci.2020.10.004

Han, D., Liu, Q., and Fan, W. (2018). A new image classification method using
CNN transfer learning and web data augmentation. Expert Syst. Appl. 95, 43–56.
doi: 10.1016/j.eswa.2017.11.028

Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al. (2022).
A survey on vision transformer. IEEE Trans. Pattern Anal. Mach. Intell.
doi: 10.1109/TPAMI.2022.3152247

Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural
features for image classification. IEEE Trans. Syst. Man Cybernet. 3, 610–621.
doi: 10.1109/TSMC.1973.4309314

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 770–778. doi: 10.1109/CVPR.2016.90

Huang, Z., Dong, M., Mao, Q., and Zhan, Y. (2014). “Speech emotion
recognition using CNN,” in Proceedings of the 22nd ACM International
Conference on Multimedia (Orlando, FL), 801–804. doi: 10.1145/2647868.
2654984

Hunag, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M., et
al. (2019). “Gpipe: Efficient training of giant neural networks using

pipeline parallelism,” in Advances in Neural Information Processing Systems,
Vol. 32.

Jia, Z., Zaharia, M., and Aiken, A. (2019). “Beyond data and model parallelism
for deep neural networks,” in Proceedings of Machine Learning and Systems, eds
A. Talwalker, V. Smith, and M. Zaharia. p. 1–13. Available online at: https://
proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-
Paper.pdf

Jiang, W., Zhang, Y., Liu, P., Peng, J., Yang, L. T., Ye, G., et al.
(2020). Exploiting potential of deep neural networks by layer-wise fine-grained
parallelism. Future Gen Comp Syst. 102, 210–221. doi: 10.1016/j.future.2019.
07.054

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R.,
et al. (2017). “In-datacenter performance analysis of a tensor processing unit,” in
Proceedings of the 44th Annual International Symposium on Computer Architecture,
1–12. doi: 10.1145/3140659.3080246

Kim, D., Kung, J., Chai, S., Yalamanchili, S., and Mukhopadhyay, S.
(2016). Neurocube: a programmable digital neuromorphic architecture with
high-density 3D memory. ACM SIGARCH Comput. Arch. News 44, 380–392.
doi: 10.1145/3007787.3001178

Kim, H.-J., Lee, J. S., and Park, J.-H. (2008). “Dynamic hand gesture recognition
using a CNN model with 3D receptive fields,” in 2008 International Conference on
Neural Networks and Signal Processing (IEEE), 14–19.

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997. doi: 10.48550/arXiv.1404.5997

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25, eds F. Pereira, C. J. Burges, L. Bottou, K. Q. Weinberger
(Curran Associates, Inc.), 25. Available online at: https://proceedings.neurips.cc/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proc. IEEE 86, 2278–2324.
doi: 10.1109/5.726791

Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X. (2017). “Flexflow: a flexible
dataflow accelerator architecture for convolutional neural networks,” in 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA)
(IEEE), 553–564. doi: 10.1109/HPCA.2017.29

Oyama, Y., Maruyama, N., Dryden, N., McCarthy, E., Harrington, P., Balewski,
J., et al. (2020). The case for strong scaling in deep learning: Training large 3d
cnns with hybrid parallelism. IEEE Trans. Parallel Disturb Syst. 32, 1641–1652.
doi: 10.1109/TPDS.2020.3047974

Pang, S., Yu, Z., and Orgun, M. A. (2017). A novel end-to-end classifier
using domain transferred deep convolutional neural networks for biomedical
images. Comput. Methods Prog. Biomed. 140, 283–293. doi: 10.1016/j.cmpb.2016.
12.019

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster r-CNN: towards real-time
object detection with region proposal networks,” inAdvances in Neural Information
Processing Systems 28, eds C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett
(Curran Associates, Inc.), 28. Available online at: https://proceedings.neurips.cc/
paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

Shin, A., Ishii, M., and Narihira, T. (2022). Perspectives and prospects on
transformer architecture for cross-modal tasks with language and vision. Int. J.
Comput. Vis. 130, 435–454. doi: 10.1007/s11263-021-01547-8

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
doi: 10.48550/arXiv.1409.1556

Song, L., Qian, X., Li, H., and Chen, Y. (2017). “Pipelayer: a pipelined
reram-based accelerator for deep learning,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA) (IEEE),
541–552. doi: 10.1109/HPCA.2017.55

Stanescu, M., Barriga, N. A., Hess, A., and Buro, M. (2016). “Evaluating
real-time strategy game states using convolutional neural networks,” in 2016
IEEE Conference on Computational Intelligence and Games (CIG) (IEEE), 1–7.
doi: 10.1109/CIG.2016.7860439

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy
considerations for deep learning in nlp. arXiv preprint arXiv:1906.02243.
doi: 10.18653/v1/P19-1355

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). “Inception-
v4, inception-ResNet and the impact of residual connections on learning,” in

Frontiers inComputationalNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://doi.org/10.1049/iet-ifs.2019.0159
https://doi.org/10.1145/2654822.2541967
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/ICDAR.2019.00177
https://www.ijstr.org/final-print/nov2020/Performance-Enhancement-Of-Customer-Segmentation-Using-A-Distributed-Python-Framework-Ray.pdf
https://www.ijstr.org/final-print/nov2020/Performance-Enhancement-Of-Customer-Segmentation-Using-A-Distributed-Python-Framework-Ray.pdf
https://www.ijstr.org/final-print/nov2020/Performance-Enhancement-Of-Customer-Segmentation-Using-A-Distributed-Python-Framework-Ray.pdf
https://doi.org/10.1109/ic-ETITE47903.2020.142
https://doi.org/10.1016/j.jpdc.2018.11.008
https://doi.org/10.1109/NCC48643.2020.9056011
https://doi.org/10.48550/arXiv.2109.01561
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.12785/ijcds/100197
https://doi.org/10.1016/j.jksuci.2020.10.004
https://doi.org/10.1016/j.eswa.2017.11.028
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/2647868.2654984
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://doi.org/10.1016/j.future.2019.07.054
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.48550/arXiv.1404.5997
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/HPCA.2017.29
https://doi.org/10.1109/TPDS.2020.3047974
https://doi.org/10.1016/j.cmpb.2016.12.019
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1007/s11263-021-01547-8
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/CIG.2016.7860439
https://doi.org/10.18653/v1/P19-1355
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Habib and Qureshi 10.3389/fncom.2022.1004988

Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, CA: AAAI
Press). doi: 10.1609/aaai.v31i1.11231

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 1–9. doi: 10.1109/CVPR.2015.7298594

Wang, M., Huang, C.-C., and Li, J. (2018). Unifying data, model and hybrid
parallelism in deep learning via tensor tiling. arXiv preprint arXiv:1805.04170.
doi: 10.48550/arXiv.1805.04170

Xiong, Y., Kim, H. J., and Hedau, V. (2019). AntNets: mobile convolutional
neural networks for resource efficient image classification. arXiv preprint
arXiv:1904.03775. doi: 10.48550/arXiv.1904.03775

Yang, L., Dong, P. Z., and Sun, B. (2018). Natural Language Processing Using a
CNN Based Integrated Circuit.US Patent 10,083,171. Washington, DC: U.S. Patent
and Trademark Office. Available online at: https://golden.com/wiki/US_Patent_
10083171_Natural_language_processing_using_a_CNN_based_integrated_
circuit-REN3DAJ

Frontiers inComputationalNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fncom.2022.1004988
https://doi.org/10.1609/aaai.v31i1.11231
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.48550/arXiv.1805.04170
https://doi.org/10.48550/arXiv.1904.03775
https://golden.com/wiki/US_Patent_10083171_Natural_language_processing_using_a_CNN_based_integrated_circuit-REN3DAJ
https://golden.com/wiki/US_Patent_10083171_Natural_language_processing_using_a_CNN_based_integrated_circuit-REN3DAJ
https://golden.com/wiki/US_Patent_10083171_Natural_language_processing_using_a_CNN_based_integrated_circuit-REN3DAJ
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	GAPCNN with HyPar: Global Average Pooling convolutional neural network with novel NNLU activation function and HYBRID parallelism
	1. Introduction
	2. Main contributions of the study
	2.1. Motivation behind novel activation function
	2.1.1. Challenges
	2.1.2. Suggested solution

	2.2. The motivation behind introducing Global Average Pooling layer (GAP layer)
	2.2.1. Challenges
	2.2.2. Suggested solution

	2.3. The motivation behind introducing HyPar (fusion of data and model parallelism)
	2.3.1. Challenges
	2.3.2. Suggested solution


	3. Related study
	4. Motivation
	5. Proposed methodology, optimization techniques employed
	5.1. Novel activation function
	5.2. Data augmentation
	5.3. Transfer learning
	5.3.1. Feature extraction
	5.3.2. Fine-tuning
	5.3.3. Global Average Pooling
	5.3.4. Regularization technique (dropout)

	5.4. The architecture of the proposed model
	5.5. Feature extraction
	5.6. Implementation details and experimental evaluation
	5.7. Model parallelism for fully connected layers

	6. Results and discussions
	6.1. Empirical analysis
	6.1.1. Computation cost
	6.1.2. Communication cost


	7. Conclusion, limitations, and future scope
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


