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Background: Rapid serial visual presentation (RSVP) has become a popular

target detection method by decoding electroencephalography (EEG) signals,

owing to its sensitivity and effectiveness. Most current research on EEG-

based RSVP tasks focused on feature extraction algorithms developed to

deal with the non-stationarity and low signal-to-noise ratio (SNR) of EEG

signals. However, these algorithms cannot handle the problem of no event-

related potentials (ERP) component or miniature ERP components caused by

the attention lapses of human vision in abnormal conditions. The fusion of

human-computer vision can obtain complementary information, making it

a promising way to become an efficient and general way to detect objects,

especially in attention lapses.

Methods: Dynamic probability integration (DPI) was proposed in this study

to fuse human vision and computer vision. A novel basic probability

assignment (BPA) method was included, which can fully consider the

classification capabilities of different heterogeneous information sources for

targets and non-targets and constructs the detection performance model

for the weight generation based on classification capabilities. Furthermore,

a spatial-temporal hybrid common spatial pattern-principal component

analysis (STHCP) algorithm was designed to decode EEG signals in the RSVP

task. It is a simple and effective method of distinguishing target and non-target

using spatial-temporal features.

Results: A nighttime vehicle detection based on the RSVP task was performed

to evaluate the performance of DPI and STHCP, which is one of the conditions

of attention lapses because of its decrease in visual information. The average

AUC of DPI was 0.912 ± 0.041 and increased by 11.5, 5.2, 3.4, and 1.7%
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compared with human vision, computer vision, naive Bayesian fusion, and

dynamic belief fusion (DBF), respectively. A higher average balanced accuracy

of 0.845 ± 0.052 was also achieved using DPI, representing that DPI has

the balanced detection capacity of target and non-target. Moreover, STHCP

obtained the highest AUC of 0.818 ± 0.06 compared with the other two

baseline methods and increased by 15.4 and 23.4%.

Conclusion: Experimental results indicated that the average AUC and

balanced accuracy of the proposed fusion method were higher than individual

detection methods used for fusion, as well as two excellent fusion methods.

It is a promising way to improve detection performance in RSVP tasks, even in

abnormal conditions.

KEYWORDS

brain-computer interface, D–S evidence theory, electroencephalogram, human-
computer fusion, rapid serial visual presentation

Introduction

Brain-Computer Interface (BCI) analyses the individual’s
intentions to interact directly with devices or external
environments (Wolpaw et al., 2000). Individuals’ intentions
can be decoded using electroencephalography (EEG), a well-
established non-invasive technology owing to its high temporal
resolution, reliability, affordability, and portability. Currently,
BCI has been applied in assistive and clinical fields due to the
development of machine learning and deep learning methods.

Rapid serial visual presentation (RSVP) is the process of
sequentially displaying images at high presentation rates of
multiple images per second at the same spatial location. RSVP-
based brain-computer interface (BCI) is a specific type of BCI
system (Marathe et al., 2016; Wu et al., 2018). It is proven to
be a realizable approach to enhance human-machine symbiosis
and human potential (Manor et al., 2016). RSVP-based BCI is
the most commonly used technology for target detection based
on human vision, in which used event-related potentials (ERPs)
are P300 and N200 (Wei et al., 2022). The human visual system
is an amazingly complicated information processing machine.
Humans have great learning, cognitive ability, and sensitivity,
which can identify objects at a glance (Sajda et al., 2010).
Therefore, RSVP-based BCI can obtain a rapid perception of the
environment owing to the flexible human vision.

The current research focused extensively on proposing
more reliable and effective feature extraction algorithms suitable
for the RSVP-based BCI. Because of its non-stationarity and
low signal-to-noise ratio (SNR), it is difficult to distinguish
target and non-target stimuli in the RSVP task. Sajda et al.
(2010) developed an algorithm named hierarchical discriminant
component analysis (HDCA), which adopts fisher linear
discrimination (FLD) to calculate weights in the spatial domain

and then adopts Logistic Regression (LR) to calculate weights
in the time domain. Alpert et al. (2014) proposed a spatially
weighted FLD-PCA (SWFP) method which uses principal
component analysis (PCA) and FLD to extract temporal and
spatial features. They contrasted the performance of SWFP and
HDCA, and the areas under receiver operating characteristic
(ROC) curves (AUC) of SWFP are higher than HDCA (Alpert
et al., 2014). Xie et al. (2022) used a filter bank spatial-temporal
component analysis (FBSCA) algorithm, and this approach
obtains spatial-temporal features from the gamma-band. Xiao
et al. (2021) developed a discriminative canonical pattern
matching approach, a robust classifier for ERP components
assessing even in small training sets.

Most of the research focused on improving the performance
of the RSVP-based BCI by exploring a more robust and effective
algorithm. However, the performance of the RSVP-based BCI
relies not only on superior algorithms, but also on human vision.
Human vision is limited by factors that affect cognitive levels,
such as fatigue, boredom, heavy mental workload (Lee et al.,
2016), and some abnormal conditions, such as the decrease in
visual information and the complex illumination environment.
These may also lead to attention lapses representing no ERP
component or miniature ERP components in the target state.
It is difficult for traditional algorithms to solve these types of
problems. Although the credibility and stability of computer
vision are unchangeable over time, computer vision systems
are not powerful enough to handle all possible situations.
Considering that the fusion of human vision and computer
vision can obtain complementary information, thus it may be
a promising way to become an efficient and general detection
method.

Some researchers have reported methods that fuse computer
vision and human vision. Sajda et al. (2010) proposed three
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basic modes for creating cortically coupled computer vision
systems, including computer vision followed by EEG-RSVP,
EEG-RSVP followed by computer vision, and tight coupling of
EEG-RSVP and computer vision (Gerson et al., 2005). On this
basis, Pohlmeyer et al. (2011) proposed a close-loop C3Vision
system to help a user in finding their “interest” images through
a large database. Their research mainly explores how to expedite
the search for large image databases and even identify the
user’s intent (Pohlmeyer et al., 2011). Based on the research of
Sajda et al. (2010), we explored the human-computer fusion
framework under their third mode, which is the tight coupling of
EEG-RSVP and computer vision. Unlike the study of Pohlmeyer
et al. (2011), we aim to explore how to fuse computer vision and
human vision to modify the classification performance, even in
abnormal conditions.

Computer vision and human vision are heterogeneous
information sources with different data models, interfaces,
schemes, and representations (Motro and Anokhin, 2006).
The fusion methods for heterogeneous information sources
can be divided into two categories: (i) feature level (early
fusion) and (ii) higher semantic level (late fusion) (Jaimes and
Sebe, 2007). Many feature-level fusion methods are quickly
becoming obsolete because they are limited to the types
and internal structures of the features (Wong et al., 2007).
Late fusion can maintain a balance between the amount of
feature information and the difficulty of information procession,
regardless of data type and data processing. Therefore, late
fusion is the most popular fusion method for heterogeneous
information sources (Xiao et al., 2022). Many types of late fusion
architectures have been developed, such as naive Bayesian fusion
(NBF), Dempster–Shafer (D–S) evidence theory, and weighted
averages.

Kim and Ko (2005) proposed the Bayesian fusion of
confidence for speech recognition. Markovic and Petrovic
(2014) proposed the Bayesian sensors fusion for dynamic
object tracking. This method improved the estimation accuracy
and is credible and robust (Markovic and Petrovic, 2014).
However, the Bayesian fusion approach cannot measure the
level of uncertain information, which may lead to performance
degradation (Lee et al., 2016). The D–S evidence theory achieves
collaborative reasoning by fusing heterogeneous information
from multiple sources; thus, it is an appropriate framework for
dealing with incomplete uncertain information (Deng et al.,
2016; Jiang and Zhan, 2017; Yang and Xu, 2002). At present,
the D–S evidence theory has been used in many fusion systems,
and the creation of more efficient and rational basic probability
assignments (BPAs) has been attempted. Liu et al. (2017) showed
a human-machine autonomous system with a fuzzy decision-
making fuser that fuses computer vision and human vision to
detect targets in RSVP tasks. The fuzzy decision-making fuser
uses a composite model that combines discriminative-type and
generative-type methods to confirm basic BPAs. The major
limitation of this approach is expensive computations, especially

when BPAs are assigned to more than two heterogeneous
information sources. Lee and Kwon (2021) proposed “task
conversions” to fuse human and computer vision, in which a
dynamic belief fusion (DBF) method is adopted that constructs
precision-recall relationships as BPAs, and the probability
distributions of all the heterogeneous information sources are
fused using the D–S combination rule. However, the effect of
using comprehensive indexes as a BPA function on performance
improvement is relatively limited. As we all know, the quality
of BPA directly affects classification performance after fusion
(Wang and Tang, 2022). Therefore, construct a reliable BPA to
improve the classification performance of the fusion methods
remain a crucial problem.

In this study, we proposed a new D-S evidence theory fusion
framework named dynamic probability integration (DPI), in
which a new BPA approach was designed. This method was
designed to solve the problem of no ERP components or
miniature ERP components caused by the attention lapses of
human vision in abnormal conditions, which is difficult for
traditional algorithms to handle. To improve the classification
performance, the detection performance models of target
and non-target were constructed to assign probabilities for
different heterogeneous information sources. The information
from human and computer vision was obtained by the EEG-
based BCI and YOLO V3 algorithm individually, and the EEG
was decoded using a spatial-temporal hybrid common spatial
pattern-principal component analysis (STHCP) algorithm. To
evaluate the performance of the DPI in the abnormal condition,
we applicated it to a nighttime vehicle detection task. The results
prove that it is promising to be a general and effective target
detection method in abnormal conditions. To the best of our
knowledge, it is the first attempt to enhance the target detection
performance of RSVP by fusing human and computer vision in
an abnormal condition (nighttime).

We organized the rest of our paper as follows: section
“Fusion method of computer vision and human vision based on
dynamic probability integration” describes the fusion method
of computer vision and human vision based on DPI. Section
“Experiment settings” describes the design of the nighttime
vehicle detection experiment. The experimental results are
discussed in section “Results.” In section “Discussion,” we
discuss the performance of DPI in different situations and the
performance of STHCP with different numbers of training trials.
Finally, Section VI contains the conclusions drawn.

Fusion method of computer vision
and human vision based on
dynamic probability integration

The proposed method contains three parts, as follows: (i)
obtaining computer vision information, (ii) obtaining human
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vision information, and (iii) dynamic probability integration.
Let 2 represent a set of exhaustive and nonempty events in
which elements are mutually exclusive, as indicated by the
following:

2 = {{target}, {non-target}} (1)

Where {target} and {non-target}represents target and non-
target images, respectively. The power set of 2 is 22, and the 22

elements are defined as follows

22
= {∅, {target}, {non-target}, {target, non-target}} (2)

where the composite element represents uncertain information.
The DPI process is shown in Figure 1. Two heterogeneous
information source models were constructed to obtain
the information from human vision and computer vision,
respectively. The detection capability models of target and
non-target from each heterogeneous information source
were obtained. Posterior probabilities were estimated by each
heterogeneous information source, representing the possibilities
of targets and non-targets. The true positive rate (TPR) and true
negative rate (TNR) combined with the posterior probabilities
provided evidence for the three hypotheses (target, non-target
and uncertain) (Zhu and Kan, 2022). Then, evidence was fused
using the D–S combination rule.

Computer vision

The YOLO framework was proposed as a single regression
problem, straight from image pixels to class posterior probability
(Mao et al., 2020). Compared with YOLO, YOLO V3 improved
the prediction accuracy on the premise of guaranteeing the
advantage of detection speed. The network structure is shown
in Figure 2. It uses a network structure named Darknet-53,
consisting of only 53 convolutional layers. Five residual blocks
are contained and each of them consists of multiple residual
components, which are composed of convolutional layers and
shortcut links. The YOLO V3 network has a deeper network
structure through the residual network structure and a multi-
scale detection method, which effectively detects large and small
targets. We used YOLO V3 as a computer vision method
for nighttime vehicle detection and obtained the posterior
probabilities of targets and non-targets, which are defined as
pt and pnt , respectively. The training set contains two types
of images: daytime vehicles and nighttime vehicles, with 1,000
images of daytime vehicles and 1,000 images of nighttime
vehicles.

Human vision

Inspired by HDCA and SWFP, we designed the STHCP
algorithm, which uses common spatial pattern (CSP) and

PCA to extract features in the spatial and temporal domains,
respectively. The CSP can maximize the target state-related
components (event-related potentials) and minimize the non-
target state-related components (background EEG). The PCA
can identify a hyperplane in the time domain. Finally, the spatial
and temporal features of RSVP-BCI are constructed and then
classified using a linear discrimination analysis. Figure 3 shows
the specific STHCP process. The EEG signal processing consists
of data preprocessing, feature extraction, and classification.
In the preprocessing stage, the signal was notch filtered in
50 Hz, band-pass filtered between 0.1 and 35 Hz, the range
of segmentation was between 200 and 600 ms, and baseline
corrected with 200 ms before the stimulus. After that, the feature
extraction process is as follows:

First, the CSP is used for spatial filtering. The covariance
matrix of the two classes of data is as follows:

U =
1
n

n∑
i=1

Yj(i)YT
j (i)

trace(Yj(i)YT
j (i))

(j ∈ {+,−}) (3)

Where Yi ∈ RC×D represents the ith trial of the EEG data
after preprocessing, C represents the number of EEG channels,
and D represents the length of time points per trial. Y+(i)
and Y−(i) represent EEG data in a single trial of target and
non-target states, respectively.

The CSP can be expressed as follows:

{max, min}W∈Rj
WTU+W
WTU−W

(4)

U+W = λU−W (5)

Where the spatial filter obtained by CSP is denoted as
W ∈ RC×C, in which C represents the number of spatial filters
selected by the CSP. After the CSP, EEG data are defined as
follows:

YCSP =WTYCSP (6)

Second, the PCA is used to reduce the time domain
dimension. The data of each channel of YCSP are reduced using
the PCA, as follows:

V =
YCSPYT

CSP
n− 1

(7)

Where V represents the covariance matrix of YCSP, and
n represents the number of samples. The eigenvalues and
corresponding eigenvectors of V are calculated, and then,
the first K principal components are selected to represent
the domain information of each channel. The corresponding
eigenvectors X is a projection matrix for feature extraction, as
follows:

Z = YCSPX (8)

Where Zi represents the obtained feature.
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FIGURE 1

The process of dynamic probability integration (DPI).

FIGURE 2

The network of YOLO V3. *Means multiplication.

Finally, Zi is classified by linear discrimination analysis
classifier to the posterior probability of the target, as follows:

pt = f (Z) (9)

The posterior probability of non-target is (1− pt). Referring
to relevant research results (Müller-Gerking et al., 1999;
Blankertz et al., 2011), we set the range of parameters to shorten
the training time, where C ∈ [2, 10], K ∈ [1, 10].
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FIGURE 3

Flowchart of spatial-temporal hybrid common spatial pattern - principal component analysis (STHCP).

FIGURE 4

Confusion matrix.

Dynamic probability integration

The probabilities were assigned to all the hypotheses
in accordance with the detection performances of targets
and non-targets for each heterogeneous information source.
The TPR and TNR represent the detection capabilities
of targets and non-targets, respectively. In addition, the
false positive rate (FPR) is another performance metric

that refers to the probability of falsely identifying the
non-target as the target (Zhu and Kan, 2022). The above
indicators are calculated from the confusion matrix,
and an illustration of the confusion matrix is shown in
Figure 4.

The detection performance can be obtained using different
threshold settings. Thus, a detection performance model can
be built for each heterogeneous information source. Figure 5
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shows the detection performance curve of a heterogeneous
information source.

The samples were divided into three parts, namely training,
validation, and testing sets, and the proportions of the three
parts were 2:1:1. A fourfold cross-validation scheme was used
to ensure that all the methods were trained, verified, and tested
on independent data. The data were randomly divided into four
equally sized blocks, with two blocks selected as the training set,
one as the validation set, and one as the testing set. This process
was repeated four times, and the average was used as the result.
Both human and computer vision models were constructed
using the training set. Human and computer vision were two
heterogeneous information sources, indicated by ϕ1 and ϕ2,
respectively. Five steps were used to classify the images in the
testing set using DPI.

In step 1, we used the validation set to evaluate the detection
performance of each heterogeneous information source. We
used the Smoothing function in the curve fitting of the MATLAB
toolbox to construct a detection performance model on the
basis of the TPR-TNR relationship curve. The target detection
performance model of heterogeneous information source ϕ was
assumed to be gϕ(x), and the non-target detection performance
model was f ϕ(x).

In step 2, the threshold tbest which maximized the difference
between TPR and FPR was determined in the validation set.

In step 3, the probabilities of the samples that were predicted
as target and non-target by heterogeneous information source ϕ

in the testing dataset were defined as pϕ
t and pϕ

nt , respectively.
Then, the evidence obtained by ϕ can be defined as follows:

mϕ(target) = gϕ(tbest)× pϕ
t (10)

mϕ(non-target) = f ϕ(tbest)× pϕ
nt (11)

mϕ({target, non-target}) = 1−mϕ(target)−mϕ(non-target)
(12)

Where mϕ(target) represents evidence of the target,
mϕ(non-target) represents evidence of the non-target,
and mϕ({target, non-target}) represents evidence of
uncertain information.

In step 4, the combined results were obtained using
the evidence provided by different heterogeneous information
sources. Assuming that m(A) represents the evidence that
supports hypothesis A, the evidence for different hypothesis
were combined using the D–S combination rule “⊕ ” which was
defined as follows:

mϕ1 ⊕mϕ2(A) =

{
1

1−K
∑

B∩C=A mϕ1(B)mϕ2(C), A 6= ∅
0, A = ∅

(13)

K =
∑

B∩C=∅

mϕ1(B)mϕ2(C) (14)

FIGURE 5

Detection performance curve of heterogeneous information
source.

Where K represents conflicts among the evidence, called the
conflict coefficient between Band C. A, B and C ∈ 22 .

For convenience, let “uncertain” represent {target, non-
target}. Then, the combination results for the three hypotheses
could be expressed as follows:

m(target) = mϕ1(target)⊕mϕ2(target) (15)

m(nontarget) = mϕ1(non-target)⊕mϕ2(non-target) (16)

m(uncertain) = 1−m(target)−m(nontarget) (17)

Finally, the predicted classes were determined based on
the pignistic transformation: if Ppig < tbest , then class = 0that
represents this sample is the non-target, whereas if Ppig > tbest ,
class = 1that represents this sample is the target. The best
threshold was determined by the validation dataset, then used
to evaluate performance on the testing set.

Ppig(target) = m(target)+m(uncertain) (18)

Ppig(nontarget) = m(nontarget)+m(uncertain) (19)

Our proposed DPI has three merits. Firstly, DPI has
inherent advantages in handling and expressing uncertain
information compared with other algorithms based on
probabilities. Secondly, DPI can extract complementary
information from both computer and human vision to ensure
classification performance. Thirdly, DPI thoroughly considered
the detection capacity of targets and non-targets from each
heterogeneous information source and applied it to the
probability assignment strategy, which can further improve the
overall classification performance.
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FIGURE 6

Process of RSVP paradigm.

FIGURE 7

Night driving demonstration. (A) Target images demonstration in the nighttime condition. (B) Non-target images demonstration in the nighttime
condition.

Experiment settings

An RSVP experiment was conducted to verify the
performance of DPI and STHCP in nighttime vehicle detection.

Participants

Nine subjects with no history of psychiatric or neurological
problems were recruited to participate in the RSVP experiment.
Three of them were female, they were all right-handed, and their
ages ranged from 21 to 24. All the subjects had the normal or
corrected-to-normal vision, and four out of the nine subjects

had previous experiences with BCI. Before participation, all the
subjects were required to sign an informed consent. All the
experimental procedures were approved by the Northwestern
Polytechnical University Medical and Experimental Animal
Ethics Committee.

Rapid serial visual presentation
protocol

Subjects sat in a suitable chair in front of a screen. The
experiment began with a 1-min resting state, and a beep sounded
at the end of the resting state. Then, a “+” fixation was displayed
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on the screen for 2s to correct the visual position. The RSVP
paradigm process contained two sessions, and each session
contained two runs. There was a 2-min break between the two
sessions. The RSVP paradigm process is shown in Figure 6. The
subjects were asked to respond to target images by pressing the
blank space key.

The image stream included 1,500 target and non-target
images, with the target image proportion being 25%. Each image
was presented randomly on the screen for 200 ms. The night
driving demonstration is shown in Figure 7.

Data acquisition

EEG signals were recorded by a Neuracle wireless amplifier
from international 10–20 EEG caps having 64 electrodes located
over the scalp region. All the channels were referenced to the Cz
electrode, which was placed in the central-parietal area.

Evaluation

The data used was highly unbalanced, and accuracy is
sensitive to the sample proportion, making it inappropriate as an
evaluation indicator. Therefore, the performance was evaluated
using the area under the receiver operating characteristic curve
(AUC), TPR, and FPR. In addition to these indicators, balanced
accuracy (BA), which gets the balance between TPR and FPR,
was used as a performance indicator in this study (Yu et al.,
2011; Teng et al., 2018). In conclusion, four indicators (TPR,
FPR, AUC, and BA) were used in this paper, among which
AUC and BA are the comprehensive indicators for performance
evaluation.

Results

Analysis of event-related potentials
components

Figure 8 shows the grand-average ERP waveforms from the
Pz channel and topographies at the peak of the ERP waveform
to verify the ERP components evoked by the nighttime vehicle
detection task. As can be seen, it is significant that the grand-
average ERP waveform and topographies under the target and
non-target are different. P1, N2, and P3 can be found at the time
window of 100–150, 150–250, and 350–400 ms, which indicate
attention allocation, stimulus discrimination, and attention
processing, respectively. The topographies show that the P1
component is dominant over the lateral occipital areas, the
N2 component appears over most brain regions, and the P3
component can be observed over the central-parietal areas.

Estimating performance from
electroencephalography

We compared the classification performance of the
proposed STHCP with HDCA and SWFP, and the results are
depicted in Figure 9. The Wilcoxon signed rank test was
adopted to estimate the significant differences among these
approaches, “∗” and “∗∗” indicate the significate level. STHCP
obtained an average AUC of 0.818 ± 0.06, 15.4% higher
than that of SWFP and 23.4% higher than that of HDCA.
An average TPR of STHCP achieved 0.722 ± 0.056, 14.6%
higher than that of SWFP and 21.5% higher than that of
HDCA. An average BA of STHCP achieved 0.760 ± 0.007,
which was 15.9% higher than that of SWFP and 20.4% higher
than that of HDCA. STHCP obtained an average FPR of
0.204 ± 0.093, which was 35.6% lower than that of SWFP and
38.6% lower than that of HDCA. Among the three approaches,
STHCP obtained the highest AUC, TPR, BA, and the lowest
FPR.

The AUC performance of STHCP, SWFP, and HDCA with
the training trials ranging from 300 to 1,200 was estimated, and
the results are shown in Figure 10. As a result, the mean AUCs
of the three methods were improved with the increasing number
of the training trials.

Performance comparison between
dynamic probability integration and
other fusion approaches

The average TPR, FPR, BA, and AUC values for the nine
subjects are shown in Table 1. Two state-of-the-art fusion
algorithms (DBF and NBF) and two individual heterogeneous
information source decoding methods were compared with
DPI. The Wilcoxon signed rank test was conducted to
analyze the significant differences between DPI and the
other algorithms. The TPR, AUC, and BA of the proposed
DPI were significantly better than those of the other four
algorithms. Specifically, the average AUC of DPI reached
0.912 ± 0.041, representing increases of 11.5, 5.2, 1.7, and 3.4%
compared with human vision, computer vision, DBF, and NBF,
respectively. The average TPR of the proposed DPI reached
0.810 ± 0.068, representing increases of 12.2, 21.8, 6.6, and
28.6% compared with human vision, computer vision, DBF and
NBF, respectively. The average FPR of DPI was higher than NBF,
but smaller than those of human vision, computer vision and
DBF. Congruently, the BA of DPI was significantly superior
to human vision, computer vision, DBF, and NBF, showing
increases of 11.3, 10.2, 3.8, and 7.1%.

The analysis of TPR, FPR, AUC, and BA in nine subjects are
depicted in Figure 11. The AUCs for the DPI of six subjects
were greater than 0.9. The AUCs of DPI were significantly
improved in most subjects, except for subjects 3 and 7. Although
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FIGURE 8

The grand-average ERP waveform and topographies of target and non-target. (A) The grand-average topographies at the peak of
ERP waveform. The topography of the target is on the left, and on the right is the topography of the non-target. (B) The grand-average ERP
waveform of target and non-target from the Pz channel. The purple line represents the target waveform, and the orange line is the
non-target waveform. The standard deviation in the grand-average ERP waveforms is represented as shaded regions.

FIGURE 9

The classification results compared to our proposed STHCP, HDCA, and SWFP. “∗” indicates a significant difference (Wilcoxon signed rank test)
between STHCP and other approaches: ∗ and ∗∗ means p < 0.05 and p < 0.01.

the AUC of DPI in subject 3 was slightly lower than that of
computer vision, it was superior to the other fusion methods.
For subject 7, the AUC of DPI was smaller than those of
computer vision and NBF, but the BA, TPR, and FPR of DPI
were superior to those of the other methods. The BAs for the
DPI for seven subjects were greater than 0.8. Specifically, the
BA of the DPI was significantly better than those of computer
vision, human vision, and other fusion methods, except for
that of subject 3. Although the BA of DPI for subject 3 was
slightly lower than that of computer vision, it was higher than

those of human vision and other fusion methods. While the
classification performance varied across subjects, DPI showed
a better performance than human vision, computer vision, and
two fusion methods.

Discussion

In this article, the STHCP and DPI were proposed for
enhancing the performance of the nighttime vehicle detection
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FIGURE 10

The AUC of STHCP, SWFP, and HDCA with different training trials.

TABLE 1 Mean and standard deviation of evaluation measurements for 9 subjects.

TPR FPR AUC BA

Human vision 0.722± 0.056** 0.204± 0.093 0.818± 0.060** 0.759± 0.007**

Computer vision 0.665± 0.154** 0.131± 0.100 0.867± 0.028* 0.767± 0.069**

DBF 0.760± 0.082 0.135± 0.142 0.897± 0.040** 0.813± 0.050**

NBF 0.630± 0.060** 0.052± 0.056 0.882± 0.047** 0.789± 0.038**

DPI 0.810± 0.068 0.120± 0.074 0.912± 0.041 0.845± 0.052

DBF, dynamic belief fusion; NBF, naive Bayesian fusion; DPI, dynamic probability integration. “*” indicates significant difference (Wilcoxon signed rank test) between DPI and other
approaches: * and ** means p < 0.05 and p < 0.01. The best performance is shown in bold face.

RSVP task. It is difficult for RSVP-BCI to be applied in the
real world, owing to its erratic performance. In particular,
the problem that no feature or miniature feature is evoked

caused by attention lapse in some abnormal conditions is
difficult to be solved by the existing methods. Experimental
results show that the highest AUC from HDCA and SWFP
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FIGURE 11

Classification performance of 9 subjects. (A) True positive rate of 9 subjects in all methods. (B) False positive rate of 9 subjects in all methods.
(C) AUC value of 9 subjects in all methods. (D) Balanced accuracy of 9 subjects in all methods.

in the nighttime condition is lower than that of the
method in some normal environments (Alpert et al., 2014;
Marathe et al., 2014; Song et al., 2021), which remind us
to map out the specific strategy to solve this problem. Our
proposed DPI can extract complementary information from
two heterogeneous information sources to solve the above
problem. The experimental results illustrate that DPI got the
highest average AUC (0.912 ± 0.041) compared with two
individual information source classifiers and two excellent
fusion methods. Furthermore, DPI achieved the highest BA
(0.845 ± 0.052) by a novel probability assignment strategy
that comprehensively considers the classification performance
of individual information source for target and non-target.
Our proposed methods can promote the development of
RSVP-BCI to apply in the real world. To better demonstrate
the classification performance of our proposed methods, the
following analyses were made.

Performance of spatial
pattern-principal component analysis
with different number of training trials

The AUC of STHCP, SWFP, and HDCA with different
training trials is shown in Figure 10. The AUCs of STHCP are

higher than the other two methods in all subjects except for
subject 3 and subject 4, regardless of the number of training
trials. Specifically, STHCP outperformed SWFP only when the
number of training trials increased to 1,200 in subject 3. In
subject 4, the AUC of STHCP is lower than SWFP only when
the number of training trials is 600. Compared with SWFP
and HDCA, the classification performance of STHCP is more
sensitive to the sizer of the training set. When the number
of training trials increases, the performance will significantly
improve.

Performance of dynamic probability
integration in conflict and non-conflict
situations

According to recent studies, the performance of fusion
methods may be limited when decision conflict occurs (Deng
et al., 2016; Li and Xiao, 2021). Large differences in classification
performances between the two heterogeneous information
sources may lead to decision conflicts. In order to discuss the
decision conflicts, the difference in classification performance
was defined as the difference between AUC values. The
probability of decision conflict may be improved when the
difference between AUC values is close to or above 0.1. The AUC
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TABLE 2 The classification performance in conflict and non-conflict situations.

Non-conflict Conflict

s1 s4 s5 s6 s9 s2 s3 s7 s8

Computer vision AUC 0.843 0.854 0.850 0.870 0.859 0.845 0.857 0.916 0.914

BA 0.756 0.76 0.744 0.762 0.63 0.756 0.770 0.843 0.879

Human vision AUC 0.837 0.835 0.828 0.917 0.887 0.752 0.753 0.747 0.807

BA 0.763 0.767 0.754 0.851 0.888 0.697 0.686 0.686 0.739

DBF AUC 0.886 0.88 0.885 0.946 0.958 0.852 0.850 0.881 0.939

BA 0.793 0.808 0.792 0.850 0.803 0.781 0.730 0.857 0.901

NBF AUC 0.89 0.867 0.873 0.935 0.859 0.842 0.804 0.915 0.954

BA 0.812 0.788 0.795 0.860 0.803 0.758 0.724 0.764 0.797

DPI AUC 0.905 0.905 0.890 0.952 0.967 0.868 0.852 0.905 0.966

BA 0.831 0.818 0.834 0.890 0.912 0.784 0.764 0.869 0.902

DBF, dynamic belief fusion; NBF, naive Bayesian fusion; DPI, dynamic probability integration. The best performance is shown in bold face.

and BA of all the methods in conflict and non-conflict situations
are shown in Table 2. Subjects 1, 4, 5, 6, and 9 belonged to
the non-conflict situation. The AUCs of all fusion methods are
higher than that of individual information source in the non-
conflict situation. Specifically, the AUC and BA of DPI in the
non-conflict situation were better than those of other methods,
and the AUC of 4 out of 5 subjects was greater than 0.9. These
indicated that DPI is the best-performing method in the non-
conflict situation. Subject 2, 3, 7, and 8 belonged to the conflict
situation. Note that AUCs of two baseline fusion methods in
3 out of 4 subjects are lower than computer vision which is
contrary to the results in non-conflict situations. Subject 2 and
8 had better AUC and BA in the conflict situation using DPI
than the other methods. Although the AUC and BA of DPI were
slightly lower than that of computer vision in subject 3, it had
a better performance than the other fusion methods. The AUC
of DPI in subject 7 was smaller than that of computer vision,
but the BA of DPI was higher than those of the other methods.
The data indicate that although conflict situations limit the
performances of most fusion methods, DPI was still superior to
the other fusion methods.

There are several limitations in the present study. First,
only nine subjects were included, and further studies should
expand the dataset. Second, no specific strategy was proposed
for decision conflict in DPI. Even though the DPI performance
was better than other fusion methods, a special strategy should
be to promote the performance in conflict situations. Third,
several types of RSVP, such as dual-RSVP and triple-RSVP,
should be adopted to evaluate our proposed method.

Conclusion

To solve the problem of no ERP components or miniature
ERP components caused by the attention lapses of human

vision in abnormal conditions, we proposed a human-computer
vision fusion method named DPI. Moreover, a spatial-temporal
hybrid feature extraction method was included to decode
RSVP-EEG signals. Two heterogeneous information source
models, RSVP-based BCI and YOLO V3, were constructed
to obtain the detection performance model and posterior
probabilities. Then, a new BPA function assigned weights to
different heterogeneous information sources by constructing
the detection performance model, which fully considers the
detection accuracy of target and non-target. Afterward, the D–
S combination rule fused the two heterogeneous information
sources. We recruited nine subjects to participate in a nighttime
vehicle detection experiment to evaluate the performance of
DPI in attention lapses. The experimental results showed that
STHCP obtained the highest AUC of 0.818 ± 0.06 compared
with the other two baseline methods and increased by 15.4
and 23.4%. The average AUC of the proposed DPI reached
0.912 ± 0.041, which increased by 11.5 and 5.2% compared
with human vision and computer vision, respectively, with
increases of 3.4 and 1.7% compared with NBF, and DBF,
respectively. The BA of the proposed method was better than
those of human vision, computer vision, NBF and DBF, showing
increases of 11.3, 10.2, 7.1, and 3.8%. As a result, DPI had the
best performance compared with human and computer vision
methods and two excellent fusion methods. Our study provides
a new direction for RSVP task performance improvement and
promotes the development of the practical process in RSVP-
BCI.
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