
fncom-16-1017284 September 30, 2022 Time: 6:52 # 1

TYPE Original Research
PUBLISHED 30 September 2022
DOI 10.3389/fncom.2022.1017284

OPEN ACCESS

EDITED BY

Jung H. Lee,
Pacific Northwest National Laboratory
(DOE), United States

REVIEWED BY

Liu Dave Liu,
Baylor College of Medicine,
United States
Vincenzo Marra,
University of Leicester,
United Kingdom

*CORRESPONDENCE

Samuel A. Neymotin
samuel.neymotin@nki.rfmh.org

RECEIVED 11 August 2022
ACCEPTED 31 August 2022
PUBLISHED 30 September 2022

CITATION

Haşegan D, Deible M, Earl C,
D’Onofrio D, Hazan H, Anwar H and
Neymotin SA (2022) Training spiking
neuronal networks to perform motor
control using reinforcement
and evolutionary learning.
Front. Comput. Neurosci. 16:1017284.
doi: 10.3389/fncom.2022.1017284

COPYRIGHT

© 2022 Haşegan, Deible, Earl,
D’Onofrio, Hazan, Anwar and
Neymotin. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Training spiking neuronal
networks to perform motor
control using reinforcement and
evolutionary learning
Daniel Haşegan 1, Matt Deible2, Christopher Earl3,
David D’Onofrio 4, Hananel Hazan 5, Haroon Anwar4 and
Samuel A. Neymotin4,6*
1Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York,
NY, United States, 2Department of Computer Science, University of Pittsburgh, Pittsburgh, PA,
United States, 3Department of Computer Science, University of Massachusetts Amherst, Amherst,
MA, United States, 4Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute
for Psychiatric Research, Orangeburg, NY, United States, 5Allen Discovery Center, Tufts University,
Boston, MA, United States, 6Department of Psychiatry, NYU Grossman School of Medicine,
New York, NY, United States

Artificial neural networks (ANNs) have been successfully trained to perform

a wide range of sensory-motor behaviors. In contrast, the performance of

spiking neuronal network (SNN) models trained to perform similar behaviors

remains relatively suboptimal. In this work, we aimed to push the field of

SNNs forward by exploring the potential of different learning mechanisms

to achieve optimal performance. We trained SNNs to solve the CartPole

reinforcement learning (RL) control problem using two learning mechanisms

operating at different timescales: (1) spike-timing-dependent reinforcement

learning (STDP-RL) and (2) evolutionary strategy (EVOL). Though the role of

STDP-RL in biological systems is well established, several other mechanisms,

though not fully understood, work in concert during learning in vivo.

Recreating accurate models that capture the interaction of STDP-RL with

these diverse learning mechanisms is extremely difficult. EVOL is an alternative

method and has been successfully used in many studies to fit model neural

responsiveness to electrophysiological recordings and, in some cases, for

classification problems. One advantage of EVOL is that it may not need to

capture all interacting components of synaptic plasticity and thus provides

a better alternative to STDP-RL. Here, we compared the performance of

each algorithm after training, which revealed EVOL as a powerful method

for training SNNs to perform sensory-motor behaviors. Our modeling opens

up new capabilities for SNNs in RL and could serve as a testbed for

neurobiologists aiming to understand multi-timescale learning mechanisms

and dynamics in neuronal circuits.

KEYWORDS

reinforcement learning, evolutionary strategy, spiking neuronal networks, computer
simulation, sensory-motor behavior, video games, spike-timing dependent plasticity
(STDP)

Frontiers in Computational Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.1017284
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.1017284&domain=pdf&date_stamp=2022-09-30
https://doi.org/10.3389/fncom.2022.1017284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2022.1017284/full
https://orcid.org/0000-0003-2274-2999
https://orcid.org/0000-0001-9665-4401
https://orcid.org/0000-0003-1446-1628
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 2

Haşegan et al. 10.3389/fncom.2022.1017284

Introduction

Reinforcement learning (RL) problems offer an ideal
framework for comparing the learning strategies of an
interactive, goal-seeking agent (Sutton and Barto, 2018). Most
often, the best learning strategy is evaluated based on time
efficiency and algorithm complexity. While there are many
deep reinforcement learning algorithms for solving dynamical
control problems (Mnih et al., 2015), biologically realistic
network architectures and training strategies are not yet as
efficient. In this work, using the CartPole RL problem, we
compare biologically inspired learning algorithms based on the
training efficiency and the resulting network dynamics.

As spiking neural networks (SNNs) are shown to be
Turing-complete (Maass, 1996b) and computationally more
powerful than artificial neural networks (ANNs) (Maass, 1997,
1996a), efficient learning strategies are still actively investigated
(Tavanaei et al., 2019). SNNs have been effective for pattern
recognition problems (Gupta and Long, 2007; Escobar et al.,
2009; Kasabov et al., 2014; Tavanaei and Maida, 2017; Mozafari
et al., 2018) but are rarely used for solving reinforcement
learning control problems. As spiking neurons operate in the
time domain, we show that RL problems are suitable for
evaluating training strategies and providing insight into neural
circuit dynamics.

Traditionally, when SNN models are trained to perform
a behavior using biologically inspired learning mechanisms,
algorithms used are variations on either spike timing dependent
plasticity(STDP) (Tavanaei et al., 2019) or evolutionary
strategies (EVOL) (Espinal et al., 2014). For learning behaviors
from the reinforcement learning domain, STDP can be extended
to use reward modulated plasticity (Chadderdon et al., 2012;
Neymotin et al., 2013; Hazan et al., 2018; Patel et al., 2019; Anwar
et al., 2022a), an algorithm denoted spike-timing dependent
reinforcement learning (STDP-RL). In this work, we introduce a
new EVOL variation adapted from non-spiking neural networks
(Salimans et al., 2017). Alternatively, there are many algorithms
that learn behaviors through back-propagation (Bengio et al.,
2017; Liu et al., 2017; Mostafa et al., 2017; Huh and Sejnowski,
2018; Bohte et al., 2022). Since back-propagation is challenging
to properly implement in SNNs with arbitrary architectures
(Patel et al., 2019; Anwani and Rajendran, 2020), we have not
used it in this work.

Spike-timing dependent reinforcement learning trains
SNNs by establishing associations between the neurons
encoding the sensory environment and neurons producing
an action or sequence of actions, such that appropriate
actions are produced for specific sensory cues. The sensory-
motor associations are established from reward-modulated
synaptic weight changes that occur at each time step of the
simulation. Hence, STDP-RL trains at the individual level, as
we consider each separate initialization of an SNN network a
separate “individual”.

In our SNNs, we simulate individual neurons as event-
based dynamical units that mimic functions of their biological
counterparts, like adaptation, bursting, and depolarization
blockade (Neymotin et al., 2011). For training SNNs based
on population-level fitness metrics, we adapt EVOL (Salimans
et al., 2017), which have been shown to be efficient in training
Artificial Neural Networks on similar problems (Salimans et al.,
2017; Chrabaszcz et al., 2018). The EVOL algorithm treats the
synaptic weight as an individual’s genome, then perturbs the
genome using the mutation genetic operator to produce an
offspring population. Each offspring is an individual SNN that
interacts with the environment by receiving sensory stimuli and
producing motor actions based on its internal firing patterns.
Based on the offspring fitness, we combine the population
genomes to yield the next generation of genomes. In the
EVOL algorithm, SNN weights are not adapting throughout the
interaction with the environment.

To summarize, in this work, we investigate two algorithms
for training SNNs on the CartPole RL problem: individual-
level training using STDP-RL and population-level EVOL. Our
contributions are as follows: (1) we analyze the efficiency of
biologically inspired training strategies for solving the CartPole
RL problem and (2) we analyze the effect between individual-
level and population-level learning on SNN’s sensorimotor
mappings and neuronal dynamics.

Materials and methods

CartPole game

To test different learning strategies, we chose the classic
CartPole problem of balancing a vertical pole on a cart (Barto
et al., 1983; Geva and Sitte, 1993). All the simulations were run
using the CartPole-v1 environment (Figure 1 left) available in
the OpenAI Gym platform (Brockman et al., 2016).1 To keep the
pole balanced (Figure 1 left), a force to the left (-1) or the right
(+1) must be applied at each time step of the simulation. Once
the force is applied, a new game-state is generated, resulting
from the interaction between the previous game-state and the
applied action. The environment is fully described by four
observations: cart position, cart horizontal velocity, pole angle
with respect to a vertical axis, and angular velocity of the pole.
For simplicity, we will now reference those four observations as
position, velocity, angle, and angular velocity (see Figure 1 left).
The position is a relative distance from the center of the screen
with positive (negative) values to the right (left). Similarly, the
pole’s angle represents positive values for angles to the right
(clockwise). The velocity and angular velocity represents the
rate of change of the position and the angle, respectively. The

1 https://www.gymlibrary.dev/

Frontiers in Computational Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.gymlibrary.dev/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 3

Haşegan et al. 10.3389/fncom.2022.1017284

game is played in episodes, where each episode consists of
multiple steps (left or right) taken to keep the pole balanced.
The pole loses its balance when either the angle is greater than
15 degrees from vertical in either direction or the position
is more than 2.4 units from the center in either direction.
Each episode is allowed a maximum duration of 500 steps. An
episode can be instantiated to different initial positions, which
deterministically affects the trajectory through observational
space.

Simulations

We used the NEURON simulation environment (Carnevale
and Hines, 2006) with the NetPyNE package (Dura-Bernal
et al., 2019) for all modeling. NEURON simulates the firing of
individual neurons based on the integration of input activation.
Neurons are assembled into populations and into a connected
network using the NetPyNE package that further coordinates
the network simulation environment. The integration of
the CartPole environment and the NetPyNE network was
implemented in Python. The CartPole environment and the
network simulation (the agent) are synchronized every time step
T (50 ms) in the following way:

- at the beginning of the time step, the environment is
translated into neural activity in the input population (ES);

- for the duration of the time T, neurons are spiking based
on induced activity; and

- at the end of the time step (after 50 ms), higher
relative activation in the motor populations (EM-L, EM-R)
determines the agent’s action.

In the following sections, we will present the setup of
the pre-plasticity simulation: the excitatory/inhibitory neurons,
the network inputs, the movement generation, and the
weights initialization.

Constructing a spiking neuronal network
model to play CartPole

Our SNN model was adapted from one of our recent models
(Anwar et al., 2022a). To allow the SNN model to capture
the game-state space reliably, we included 80 neurons in the
sensory area (ES) with four subpopulations (20 neurons each),
each to independently encode position, velocity, angle, and
angular velocity (Figure 1 right box, “ES”). Each neuron was
assigned to encode a different receptive field. Since the game’s
goal was to balance the pole, that would require more precision
in encoding sensory information near balanced states, around
the absolute value of 0. To capture higher sensory precision
utilizing smaller receptive fields around the balanced state and
less precision utilizing larger receptive fields at peripheries, we
assigned receptive fields to each neuron based on percentiles

of a Gaussian distribution with a peak value of 0 centered
around the 11th neuron. As such, lower indices neurons
(neurons 1–10) encode negative values of the state variables
in decreasing order. Similarly, higher indices neurons (neurons
11–20) encode positive values of the state variables in increasing
order. All four ES populations were assigned receptive fields
using Gaussian distributions with each input state’s expected
mean and variance.

At each game step, 4 ES neurons, one from each
subpopulation, were activated, informing the SNN model about
the game state. To allow association between individual state-
variable representing a game-state, we included 40 neurons
in the association area “EA” (Figure 1 right box, “EA”),
which received inputs from the ES neuronal population. Each
neuron in EA was connected to motor areas EM-L and EM-R,
generating Right- and Left-actions (Figure 1 “action” arrow) by
comparing the number of spikes in those populations (winner-
takes-all). If both subpopulations have the same number of
spikes, then a random move is performed.

To prevent hyperexcitability and depolarization-block
(Chadderdon et al., 2012; Neymotin et al., 2013; Anwar et al.,
2022a), we included inhibitory neuronal populations (10 IA, 10
IAL, 10 IM, and 10 IML) and synapse weight normalization
steps (detailed below).

Integrate-and-fire neuron
Individual neurons were modeled as event-driven, rule-

based dynamical units with many of the key features found
in real neurons, including adaptation, bursting, depolarization
blockade, and voltage-sensitive NMDA conductance (Lytton
and Stewart, 2006; Lytton and Omurtag, 2007; Lytton et al.,
2008; Neymotin et al., 2011). Event-driven processing provides
a faster alternative to network integration: a presynaptic
spike is an event that arrives after a delay at a postsynaptic
neuron; this arrival is then a subsequent event that triggers
further processing in the postsynaptic neurons. Neurons were
parameterized (Table 1) as excitatory (E), fast-spiking inhibitory
(I), and low threshold activated inhibitory (IL). Each neuron
had a membrane voltage state variable (Vm), with a baseline
value determined by a resting membrane potential parameter
(Vrest). After synaptic input events, if Vm crossed the spiking
threshold (Vthresh), the cell would fire an action potential and
enter an absolute refractory period, lasting τAR ms. After
an action potential, an after-hyperpolarization voltage state
variable (VAHP) was increased by a fixed amount 1VAHP,
and then VAHP was subtracted from Vm. Then VAHP decayed
exponentially (with the time constant τAHP) to 0. Simulating the
depolarization blockade, a neuron cannot fire if Vm surpasses
the blockade voltage (Vblock). The relative refractory period
was simulated after an action potential by increasing the firing
threshold Vthresh by WRR(Vblock-Vthresh), where WRR was a
unitless weight parameter. Vthresh then decayed exponentially to
its baseline value with a time constant τRR.

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 4

Haşegan et al. 10.3389/fncom.2022.1017284

FIGURE 1

The CartPole game environment (left) interfacing with the SNN model (right). Left box: At each step, a new game state is produced, which is
described by the variables (as labeled): Position, Velocity, Angle, and Angular Velocity. Arrow “state”: The values of these variables are used to
activate a unique quadruple of neurons in the “ES” neuronal population (1 for each state variable). Right box: The neuronal network is
represented as a diagram, as each dot represents one neuron, and arrows (light gray and light red) represent connectivity between populations
of neurons. The light gray and light red arrows represent excitatory and inhibitory synapses between neuronal populations, respectively. There
are four excitatory neuronal populations: “ES” with 80 neurons (black-bordered box); “EA” with 40 neurons (green-bordered box); “EM-L” with
20 neurons (brown-bordered box); and “EM-R” with 20 neurons (cyan-bordered box). There are four inhibitory neuronal populations: “IA” with
10 neurons; “IAL” with 10 neurons; “IM” with 10 neurons; and “IML” with 10 neurons (each within a red-bordered box). Excitatory neuronal
populations have outgoing excitatory connections, while inhibitory neuronal populations have outgoing inhibitory connections. The
connections marked with a “ ± ” sign represent the connections that undergo synaptic plasticity: the connections between populations: “ES” to
“EA”, “EA” to “EM-L”, and “EA” to “EM-R”. Arrow “action”: The activity within the “EM-L” and “EM-R” neuronal populations determines the action
performed by the agent. Higher activity within either neuronal population will determine the agent to make a move to the left or to the right, as
exemplified by the large red arrows in the left box. Green arrow “reward”: for the Reinforcement Learning training strategy, the state of the
environment is used to dictate the reward (or punishment) administered to the network for a correct (or incorrect) move.

TABLE 1 Parameters of the neuron model for each type.

Cell type Vrest
(mV)

Vthresh
(mV)

Vblock
(mV)

τAR (ms) WRR τRR (ms) 1 VAHP
(mV)

τAHP
(ms)

Excitatory (E) -65 -40 -25 5 0.75 8 1 400

Inhibitory (I) -63 -40 -10 2.5 0.25 1.5 0.5 50

Low-threshold Inhibitory (IL) -65 -47 -10 2.5 0.25 1.5 0.5 50

Vrest , resting membrane potential; Vthresh , spiking threshold; Vblock , depolarization blockade voltage; τAR , absolute refractory time constant; WRR , relative refractory weight; τRR , relative
refractory time constant;1VAHP , after-hyperpolarization increment in voltage; τAHP , after-hyperpolarization time constant.

Synaptic mechanisms

In addition to the intrinsic membrane voltage state variable,
each cell had four additional voltage state variables Vsyn,
corresponding to the synaptic inputs. These represent AMPA
(AM2), NMDA (NM2), and somatic and dendritic GABAA
(GA and GA2) synapses. At the time of input events, synaptic
weights were updated by step-wise changes in Vsyn, which
were then added to the cell’s overall membrane voltage Vm.

To allow for dependence on Vm, synaptic inputs changed
Vsyn by dV = Wsyn(1 – Vm/Esyn), where Wsyn is the synaptic
weight, and Esyn is the reversal potential relative to Vrest.
The following values were used for the reversal potential
Esyn: AMPA, 0 mV; NMDA, 0 mV; and GABAA, –80 mV.
After synaptic input events, the synapse voltages Vsyn decayed
exponentially toward 0 with time constants τ syn. The following
values were used for τ syn: AMPA, 20 ms; NMDA, 300 ms;
somatic GABAA, 10 ms; and dendritic GABAA, 20 ms.

Frontiers in Computational Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 5

Haşegan et al. 10.3389/fncom.2022.1017284

The delays between inputs to dendritic synapses (dendritic
GABAA) and their effects on somatic voltage were selected
from a uniform distribution ranging between 3–12 ms, while
the delays for somatic synapses (AMPA, NMDA, somatic
GABAA) were selected from a uniform distribution ranging
from 1.8 to 2.2 ms. Synaptic weights were fixed between a
given set of populations except for those involved in learning
(see the “±” sign in Figure 1 Right box and plasticity “on”
in Table 2).

The neuronal weights

The neurons are organized into three overall layers:
Sensory, Association, and Motor (Figure 1 right box). The
sensory layer consists of the excitatory sensory neuronal
population (ES), which contains a total of 80 excitatory
neurons. The association layer consists of 40 excitatory
neurons in the excitatory association neuronal population
(EA), 10 fast-spiking inhibitory neurons in the inhibitory

association neuronal population (IA), and 10 low threshold
activated inhibitory neurons in the “low” inhibitory association
neuronal population (IAL). Similarly, the motor layer consists
of 40 excitatory neurons in the excitatory motor neuronal
population (EM), 10 fast-spiking inhibitory neurons in the
inhibitory motor neuronal population (IM), and 10 low
threshold activated inhibitory neurons in the “low” inhibitory
association neuronal population (IML). Furthermore, the EM
neuronal population is split into 20 neurons associated with
left movements (EM-L) and 20 neurons associated with right
movements (EM-R).

The weights between populations were adjusted to allow
reliable transmission of spiking activity across different
layers/areas of the SNN model. Each row in Table 2 describes
the synaptic connectivity between two different neuronal
populations (no self connectivity) and follows the same
diagram of neuronal connectivity described in Figure 1.
Neurons belonging to the presynaptic population have axons
that project to neurons in the postsynaptic population. Each
neuron projects to a fixed number of postsynaptic neurons, a

TABLE 2 Initial connection weights.

Presynaptic
population

Postsynaptic
population

Connection
convergence

Synapse
type

Synaptic weight:
Wsyn

Plasticity (empty
for Off)

ES EA 25 AM2 10.0 On

NM2 0.196

EA IA 15 AM2 5.85

NM2 0.0585

EA IAL 15 AM2 5.94

NM2 0.294

EA EM
(EM-L + EM-R)

20 AM2 6.5 On

NM2 0.1

IA EA 4 GA 18.0

IA IA 1 GA 4.5

IA IAL 2 GA 4.5

IAL EA 4 GA2 5.0

IAL IA 2 GA2 2.25

IAL IAL 1 GA2 5.5

EM
(EM-L + EM-R)

IM 16 AM2 5.85

NM2 0.0585

EM
(EM-L + EM-R)

IML 16 AM2 2.94

NM2 0.294

IM EM
(EM-L + EM-R)

4 GA 18.0

IM IM 1 GA 4.5

IM IML 2 GA 4.5

IML EM 4 GA2 5.0

IML IM 2 GA2 2.25

IML IML 1 GA2 5.5

Frontiers in Computational Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 6

Haşegan et al. 10.3389/fncom.2022.1017284

constant defined as the connection convergence (Table 2). The
individual neuronal connections are picked randomly at the
initialization process, and different random seed values generate
different connections, hence different networks. The excitatory
neuron have both AMPA (AM2) and NMDA (NM2) synaptic
connections, while the inhibitory neurons either have somatic
GABAA synapses (GA) for fast-spiking inhibitory neurons or
have the dendritic GABAA synapses (GA2) for low threshold
activated inhibitory neurons. The synaptic weight Wsyn for each
neuronal connection was picked based on previous studies and
fine-tuned on this network to start with a biologically reasonable
spiking pattern (2–20 Hz).

Some of the synapse weights can be changed throughout
the course of the training simulation as they undergo synaptic
plasticity. For this work, we limited synaptic plasticity to AMPA
synapses between excitatory populations (Table 2: Plasticity
column). We found that this limitation is not hindering the
network’s ability to learn the dynamical behavior of the CartPole

problem, and it rather simplifies the network analysis. To have
a consistent comparison of different training strategies, we used
the same initialization methods and plastic synapses as defined
above and in Table 2.

Training strategies

Spike-timing dependent reinforcement
learning

To train the neuronal networks, we used an existing STDP-
RL mechanism, developed based on the distal reward learning
paradigm proposed by Izhikevich (2007), with variations used
in spiking neuronal network models (Chadderdon et al., 2012;
Neymotin et al., 2013; Chadderdon and Sporns, 2006; Dura-
Bernal et al., 2016; Anwar et al., 2022a). Our version of
STDP-RL (Figure 2A) uses a spike-time-dependent plasticity
mechanism together with a reward or punishment signal for

FIGURE 2

Training SNN using STDP-RL and EVOL strategies. (A) In STDP-RL, when a postsynaptic neuron produced a spike within a short-time interval of
a presynaptic spike, the synapse between the pair of neurons was tagged with a decaying eligibility trace. The tagged synapse was strengthened
or weakened proportional to the value of eligibility trace for a reward or punishment, respectively. (B) Schematic showing the steps of
evolutionary strategies training algorithm (EVOL).

Frontiers in Computational Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 7

Haşegan et al. 10.3389/fncom.2022.1017284

the potentiation or depression of the targeted synapses. When
a postsynaptic spike occurred within a few milliseconds of the
presynaptic spike, the synaptic connection between this pair
of neurons became eligible for STDP-RL and was tagged with
an exponentially decaying eligibility trace. An exponentially
decaying eligibility trace was included to assign temporally
distal credits to the relevant synaptic connections. Later, when a
reward or a punishment was delivered before the eligibility trace
decayed to zero, the weight of the tagged synaptic connection
was increased or decreased, depending on the ‘critic’ value and
sign, i.e., increase for reward or decrease for punishment. Since
we used an eligibility trace with an exponent of 1 in this work,
the change in synaptic strength was constant at the time of the
critic’s delivery.

Traditionally, when using STDP-RL for learning behavior,
all plastic synaptic connections in the neuronal network
model are treated equally (non-targeted STDP-RL). This
strategy considers that the underlying causality between pre
and postsynaptic neurons and the associated reinforcement
automatically changes only relevant synaptic connections. On
top of the traditional STDP-RL approach, we used two recently
developed versions of targeted reinforcement by selectively
delivering reward and punishment to different subpopulations
of the Motor population (EM) (Anwar et al., 2022a). In
the first variation (targeted RL main), we delivered reward
or punishment only to the neuronal subpopulation that
generated the action (EM-LEFT or EM-RIGHT). In the second
variation (targeted RL both), we additionally delivered opposite
and attenuated reinforcement to the opposite-action neuronal
subpopulation. Both targeted methods ensured that the learning
was specific to the part of the circuit which generated the
action. Moreover, we explored delivering (attenuated) “critic”
values to the neuronal populations one synapse away from
those directly generating motor actions (EA population). We
used and evaluated all six STDP-RL mechanisms (three targeted
RL versions X two non-motor RL versions) for learning
performance during hyperparameter search (see below for
details). In all cases, although there is evidence of plasticity
involving inhibitory interneurons in vivo (Vogels et al., 2011;
Anwar et al., 2017), for the sake of simplicity, STDP-RL was only
applied between excitatory neurons.

Critic
For STDP-RL, the model relies on a critic to provide

essential feedback on the model’s actions (Figure 2A). For
CartPole, we picked a critic that responds positively to
movements that bring the vertical pole closer to a balanced
position. We computed a loss for each position, determined
by the absolute values of the angle and the angular velocity
input states. The critic’s returned value will be the difference
between the loss of the previous state and the loss of the
current state. If the loss between the following states increases
due to the agent’s move, the critic will return a negative value,

corresponding to a punishment. Similarly, a decrease in loss
will return a positive critic value, corresponding to a reward. If
the agent could not decide on a motor move due to identical
spiking activity in both subpopulations, then a constant negative
punishment is returned. Additionally, as the critic is dominated
by punishment at the beginning of training, to avoid the weights
decreasing to zero, the model needs an associated boost in
positive rewards (ηpositivity). The critic is finally capped at a
minimum and maximum value to keep rewards within the
interval: [−max_reward, max_reward]

loss(t) =
√
ang(t)2 + ηangvel ∗ angvel(t)2 (1)

reward(t) =


0 if loss(t − 1) < 10−2

−max_reward/ηpositivity if no_move(t)

max_reward/ηpositivity if loss(t) < 10−2

loss(t − 1)− loss(t) otherwise
(2)

f (r) =

{
r ∗ ηposititivity if r > 0

r otherwise
(3)

critic(t) = max(−max_reward,min(f (reward(t)) ∗ gain,max_reward))
(4)

Where:

- ang(t) and angvel(t) represent the input states at time
step t;

- ηangvel represents the angular velocity bias, used to balance
the dominance of each input state;

- ηpositivity represents the positivity bias to reinforce
rewarding behavior;

- max_reward is the maximum reward used, fixed at 1.0
throughout the whole experiment;

- gain represents a final multiplier that increases the absolute
reward value.

The critic was implemented as a crude reinforcer of synaptic
plasticity, working in conjunction with STDP events. As we
found in the HyperParameter search (described below), most
of the hyperparameters of the critic have little influence over
the final performance of the model, and we believe that many
different critic functions would have been suitable for our
analysis. More importantly, for synaptic weight normalization,
the critic values are further modulated by output gain and
homeostatic gain control, as described below.

Hyperparameter search

We first trained our SNN model using the STDP-RL
parameters’ values as used in earlier studies (Dura-Bernal

Frontiers in Computational Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 8

Haşegan et al. 10.3389/fncom.2022.1017284

et al., 2017) and found that the model did not perform
very well since it could not learn to balance the CartPole
for 50 steps per episode (averaged over 100 episodes). The
low performance indicated that these parameters might not
be optimal for training with STDP-RL. To find an optimal
training strategy, we perturbed the parameters of our STDP-RL
training setup. We identified nine hyperparameters to optimize
(Supplementary Table 1), related specifically to the STDP-RL
mechanism, that are independent of each other. Out of the nine:
three parameters influence the timing and weight update of the
STPD-modulated AMPA synapse(AMPA-RLwindhebb, AMPA-
RLlenhebb, AMPA-RLhebbwt); four parameters determine the
area of effect of STDP (Targeted_RL_Type, Non-_Motor_RL,
Targeted_RL_Opp_EM, Targeted_RL_Non_Motor); and two
parameters influence the reinforcement derived from the
critic(Critic Positivity Bias ηpositivity, Critic Angv Bias ηangvel).
To identify the best combination of the hyperparameters for
training the network, we ran multiple random hyperparameter
searches on those nine hyperparameters (Supplementary
Table 1).

For the first hyperparameter search, we evaluated the
nine parameters above by training networks with random
choices of those hyperparameters. From the 7,200 possible
combinations, we sampled 50 combinations and trained
randomly-initialized models using STDP-RL for 500 s in
simulation time. Finally, we evaluated the performance of
those models based on the average steps per episode over 100
episodes during training (Supplementary Figure 1). Only the
Targeted_RL_Type hyperparameter performance distributions
showed a significant deviation from the mean performance
(ANOVA p-value < 10−5), but it failed the homogeneity of
variance assumption test.

For the second step of the hyperparameter search, we
continued training from the four best models from the previous
step and evaluated the nine hyperparameters. For this step,
we had 6,912 combinations from which we sampled 54
combinations that we trained for 2000 seconds in simulation
time. Similarly, we evaluated the performance of those models
based on the average steps per episode over 100 episodes
during training (Supplementary Figure 2). The initialization
model choice displayed a significant contribution to the final
model performance (ANOVA p-value = 0.00012). Moreover,
the hyperparameter defining the maximum time between pre-
and postsynaptic spike (AMPA-RLwindhebb), also showed
a minimal deviation from the mean performance (ANOVA
p-value = 0.027).

For the third step of the hyperparameter search, we
continued training from the best four models from the previous
step and evaluated the nine hyperparameters. For this step,
we had 1,728 combinations from which we sampled 56
combinations that we trained for 2,000 s in simulation time.
Similarly, we evaluated the performance of those models based
on the average steps per episode over 100 episodes during

training (Supplementary Figure 3). Again, the initialization
model choice displayed a significant contribution to the final
model performance (ANOVA p-value = 0.00023). Moreover, the
hyperparameter defining the choice of activating plasticity for
the synapses within the ES→ EA pathway (Non-_Motor_RL)
showed a minimal deviation from the mean performance
(ANOVA p-value = 0.005). This latter finding was further tested
in detail by training multiple models with and without ES→ EA
plasticity (see section “Results”).

Most of the hyperparameters had a minimal effect on
the final training performance for the STDP-RL model as
there is no significant difference between the performance of
models with different hyperparameter values. Interestingly, the
hyperparameter search revealed better preference when using
the “targeted RL both” paradigm. These findings suggest that
targeted plasticity of specific motor areas could enhance the
learning ability of the model, consistent with earlier findings
(Chadderdon et al., 2012; Hazan et al., 2018; Patel et al., 2019;
Anwar et al., 2022a).

Training protocol for the STDP-RL
model

Since we couldn’t establish the best choice for each of the
hyperparameters, we used the training protocol of the best
model resulting from the third hyperparameter step. Hence,
we trained our STDP-RL models with a sequence of the
hyperparameter values for different durations (500s, 2000s,
2000s). Then, continuing training after the 4500s mark, we
used the hyperparameters of the third configuration. The
exact hyperparameter values used are highlighted in bold in
Supplementary Table 1.

Evolutionary strategies

The EVOL algorithm has been shown to be an effective
gradient-free method for training ANNs in reinforcement
learning control problems (Salimans et al., 2017) (note that
the term evolutionary here is only used in a loose sense, and
the algorithmic implementation is not intended to accurately
follow evolutionary processes observed in biology). Here we
adapt this learning technique to SNNs to solve the CartPole
problem by procedurally adjusting the plastic weights of the
SNN. Our method doesn’t change the timing delays, contrary to
some EVOL used for SNNs (Altamirano et al., 2015). It should
be noted that in the ANN implementation of EVOL weights are
allowed to be unrestricted in value, so additive weights were
used. As SNNs don’t have negative weights, we instead use a
multiplicative noise, i.e., we increase or decrease the weights by a
randomly selected percentage. In this way, we are able to restrict

Frontiers in Computational Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 9

Haşegan et al. 10.3389/fncom.2022.1017284

the SNN weights to valid positive values while still effectively
searching all possible parameterizations.

Formally our EVOL algorithm (Figure 2B) consists of
the following steps to change the weight for each synapse,
performed in parallel for the whole model: (1) at iteration i,
keep track of the current best synapse weight: wi; (2) sample
a population (P) of weight perturbations ε1.P from the normal
distribution; (3) for each weight perturbation (εj), evaluate the
whole network weights (wi

∗ (1 + σ ∗ εj)) on the CartPole
environment for a fixed number of episodes (X); (4) measure
the fitness (Fj) as the average count of steps achieved during
the X episodes; (5) Normalize population fitness values (Nj)
by subtracting the population mean fitness and dividing by the
population mean standard deviation (6) modulate the weight
perturbations based on the normalized fitness and derive a new
best synapse weight:

wi+1 = wi ∗ (1 + α ∗ σ ∗ ε ∗ N / P) (5)

Where α is the learning rate, σ is the noise variance,
and ε and N are the vector representations of the weight
perturbations for each synapse and the normalized fitness,
respectively. We only update the weights that undergo synaptic
plasticity (Table 2). The weights are initialized (w0) as the same
initial weights we used for the STDP-RL model. In this case,
STDP was fully deactivated and the EVOL training procedure
updated the synaptic weights every iteration.

We trained using the EVOL algorithm on multiple models
for 1,500 iterations and a population of P = 10 with synapse
weight perturbations of σ = 0.1 variance. We used a learning rate
of α = 1.0. We used 5 and 10 episodes (value X above) during
fitness evaluation. The model weights were initialized based on
the best and worst models trained with STDP-RL.

Synaptic weight normalization
Training the model with STDP-RL, the synaptic weights

tend to increase without bound, leading to epileptic activity
(Rowan et al., 2014). To avoid this behavior, we incorporated
biologically-realistic normalization methods (Rowan and
Neymotin, 2013; Sanda et al., 2017). Apart from the inhibition
mechanisms described earlier, we used the following techniques:
balancing synaptic input, output balancing, and homeostatic
gain control.

To balance the combined synaptic input to each neuron,
we normalize the total reception weight (defined as the sum
of synaptic weights onto each postsynaptic neuron from
multiple presynaptic neurons) to its initial values every 25 time
steps. This procedure keeps the neuronal inputs constant by
decreasing the weights of specific unused synapses or promoting
beneficial synapses, creating synaptic competition.

On the neuronal output side, we want to prevent synapses
from overwhelming a primary synapse with constant rewards.
To avoid such ever-increasing weights, we normalize each
synapse’s reinforcement by scaling it based on the neuron’s total

transmission weight (defined as the sum of synaptic weights
from a presynaptic neuron onto multiple postsynaptic neurons).
Hence, a synapse with a high transmission weight compared to
initialization will decrease the reward strength and increase the
punishment strength during such STDP-RL events. Conversely,
a synapse with a low transmission weight compared to the
initialization will increase the reward strength while decreasing
the punishment strength. For this normalization step, we cap the
maximum scaling factor for promoting STDP-RL events to 0.1
for scaling down and 2.0 for scaling up.

As a final normalization method, we want to keep neuronal
populations within a target spiking rate(measured over 500 time
steps). The homeostatic gain control method updates the target
population synaptic inputs every 75 time steps after checking if
the firing rate differs from the target firing rate (5.5 Hz for EA
and 6.0 Hz for EM). The homeostatic gain control normalization
method doesn’t update the synaptic weights directly but rather
scales the expected total reception weight (by 0.01%) that is later
used for normalization during the balancing of synaptic inputs
(see above). This procedure reduces high neuronal activity and
promotes baseline activity (Rowan and Neymotin, 2013; Sanda
et al., 2017). As this update is infrequent (every 75 time steps)
and has a minor indirect update (scaling by 0.01%), over a large
amount of training, this method has an effect similar to network
noise.

Validation, testing, and all-inputs datasets
For testing the trained models, we used a validation dataset

for selecting the best model time-point and a testing dataset for
reporting the final model performance. For those two datasets,
we set a seed value for the OpenAI gym environment to fix
the episodes and consistently get the same episode initialization.
This environment seed(Sr1, Sr2, . . ., Sr9) should not be confused
with the model seed(Seed-6, Seed-3, . . .) that we use to randomly
initialize the neuronal connections. The episodes are fixed for
our datasets when they have the same initial starting conditions
for all four environment parameters (position, velocity, angle,
and angular velocity). While training the models, the episodes
are not fixed and are randomly selected for each new training
instantiation. To choose the best time-point of a trained model,
we evaluate the model with weights at different time-points
throughout training using a validation dataset with 100 fixed
episodes. Further, we evaluate the picked model and report
the performance on the testing dataset, which contains another
100 fixed episodes.

As each input parameter space is discretized into the
activation of twenty individual neurons, the total possible
combinations of inputs is 204. We tested the models on all
the possible combinations, the All-Inputs dataset, by activating
each possible input combination at a time. Sensory activations
were interleaved with blank periods (no stimulation) to
ensure that the activation does not have spikes into the next
sensory activation.

Frontiers in Computational Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 10

Haşegan et al. 10.3389/fncom.2022.1017284

Software

All modeling and analysis source code is available on
github at the following repository location https://github.com/
NathanKlineInstitute/netpyne-STDP.

Results

Like in any multilayer artificial neural network, the
biggest challenge of training SNN models to perform sensory-
motor behaviors is to come up with a network design and
choose the right set of learning parameters resulting in
optimal performance. This leaves model developers with many
possibilities. Instead of trying many network configurations,
here we constrained our network to a minimal configuration
(see Methods) based on our previous study (Anwar et al.,
2022a), where the SNN models learned to play a racket-
ball game showing robust performance using several STDP-
RL setups. Our model included 3 layers of excitatory
neuronal populations: ES representing a sensory area, EA
representing an association area, and EM representing a
motor area with probabilistic inter-area connections and fixed
initial synaptic weights (see section “The Neuronal Weights”).
Inhibitory neurons in each area were included to prevent
network hyperexcitability after increased synaptic weights from
learning. The activity in the network propagated in a single
direction: ES → EA→ EM. To compare different learning
strategies, we further constrained our network to two sets
of plasticity-based configurations: 1. only EA→ EM synapses
are plastic, and 2. Both ES → EA and EA→ EM synapses
are plastic. Using these two plasticity constraints, we trained
our SNNs with STDP-RL and EVOL methods, evaluated
their performances, and dissected the circuits post-training
to compare the underlying dynamics resulting in diverse
behavioral performances.

Training multilayered SNN models
using STDP-RL improved performance

We first trained our SNN model using STDP-RL, allowing
only EA→ EM synaptic connections to adapt. Since the
number of neurons was small in each layer and inter-layer
connections were probabilistic, there was a possibility that each
initialization would result in a slightly different connectivity
pattern, which might affect the learning capabilities of the
model. To assess the effect of network initializations on the
training, we trained the model using 10 different initializations
(random number generator seeds). Each training session
included a large number of CartPole episodes, where each
episode was randomly initialized. Such random initializations
of the game exposed the model to different sensory states

representing the game environment and required the model
to learn different action strategies during each episode.
Learning a sensory-action strategy for an episode resulting
in a higher performance does not necessarily mean that the
model will perform equally well during the next episode,
as evident by large fluctuations in the performance during
the training (blue dots in Figure 3A). Such variability in
the performance makes it difficult to accurately quantify the
learning performance of the model. Therefore, we averaged
the performance over 100 episodes to quantify the learning
quality of the model (Figure 3A). We continued training
each model until the performance converged or started
decreasing, which typically required training over simulation
durations of 25000 seconds. We observed a strong effect
of the model initialization on its performance, as the
maximum performances of the models during training ranged
from 75 to 157, with a mean of 118 steps per episode
(Figures 3B,E).

To further investigate whether allowing synaptic
connections between the sensory and the association layer
(ES → EA) to learn via STDP-RL in addition to EA→ EM
synaptic connections will enhance the capability of our model
to perform better, we repeated training simulations using
10 different network initializations (same random number
generating seeds as in Figure 3B). The models showed large
variance in the performance from episode to episode during
training as well as among themselves, similar to the models
with only EA→ EM plasticity (Figures 3C vs. A). Although
for many seeds, the peak performance was more consistent
(Figure 3E right bar) regardless of varying performance
trajectories (Figure 3D). Surprisingly, the performance did
not improve significantly (Figures 3B,D,E). Note that we
used the same learning parameters in these simulations as in
the models where only EA→ EM synaptic connections were
plastic (parameter values optimized using hyperparameter
search, see section “Materials and Methods”). Since these
models did not perform better than the models with only
EA→ EM plasticity, we only considered models with plasticity
in the EA→ EM and EA→ EM pathway for the remainder of
the manuscript when comparing to EVOL-based models and
analyses.

As shown in Figure 3, we observed large variability in
performance from episode to episode due to the dynamically
evolving sensory-state of the environment across episodes.
Therefore, it remains unclear whether the performance will
sustain after learning is stopped and weights are frozen. To
test post-training performance, we further evaluated only two
models with unique weights based on their performance during
training; the best performing model (seed-6 in Figure 3B)
and the worst performing model (seed-3 model, Figure 3B).
We evaluated the selected models using 100 episodes with
the same game initializations for both models and compared
them to the model before training and to a random choice

Frontiers in Computational Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://github.com/NathanKlineInstitute/netpyne-STDP
https://github.com/NathanKlineInstitute/netpyne-STDP
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 11

Haşegan et al. 10.3389/fncom.2022.1017284

FIGURE 3

Performance of the SNN models when training with STDP-RL. (A-B) Training SNN model with only EA→ EM plastic. (A) Training performance
(defined as the number of time steps the model could keep the pole balanced) of a model initialized using Seed-6. Each blue dot shows
performance during individual episodes. The green and orange lines represent the averages and the median performances, respectively.
(B) Training performance of the 10 randomly initialized models. All models were trained for 25,000 s of simulated time. Out of the tested
models, the seed-3 model was the worst performer(green line), while the seed-6 model was the best performer[brown line and in panel (A)].
(C,D) Same as panels (A,B), respectively, with both ES → EA and EA→ EM synaptic connections plastic. (E) Comparing the peak average
performance of 10 randomly initialized models with only EA→ EM plastic synapses vs. both ES → EA and EA→ EM plastic synapses. The box
plot represents the distribution of maximum averages over 100 time steps of the models. Each dot of the scatter plot represents the maximum
average over 100 steps of one of the randomly initialized models. Comparing the two distributions using a 1-way ANOVA, we obtained a
non-significant result (p = 0.8), showing that the two types of model plasticities have similar performance.

null model (Figure 4). During training, both models improved
their performance throughout STDP-RL training as we see an
increase from 19 to 130 median steps per episode for the Seed-
6(best) model and from 19 to 53 median steps per episode for
the Seed-3(worst) model. These performances were better than
before training compared to the random choice null models
(Figure 4). Although the performance remained suboptimal
(i.e., 500 steps per episode), both models showed enhanced
performance after training (Figure 4). One-way ANOVA on the
logarithm of the model performances before and after training
resulted in p< 10−10.

Multilayered SNN models trained using
EVOL achieve optimal performance

Variability in performance due to different network
configurations resulting from different network initializations

suggests that the performanc eof these models is sensitive
to the initial synaptic connections and corresponding
weights. Although synaptic weights between two populations
of neurons in the neocortex may vary greatly, in
modeling SNNs, the initial weights are often drawn
from a normal distribution around arbitrarily chosen
and tested values, which may bias the ability of the
network to learn a behavior. Evolutionary algorithms can
allow parsing the weights of synaptic connections over
a large range of values. The subsequent performance
evaluation of each set of synaptic weights can guide the
model to evolve along complex and highly non-linear
trajectories, eventually producing models with better
performance. To that end, we next evaluated the potential
of our models to learn sensory-motor behavior utilizing
the EVOL algorithm.

Similar to training using STDP-RL, we first trained
our SNN model using the EVOL algorithm with plasticity

Frontiers in Computational Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 12

Haşegan et al. 10.3389/fncom.2022.1017284

FIGURE 4

Performance of the SNN models after training with STDP-RL.
The distribution of performance (steps per episode) calculated
before and after training on the testing dataset, using fixed
weights of the seed-6 (best) and seed-3 (worst) models. The
5-star (*****) denotes p < 10−10 when comparing the two
distributions with a one-way ANOVA.

limited to the EA→ EM pathway. While the STDP-
RL training performance plateaued before reaching an
average of 160 steps per episode, some of the EVOL models
performed better than 200 steps per episode (Figures 5B,E).
In addition, we observed a relatively smaller variance in
performance from one iteration to the next (Figure 5A).
One reason for the low variance in performance across
iterations is due to the averaging over 50 episodes (5
episodes per perturbation) per iteration compared to
showing each individual episode in STDP-RL learning
models (Figure 3A). The performance of our EVOL-trained
models increased further when using SNN models with
both ES → EA and EA→ EM plastic synaptic connections.
In fact, the average performance increased to the optimal
performance of 500 steps per episode (Figures 5C–E). We
also observed further reduction in performance variance
across iterations (Figures 5C vs. A). Not only did EVOL
produce optimal performance, but all the models rapidly
learned the task and achieved high performance (>400 steps
per episode) in roughly 250–500 iterations (Figure 5D).
Note that during each iteration, EVOL generated P (=10)
perturbations (each has a performance value) and ran E
(=5) episodes for each perturbation, for a total of P ∗ E
(=50) episodes. We display the performance minimum,
average, and maximum for each iteration of the model
with the Seed-3 random initialization (Figures 5A,C).
Since the models with both ES → EA and EA→ EM

plastic synapses performed better than those with only
EA→ EM plasticity, we only considered models with
ES → EA and EA→ EM plastic synapses in the remaining
manuscript for the comparison to STDP-RL-based models
and the analysis. When we tested the selected models
(trained using seed-6 and seed-3) using 100 episodes with
the same game initializations, both models could hold
the pole vertically up for an average of ∼500 steps per
episode (Table 3).

Comparing with the STDP-RL training strategy, with
which the model reached an average of 118 steps per
episode over 3931 episodes on average, the EVOL models
with ES → EA→ EM plastic, used on average 145
iterations (for a total of 7,250 training episodes) to reach
the same performance level. While STDP-RL training
received frequent rewards from a hand-tuned critic,
the EVOL training only used episodic fitness, a much
sparser feedback signal. Although the STDP-RL models
achieved an improved and sustained performance, we
found the EVOL strategy to be better suited for solving
the CartPole problem.

Variability in the performance of
models trained using STDP-RL is
partially related to the differences in
the sensory environment (game
initializations)

To demonstrate that the model learned the behavior and
did not forget it, we earlier compared two different STDP-
RL models (with different seeds) with the random-action
generating and untrained models (Figure 4) and found variable
yet sustained learning in the STDP-RL models. We also
observed negligible variance in the performance for models
trained using EVOL. As demonstrated earlier (Figures 3–5 and
Table 3), this performance variability could be related to the
initialization of synaptic weights or the presence/absence of
synaptic connections between specific pairs of neurons or on the
initial game-state (note that we reset the game-states at the end
of each episode). To test the latter possibility, we handpicked
nine unique initial game-states based on the performance of
each model on the initial evaluation. We repeatedly played
the initial game-states on each trained model for 25 episodes
(Figure 6). In Figure 6, Performance is shown only for STDP-
RL models because EVOL models performed almost flawlessly,
i.e.,∼500 steps per episode. As indicated earlier in Figure 4, the
STDP-RL model performance did not only depend on the model
seed but also on the game’s initial state. Altogether the EVOL
model showed optimal performance independent of the model
and game initializations, thereby also demonstrating robustness.

Frontiers in Computational Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 13

Haşegan et al. 10.3389/fncom.2022.1017284

FIGURE 5

Performance of the SNN model when training with EVOL. (A,B) Training SNN model with only EA→ EM plastic. (A) Training performance
(defined as the length of time the model could keep the pole balanced) of a model initialized using Seed-3. During each iteration, 10 models
with unique weights were evaluated on 5 episodes. Each red dot shows an average performance of (10 models x 5 episodes/model = 50
episodes), whereas each green dot and blue dot show minimum and maximum performance of 50 episodes. (B) Training performance of 10
randomly initialized models. All models were trained for the same number of iterations as opposed to the same amount of simulated time. (C,D)
Same as A and B, respectively, with both ES → EA and EA→ EM synaptic connections plastic. (E) Comparing the peak average performance of
10 randomly initialized models with only EA→ EM plastic synapses vs. both ES → EA and EA→ EM plastic synapses. The box plot represents
the distribution of maximum averages over 100 steps of the models. Each dot of the scatter plot represents the maximum average over 100
steps of one of the randomly initialized models.

TABLE 3 Performance comparison of training strategies on the testing dataset.

Model Average on test dataset Median on test dataset Trained episodes Iterations Population

Seed-6 after initialization 23.38 19.5 0 –

Seed-6 after STDP-RL training 144.67 130.5 4226 –

Seed-6 after EVOL training 499.42 500.0 80,000 1,600 10

Seed-3 after initialization 23.04 19.0 0 –

Seed-3 after STDP-RL training 64.14 53.0 8,577 –

Seed-3 after EVOL training 499.09 500.0 80,000 1,600 10

Individual neurons develop a
preference for a ‘specific’ action
generation after training

Comparing the activity patterns of the models while playing
CartPole may not reveal developed features of the full neuronal
network, possibly because of a different set of game-states
evoked during each episode of CartPole. Therefore, to uncover
the response properties of all network model elements, we

simulated the trained models by sequentially activating all
possible sensory inputs, i.e., 204 unique quadruplets (20 neurons
to encode each of the 4 sensory parameters), and recorded the
responses of all neurons as well as the associated action (i.e., if
firing rate of EM-L > firing rate of EM-R, action will be Move-
Left, and if firing rate of EM-R> firing rate of EM-L, action will
be Move-Right) in the SNN model. During these activations, we
kept the model isolated from the game to allow full control of
the model’s sensory state.

Frontiers in Computational Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 14

Haşegan et al. 10.3389/fncom.2022.1017284

FIGURE 6

SNN STDP-RL trained models on different episodes Simulations for nine different episodes (Sr1-Sr9) were repeated 25 times each, using
STDP-RL Seed-6 (best-performing) and Seed-3 (worst-performing) models. Note that each episode had a unique initial game-state which was
identical across repeats of the same episode.

Activation of each sensory neuron led to the activation
of many neurons at multiple postsynaptic levels, pushing the
model toward making a decision (Move-Left or -Right). Since
the decisions were always based on the population level activity
of motor areas, it was non-trivial to establish causality. Instead,
we compared the average action selected when each sensory
neuron is activated and the cascading activations throughout
the rest of the network (Figure 7). For each activated sensory
neuron (y-axis in Figure 7), we first counted the number of
times each neuron of the network (x-axis in Figure 7) triggered
during a “Move-Left” or “Move-Right” action. Further, we
assigned it a Move-Left or Move-Right preference (heatmap
color in Figure 7) if it was more active during Left or
Right actions, respectively. The colormaps (Figure 7) show the
normalized count of preferred action generation contribution of
each neuron in the network, referred to as “Action selectivity”
later in the text. Note that we used the negative sign (-) with
“Action selectivity” to indicate “Move-Right” actions and the
positive (+) sign to indicate “Move-Left” actions. Before training
(Figure 7A), all the neurons in the circuit were minimally biased
toward each action as “Action selectivity” values shown in the
colormap are 0 (stay), marginally greater than 0.5 (for “Move-
Left” action), or smaller than -0.5 (for “Move-Right” action).
After training (Figures 7B–D), the preference of some neurons
increased toward a single action as the range of colors in the map
expanded toward +1 (for left action) and -1(for right action).

In the STDP-RL model with the worst performance (Worst
Seed in Figure 7B), most of the neurons in EM-L (EM-R)

participated dominantly in generating “Move-Left” (“Move-
Right”) actions without any clear preference for particular input
features, similar to the INITIAL network (Figure 7A). For
sparser input values of “Position” and “Angular Velocity,” some
neurons in EM-L flipped their preference slightly to “Move
Right” (blue colored pixels for EM-L neurons in Figure 7B), and
some neurons in EM-R flipped their preference slightly to ‘Move
Left’ (red colored pixels for EM-R neurons in Figure 7B). Any
effect on behavior due to sensory input parameters which were
not used as ‘critic’ (e.g., “Position” and “Velocity”) for training
using STDP-RL were surprising. In contrast, in the STDP-RL
model with the best performance (Best Seed in Figure 7C),
most of the excitatory motor neurons in the circuit developed
a non-overlapping association between positive angular velocity
(ES neuron IDs 70–79) and “Move-Right” action, and negative
angular velocity (ES neuron IDs 60–69) and “Move-Left” action.
This means almost all of the neurons in EM-L were robustly
activated only when the game-state had a negative angular
velocity, and almost all of the neurons in EM-R were robustly
activated only when the game-state had a positive angular
velocity. We observed a similar developed preferences for
neurons in the EVOL model (Figure 7D), except that for
positive or negative angular velocity, only a subset of EM-L
and EM-R were activated, i.e., not all EM-L or EM-R neurons
were showing the same level of preference for the actions. In
addition to angular velocity, we observed a similar effect for
angle as neurons in EM-L were activated to generate ‘Move-Left’
actions only for positive angles as indicated by Neurons 40–50,

Frontiers in Computational Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 15

Haşegan et al. 10.3389/fncom.2022.1017284

FIGURE 7

Action selectivity maps show differential participation of neurons in the network in action generation. In response to a particular sensory input,
each neuron was considered to contribute to Move-left or Move-right actions and then labeled with the frequency of the number of times it
was activated relative to the frequency of those actions (with positive values indicating activations relative to the number of moves left, and
negative values indicating activations relative to moves right). (A) INITIAL, (B) STDP-RL (Worst seed), (C) STDP-RL (Best seed), and (D) EVOL.
Note that propensity toward an action is defined as the number of times a neuron is active during a particular action choice. For example, if out
of 8,000 sensory inputs, 6,000 times the action was Move left and 2,000 times the action was Move Right, for each of those sets of conditions,
we compute how many times each neuron was active. If the neuron was active 3,000 out of the 6,000 moves left, then the participation value is
0.5. If the same neuron gets activated 2,000 times to move right, then its participation value is -1 (negative sign is for move right, positive for
move left).

Frontiers in Computational Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 16

Haşegan et al. 10.3389/fncom.2022.1017284

whereas neurons in EM-R were activated to generate “Move-
Right” actions only for negative angles. The emerging preference
of EM-L and EM-R neurons for positive and negative values of
angles and angular velocities in the EVOL model (Figure 7D)
might explain its superior performance over models trained
with STDP-RL, where we observed such preference only for
angular velocity (Figure 7C). Moreover, despite being not used
for training, an emerging preference for ‘Angle’ and ‘Angular
velocity’ in the SNN trained using EVOL showed that these two
parameters were sufficient to capture sensory-motor behavior
tested in this study.

For the EVOL model, we also observed a complete
deactivation of some neurons (vertical white lines in Figure 7D)
that might have been counterproductive in performing a correct
movement. The EVOL model showed greater variability in the
final total reception weight for postsynaptic neurons, including
higher weight decreases that effectively deactivated neurons
(Supplementary Figure 4). This neuron pruning strategy was
not employed by the STDP-RL learning algorithm and might
be a potential reason for the stunted game performance and the
variability based on initial connections.

Training using EVOL enabled SNNs to
learn broader sensory-motor
associations

Plotting the activity levels of neurons during specific actions
in response to each pair of sensory-inputs could diffuse the
learned sensory-motor associations, especially since the model
learned not about individual sensory parameters but a full game-
state consisting of four sensory parameters at each game step.
Therefore, we next computed sensory-motor maps for pairs
of sensory input parameters (Figure 8). Before training, for
only a few pairs of sensory input parameters, the model had a
weak preference to move left, right, or stay (Figure 8A). After
training using STDP-RL, the model with the worst performance
(marked with Worst Seed in Figure 8B) developed a modest
action preference for a few values of position (see the horizontal
yellow line at Position: “18” for “Move Right” in Figure 8B),
velocity (see horizontal yellow lines at Velocity: “14” and “16”
for “Move Right”, “13” and “15” for “Move Left” heatmaps in
Figure 8B) and angles (see horizontal yellow lines at “4”, “8”
and “14-17” for “Move Right” and “7”, “9”, “13” and “18” for
“Move Left” heatmaps in Figure 8B) but somewhat stronger
action preference for positive and negative values of Angular
velocity around “5 and 6” for “Move Right” and “14” for “Move
Left” heatmaps (angular velocity; Figure 8B). On the other hand,
the model with the best performance (marked with Best Seed
in Figure 8C) developed a stronger action preference for a
broader range of positive and negative values of Angular velocity
around “10” for “Move Right” and “Move Left” heatmaps (see
broader yellow bands on “0-9” for “Move Left” and “10-19” for

“Move Right” in Figure 8C) in addition to some input values
of other sensory parameters. These results are in line with
Figures 7B,C, confirming that the STDP-RL trained models
only learned robust action preference based on Angular velocity
and could not learn from any other parameter robustly. In
contrast, in models using EVOL, we found quite a few input-
output associations (weak association for Position: “0”, “2”, “6-7”
and “19” for “Move Left” and “1-5”, “8-18” for “Move Right”
heatmaps; stronger association for Angle: “0-9” for “Move Left”
and “10-19” for “Move Right” heatmaps; stronger association for
Angular velocity: “0-9” for “Move Left” and “10-19” for “Move
Right” heatmaps in Figure 8D), indicating distributed learned
associations between actions and some values of all sensory
input parameters. These results clearly indicate that better
performance of models trained using EVOL could be attributed
to the use of more sensory information in decision making
because the model learned to take action based on two sensory
signals, i.e., Angle and Angular velocity, in contrast with STDP-
RL trained models, which learned to take action only based
on Angular velocity. However, some of these differences could
result from the STDP-RL critic explicitly using only two sensory
signals: angle and angular velocity (see section “Materials and
Methods”). Using more advanced critic methods for STDP-RL
could produce different outcomes.

Discussion

In this work, we developed and trained an SNN using
biologically inspired STDP-RL and EVOL algorithms. One of
our goals was to investigate learning algorithms that operate
at different timescales, and determine their strengths and
weaknesses, to offer insights into how SNNs learn sensorimotor
control tasks. Comparing the performance of our SNN model
trained using STDP-RL and EVOL (Figures 4 vs. 5 and Table 3),
we demonstrated that both strategies could train SNNs to play
CartPole. There were also noticeable differences in resulting
neuronal dynamics and behavior (Figures 7, 8). In addition, the
EVOL showed excellent performance in training our SNNs to
play CartPole (Figure 5).

As mentioned, the design of the two algorithms is
substantially different in several regards. First, STDP-RL relies
on an explicit hand-crafted critic, which in our case used
two variables (angle and angular velocity) to inform the
model of the quality of its decisions. Second, the STDP-RL
critic used short intervals to evaluate the model, close to the
timescale of individual moves. In contrast, EVOL evaluated
the quality of a model using only the final game score,
evaluated over substantially longer episodic timescales. Some of
these differences are not intrinsic to the individual algorithms.
However, EVOL allows for a more flexible design, and the
longer timescales can offer a more accurate evaluation of a
model’s quality.

Frontiers in Computational Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 17

Haşegan et al. 10.3389/fncom.2022.1017284

FIGURE 8

Sensory-Motor mappings show different behaviorally-relevant input-action associations learned using STDP-RL and EVOL strategies. Probability
of “Move Left” (left panel), “Stay”, and “Move Right” for all pairs of sensory input parameters for the model before training (A), after training using
STDP-RL [Worst seed: panel (B)], after training using STDP-RL [Best seed: panel (C), and after training using EVOL (D).

It is interesting to see how training our models using these
different strategies produced similar sensory-motor associations
without explicitly training the models to execute specific motor
actions for a given game-state. Regardless of the training
algorithm, all models learned to associate actions dominantly
with specific values of Angular velocity (Figures 7, 8). Analyzing
the single input-action mappings (Figure 7), we did not find
strong or broad associations between the Position, Angle,
and Velocity with actions, which appeared in analyzing the
pairwise input-action mappings (Figure 8). It is possible that
the associations between sensory inputs and motor actions for
other parameters were not fully revealed because the SNN
was trained using all four parameter values, and some weak
associations between parameters other than Angular velocity
may be broadly present, but did not appear in analysis which

was limited to pairwise inputs. As noted above, the STDP-
RL critic also depended upon only two parameter values,
potentially explaining these findings. Another reason for limited
tuning for some parameters could be that during training, the
receptive fields for those parameters were not experienced by
the model, and therefore, the model could not learn any specific
associations for those inputs. This limited tuning is indicated
in the receptive fields parsed during the episodes of the game
played after training (Figure 7).

Our modeling underlines the benefits of training from
a set of multiple initial network configurations, achieved
through varying synaptic connection weights or network
architectures (Stanley and Miikkulainen, 2002; Neymotin et al.,
2013), and testing the populations’ performance. The best-
performing model can then be used for longer-term training.

Frontiers in Computational Neuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 18

Haşegan et al. 10.3389/fncom.2022.1017284

An alternative is to use multiple models from the population
and ideally promote model diversity. We highlight these issues
by employing different training strategies in this work. In our
STDP-RL model, we first selected a set of hyperparameters
suitable for optimizing learning and then tuned for initial
synaptic weights using the fixed optimal hyperparameter values.
Thus, the initial weights and the learning parameter values
differed from those at the beginning of the hyperparameter
search. Furthermore, when we trained our SNN model using
STDP-RL and a different set of initial weights (by changing
random numbers), we observed variable performance, showing
a large influence of the initial parameters on learning behavior.
In our EVOL strategy, without using any explicit synaptic
learning mechanism, we evaluated the model’s performance
with different synaptic weights and found synaptic weight
distributions showing good performance. Randomizing initial
weights did not impact the performance as strongly as in STDP-
RL trained models. Comparing the performance of models
using these two training strategies (Figures 3 vs. 5), we clearly
showed that EVOL produced models with robust and optimal
performance. Although models trained using EVOL generated
different distributions of synaptic weights, the robust peak
performance was demonstrated, which is consistent with the
observed variability in circuit elements of biological neuronal
circuits (Bucher et al., 2005; Marder and Goaillard, 2006;
Goaillard et al., 2009; Calabrese et al., 2011, 2016; Marder, 2011;
Marder and Taylor, 2011; Roffman et al., 2012; Golowasch, 2014;
Hamood and Marder, 2014; Anwar et al., 2022a,b).

In the past, the use of evolutionary algorithms in
neurobiological models has mainly been limited to optimizing
individual neurons (Van Geit et al., 2007, 2008; Rumbell et al.,
2016; Neymotin et al., 2017), or neuronal networks through
hyperparameter tuning (Dura-Bernal et al., 2017). Although
more recent work makes changes to network architectures
(Stanley et al., 2019), modifications of synaptic weight matrices
in spiking or biophysical neuronal networks have rarely
been performed, partly due to the large computational costs
associated with searching through the high dimensional space.
Here we have demonstrated that evolutionary algorithms
operating on synaptic weight matrices are an effective strategy
to train SNNs to perform behaviors in a dynamic environment.

We previously used the STDP-RL learning rules to train
a visual/motor cortex model to play Pong (Anwar et al.,
2022a). However, that model required additional complexity for
encoding the visual scene (object location, motion direction).
This complexity made it more challenging to decipher the role
of different components/parameters of the learning algorithms
and how to optimize them. In the present SNN model, the
lack of a visual cortex was a simplification that allowed us to
perform a more extensive hyperparameter search to increase
the chances for STDP-RL to succeed. After hyperparameter
optimization, the STDP-RL algorithm effectively produced good
performance in CartPole. Furthermore, using CartPole and the

simpler sensory/motor cortex model also allowed us to test
long optimizations using EVOL in parallel on supercomputers.
In the future, with the knowledge gained here, we will try
our new algorithms using more complex models, tasks, and
environments.

Despite the differences between ANNs and SNNs, learning
in both is primarily realized by adjusting the weights
of connections or synaptic strengths among interconnected
neurons. In ANNs, this usually occurs through the following
sequence, repeated many times: (1) inputs are sampled, (2)
corresponding outputs are evaluated, and (3) weights are
adjusted to minimize the output error via back-propagation
through hidden network layers (Schmidhuber, 2015). In SNNs,
the weights are often adjusted using hebbian or spike-timing
dependent plasticity (STDP) rules (Dan and Poo, 2004, 2006;
Farries and Fairhall, 2007; Izhikevich, 2007; Caporale and Dan,
2008), although more intricate learning rules could be used
depending on the level of biophysical detail in the spiking
neuron model (Bittner et al., 2017). These strategies are useful
when there is a temporally proximate relationship between
inputs and outputs and there is no feedback involved.

Sensory-motor RL is a more difficult problem to solve
because behaviors require evaluation of many sub-actions and
are associated with different environmental cues integrated
over time. Moreover, the reward/punishment feedback is
delivered later, which makes it challenging to attribute
reward/punishment only to relevant actions and neuron groups
producing those actions (Izhikevich, 2007). Recent ANNs have
taken advantage of a replay and update strategy to re-sample
previous experiences and shape the action policy for given
sensory cues maximizing the cumulative reward (Hayes et al.,
2021). In SNNs using STDP-RL, eligibility traces can be used
to associate reward/punishment to corresponding actions and
neuronal assemblies backward in time, as we have implemented
in our work here: when a postsynaptic neuron fires within a few
milliseconds of presynaptic neurons firing, a synaptic eligibility
trace is activated, allowing the synapse to undergo potentiation
or depression during the following 1-5 seconds (Chadderdon
et al., 2012; Hazan et al., 2018; Patel et al., 2019; Anwar
et al., 2022a). STDP-RL trains SNNs by establishing associations
between the neurons encoding the sensory environment and
neurons producing actions or sequences of actions, such that
appropriate actions are produced for specific sensory cues.
The sensory-motor associations are established from reward-
modulated synaptic weight changes at each timestep. STDP-
RL trains at the individual model level, as we consider
each separate initialization of an SNN network a separate
“individual”.

In contrast to individual-based algorithms such as
STDP-RL, evolutionary algorithms operate at vastly different
timescales and typically use populations of models (Feldman
et al., 1996; Parisi et al., 2019). Evolution is successful when
individuals who are fit enough to produce offspring pass

Frontiers in Computational Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 19

Haşegan et al. 10.3389/fncom.2022.1017284

their genes to the next generation (Garrett, 2012). While
individual learning is restricted to an animal’s lifespan, it
still confers powerful competitive advantages. Individual
learning feeds into the evolutionary process: animals that
learn the idiosyncrasies of their environment, including
its threats and rewards, are more likely to survive and
propagate. The obvious genomic storage limitations prevent
the encoding of all important environmental information
within an animal’s genome (Zador, 2019; Koulakov et al.,
2021), underlining how individual learning must complement
evolution. As noted by James Mark Baldwin, learning on an
individual level drives the evolutionary process (Baldwin,
1896). To simulate this process, we envision a strategy
that implicitly chooses the next generation’s weights and
connectivity patterns based on learning success, thereby
accelerating population-level fitness improvements. Such
a process is consistent with the accelerated learning of
models when deploying the Baldwin effect, as has been
recently demonstrated in embodied intelligence tasks
(Gupta et al., 2021). The extent to which these strategies
translate to more complex tasks and circuit architectures
could offer further insights into multi-scale neurobiological
learning.

Author’s note

The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
the Army Research Office or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes, not with standing any copyright
notation herein.

Data availability statement

The data presented in this study were generated using
code published in online repositories. The names of the
repository/repositories and accession number(s) can be found
in the article/Methods.

Author contributions

HA, HH, and SN supervised the research. All authors
performed the research, analyzed data, contributed
concepts/ideas, contributed software, and wrote/edited the
manuscript.

Funding

This research was funded by Army Research Office
W911NF-19-1-0402, Army Research Office Undergraduate
Research Apprenticeship Program supplement, Army Research
Lab Cooperative Agreement W911NF-22-2-0139, and National
Institute on Deafness and Other Communication Disorders
R01DC012947-06A1.

Acknowledgments

We acknowledge the Tufts University High-Performance
Compute Cluster (https://it.tufts.edu/high-performance-
computing), which was utilized for the research reported in
this manuscript. In addition, some of the calculations done in
this work used the Extreme Science and Engineering Discovery
Environment (XSEDE) Bridges GPU Artificial Intelligence
at Pittsburgh Supercomputing Center through allocation
CCR200032.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2022.1017284/full#supplementary-material

Frontiers in Computational Neuroscience 19 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://it.tufts.edu/high-performance-computing
https://it.tufts.edu/high-performance-computing
https://www.frontiersin.org/articles/10.3389/fncom.2022.1017284/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fncom.2022.1017284/full#supplementary-material
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 20

Haşegan et al. 10.3389/fncom.2022.1017284

References

Altamirano, J. S., Ornelas, M., Espinal, A., Santiago-Montero, R., Puga, H.,
Carpio, J. M., et al. (2015). Comparing Evolutionary Strategy Algorithms for
Training Spiking Neural Networks. Res. Comput. Sci. 96, 9–17. doi: 10.13053/rcs-
96-1-1

Anwani, N., and Rajendran, B. (2020). Training multi-layer spiking neural
networks using NormAD based spatio-temporal error backpropagation.
Neurocomputing 380, 67–77. doi: 10.1016/j.neucom.2019.10.104

Anwar, H., Caby, S., Dura-Bernal, S., D’Onofrio, D., Hasegan, D., Deible,
M., et al. (2022a). Training a spiking neuronal network model of visual-motor
cortex to play a virtual racket-ball game using reinforcement learning. PLoS One
17:e0265808. doi: 10.1371/journal.pone.0265808

Anwar, H., Li, X., Bucher, D., and Nadim, F. (2017). Functional roles of short-
term synaptic plasticity with an emphasis on inhibition. Curr. Opin. Neurobiol. 43,
71–78. doi: 10.1016/j.conb.2017.01.002

Anwar, H., Martinez, D., Bucher, D., and Nadim, F. (2022b). Inter-
Animal Variability in Activity Phase Is Constrained by Synaptic Dynamics
in an Oscillatory Network. eNeuro 9:ENEURO.27–ENEURO.22. doi: 10.1523/
ENEURO.0027-22.2022

Baldwin, J. M. (1896). A New Factor In Evolution. Science 4:139. doi: 10.1126/
science.4.83.139-a

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Trans. Syst. Man
Cybern. SMC-13, 834–846. doi: 10.1109/TSMC.1983.6313077

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., and Wu, Y. (2017). STDP-
compatible approximation of backpropagation in an energy-based model. Neural
Comput. 29, 555–557. doi: 10.1162/NECO_a_00934

Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S., and Magee, J. C.
(2017). Behavioral time scale synaptic plasticity underlies CA1 place fields. Science
357, 1033–1036. doi: 10.1126/science.aan3846

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., et al. (2016). OpenAI gym. In arXiv [cs.LG]. arXiv. Available online at: http:
//arxiv.org/abs/1606.01540 (accessed June 5, 2016).

Bohte, S. M., Kok, J. N., and La Poutre, H. (2022). Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing 48, 17—-37.

Bucher, D., Prinz, A. A., and Marder, E. (2005). Animal-to-animal variability in
motor pattern production in adults and during growth. J. Neurosci. 25, 1611–1619.
doi: 10.1523/JNEUROSCI.3679-04.2005

Calabrese, R. L., Norris, B. J., and Wenning, A. (2016). The neural control of
heartbeat in invertebrates. Curr. Opin. Neurobiol. 41, 68–77. doi: 10.1016/j.conb.
2016.08.004

Calabrese, R. L., Norris, B. J., Wenning, A., and Wright, T. M. (2011). Coping
with variability in small neuronal networks. Integrat. Comp. Biol. 51, 845–855.
doi: 10.1093/icb/icr074

Caporale, N., and Dan, Y. (2008). Spike Timing–Dependent Plasticity: A
Hebbian Learning Rule. Annu. Rev. Neurosci. 31, 25–46. doi: 10.1146/annurev.
neuro.31.060407.125639

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Chadderdon, G. L., Neymotin, S. A., Kerr, C. C., and Lytton, W. W. (2012).
Reinforcement learning of targeted movement in a spiking neuronal model of
motor cortex. PloS One 7:e47251. doi: 10.1371/journal.pone.0047251

Chadderdon, G. L., and Sporns, O. (2006). A large-scale neurocomputational
model of task-oriented behavior selection and working memory in prefrontal
cortex. J. Cogn. Neurosci. 18, 242–257. doi: 10.1162/jocn.2006.18.2.242

Chrabaszcz, P., Loshchilov, I., and Hutter, F. (2018). Back to basics:
Benchmarking canonical evolution strategies for playing atari. In arXiv [cs.NE].
arXiv. Available online at: http://arxiv.org/abs/1802.08842 (accessed February 24,
2018).

Dan, Y., and Poo, M.-M. (2004). Spike timing-dependent plasticity of neural
circuits. Neuron 44, 23–30. doi: 10.1016/j.neuron.2004.09.007

Dan, Y., and Poo, M.-M. (2006). Spike timing-dependent plasticity: From
synapse to perception. Physiol. Rev. 86, 1033–1048. doi: 10.1152/physrev.00030.
2005

Dura-Bernal, S., Li, K., Neymotin, S. A., Francis, J. T., Principe, J. C., and Lytton,
W. W. (2016). Restoring Behavior via Inverse Neurocontroller in a Lesioned
Cortical Spiking Model Driving a Virtual Arm. Front. Neurosci. 10, 28. doi: 10.
3389/fnins.2016.00028

Dura-Bernal, S., Neymotin, S. A., Kerr, C. C., Sivagnanam, S., Majumdar, A.,
Francis, J. T., et al. (2017). Evolutionary algorithm optimization of biological
learning parameters in a biomimetic neuroprosthesis. IBM J. Res. Dev. 61, 6.1–
6.14. doi: 10.1147/JRD.2017.2656758

Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A.,
Rodriguez, F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling
of brain circuits. eLife 8:e44494. doi: 10.7554/eLife.44494

Escobar, M.-J., Masson, G. S., Vieville, T., and Kornprobst, P. (2009). Action
Recognition Using a Bio-Inspired Feedforward Spiking Network. Int. J. Comput.
Vision 82:284. doi: 10.1007/s11263-008-0201-1

Espinal, A., Carpio, M., Ornelas, M., Puga, H., Melin, P., and Sotelo-Figueroa,
M. (2014). “Comparing Metaheuristic Algorithms on the Training Process of
Spiking Neural Networks,” in Recent Advances on Hybrid Approaches for Designing
Intelligent Systems, eds O. Castillo, P. Melin, W. Pedrycz, and J. Kacprzyk
(Manhattan, NY: Springer International Publishing), 391–403. doi: 10.1007/978-
3-319-05170-3_27

Farries, M. A., and Fairhall, A. L. (2007). Reinforcement Learning With
Modulated Spike Timing–Dependent Synaptic Plasticity. J. Neurophysiol. 98,
3648–3665. doi: 10.1152/jn.00364.2007

Feldman, M. W., Aoki, K., and Kumm, J. (1996). Individual Versus Social
Learning: Evolutionary Analysis in a Fluctuating Environment. Anthropol. Sci.
104, 209–231. doi: 10.1537/ase.104.209

Garrett, A. (2012). Inspyred: Bio-inspired Algorithms in Python. URL
Https://pypi. Python. Org/pypi/inspyred.

Geva, S., and Sitte, J. (1993). A cartpole experiment benchmark for trainable
controllers. IEEE Control Syst. Magazine 13, 40–51. doi: 10.1109/37.236324

Goaillard, J.-M., Taylor, A. L., Schulz, D. J., and Marder, E. (2009). Functional
consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci.
12, 1424–1430. doi: 10.1038/nn.2404

Golowasch, J. (2014). Ionic Current Variability and Functional Stability in the
Nervous System. Bioscience 64, 570–580. doi: 10.1093/biosci/biu070

Gupta, A., and Long, L. N. (2007). “Character Recognition using Spiking
Neural Networks,” in 2007 International Joint Conference on Neural Networks.
(Piscataway, NY), 53–58. doi: 10.1109/IJCNN.2007.4370930

Gupta, A., Savarese, S., Ganguli, S., and Fei-Fei, L. (2021). Embodied intelligence
via learning and evolution. Nat. Commun. 12, 1–12. doi: 10.1038/s41467-021-
25874-z

Hamood, A. W., and Marder, E. (2014). Animal-to-Animal Variability in
Neuromodulation and Circuit Function. Cold Spring Harbor Symposia on Quant.
Biol. 79, 21–28. doi: 10.1101/sqb.2014.79.024828

Hayes, T. L., Krishnan, G. P., Bazhenov, M., Siegelmann, H. T., Sejnowski,
T. J., and Kanan, C. (2021). Replay in deep learning: Current approaches and
missing biological elements. In arXiv [q-bio.NC]. arXiv. Available online at: http:
//arxiv.org/abs/2104.04132 (accessed May 28, 2021).

Hazan, H., Saunders, D. J., Khan, H., Patel, D., Sanghavi, D. T., Siegelmann,
H. T., et al. (2018). BindsNET: A Machine Learning-Oriented Spiking Neural
Networks Library in Python. Front. Neuroinf. 12:89. doi: 10.3389/fninf.2018.00089

Huh, D., and Sejnowski, T. J. (2018). “Gradient descent for spiking neural
networks,” in Advances in neural information processing systems, Vol. 31, eds S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. CesaBianchi, and R. Garnett
(Red Hook, NY: Curran Associates, Inc), 1440–1450.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of
STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452. doi: 10.1093/cercor/
bhl152

Kasabov, N., Feigin, V., Hou, Z.-G., Chen, Y., Liang, L., Krishnamurthi,
R., et al. (2014). Evolving spiking neural networks for personalised modelling,
classification and prediction of spatio-temporal patterns with a case study on
stroke. Neurocomputing 134, 269–279. doi: 10.1016/j.neucom.2013.09.049

Koulakov, A., Shuvaev, S., and Zador, A. (2021). Encoding innate ability through
a genomic bottleneck. bioRxiv [Preprind]. doi: 10.1101/2021.03.16.435261

Liu, T., Liu, Z., Lin, F., Jin, Y., Quan, G., and Wen, W. (2017). “Mt-spike:
A multilayer time-based spiking neuromorphic architecture with temporal error
backpropagation,” in Proceedings of the 2017 IEEE/ACM international conference
on computer-aided design (ICCAD), (Piscataway, NJ: IEEE), 450—-457.

Lytton, W. W., and Omurtag, A. (2007). Tonic-clonic transitions in
computer simulation. J. Clin. Neurophysiol. 24, 175–181. doi: 10.1097/WNP.
0b013e3180336fc0

Frontiers in Computational Neuroscience 20 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://doi.org/10.13053/rcs-96-1-1
https://doi.org/10.13053/rcs-96-1-1
https://doi.org/10.1016/j.neucom.2019.10.104
https://doi.org/10.1371/journal.pone.0265808
https://doi.org/10.1016/j.conb.2017.01.002
https://doi.org/10.1523/ENEURO.0027-22.2022
https://doi.org/10.1523/ENEURO.0027-22.2022
https://doi.org/10.1126/science.4.83.139-a
https://doi.org/10.1126/science.4.83.139-a
https://doi.org/10.1109/TSMC.1983.6313077
https://doi.org/10.1162/NECO_a_00934
https://doi.org/10.1126/science.aan3846
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://doi.org/10.1523/JNEUROSCI.3679-04.2005
https://doi.org/10.1016/j.conb.2016.08.004
https://doi.org/10.1016/j.conb.2016.08.004
https://doi.org/10.1093/icb/icr074
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1371/journal.pone.0047251
https://doi.org/10.1162/jocn.2006.18.2.242
http://arxiv.org/abs/1802.08842
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1152/physrev.00030.2005
https://doi.org/10.1152/physrev.00030.2005
https://doi.org/10.3389/fnins.2016.00028
https://doi.org/10.3389/fnins.2016.00028
https://doi.org/10.1147/JRD.2017.2656758
https://doi.org/10.7554/eLife.44494
https://doi.org/10.1007/s11263-008-0201-1
https://doi.org/10.1007/978-3-319-05170-3_27
https://doi.org/10.1007/978-3-319-05170-3_27
https://doi.org/10.1152/jn.00364.2007
https://doi.org/10.1537/ase.104.209
https://doi.org/10.1109/37.236324
https://doi.org/10.1038/nn.2404
https://doi.org/10.1093/biosci/biu070
https://doi.org/10.1109/IJCNN.2007.4370930
https://doi.org/10.1038/s41467-021-25874-z
https://doi.org/10.1038/s41467-021-25874-z
https://doi.org/10.1101/sqb.2014.79.024828
http://arxiv.org/abs/2104.04132
http://arxiv.org/abs/2104.04132
https://doi.org/10.3389/fninf.2018.00089
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.1016/j.neucom.2013.09.049
https://doi.org/10.1101/2021.03.16.435261
https://doi.org/10.1097/WNP.0b013e3180336fc0
https://doi.org/10.1097/WNP.0b013e3180336fc0
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

fncom-16-1017284 September 30, 2022 Time: 6:52 # 21

Haşegan et al. 10.3389/fncom.2022.1017284

Lytton, W. W., Omurtag, A., Neymotin, S. A., and Hines, M. L. (2008). Just-
in-time connectivity for large spiking networks. Neural Comput. 20, 2745–2756.
doi: 10.1162/neco.2008.10-07-622

Lytton, W. W., and Stewart, M. (2006). Rule-based firing for network
simulations. Neurocomputing 69, 1160–1164. doi: 10.1016/j.neucom.2005.12.066

Maass, W. (1996a). Noisy Spiking Neurons with Temporal Coding have more
Computational Power than Sigmoidal Neurons. Adv. Neural Inf. Proc. Syst. 9,
211–217. doi: 10.1162/neco.1997.9.2.279

Maass, W. (1996b). Lower bounds for the computational power of networks of
spiking neurons. Neural Comput. 8, 1–40. doi: 10.1162/neco.1996.8.1.1

Maass, W. (1997). Networks of spiking neurons: The third generation of neural
network models. Neural Netw.10, 1659–1671. doi: 10.1016/S0893-6080(97)00011-
7

Marder, E. (2011). Variability, compensation, and modulation in neurons
and circuits. Proc. Natl. Acad. Sci. U.S.A. 108, 15542–15548. doi: 10.1073/pnas.
1010674108

Marder, E., and Goaillard, J.-M. (2006). Variability, compensation and
homeostasis in neuron and network function. Nat. Rev. Neurosci. 7, 563–574.
doi: 10.1038/nrn1949

Marder, E., and Taylor, A. L. (2011). Multiple models to capture the variability in
biological neurons and networks.Nat. Neurosci. 14, 133–138. doi: 10.1038/nn.2735

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature
518, 529–533. doi: 10.1038/nature14236

Mostafa, H., Pedroni, B., Sheik, S., and Cauwenberghs, G. (2017). Hardware-
efficient on-line learning through pipelined truncated-error backpropagation in
binary-state networks. Front. Neurosci. 11:496. doi: 10.3389/fnins.2017.00496

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and
Ganjtabesh, M. (2018). First-Spike-Based Visual Categorization Using Reward-
Modulated STDP. IEEE Trans. Neural Netw. Learn. Syst. 29, 6178–6190. doi:
10.1109/TNNLS.2018.2826721

Neymotin, S. A., Chadderdon, G. L., Kerr, C. C., Francis, J. T., and Lytton,
W. W. (2013). Reinforcement learning of two-joint virtual arm reaching in a
computer model of sensorimotor cortex. Neural Comput. 25, 3263–3293. doi:
10.1162/NECO_a_00521

Neymotin, S. A., Lee, H., Park, E., Fenton, A. A., and Lytton, W. W. (2011).
Emergence of physiological oscillation frequencies in a computer model of
neocortex. Front. Comput. Neurosci. 5:19. doi: 10.3389/fncom.2011.00019

Neymotin, S. A., Suter, B. A., Dura-Bernal, S., Shepherd, G. M. G., Migliore, M.,
and Lytton, W. W. (2017). Optimizing computer models of corticospinal neurons
to replicate in vitro dynamics. J. Neurophysiol 117, 148–162. doi: 10.1152/jn.00570.
2016

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual
lifelong learning with neural networks: A review. Neural Netw. 113, 54–71. doi:
10.1016/j.neunet.2019.01.012

Patel, D., Hazan, H., Saunders, D. J., Siegelmann, H., and Kozma, R. (2019).
Improved robustness of reinforcement learning policies upon conversion to spiking
neuronal network platforms applied to ATARI games. In arXiv [cs.LG]. arXiv.
http://arxiv.org/abs/1903.11012 doi: 10.1016/j.neunet.2019.08.009

Roffman, R. C., Norris, B. J., and Calabrese, R. L. (2012). Animal-to-
animal variability of connection strength in the leech heartbeat central

pattern generator. J. Neurophysiol. 107, 1681–1693. doi: 10.1152/jn.00903.
2011

Rowan, M., and Neymotin, S. (2013). “Synaptic scaling balances learning in
a spiking model of neocortex,” in Adaptive and natural computing algorithms.
ICANNGA 2013. Lecture notes in computer science, Vol. 7824, eds M. Tomassini,
A. Antonioni, F. Daolio and P. Buesser (Berlin: Springer). doi: 10.1007/978-3-642-
37213-1_3

Rowan, M. S., Neymotin, S. A., and Lytton, W. W. (2014). Electrostimulation to
reduce synaptic scaling driven progression of Alzheimer’s disease. Front. Comput.
Neurosci. 8:39. doi: 10.3389/fncom.2014.00039

Rumbell, T. H., Draguljiæ, D., Yadav, A., Hof, P. R., Luebke, J. I., and Weaver,
C. M. (2016). Automated evolutionary optimization of ion channel conductances
and kinetics in models of young and aged rhesus monkey pyramidal neurons.
J. Comput. Neurosci. 41, 65–90. doi: 10.1007/s10827-016-0605-9

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. (2017). Evolution
strategies as a scalable alternative to reinforcement learning. In arXiv [stat.ML].
arXiv. Available online at: http://arxiv.org/abs/1703.03864 (accessed September 7,
2017).

Sanda, P., Skorheim, S., and Bazhenov, M. (2017). Multi-layer network
utilizing rewarded spike time dependent plasticity to learn a foraging
task. PLoS Comput. Biol. 13:e1005705. doi: 10.1371/journal.pcbi.1005
705

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Netw. 61, 85–117. doi: 10.1016/j.neunet.2014.09.003

Stanley, K. O., Clune, J., Lehman, J., and Miikkulainen, R. (2019). Designing
neural networks through neuroevolution. Nat. Mach. Intell. 1, 24–35. doi: 10.1038/
s42256-018-0006-z

Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural networks
through augmenting topologies. Evol. Comput. 10, 99–127. doi: 10.1162/
106365602320169811

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning, second Edn.
Cambridge, MA: MIT Press.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Tavanaei, A., and Maida, A. (2017). “Bio-inspired multi-layer spiking neural
network extracts discriminative features from speech signals,“ in Neural
information processing. ICONIP 2017. Lecture notes in computer science, Vol.
10639, eds D. Liu, S. Xie, Y. Li, D. Zhao and E. S. El-Alfy (Cham: Springer).
doi: 10.1007/978-3-319-70136-3_95

Van Geit, W., Achard, P., and De Schutter, E. (2007). Neurofitter: A parameter
tuning package for a wide range of electrophysiological neuron models. Front.
Neuroinf. 1, 1. doi: 10.3389/neuro.11.001.2007

Van Geit, W., De Schutter, E., and Achard, P. (2008). Automated neuron
model optimization techniques: A review. Biol. Cybern. 99, 241–251. doi: 10.1007/
s00422-008-0257-6

Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C., and Gerstner, W. (2011).
Inhibitory plasticity balances excitation and inhibition in sensory pathways and
memory networks. Science 334, 1569–1573. doi: 10.1126/science.1211095

Zador, A. M. (2019). A critique of pure learning and what artificial neural
networks can learn from animal brains. Nat. Commun. 10:3770. doi: 10.1038/
s41467-019-11786-6

Frontiers in Computational Neuroscience 21 frontiersin.org

https://doi.org/10.3389/fncom.2022.1017284
https://doi.org/10.1162/neco.2008.10-07-622
https://doi.org/10.1016/j.neucom.2005.12.066
https://doi.org/10.1162/neco.1997.9.2.279
https://doi.org/10.1162/neco.1996.8.1.1
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1073/pnas.1010674108
https://doi.org/10.1073/pnas.1010674108
https://doi.org/10.1038/nrn1949
https://doi.org/10.1038/nn.2735
https://doi.org/10.1038/nature14236
https://doi.org/10.3389/fnins.2017.00496
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1109/TNNLS.2018.2826721
https://doi.org/10.1162/NECO_a_00521
https://doi.org/10.1162/NECO_a_00521
https://doi.org/10.3389/fncom.2011.00019
https://doi.org/10.1152/jn.00570.2016
https://doi.org/10.1152/jn.00570.2016
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
http://arxiv.org/abs/1903.11012
https://doi.org/10.1016/j.neunet.2019.08.009
https://doi.org/10.1152/jn.00903.2011
https://doi.org/10.1152/jn.00903.2011
https://doi.org/10.1007/978-3-642-37213-1_3
https://doi.org/10.1007/978-3-642-37213-1_3
https://doi.org/10.3389/fncom.2014.00039
https://doi.org/10.1007/s10827-016-0605-9
http://arxiv.org/abs/1703.03864
https://doi.org/10.1371/journal.pcbi.1005705
https://doi.org/10.1371/journal.pcbi.1005705
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1038/s42256-018-0006-z
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1007/978-3-319-70136-3_95
https://doi.org/10.3389/neuro.11.001.2007
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.1007/s00422-008-0257-6
https://doi.org/10.1126/science.1211095
https://doi.org/10.1038/s41467-019-11786-6
https://doi.org/10.1038/s41467-019-11786-6
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

	Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning
	Introduction
	Materials and methods
	CartPole game
	Simulations
	Constructing a spiking neuronal network model to play CartPole
	Integrate-and-fire neuron

	Synaptic mechanisms
	The neuronal weights
	Training strategies
	Spike-timing dependent reinforcement learning
	Critic

	Hyperparameter search
	Training protocol for the STDP-RL model
	Evolutionary strategies
	Synaptic weight normalization
	Validation, testing, and all-inputs datasets

	Software

	Results
	Training multilayered SNN models using STDP-RL improved performance
	Multilayered SNN models trained using EVOL achieve optimal performance
	Variability in the performance of models trained using STDP-RL is partially related to the differences in the sensory environment (game initializations)
	Individual neurons develop a preference for a `specific' action generation after training
	Training using EVOL enabled SNNs to learn broader sensory-motor associations

	Discussion
	Author's note
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

