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BIAS-3D: Brain inspired
attentional search model
fashioned after what and
where/how pathways for target
search in 3D environment
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V. Srinivasa Chakravarthy1*
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We propose a brain inspired attentional search model for target search in

a 3D environment, which has two separate channels—one for the object

classification, analogous to the “what” pathway in the human visual system, and

the other for prediction of the next location of the camera, analogous to the

“where” pathway. To evaluate the proposedmodel, we generated 3D Cluttered

Cube datasets that consist of an image on one vertical face, and clutter or

background images on the other faces. The camera goes around each cube on

a circular orbit and determines the identity of the image pasted on the face. The

images pasted on the cube faces were drawn from: MNIST handwriting digit,

QuickDraw, and RGB MNIST handwriting digit datasets. The attentional input

of three concentric cropped windows resembling the high-resolution central

fovea and low-resolution periphery of the retina, flows through a Classifier

Network and a Camera Motion Network. The Classifier Network classifies the

current view into one of the target classes or the clutter. The Camera Motion

Network predicts the camera’s next position on the orbit (varying the azimuthal

angle or “θ ”). Here the camera performs one of three actions: move right,

move left, or do not move. The Camera-Position Network adds the camera’s

current position (θ ) into the higher features level of the Classifier Network and

the Camera Motion Network. The Camera Motion Network is trained using

Q-learning where the reward is 1 if the classifier network gives the correct

classification, otherwise 0. Total loss is computed by adding the mean square

loss of temporal di�erence and cross entropy loss. Then the model is trained

end-to-end by backpropagating the total loss using Adam optimizer. Results

on two grayscale image datasets and one RGB image dataset show that the

proposed model is successfully able to discover the desired search pattern to

find the target face on the cube, and also classify the target face accurately.

KEYWORDS

attention, memory, human visual system, what and where pathway, convolutional

neural network, search in 3D, flip-flop neurons
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1. Introduction

Human visual system (HVS) processes a restricted field of

view of about 150◦ in the horizontal line and 210◦ in the

vertical line (Knapp, 1938). However, the eye orientates itself

in such a manner that the image of the region of interest falls

inside the central part of the retina or fovea to obtain precise

information from that part of the visual field. Information from

the fovea in high resolution and periphery in low resolution is

passed through the visual hierarchy, and the features related to

the form, color, and motion are analyzed by respective visual

cortical areas. Due to this anatomical constraint, the eye does

not process the entire scene at once: the eye makes darting

movements called saccades and attends the salient parts of the

scene sequentially and integrates the pieces of the image to get a

more comprehensive understanding of the scene.

Visual attention is a popular topic in both computer vision

and visual neuroscience. Many computational models of visual

attention, proposed in the past couple of decades, may be

divided into two categories: bottom-up approaches (Le Meur

et al., 2006; Gao et al., 2008), and top-down approaches (Gao

et al., 2009; Kanan et al., 2009; Borji et al., 2012). The models

are basically developed to predict the saliency map, where a

brighter pixel has a higher probability of receiving human

attention and vice versa. Bottom-up attention is considered to

be stimulus driven whereas top-down attention is considered to

be task driven, which receives human attention based on the

explicit understanding of the image content. Prior attempts in

the field of top-down attention mechanisms (Gao et al., 2009;

Kanan et al., 2009; Borji et al., 2012) have mainly used non-

deep approaches such as the Bayesian approach (Borji et al.,

2011), based on a limited understanding of visual attention.

In a recent model of visual attention, Mnih et al. (2014)

have developed a recurrent attention model (RAM) which

takes a glimpse of the attention window as input and uses

the internal state of the network to find the next location to

focus on in a non-static environment. Their proposed network

processes multiple glimpses of windows to attend to a part of

the image at different levels of resolutions. Training of their

model is done by using the reinforcement learning approach for

classification of MNIST dataset for modeling task-driven visual

attention. Design of their network is based on fully connected

layers, which leads to a rapid increase in computational cost

with image size, and therefore the network is perhaps not

feasible for more complex real world tasks such as search in a

3D environment.

There is an extensive number of research studies that

demonstrate the application of attentional search methods to

solve real world problems in 2D space such as image cropping

(Xu et al., 2019), object recognition (Gao and Vasconcelos,

2004), object segmentation (Shen et al., 2014; Wang et al.,

2015a,b), video understanding (Zhang et al., 2015, 2017; Yang

et al., 2016a,b,c), and egocentric activity recognition (Liu et al.,

2021, 2022). These models are based on covert attention, where

the mental shift of attention occurs at the output activity map

without explicit eye movement. But the use of overt visual

attention in a 3D environment is still relatively under-explored.

Earliest work in 3D target search is the Shape Nets (Wu

et al., 2015) where the objective was to voxelize the target and

use deep belief networks for training and prediction. Minut

and Mahadevan (2001) used Q learning to identify the next

movement of the camera (action) out of the eight possible

actions in order to focus on the object of interest. At a lower

level, this approach uses histogram back projection color maps

and symmetry map to identify the objects. Unlike reinforcement

learning based approaches, the model proposed by Kanezaki

et al. (2018) named RotationNet, focuses on convolutional

neural networks (CNNs) based approaches where multiple views

of the object are taken into consideration for learning. The

model predicts the class and the pose (orientation) of the object

of consideration. This was an improvement over the previous

CNN based networks, that recognized the object but failed to

predict the pose. The model yielded an accuracy of 94% on

Modelnet40 dataset (Wu et al., 2015) consisting of 40 categories

including chair, airplane, etc. Multiview CNN (Su et al., 2015)

was one of the earliest attempts in 3D object recognition that

acts as a precursor of the RotationNet.

In the model known as the SaccadeNet developed by

Lan et al. (2020), a model closest in approach to ours, four

module classifiers are used to recognize objects. These modules

are—center attentive module, the corner attentive module,

the attention transitive module, and the aggregation attentive

module. Each module works on identifying the main key

points of the object of interest, perhaps the center, corners,

attend object centers, and bounding boxes. This technique

works similar to the proposed saccade approach inspired by

human visual search. The drawback is that it works mainly

on 2D inputs. While performing a target search in a 3D

environment, the model needs to predict the next location

of the camera and identify the object that the camera is

looking for. To perform such search tasks in 3D space, time is

one of the constraints which depends on the network design

and input.

We propose a Brain Inspired Attentional Search model in

3D space (BIAS-3D) that takes the attentional glimpse instead of

the entire image. The design of themodel contains convolutional

layers instead of fully connected layers to extract features and

contains Elman and Jordan recurrence layers as well as JK-

flip-flop recurrence layer (Sweta et al., 2021) instead of Long

Short TermMemory (LSTM) to integrate the temporal attention

history in the network. To generate the attentional glimpse, a set

of concentric attention windows is used by taking the inspiration

from Ba et al. (2014), Mnih et al. (2014), and Kahou et al. (2017).

The proposed model has the following brain-inspired

features: (1) it has separate channels for image classification

and camera movement, analogous to the “What pathway” and
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FIGURE 1

Simulated environment: “r” is the radius of the circular orbit

around the cube or the line connecting the camera position and

origin of the spherical coordinate system. Polar angle “φ” is

assumed to be fixed at 0, and azimuth angle “θ ” is varying.

“Where pathway” in HVS; (2) it incorporates three types of

recurrence connections: (a) Local recurrence connection of

Elman type (Elman, 1991), (b) Global recurrence connection

of Jordan type (Jordan, 1986), (c) Flip-flop neurons (Holla and

Chakravarthy, 2016) that are capable of storing information for a

long time. In this study, we show that the BIAS-3D is effectively

able to learn task-specific strategies and identify the targets.

Our simulation results successfully show that an attention-

based network can be an efficient approach in dealing with

target search tasks in a 3D environment, which is demonstrated

by using 3D Cluttered MNIST Cube dataset, 3D Cluttered

QuickDraw Cube dataset, and 3D Cluttered RGB MNIST

Cube dataset.

2. The proposed approach

2.1. Environment overview

The virtual environment used in this study is created using

OpenGL (Segal and Akeley, 2010) (Figure 1). The environment

contains a cube placed at the origin of a spherical coordinate

system and a camera placed on a circular orbit around the cube.

On this orbit of radius “r,” the camera revolves around the cube,

always looking inwards toward the center of the cube (Figure 2).

As the camera moves on the orbit, it processes the views of

the cube it captures and searches for the face that has a target

pattern displayed on it (Figure 3B). The possible movements of

the camera on the orbit are: “move right” (θ+), “move left” (θ−),

or “do not move” (θ ; Figure 2).

2.2. Architecture overview

The architecture design of the proposed brain inspired

attentional search model in 3D space (BIAS-3D) is depicted

in Figure 3D. The model takes two inputs: (i) the attentional

glimpse which consists of the contents at different resolutions

and sizes of the attended region, where multiple concentric

FIGURE 2

Direction of all three movements of the camera on the orbital

path, supposed to be predicted by the model.

attention windows are applied to the center location of the

camera view, and (ii) the camera-position in the form of a point

on the unit circle at an angle θ or the azimuth angle of the

camera position on its circular orbit. The model predicts two

outputs at each timestep: (i) the next location of the camera

on the orbit, and (ii) the class of the object seen in the camera

view. The model consists of three parallel pipelines (Figure 3D):

(i) the upper pipeline processes the class information of the

object seen in the view, called the Classifier Network, (ii) the

middle pipeline processes the location of the target object over

the cube and predicts the next position of the camera, called

the Camera Motion Network, and (iii) the lower pipeline, which

incorporates the camera position into the high level features

of the Classifier Network and the Camera Motion Network,

is called the Camera-Position Network. Outputs of all the

three pipelines are concatenated in one flattened layer which

connects with a fully connected layer, and the output of the

fully connected layer passes through one linear output layer

and one softmax output layer in parallel. Linear output layer

computes the Q-values corresponding to the three actions that

can be taken by the camera, and softmax output layer computes

the classification probabilities of the object present inside the

attentional glimpse. A Deep Q-learning algorithm is applied to

train the model and learn the optimal policy for camera control

(Fan et al., 2020). As the model takes the sequential input, the

network requires memory to store the past information of the

following details: (i) the extracted features of the attentional

glimpse, (ii) its corresponding location on the cube, and (iii) the

camera position. For storing this input history, the model uses

three recurrent neural features: the flip-flop neuron layer (Holla

and Chakravarthy, 2016), Elman and Jordan recurrence layers.

2.3. The BIAS-3D

The proposed attention model is a deep neural network,

which has three pipelines: Classifier Network, Camera Motion

Network, and Camera-Position Network (Figure 3). The

classifier network consists of three convolutional layers

(Convs), three maxpool layers, and one fully connected

(FC) Elman Jordan recurrence layer (FCEJ). The camera
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FIGURE 3

The design of the BIAS-3D: (A) Simulated environment with the 3D Cluttered RGB MNIST cube and the camera, (B) camera captures the image

from the environment, (C) the attentional glimpse generated from the camera captured view, (D) the BIAS-3D predicts the class of the target

and position of the camera or “θ ,” and (E) Update the camera position using the predicted “θ .”

motion network consists of three convolutional flip-flop

layers (ConvJKFF), three maxpool layers, one FCEJ layer,

and one FC flip-flop layer (FCJKFF). The camera-position

network consists of one FCEJ layer, and one FCJKFF layer;

this network encodes the revolving direction of the camera.

The aforementioned layers are discussed in greater detail in the

following paragraphs.

Convolutional layers (Convs) are used to extract features by

sharing the weights across different spatial locations. Input and

output to the Conv layer are 3D tensors, called feature maps.

The output feature map is calculated by convolving the input

feature map with 3D linear filters. Then a bias term is added up

into the convolved output. In this paper, the bold notations in

all the equations stands for the matrix or the matrices. If Xl−1 is

the input feature map of lth Conv layer and Wl and bl are filter

weights and bias terms, respectively, then the output featuremap

Xl of lth layer is calculated via Equation-1:

Xl
= Xl−1Wl

+ bl, (1)

l = 1, ..., L,

X0 = I,
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In the above equation, L is the total number of layers, X0 is

the input image I to the first Conv layer. The output featuremaps

from each Conv layer are passed through a non-linear ReLU

activation function (Nair and Hinton, 2010) (equation-2).

f (X) = max (0,X) (2)

The output feature maps from the activation function,

are normalized using local response normalization (LRN)

(Krizhevsky et al., 2012). LRN normalizes the feature maps

within the channels and is a form of lateral inhibition (Equation

3).

N
f
x,y = X

f
x,y/



k+ α

min(C−1,f+c/2)
∑

j=max(0,f−c/2)

(X
j
x,y)

2





β

(3)

where X(x, y) and N(x, y) are the pixel values at (x, y)

position before and after normalization, respectively, f denotes

the filter. C stands for the total number of channels. The

constants k,α,β , and c are hyperparameters. k is used to avoid

“division by zero,” α is a normalization constant, while β

is used as a contrasting constant. The constant c is used to

define the length of the neighborhood, that is, the number of

consecutive pixel values need to be considered while calculating

the normalization. (k,α,β , c) = (0, 1, 1,C) case is considered

as the standard normalization. Normalized features from the

Conv layer are passed through the maxpool layer (Scherer

et al., 2010). Several convolutional layers and pooling layers are

assembled alternately across depth in the first three Conv or

ConvJKFF layers in both classifier and camera motion networks

(Figure 3D).

To implement the Elman recurrence layer (Elman, 1991),

the output vector of the FC layer at time “t − 1” is stored in a

context layer and the content of the context layer is fed back to

the same FC layer at time “t,” named as FC Elman recurrence

layer which is a short range storage connection. The Elman

recurrence layer is implemented only in the first FC layer of all

three networks. Similarly, to implement the Jordan recurrence

layer (Jordan, 1986), the output vector of the last FC layer at

time step “t − 1” is stored in a context layer and this context

layer is fed back to the first FC layer at time step “t” in their

corresponding pipeline, named as FC Jordan recurrence layer

which is a long-range storage connection. In this way, the first

FC layer in Classifier and Camera Motion Networks has both

Elman and Jordan recurrences; so we call this layer a FCEJ layer.

The computation of FCEJ is shown in the following (Equation 4)

Xl
t = f

(

Xl−1
t Wl−1,l

+ Xl
t−1W

l,l
+ XL

t−1W
L,l

+ bl

)

(4)

In Equation (4), Xl−1
t is the output of the l− 1th layer at

time “t” and going as input to the lth layer at time “t” (FC layer).

Xl
t−1 is the output of the lth layer at time “t − 1” and going as

input to the same lth layer at time “t” (Elman recurrence layer).

XL
t−1 is the output of the Lth layer at time “t − 1” and going as

input to the lth layer at time “t” (Jordan recurrence layer). W′s

and b are the corresponding weights and bias, respectively. f is

the ReLU activation function.

Memory of the past information in the layers of the

proposed network is stored using a third mechanism—the flip-

flop neurons (Holla and Chakravarthy, 2016). A flip-flop is

a digital electronic circuit to store state information. There

are four types of digital implementations of flip-flops: D flip-

flops, Toggle flip-flops, SR flip-flops, and JK flip-flops (Roth

et al., 2020). In the proposed network, JK flip-flop neurons are

used in place of LSTM neurons because of the performance

advantage shown in Holla and Chakravarthy (2016) and Sweta

et al. (2021). In both of these papers, the experiments conducted

on the sequential data shows that flip-flop neurons outperform

the LSTM neurons, using only half the number of training

parameters in comparison to LSTM. Likewise, to get the

advantage of fewer parameters and better performance, in the

current study we used the JK flip-flop neuron. The JK flip-flop

neuron uses two gating variables with “J and K” nodes, whereas

LSTM uses four gating variables. In this paper, the term flip-

flop will be used to refer to JK-flip-flop. Furthermore, the flip-

flop neurons are considered similar to the UP/DOWN neurons

found in the prefrontal cortex (PFC), responsible for working

memory (Gruber et al., 2006).

In the proposed model, the flip-flop layer is designed in

two ways: flip-flop neurons in convolutional layer (named

as “convolutional flip-flop layer” or ConvJKFF), and flip-flop

neurons in the FC layer (named as “fully connected flip-flop

layer” or FCJKFF). Training rules of these flip-flop neurons in

the network were also developed. The two gate outputs “J” and

“K,” the hidden state of the JK flip-flops, and the final flip-flops

output are computed by using Equations (5–7, respectively)

below.

J = σ
(

IntWj
)

,K = σ
(

IntWk

)

(5)

Ht = J.
(

1−Ht−1
)

+ (1− K) .Ht−1 (6)

Ot = tanh (HtWout) (7)

In Equation (6), “.” stands for the pointwise multiplication.

Int = (Xt;Ht) is the input to the flip-flop layer, where Xt is

the output from the previous layer and Ht is the hidden state

at time “t,” which initialize with ones at time 0. 1 is a matrix of

ones. J andK are the gate variables, which has weight parameters

Wj and, Wk, respectively. Ot is the output of the flip-flop layer

at time ’t’. To train the flip-flop neurons, the partial derivatives

w.r.t J and K were used to backpropagate the corresponding J

and K nodes (Equation 8).

∂Ht

∂J
= 1−Ht−1;

∂Ht

∂K
= −Ht−1 (8)
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2.4. Implementation detail

2.4.1. Camera motion network

The camera motion network takes the attentional glimpse

of size h × w × a as input, where “h” is the height, “w” is the

width, and “a” is the number of the cropped attention windows.

Here, the number of attention windows is chosen to be 3 (i.e.,

a = 3). The size of one attention window is twice the previous

attention window’s size. Similar multiscale concentric attention

windows were used in other models (Mnih et al., 2014; Haque

et al., 2016; Shaikh et al., 2019). All the attention windows, except

the smallest one, get resized to the size of the smallest attention

window. For example, to generate the attentional glimpse where

h = 16, w = 16, and a = 3 from location y = 35 and

x = 50 in the given image of size 75 × 100, the first, second,

and third attention windows are cropped out of size 16 × 16,

32 × 32, and 50 × 50 from pixel location (y, x) = (27 to 43,

42 to 58), (y, x) = (19 to 51, 34 to 66), and (y, x) = (10

to 60, 25 to 75), respectively. The second and third cropped

attention windows are resized to the size of the first cropped

attention window, which is 16 × 16. After resizing, all the three

attention windows are stacked together, which finally becomes

an attentional glimpse of size 16×16×3. This type of attentional

glimpse having a size of h× w× a shown in Figure 3C is passed

to the first ConvJKFF layer of 16 kernels, each of size 3 × 3, of

the classifier network (shown in the top pipeline of the BIAS-3D

in Figure 3D). The spatial dimension of the features generated

from the first ConvJKFF layer is h×w×16, which are normalized

using LRN, and passed into ReLU activation function. Output

from ReLU activation function is passed to the maxpool layer

with a window of size 2× 2 and stride by 2, which translates the

feature’s spatial dimensions into h/2×w/2× 16. The translated

feature maps are passed as input to the second ConvJKFF layer

of 32 kernels, each of size 3 × 3, to extract the higher level

features of size h/2 × w/2 × 32. Then, similar to the previous

layer, features generated from the second ConvJKFF layer are

passed through the LRN layer, ReLU activation function, and

maxpool layer with a window of size 2 × 2 and stride 2. After

passing into the maxpool layer, feature maps of size h/4 ×

w/4 × 32 are generated, which are further converted into a

flattened layer to reshape the 3D features into 1D vectors. The

flattened vectors are passed through one FCEJ layer of 512

neurons, which is followed by one FCJKFF layer of 512 neurons.

Output from the FCJKFF layer of the camera motion network is

concatenated with the output vectors of the last layer of the other

two channels.

2.4.2. Classifier network

The classifier network gets the same attentional glimpse as

input which has been passed to the camera motion network.

This network predicts the class of the object present in the

attentional glimpse. The object present in the attentional glimpse

may belong to one of the “n + 1” classes, where “n” classes are

the object or target class and one is the nontarget or clutter

class. The network consists of 3 Conv layers followed by one

FCEJ layer. The first Conv layer of 16 kernels of size 3 × 3

generates the feature maps of spatial dimension h × w × 16.

Generated features are passed through the LRN layer and ReLU

activation function. After this, the maxpool layer with a window

of size 2 × 2 and stride by 2 has been applied to the output of

ReLU activation function, which gives the featuremaps of spatial

dimension h/2 × w/2 × 16. Then, the feature maps are passed

through a second Conv layer of 32 kernels, each of size 3 × 3,

LRN layer, ReLU activation function, and maxpool layer with a

window of size 2 × 2 and stride by 2. Feature maps of spatial

dimension h/4×w/4×32 are passed through a third Conv layer

of 64 kernels each of size 3 × 3 with ReLU activation function,

which further generates the feature maps of size h/4×w/4×64.

Then the flattened layer reshapes the 3D tensor of feature maps

into vectors, and these vectors are input to the FCEJ layer of 512

neurons. The output of the FCEJ layer gets concatenated with

the output vectors of the last layer of the camera motion network

and the camera position network.

2.4.3. Camera position network

The camera’s position in the environment is inferred from

the spherical coordinates, where the camera is assumed, as

described before, on a circular object centered on the origin,

and the center of the cube is located at the origin. The camera’s

position is defined by three variables: (“r,” “θ ,” “φ”), where

“r = R” is the radius of the circular orbit of the camera or

line connecting the camera point and the origin of the spherical

coordinate system, “θ” is the azimuth angle and “φ” is the

polar angle of the spherical coordinate system. In the current

simulated environment, the camera moves only in one degree

of freedom, that is “θ .” Therefore, “r = R” and “φ = 0” are

considered to be constant. Only “θ” varies as the camera moves

on a circular orbital path around the origin of the spherical

coordinate system or the cube. In the camera position network,

sinusoidal functions of “θ” are passed as input to the first FC

Elman (FCE) layer having 128 neurons, followed by one FCJKFF

of 64 neurons. Output from the FCJKFF layer is concatenated to

the output vectors of the last layer of the classifier network and

the camera motion network.

Outputs from three pipelines are concatenated in one

common flattened layer, which further connects with two

output layers in parallel. One output layer with linear activation

function is responsible to predict one direction out of the three

considered directions in which the camera will move on the

orbit to look and locate the target face present in the given

cube. The other output layer with softmax activation function

is responsible to predict the class of the object seen on the view

of the camera.
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FIGURE 4

Pretrained classifier network.

2.4.4. Training and testing

Tensorflow framework is used to implement the proposed

attention model. Xavier’s initialization (Glorot and Bengio,

2010; Equation 9) with random normal distribution is used to

initialize the weights for each layer of the three networks. The

Xavier initialization is able to avoid the exploding or vanishing

gradients (Bengio et al., 2001) problem by fixing the variance of

the activations across each layer as the same.

Wl
= N

(

0,
2

ml−1 +ml

)

(9)

where, N stands for the normal distribution. ml−1 and ml

is the number of neurons in the previous layer and current

layer, respectively. Wl denotes the weights at lth layer with

Xavier initialization.

Before training the model, the classifier network is

pretrained on the camera captured views. To pretrain the

classifier network, we collect views of the simulated environment

by explicitly revolving the camera from 0 to 360◦, where 0◦ is

assumed to be exactly at the front of the face containing the

target object. Advancing in steps of 9 degrees over the range

of 0–360◦, a total of 40 views is collected for each cube in the

dataset. Views between −45 to +45 range are labeled as one

of the “n classes” and views between +46 to +180 and −46

to −180 range are labeled as “background class.” Therefore,

the total number of classes present in the dataset is n + 1. To

make the views data uniform, the same number of views of the

background class are chosen randomly as the number of views

of the other class. The classifier network is pretrained on such

views of targets and background or nontarget class. We assume

that the camera’s focus is always fixed in the center of the view.

Therefore, we create a glimpse of three concentric windows from

the center location of the camera view. Detailed architecture

of the pretraining classifier network is shown in Figure 4. The

classifier network without recurrent layers in the BIAS-3D is

pretrained on the glimpse of the camera views. Total loss of

the model is calculated in two parts: one is classification loss,

calculated using the cross-entropy loss function (Goodfellow

et al., 2016) and the other one is prediction loss, calculated

using mean square error of temporal difference (Sutton and

Barto, 1998). Equations of the both loss functions are shown in

Equations (10) and (13).

Lce = −

n+1
∑

i=1

di log
(

pi
)

(10)

In Equation (10), di denotes the desired classification

probability and pi denotes the predicted classification

probability of ith class. “n + 1” is the total number of

classes that are present in the dataset including background

class. Here, the camera is assumed as an agent and the agent

learns a defined policy of the reward function (Equation 11)

(Armstrong and Murlis, 2007). When the agent is in the current

state, Q-values of all three actions are predicted by passing

the information of the current state (like the attention input

and the θ value of the camera) into the deep neural network.

Based on the predicted Q-value of all the actions in the current

state, the agent makes an action decision using a softmax

action selection policy (Abed-alguni, 2018). In this policy, the

predicted Q-values are passed through a softmax activation

function to produce the action probabilities. The action with the

highest probability is selected and performed by the agent in the

current state of the environment. After performing the action,

the current state is updated to the next state and then the agent

receives a reward, either “1” or “0” depending on the reward

policy shown in Equation (11).

r =



















1 argmaxi∈n(pi) == argmaxi∈n(di)

max(p) ≥ λ

0 otherwise

(11)
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Apart from the softmax action selection policy, we used

a race model (Rowe et al., 2010) which ensures that the

selected action is correct. Race models have been applied in

many behavioral, perceptual, and oculomotor decisions and

such decisions are based on trial-to-trial modifications in a

race among all the responses (Carpenter and McDonald, 2007).

Race model works based on two neurophysiological evidences

to show the relatedness. Firstly, if monkeys are trained to

make their decision on coherently moving direction of dots,

accumulating neuronal activity is formed that mirrors the

decision even when there is no coherent motion. Here, both

choices are equally rewarded (Churchland et al., 2008). Secondly,

the decision threshold is considered constant for a selected

action, regardless of its being a specifically cued action (Roitman

and Shadlen, 2002). We have taken the motivation to apply the

race model based on the second evidence. The action predicted

by the network is the action which crosses the threshold, λ, first

and if the action predicted is correct, the agent gets reward “1”;

it otherwise gets reward “0.”

The Q-values of the actions in the next step are estimated

by passing the next state information into the target network,

where the target network is the separate copy of the networks

of the model. Target Q-value is calculated by adding the current

state reward and maximum of the next stateQ-values multiplied

with a discount factor γ . Discount factor defines how much

the current state Q-value depends on the future reward. Now,

the temporal difference (TD) is calculated by calculating the

difference between the target Q-value and the predicted Q-value

(Equation 12).

TD =
(

r + γ ∗Qmax
(

St+1
))

− Q (St) (12)

Lmse =
1

n

n
∑

i=0

TD2 (13)

ltotal = Lce + Lmse (14)

where, r is the reward which the agent gets while going from

the state St to the state St+1. Q
(

St+1
)

and Q (St) is the Q-

value of the state St+1 and, St , respectively. γ is the discount

factor. Then these two losses, the cross-entropy loss of the

classifier network (Equation 10), Lce and the mean square error

of temporal difference of the camera motion network (Equation

13), Lmse, are added up to get the total loss (Equation 14). The

total loss is back propagated into the network (Voleti, 2021). The

network parameters are updated by using the mini-batch Adam

optimizer (Kingma and Ba, 2014). L2 regularization (Kratsios

and Hyndman, 2020) is used to avoid the overfitting problem of

the network. During inference, the camera starts from a random

location and moves toward the target face of the cube. Once

it finds the target face, the camera continues to fixate around

that face. The number of trainable parameters of the model are

FIGURE 5

A sample of image datasets are shown here. (A) 28× 28 MNIST

digits. (B) 28× 28 QuickDraw. (C) 28× 28 RGB MNIST digits.

2, 668, 362. The model achieves a processing speed of 0.0001 s

per input image on a workstation with an NVIDIA GeForce

GTX 1, 080Ti 11 GB GPU, i7-8700 CPU @ 3.20 GHz 3.19 GHz,

64-bit operating system, and 32.0 GB RAM.

3. Simulation results

We evaluate our model on “painted cube” data, where each

cube has a target object on one vertical face and nontarget objects

on the other three vertical faces. The model is supposed to move

the camera around the cube on a circular orbit and search the

target object image present on one of the four vertical faces

of the cube. For target object image, we used image datasets.

Totally three 3D Cluttered Cube datasets were considered in the

experiment. The cube datasets were generated using their related

image data. Grayscale MNIST digit image dataset, QuickDraw

image dataset, and RGB MNIST digit image dataset (Samples

are shown in Figures 5A–C, respectively) were used to generate

cube datasets like 3D Cluttered Grayscale MNIST Cube dataset,

3D Cluttered QuickDraw Cube dataset, and 3D Cluttered RGB

MNIST Cube dataset respectively. The first two of these are

cube datasets with grayscale images, and the last one is a cube

dataset with RGB images. Based on the grayscale and RGB

cube datasets, we designed the experiments in two parts: one

part of the experiment shows the target search capability of the

proposed model on the cubes which has all four vertical faces of

grayscale images (called grayscale cubes) and the other part of

the experiment shows the target search capability of the model

on the cubes which has all vertical faces of RGB images (called

RGB cubes).

3.1. Searching on grayscale cubes

In the first part of the experiment, we evaluated our model

on two datasets of Grayscale cubes. For that, we used two

different datasets of grayscale images: MNIST handwritten digits

(LeCun et al., 1998) and QuickDraw (Jongejan et al., 2016). Both

datasets with 10 different classes contain 48, 000 examples in the

training set, 12, 000 examples in the validation set, and 10, 000
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TABLE 1 Accuracy on testing set of all three datasets.

Dataset Testing accuracy (%)

3D cluttered grayscale MNIST cube dataset 95.6

3D cluttered grayscale QuickDraw cube dataset 83

3D cluttered RGB MNIST cube dataset 91.5

examples in the testing set. We have generated a 3D Cluttered

MNIST Cube dataset using MNIST dataset. To generate such

a cube dataset, each of the cubes were created with a 28 × 28

MNIST digit image (target) on one vertical face and 28 × 28

a random clutter image (nontarget) on the other three vertical

faces. In this experiment, the bottom and top faces of the cube

are not considered for searching. Similarly, a 3D Cluttered

QuickDrawCube dataset was generated usingQuickDraw image

dataset.

Once the cube datasets are generated, we place the cube in

the environment in such a way that the center of the cube is at

the origin of the spherical coordinate system. Then the camera

is placed at a random value of azimuth angle “θ” at initial time

(t = 0). The polar angle “φ,” and radius “r” are set to 0, and

2.5, respectively. The camera placed at (r, θ ,φ) captures the view

of size 75 × 100. Then a glimpse is extracted from the center

location of the captured view. To extract the glimpse, three

concentric windows of size 16 × 16, 32 × 32, and 50 × 50 are

cropped out from the center of the view. After cropping out,

windows of size 32 × 32 and 50 × 50 are resized into the size

of 16 × 16. Then resized windows with the smallest window of

size 16 × 16 are arranged together across depth to generate an

attentional glimpse of dimension 16 × 16 × 3. Since the image

size in the QuickDraw image dataset is same as the image size in

theMNIST dataset, the same dimensions of the camera view and

attentional glimpse were considered in case of the 3D Cluttered

QuickDraw Cube dataset.

The proposed model takes the attentional glimpse of size

16 × 16 × 3 from the center location of the image view

of the camera of size 75 × 100. Achieved accuracy on both

grayscale datasets are listed in Table 1. The results of the

camera’s movement predicted by our model in the testing set

are shown in Figures 6–9. In this figure, images of the camera

view of dimension 75 × 100 are shown in one row and their

corresponding plots for predicted classification probabilities for

that view (dotted dashed-blue curve) and ground truth target

classification probabilities (green curve) are shown in the row

just below. At the bottom of the plots, timestep and ground

truth target class labels are denoted by using variables “t” and

“c,” respectively. In the row of images of the camera view, three

concentric red windows depict the glimpse.

The model has the ability to move the camera to the position

where the target face of the cube is visible from the camera. For

example, in Figure 6, the class of digit 2 in the fourth image of

the first row has the view of nontarget or clutter face at timestep

t = 0 and its corresponding predicted classification probabilities

shown in the plot just below that image is low for all classes. But

at timestep t = 1 (θ is decided by the model), the camera has

moved toward the right and has seen some part of the target

face that has the digit 2. At the same time, the highest of the

predicted classification probabilities is for digit 2. The camera

again moved to the right at timestep t = 2, where an adequate

part of the digit 2 on the cube face is visible (first image in fourth

row of Figure 6) and therefore, the maximum value of predicted

classification probabilities is close to 1 for digit 2, which crosses a

testing threshold of value 0.95. Similarly, for the other digits, the

camera starts moving appropriately, searching for the target. The

camera stops moving when the maximum value of the predicted

classification probabilities crosses the testing threshold. The

testing threshold is set based on the feature complexity of the

image datasets.

In the case of the 3D Cluttered QuickDraw Cube dataset,

we can observe the same search behavior of the camera. For

example, in Figure 8, class 5 (bicycle) in the third image of the

tenth row has the camera view showing non-target objects on

the cube face at timestep t = 0 and its corresponding predicted

classification probabilities shown in the plot just below the that

image is low for all classes. At the next timestep (t = 1),

the camera has moved to the left and the camera continues

to move in the left direction 3 more times even though the

target is not visible. At timestep t = 4, a very small part of

the bicycle is visible (second image in the thirteenth row of

Figure 9) and at this time the classification probability for class 5

or bicycle becomes the highest. The camera stops moving once

the maximum value of the predicted classification probabilities

crosses a testing threshold of value 0.85.

3.2. Searching on RGB cubes

In the second part of the experiment, we evaluated our

model on RGB cubes to investigate that the model is able

to search for the target object on the cube face even in the

case of color images. To this end, we generated a cube dataset

using RGB MNIST image dataset. Here, we first create the RGB

MNIST digit image dataset by assigning different colors to the

digits and the background of the images available in Grayscale

MNIST digit image dataset (LeCun et al., 1998). Our created

RGB MNIST handwriting digit dataset is available in this link.

The dataset with 10 different classes contains 48, 000 examples

in the training set, 12, 000 examples in the validation set, and

10, 000 examples in the testing set. Once the image dataset is

ready, we generate a 3D Cluttered RGB MNIST Cube dataset

using RGB MNIST image dataset. To generate a 3D Cluttered

RGB MNIST Cube dataset, each of the cubes is created with a

28× 28× 3 RGBMNIST image (target) on one vertical face and
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FIGURE 6

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.
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FIGURE 7

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.

28×28×3 random clutter image (non-target) on the other three

vertical faces.

The model is evaluated by placing the RGB cube in the

environment in the same way of grayscale cube datasets.

The camera captures the view of size 75 × 100 of the 3D

Cluttered RGB MNIST Cube. The camera extracts the glimpse

from the center of the captured view. To extract the glimpse,

three concentric windows of size 16 × 16, 32 × 32, and

50 × 50 are cropped out from the center of the view to

generate an attentional glimpse of size 16 × 16 × 9. The

proposed model takes the attentional glimpse of size 16 ×

16 × 9 from the center location of the image view of the

camera of size 75 × 100 in case of 3D Cluttered RGB MNIST

Cube dataset. The achieved accuracy on the RGB cube dataset

is listed in Table 1. The results of the camera’s movement

predicted by our attention model in the testing set are shown
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FIGURE 8

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale QuickDraw Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.

Frontiers inComputationalNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2022.1012559
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Kumari et al. 10.3389/fncom.2022.1012559

FIGURE 9

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

Grayscale QuickDraw Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.

in Figures 10–12. Plots of accuracy, and reward vs. epoch, are

shown in Figure 13.

The hyperparameters of the model are tuned and chosen

as follows: 0.0001 learning rate, 0.43 discount factor, 0.85

threshold (λ), and 0.1 regularization factor (β) with the

best performance in case of 3D Cluttered Grayscale MNIST

Cube dataset. The model explores the actions with ǫ equal

to 0.99 and the exploration gets reduced by a decay factor

of 0.999 while training. The minimum value of ǫ is set

with 0.1. The model is trained for 25 epochs and 50

timesteps per cube, in case of 3D Cluttered Grayscale MNIST

Cube dataset. In the case of the 3D Cluttered QuickDraw

Cube dataset, the model is trained for 20 epochs and

50 timesteps. During the inference, time-steps are varied

depending upon the classification probabilities. Prediction is

considered to be done as soon as the maximum value of the
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FIGURE 10

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

RGB MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.
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FIGURE 11

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

RGB MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.
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FIGURE 12

Illustrates the camera movements around the cube to search the target face in the view of size 75× 100, predicted by our model in 3D Cluttered

RGB MNIST Cube dataset. For each class at time t, there is a movement (shown in the row of camera view images) and corresponding

classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red windows depict the glimpse

at the center of the view image. In the plot corresponding with the above view image, the green curve is the desired classification probabilities

and the dotted dashed-blue curve is the predicted classification probabilities at time t.

classification probabilities crosses a certain testing threshold

(= 0.95). A slight variation in values of the hyperparameters

is used for the 3D Cluttered RGB MNIST Cube dataset

after tuning.

Jump length is the displacement from one location to the

next location. The jump length of the camera from one location

to the next location on the orbit is considered as a predefined

parameter. The jump length of the camera is 12 in case of

Grayscale 3D Cluttered MNIST Cube dataset, and 20 in case of

3D Cluttered QuickDraw Cube dataset and 3D Cluttered RGB

MNIST Cube dataset.

4. Discussion

To search for the entrance of a building, where there is

neither a boundary wall, nor a clear path leading to the entrance,

we usually move on the circular path around the building in
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FIGURE 13

(A–C) Shows the plots of Accuracy (1st and 3rd row) and Reward (2nd and 4th row) vs. Epochs of 3D Cluttered Grayscale MNIST Cube dataset,

3D Cluttered Grayscale QuickDraw Cube dataset, and 3D Cluttered RGB MNIST Cube dataset, respectively.

either clockwise or anticlockwise direction until we find the

entrance. While performing such a task, we also take care that

the movement should not involve rapid alternation between the

two directions, andmust progress continuously in one direction.

The best application of the current model can be in space.

For example, geostationary satellites and spy satellites revolving

around the earth in a circular orbit require a searching capability

of one specific large area of the earth to get a bird’s eye view or
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to obtain information about various weather, natural calamities,

deforestation, and similar activities. From the results of camera

movement shown in Figures 6–12, the proposed model is able

to avoid alternative movements and is always able to follow the

continuous movements to search the target face of the cube.

There are three major components to consider the proposed

model biologically inspired. First, the model takes the input of

multiple concentric windows of different scales, which resembles

the differential spatial resolution of the central fovea and the

peripheral regions of the retinal. Second, themodel processes the

view and its corresponding functions of the camera’s location,

θ , which is analogous to determining the position using path

integration and using it to navigate the world. The classifier

and camera motion networks are analogous to the processing of

visual information along the “what and where/how” pathways

(Schenk and McIntosh, 2010), respectively. Third, the model

uses Elman, Jordan, JK-flip-flop recurrence layers as memory

to store the history of the view and corresponding location,

which resemble the feedback loops present among the visual

cortical areas, for example from V1 to thalamus or from V2 to

V1, (Angelucci and Sainsbury, 2006). The output layers of the

classifier and the camera motion network are used to attribute

a specialized role to both of the networks for classification

and searching tasks, by feeding the outputs back into the first

fully connected Elman and Jordan layers in their corresponding

channels. The output vector of the camera motion network (Q-

values) which has information about the action to be taken by

the camera is fed back into the fully connected Elman and Jordan

layer and the output vectors of this layer passed through fully

connected flip-flop layer and gets concatenated with the output

of the last layer of the camera position network; this wide loop is

responsible for storing the history of location and view.

5. Conclusions

In the proposed model, we have shown how the “classifier”

and “camera motion” networks coordinate with each other to

perform the 3D visual search task. The BIAS-3D successfully

performed the classification task on a 3D environment on three

datasets (Table 1). As shown in the results, movements generated

by the model to search a target in the given cube always aim

at the target face and take meaningful movements so that the

camera looks at the target and classifies it correctly. Based on

the results described herewith, we want to extend the model to

more complicated full 3D searches in a 3D environment like, for

example, searching for defects on the surface of a 3D structure.

The model can then be applied to full scale object detection and

recognition in 3D space.
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