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The engram encoding the interval between the conditional stimulus (CS)

and the unconditional stimulus (US) in eyeblink conditioning resides within

a small population of cerebellar Purkinje cells. CSs activate this engram to

produce a pause in the spontaneous firing rate of the cell, which times the

CS-conditional blink. We developed a Bayesian algorithm that finds pause

onsets and offsets in the records from individual CS-alone trials. We find that

the pause consists of a single unusually long interspike interval. Its onset and

offset latencies and their trial-to-trial variability are proportional to the CS-US

interval. The coefficient of variation (CoV = σ/µ) are comparable to the CoVs

for the conditional eye blink. The average trial-to-trial correlation between

the onset latencies and the offset latencies is close to 0, implying that the

onsets and offsets are mediated by two stochastically independent readings

of the engram. The onset of the pause is step-like; there is no decline in

firing rate between the onset of the CS and the onset of the pause. A single

presynaptic spike volley suffices to trigger the reading of the engram; and

the pause parameters are unaffected by subsequent volleys. The Fano factors

for trial-to-trial variations in the distribution of interspike intervals within the

intertrial intervals indicate pronounced non-stationarity in the endogenous

spontaneous spiking rate, on which the CS-triggered firing pause supervenes.

These properties of the spontaneous firing and of the engram read out

may prove useful in finding the cell-intrinsic, molecular-level structure that

encodes the CS-US interval.
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Introduction

The neurobiological memory mechanism carries forward in
time, in computationally accessible form, abstract facts gleaned
from experience, such as the duration of experienced intervals
(Savastano and Miller, 1998; Balsam et al., 2010; Buonomano,
2017; Mattell and Della Valle, 2018). The experimental literature
on the neurobiology of memory is vast, but little of it focuses
on how and where specified information is encoded in specified
neurons, where information is to be understood in Shannon’s
sense. Only in Shannon’s sense is information a measurable
physical quantity, which is what one needs if one is looking for
a neurobiological structure that encodes information.

The cerebellar Purkinje cell is the location of a memory
for a quantitative experiential fact, namely, the duration of
the inter-stimulus interval in the classically conditioned eye
blink (Jirenhed et al., 2007, 2017; Johansson et al., 2014, 2015).
The behaviorally observed conditional blink is driven by a
conditional pause response in the spontaneous firing of specific
blink-controlling Purkinje cells. These cells are inhibitory on
the cerebellar nuclei, so a pause in Purkinje cell firing translates
into an excitatory output signal from the cerebellum. The
conditional firing pause is the only cellular level associative
learning phenomenon whose quantitative properties align with
the behaviorally established properties of associative learning
(Gallistel and Matzel, 2013; Jirenhed and Hesslow, 2016).

In a Pavlovian delay conditioning protocol, a neutral
stimulus (the conditional stimulus or CS for short) is repeatedly
presented at a short, fixed latency prior to an unconditional
stimulus (US for short), which is a stimulus that directly elicits
a reflexive response in the naive subject. In an eye blink
conditioning protocol, the US is a threat to the eye. The CS
is any of a wide variety of stimuli that do not elicit a blink
prior to conditioning. When the US follows the CS over a
number of trials at intervals in the range from 0.1 to as much
as 2.0s, a conditional blink to the CS develops. The number of
conditioning trials prior to its appearance varies from a few to
several hundred, depending on the subject and the parameters
of the protocol (Gallistel and Gibbon, 2000; Gallistel et al., 2004).

The conditional blink to the CS commences prior to the
onset of the US, and it occurs on probe trials, when there is
no US. The latency at which the CS evokes the blink varies in
proportion to the interval that elapses between CS onset and
US onset, so that the closure of the lid or membrane peaks
near the moment when the threat to the eye is anticipated
(White et al., 2000; Kehoe et al., 2009). Thus, this simple
Pavlovian conditioning procedure inscribes in the brain a simple
quantitative fact—the duration of the CS-US interval. The
inscribed quantitative fact is read out into an appropriately
timed behavior whenever the CS is again presented. The locus
of the material change in the brain that encodes this fact is a
prime target in the search for the engram, the neurobiological
basis of memory.

The CS-conditional blink of the eye has been obtained in
decerebrate preparations of cats, rabbits, ferrets and guinea
pigs (Norman et al., 1977; Mauk and Thompson, 1987; Kelly
et al., 1990; Hesslow and Ivarsson, 1994; Kotani et al., 2002),
proving that the forebrain is not essential; the brain stem alone
is sufficient. Within the brain stem, the cerebellum is known
to be the main locus of the memory trace (McCormick and
Thompson, 1984; Yeo, 1991; Krupa et al., 1993; Hesslow and
Yeo, 2002; Thompson and Steinmetz, 2009; Freeman, 2015).
Disruption of cerebellar afferent signaling by a cerebral-vascular
accident prevented eye blink conditioning in a human subject
(Solomon et al., 1989).

The cerebellar Purkinje cell is among the largest neurons in
the vertebrate brain (Knierem, 1997; Llinas et al., 2004; Apps and
Garwicz, 2005). It is the sole output of the cerebellar cortex. Its
immense, flat, densely arborized dendritic tree straddles a subset
of the dense projections of parallel fibers. The parallel fibers arise
from the tiny granule cells in the granular layer of the cerebellar
cortex. They project upward to the top layer of the cerebellar
cortex, where they bifurcate and run parallel to the folds of the
cerebellar cortex. They pass through and make glutamatergic
synapses on the staggered dendritic trees of numerous Purkinje
cells. On the order of 200,000 parallel fibers synapse on the
dendrites of each Purkinje cell. The granule cells from which
they arise constitute substantially more than 50% of the neurons
in a vertebrate brain (D’Angelo et al., 2013).

Climbing fibers provide the only other excitatory input to
Purkinje cells (Knierem, 1997; Llinas et al., 2004; Apps and
Garwicz, 2005). They arise from cells in the inferior olivary
nucleus. In stark contrast to the parallel fibers, only one climbing
fiber innervates a Purkinje cell. Its terminal arbor wraps the cell
with a dense engulfing bush of synapses. Short bursts of high-
frequency presynaptic spikes in the climbing fiber produce the
complex, multi-modal post-synaptic spike, which is thought to
control Purkinje cell spiking rates and induce learning.

The main site of learning in the decerebrate preparation is
the cerebellar cortex (Yeo et al., 1984, 1985a,b, 1986; Hesslow,
1994a,b; Heiney et al., 2014; Johansson et al., 2016; Ten Brinke
et al., 2017), which consists of roughly 1,000 microzones (Apps
and Garwicz, 2005). Each part of the body maps by way of the
climbing fiber system to several disparately located microzones.
The Purkinje cells whose conditional pauses we here analyze are
located in the C3 zone of the ferret cerebellum, the area that
has been shown to mediate the classically conditioned eye blink
(Yeo et al., 1985a,b, 1986; Hesslow, 1994a,b; Heiney et al., 2014;
Jirenhed and Hesslow, 2016). Like most Purkinje cells, these
have a high spontaneous firing rate—on the order of 40–80 Hz.

The conditional pause in Purkinje cell firing develops
in the decerebrate ferret even when the CS is direct
electrical stimulation of the parallel fibers and the US is
direct electrical stimulation of the climbing fiber (Johansson
et al., 2014). Stimulation of off-beam parallel fibers—fibers
that do not synapse on the Purkinje cell from which one is
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recording—produces a profound inhibition of the spontaneous
firing, presumably by way of the stellate cells or the basket
cells or both. However, a dose of a GABA blocker sufficient to
block this inhibitory effect does not block the elicitation of the
conditional pause (Johansson et al., 2014). This result implies
that the pause is not mediated by input from the inhibitory
interneurons synapsing on the Purkinje cell. This conclusion
is further strengthened by the fact that the ability of the
glutamatergic input from the parallel fibers to trigger the pause
in firing is blocked by the infusion of an agent that selectively
blocks the mGlu7 receptor in the synapse that a parallel fiber
makes onto a Purkinje cell (Johansson, 2015; Johansson et al.,
2015). Together these results make a strong case that the
mechanism that times the CS-US interval, the mechanism that
records into memory the result of that timing (the duration of
the interval) and the mechanism that reads the remembered
durations out into a pause of corresponding duration are
intrinsic to the Purkinje cell itself (Johansson, 2019).

Previous analyses of the Purkinje cell pause responses have
been based on averaging across trials, such as peristimulus time
histograms. Although an indispensable technique, averaging
can conceal and distort important features of the individual
responses. For instance, sudden response onsets with variable
latencies will look like gradual onsets. We have therefore re-
analyzed a large body of data and here report the trial-by-trial
statistics of the conditional pauses obtained from decerebrate
ferrets under three experimental conditions (Figure 1). In the
first conditions, the CS was pulsatile electrical stimulation of
the mossy fibers at 50 Hz (The mossy fibers are the input to
the granule cells.) The US was two short bursts of pulsatile
electrical stimulation to the inferior olive or to a climbing fiber.
In the second, the CS was pulsatile electrical stimulation of the
dorsum of the forepaw at 50 Hz and the US was two short
bursts of pulsatile electrical stimulation to a climbing fiber.

In the third, the CS was pulsatile electrical stimulation of the
parallel fibers, which are the immediate presynaptic input to
the Purkinje cell; the US was again two short bursts of pulsatile
electrical stimulation to a climbing fiber. The CS-US interval
used in training varied from 0.15 to 0.45s. The CS stimulation
terminated just before US onset in some cases, while in others, it
continued well beyond US offset.

Determining trial-by-trial pause
statistics

The conditional pause is commonly visualized by a raster
plot of a sequence of probe (that is, CS alone) trials (Figure 2A).
Its average duration may be estimated from the peri-CS
histogram of spike counts (Figure 2B). In this work, we
determine the distribution of pause statistics for individual
trials—onset latencies, offset latencies, pause widths, pause
depths and the abruptness of pause onsets. In the Discussion,
we consider how these statistics constrain possible mechanisms
for the generation of the pauses.

The compilation of trial-by-trial pause statistics presupposes
an algorithm for determining their onsets and offsets. We
developed a Bayesian algorithm that uses the statistics from
the peri-stimulus histogram to set prior probabilities on the
locations of the onsets and offsets on individual trials and on
the rates of firing before, during, and after the pause. The data
and the MatlabTM code implementing our analyses are in a
publicly accessible repository.1 The algorithm delivered trial-
by-trial estimates of pause onset, pause offset, the weights of
the evidence for the onset and for the offset. It also delivered

1 https://github.com/CRGallistel/QuantPropPrkjPauseGH

FIGURE 1

Classical conditioning in decerebrate ferrets. (A) Experimental setup with forelimb stimulation as the conditional stimulus (CS) and climbing fiber
(cf) stimulation as the unconditional stimulus (US). Insert shows an EMG recording of an overt conditioned blink response. (B) Cerebellar circuit
in boxed area in A with CS stimulation sites marked: mf (mossy fiber), Grc (granule cells) pf (parallel fibers), Gc (Golgi cell), Pc (Purkinje cell), IO
(inferior olive), cf (climbing fiber), AIN (anterior interpositus nucleus). Insert shows typical Purkinje cell responses to the CS before and after
conditioning.
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FIGURE 2

(A) Spike raster plot of 20 successive probe trials (trials without a US) following conditioning with a 0.3 s CS-US interval. The CS was 0.3 s
stimulation of the dorsum of the forepaw at 50 Hz, both during training, when US onset immediately followed CS termination, and in these
probe trials. The US during training was two 5-pulse bursts of 500 Hz stimulation of the climbing fiber input (5 ms between the bursts). The blue
vertical lines mark the beginning and end of the CS-US interval. Green asterisks mark the pause onsets, as determined by our algorithm for
estimating pause onsets and offsets; red asterisks mark the estimated pause offsets. (B) Peri-CS histogram, counting spikes across the 20 trials
into successive 10 ms wide bins. (C–E) Probability distribution functions (normalized histograms, with 5 ms wide bins) on the inter-spike
intervals during the 0.3 s preceding the CS (C), during the CS-US interval (D), and during the 1 s after the CS (E).

the duration of the longest inter-spike interval between these
estimates, which may be considered an estimate of the depth
of a pause. It also delivered the latency from pause onset
to the onset of the longest inter-spike interval. This may be
considered a measure of the abruptness of pause onset. Finally,
it delivered the interval from the estimate of pause onset
to the estimate of pause offset, which is an estimate of the
width of the pause.

Experiment 1: Acquisition of the
conditional pause

Recordings where made from ten Purkinje cells in the
eyeblink-controlling microzone within the C3 zone of the ferret
cerebellar cortex during a conditioning protocol in which the CS
was stimulation of the mossy fibers at 50 Hz. The US was direct
stimulation of the inferior olive (n = 5) or climbing fibers (n = 5)
with two short bursts of 5 pulses each, delivered at 500 Hz,

with an interval between the bursts of 12 ms (first 7 subjects)
or 4m (last 3 subjects). The ferrets were decerebrated before the
experiment began.

In this and all subsequent experiments, each Purkinje cell
was identified as an eyeblink cell by the presence of microzone-
defining short-latency (10–12 ms) complex spike responses
to brief electrical stimulation of the periocular receptive field
(Hesslow, 1994b).

In Cells/Subjects 1 through 7, CS stimulations terminated
after 0.3s, and the US onset occurred.02 s later. In the last three
Cells/Subjects, US onset occurred 0.2s after CS onset and the
CS stimulation continued through and beyond US onset and
offset. This was done to deconfound the effects of US onset from
those of CS offset.

Recordings were initiated in the naive state, i.e., before the
animal had been exposed to any (or only a few) paired stimulus
presentations and continued for up to 4 h, until a conditional
pause was apparent over a sequence of trials. The inter-trial
interval (the interval between CS onsets) was 15s.
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Results of the analysis

Complex and variable course of conditioning
Figure 3 shows two raster plots with complete trial

sequences. They are chosen to illustrate the complexity and
diversity of what is seen during the training period, when the
conditional pause develops.

In the left panel, one sees vertical lines of spikes at 20 ms
intervals during the CS. These are clearly driven by the input,
which was pulsatile mossy-fiber stimulation at 50 Hz. Early in
training, the overall frequency of spikes is greater during the CS
than before its onset. After about Trial 50, there are hints of a
fall in frequency about half way through the CS, but this fall is
more than offset by a clear increase in firing frequency in the
first 100 ms. After 250 trials, a pause is evident, and the spikes
elicited by the stimulation pulses begin to be suppressed during
this pause. After 600 trials, this suppression is almost complete.

In the right panel, there is no evidence of spikes elicited by the
stimulation pulses. The pause is evident from the beginning, but
it becomes more pronounced after about 180 trials.

The responses to the two brief bursts of US stimulation
of the climbing fiber differ markedly between the two panels,
and these responses to the US evolve in complex and
disparate ways over the course of training. In some records,
pronounced variations in firing rate are seen for several hundred
milliseconds after US stimulation. These complexly evolving
post-US variations in firing differ markedly from cell to cell. We
do not attempt to analyze them in the present work.

Non-stationarity in basal firing rate
There is substantial trial-to-trial variability in the firing rate

prior to CS onset. Computation of the Fano factors for the spike
count in the 1 s window immediately preceding CS onset shows
that this variability is not consistent with a stationary Poisson
process. If it were, the Fano factor, which is the ratio of the

FIGURE 3

Raster plots. Each dot is a spike. Each horizontal line of dots is a trial. Vertical green dashed line indicates CS onset at trial time 0; vertical red
dashed line indicates US onset.
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FIGURE 4

The cumulative distribution of the between-trial Fano factors for
the 10 cells. The count window was the 1s immediately
preceding CS onset. The Fano factor is the ratio of the variance
in the counts to their mean. In a stationary Poisson process, this
statistic will be close to 1. The dashed vertical line indicates an
alpha of 0.01. Given the observed firing rates and sample sizes
(numbers of trials), the Fano factor has a 0.01 probability of
exceeding this limit if the process is stationary and Poisson
(Eden and Kramer, 2010). Evidently, it is far from stationary on
the time scale of the inter-trial intervals (15 s).

variance in the spike counts to the mean count, would be close
to 1, but in fact the distribution of Fano factors lies well beyond
the limits expected from a stationary Poisson process (Figure 4).

The evidence in Figure 4 of a basal firing rate that fluctuates
from trial to trial raises the question of the time scale of this non-
stationarity. In Figure 5, we give the cumulative distributions of
the trial-by-trial Fano factors for the pre-trial firing of each cell.
These spike counts came from successive 0.1 s windows in the
pre-trial period of each trial, an order of magnitude smaller time
scale than that in Figure 4. Because spike recording was turned
on at varying intervals prior to CS onset, the number of such
windows varied from 15 to 40. The bulk of these distributions
tend to fall within the plausible limits for a stationary Poisson
process (dashed verticals in each panel of Figure 5), although
in several cells a substantial portion of the Fano factors are sub-
Poisson (indicating less variance in the spike counts than would
be the case if they were generated by a Poisson process). The
distribution of interspike intervals is, however, not exponential;
they have a much fatter tail (see below, Figure 11).

Variable course of acquisition
The common impression that behaviorally measured

conditional responses develop gradually is an artifact
of averaging across trials and subjects. The conditional
response in most conditioning paradigms—both Pavlovian
and instrumental—appears abruptly in most subjects (Gallistel
et al., 2004; Papachristos and Gallistel, 2006). Its appearance
is best visualized by means of a cumulative record of the

trial-by-trial differences between the rate of responding prior to
CS onset and the rate of responding during the CS (Figure 6).
The slope of a cumulative record of a sequentially observed
variable is the average value of that variable at a given point in
its evolution. Early in conditioning—in the naive subject—the
slope of the cumulative differences is usually 0 or even negative
(because some subjects become wary in the presence of a novel
stimulus). When the conditional response appears, the slope of
the cumulative record becomes positive.

The advantage of visualizing acquisition by means of a
cumulative record is that there is no averaging. Hence, there
is no smoothing; the more abrupt the change in behavior, the
more abrupt the change in the slope. There are well-established
algorithms for objectively identifying changes in slope (Gallistel
et al., 2004). We can visualize the emergence of the conditional
pause in the firing of a Purkinje cell by making a cumulative
record of the difference between the pre-CS firing rate and the
firing rate during the CS. And, we can apply to these records, the
algorithm for identifying the changes in the slope (Figure 6).

Figure 7 shows the normalized peri-CS histograms
computed only from the post-pause-acquisition trials, the trials
after the vertical dashed lines in Figure 6. These histograms
span the interval from 0.3 s before CS onset (at 0) to the end
of the CS-US interval. These histograms give the momentary
probability of a spike, defined as the probability of observing
a spike within any 1 ms interval. They enable us to estimate
three quantities that enter into the computation of an estimate
of the pause onset time on a trial by trial basis: (1) the 15 ms
wide interval at which the momentary probability of a spike is
minimal (the bin with the lowest bar); (2) the momentary spike
probability at that low point (the height of the lowest bar); (3)
the momentary spike probability over the pre-CS interval (the
average heights of the bars to the left of the 0 at CS onset).

Because the offset of pauses during training tends to coincide
with the onset of US stimulation, pause offset cannot be
estimated on a training trial; only pause onset can be. The
Bayesian algorithm for estimating pause onsets operates on a
binarized version of the spike train. Trial time is divided into
successive 1ms “moments.” The 1ms width of these moments is
chosen to be so narrow that at most 1 spike can occur during
any one moment. Binning trial time in this way yields a binary
string in which there is a 0 in every moment that did not contain
a spike and a 1 in every moment that did. Binarization converts
firing rates to momentary probabilities: the higher the firing
rate, the greater the momentary probability of a spike. Then, the
problem of estimating pause onset becomes one of estimating
where the momentary probability of a spike increases as one
looks back from the time where that probability is minimal (the
retrospective sequence).

The algorithm computes the relative likelihood of two
stochastic models for the retrospective binary sequence, a model
in which the momentary probability is constant, and a model in
which there is a step increase in the momentary spike probability
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FIGURE 5

The cumulative distributions of the Fano factors for spike counts from successive 0.1 s windows on the spike train preceding each CS onset. The
dashed vertical lines indicate the limits for data generated by a stationary Poisson process given the observed spike rates in these windows and
the sample sizes (numbers of counts per trial). (For the computation of these alpha levels, see Eden and Kramer, 2010).

as one looks back through the spike train from the low point
within the CS. In the course of computing the second model,
the algorithm determines the maximally likely location of this
step and the strength of the evidence that it in fact exists.
The evidence for or against its existence is the log of the odds
in favor of the 1-change model as opposed to the no-change
model (the null hypothesis in change detection). A log odds of
1 corresponds to odds of 10:1 in favor of the change model; a
log odds of –1 corresponds to odds of 10:1 in favor of the no-
change model. The log of the odds is called the weight of the
evidence; weights of 2 and –2 correspond to 100:1 odds; –3 and
3, to 1,000:1 odds and so on. For the algorithm, see PauseCode.2

Figure 8 graphs pause acquisition statistics for two of the
10 cells. The dashed vertical lines are at the same locations
in these plots as in Figure 6, namely, at the estimated trial of
acquisition. Cell 5, whose statistics are plotted in the left column,
was one of the 4 cells whose pause-acquisition was estimated in
Figure 6 to occur at Trial 2, that is, after a single experience

2 https://osf.io/879pk/?view_only=34820e6bd9584bf486aee56c8
8725ba4

of the CS-US interval. Consistent with this, we see in the top
left panel of Figure 7 that in this cell on the great majority
of trials, δpre, the firing rate during the pre-CS interval was
higher than δps, the firing rate during the pause. The sign of the
difference in firing rate was reversed in several early trials, but
as training progressed, the trial-to-trial variability in the firing-
rate difference decreased markedly. We see in the left middle
panel that the evidence for this change in the firing rate was very
strong even at the beginning, although it clearly became stronger
still as training progressed and the pause became broader. The
upper limit on the weight of the evidence (the ordinates of the
middle panels) has been set to 5, which corresponds to odds of
100,000:1. The plot rises above this limit on most later trials.
Even on the earliest trials, it is not infrequently above this limit.
Finally, we see in the bottom left panel that the central tendency
of the pause onset latency became shorter as training progressed
and the variability in this onset latency decreased.

Cell 6, whose statistics are plotted on the right-hand column
in Figure 8 was one of the 6 cells with an estimated pause-
acquisition trial greater than 2. In the top-right panel, we see
that on trials prior to this estimate, the λpre– λps difference
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FIGURE 6

Cumulative records of the difference in firing rate between the immediately pre-CS interval equal in duration to the CS-US interval and the
CS-US interval. An upward slope occurs when the average firing rate during the CS-US interval is less than during the interval preceding CS
onset. Dashed vertical lines indicate the trial beyond which this average difference exceeded 10 Hz. This point is an estimate of the trial at which
the conditional pause appeared (trials to acquisition).

fluctuated around 0. In the middle-right panel, we see that the
evidence for a change in firing rate was weak and often negative
(that is, the odds favored the model in which λpre– λps = 0).
For a pause onset to be detected on a given trial, the λpre– λps

difference must be positive and the evidence of a change must
exceed 1 (10:1 odds) in favor of a step decrease in firing rate at
the estimated location). In the light of the data in the top two
panels on the right, we are not surprised to see that, with one
exception, pause onsets were not detected until after the dashed
vertical. Thus, what we see in these plots is consistent with
the estimated trials on which a conditional pause was acquired
(dashed verticals in Figure 6), and this is true for the other
six cells as well.

Two aspects of these plots may seem puzzling: First,
some pause onsets are negative. Second, there is sometimes

strong evidence of a change on a given trial but no pause
onset is detected.

Pause onsets can be negative because the distribution of
inter-spike intervals in the spontaneous firing of Purkinje cells
has an extremely long tail. Although the modal inter-spike
interval is often less than 10ms, inter-spike intervals longer than
100ms occur with some frequency. The pause-onset latency in
a cell trained with a 300ms CS-US interval hovers near 100ms
(bottom panels of Figure 8). When CS onset occurs soon after
the beginning of a spontaneous inter-spike interval greater than
100ms, the shut-down in the firing produced by the CS occurs
during that spontaneously generated inter-spike interval. In
that case, the onset of the pause will appear to precede the
onset of the CS.
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FIGURE 7

Normalized peri-CS histograms computed from the post-acquisition trials. The interval from 0.3 s before CS onset to the onset of the US is
subdivided into 15 ms wide bins. The height of the bar in a bin gives the momentary probability of a spike over the span covered by that bin,
where momentary probability is the probability of observing a spike within any 1 ms interval.

A pause onset is not detected despite strong evidence of a
change in ps when the algorithm encounters a clear negative
step in the λpre– λps difference when looking backward in the
spike train. The computation of the strength of the evidence for
a change is oblivious to the sign of the change, but a pause onset
is detected only on trials where λpre– λps > 0. On some rare
anomalous trials, the firing rate increases during the CS rather
than decreasing. On those trials, a pause is not detected.

Pause onset latencies
Figure 9 gives the distribution of pause-onset latencies for

the trials after pause acquisition on which a pause was detected.

Discussion

These cellular-level data on trial to acquisition and pause
onset latency are broadly consistent with behavioral level data.
We postpone the discussion of the data on onset latencies until
after the analysis of the next data set, which is much larger, and

has a much wider variation in the CS-US interval. Here, we
discuss only trials to acquisition.

Trials-to-acquisition vary greatly between subjects in eye
blink conditioning, as in most other forms of conditioning
(Gallistel et al., 2004; Papachristos and Gallistel, 2006). In the
conditioning of these cells, the inter-trial interval was very short
(15s). Trials to acquisition are generally inversely proportional
to the inter-trial interval; with intervals this short, the number
of trials required often runs into the hundreds (Gibbon and
Balsam, 1981; Gallistel and Gibbon, 2001).

It may seem remarkable that a pause often appears after a
number of trials so small that the number of trials to acquisition
cannot be estimated by a change-detection algorithm, in which
case an algorithm for estimating trials to acquisition will set the
number at 0. 0 trials to acquisition is analytically impossible.
There must be at least one trial before a response based on
information communicated only in a trial can be observed.
In associative learning protocols that use foot shock, one trial
learning is common. In eye blink conditioning, however, the
lower end of the trials-to-acquisition range is around 10 trials,
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FIGURE 8

Pause statistics for two cells as a function of training trial. (Top row) The difference between the pre-CS firing rate and the firing rate during the
CS. (Middle row) Weight weight of the evidence log10(odds) for a change in firing rate between the pre-CS interval and the CS interval. (Bottom
row) Estimated pause onset latency (s).

at least with non-human subjects. Several considerations are
relevant in considering what conclusions to draw from the fact
that in some preparations there is evidence of a conditional
pause after the first training trial. The most important of
these considerations is conceptual; it has to do with the
difference between a plastic conception of memory-formation
in associative learning and an inscriptional conception.

The importance of the Purkinje cell pause-conditioning
phenomenon is that it provides neuroscience with an example in
which a specifiable quantitative fact gleaned from experience has
been localized to the cellular level. It appears necessary to think
of this phenomenon in inscriptional terms; the conditioning
protocol has inscribed the duration of the CS-US interval
into a medium intrinsic to the Purkinje cell (the engram).
This conceptual framework differs fundamentally from the
framework in which the phenomena of learning and memory
are treated in the neurobiological literature, for reasons we now
pause to explain.

The neurobiology of learning and memory is focused on
synaptic plasticity (Martin and Morris, 2002; Poo et al., 2016).
That focus reflects a commitment, witting or unwitting, to
a behaviorist conception of learning and memory. In this
conception, experience does not inscribe facts; it molds circuits.
It alters the brain’s wiring by changing synaptic conductances.
The changes in the synapses alter signal flow in such a way as

to change the brain’s input-output function; they do not encode
a fact extracted from experience. Thus, in work focused on
mechanisms of synaptic plasticity (Poo et al., 2016, for example),
there is no attempt to say how the mechanisms considered could
encode a quantitative fact (Gallistel and Matzel, 2013; Gallistel,
2017; Langille and Gallistel, 2020).

The coding question is unavoidable in an inscriptional
theory of learning and memory, because the facts (about, for
example, interval durations) must be inscribed and read in
accord with some code, just as the program for building an
organism is inscribed in its DNA in accord with a code and read
from that DNA by code-specific molecular machinery. When
thinking in inscriptional terms, the notion of memory “strength”
makes little sense. A fact is either legibly inscribed or it is not. If
the first experience of a CS-US interval does not legibly inscribe
the duration of that interval, then there is no way the brain can
know that a second experience of the same interval is in fact
the same as the first experience. As in anterograde amnesias,
every experience of the same duration, no matter how often
repeated, is a novel experience of that duration (Milner et al.,
1968; Kritchevsky et al., 1988; Siegert and Warrington, 1996).
This consideration seems to require the assumption that in all
conditioning protocols in which the subject learns that the CS-
US interval has a fixed value, single experiences of that interval
inscribe in legible form the duration of the CS-US interval. If
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FIGURE 9

The cumulative distributions of pause onset latencies. Included are only those pauses detected after the estimated pause-acquisition trial
(Figure 6).

the first experience of that interval did not legibly inscribe its
duration, then every subsequent experience of the same interval
would be no different from the first experience. There would,
therefore, be no way for evidence to accumulate that the CS-
US interval was constant from trial to trial; hence predictable.
Nor would there be any way for the brain to distinguish trial-
to-trial variability in its measurements of a fixed CS-US interval
from actual variations in the interval itself, in those protocols
where the CS-US interval varies. Rodents do, however, make this
distinction (Li and Dudman, 2013; Kheifets et al., 2017). Finally,
the results of Ohyama and Mauk (2001) show that rabbits learn
the temporal relation between CS and US prior to the point at
which they begin to make conditioned responses.

Given this consideration, we are not surprised that evidence
of having committed the duration of the CS-US interval to
memory is apparent in some cells after a single experience of that
interval. In all 10 cells, there was evidence for a further evolution
over many trials of its response to the CS (see, for example,
the bottom left panel in Figure 7). We assume that it is these

further evolutions and the emergence of a conditional response
in more than one Purkinje cell that explains the emergence of a
behaviorally observable response.

Experiment 2: Conditional
stimulus is stimulation of the
dorsum of the paw

The second data set comes from 106 cells recorded from
54 decerebrated ferrets. The CS in the conditioning protocol
was pulsatile stimulation at 50 Hz through an electrode on the
dorsum of a forepaw. The US was stimulation of a climbing fiber
with two 5-pulse bursts of pulses at 500 Hz, with a 10 ms interval
between the two bursts. The CS stimulation terminated at US
onset. The CS-US interval varied between subjects from as short
as 0.15s to as long as 0.45s. The interval from CS onset to CS
onset varied from as short as 6s for some subject to as long as
17 s in others. When a clear pause was observed, delivery of the
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FIGURE 10

Cumulative distributions of Fano factors, computed from Pre-
(left panel) and Post- (right panel) CS spike trains. The
distributions in black are from the 1st 1 s; those in red from the
last 1s of pre- and post-US spike trains lasting longer than 2 s.
The dashed vertical lines mark the plausible limits for data from
a stationary Poisson process. The bulk of these distributions
have Fano factors well beyond the upper limit, indicating
substantial trial-to-trial fluctuations in basal firing rate
(non-stationarity in the background firing rate).

US was discontinued, and 20 successive probe trials were run
with CS alone to obtain the data on which the analyses here
reported are based.

In about half the subjects, the electrode was then advanced
to find a nearby Purkinje cell that had also been conditioned,
and 20 further probe trials were run while recording from that
cell. In some cases, as many as 6 trained cells were recorded in
a single subject.

Results of the analysis

In the raster plots for these 20 probe trials, it again appears
that for many of the cells the basal firing rate fluctuates from
trial to trial. We therefore computed the Fano Factors for the
spike counts in two pre-CS and two post-CS windows of 1s
width, for all those cells in which the pre-CS and post-CS
spike trains were both recorded for more than 2s. The two
windows were the first 1s and the last 1s of such spike trains.
The cumulative distributions of the Fano factors are shown in
Figure 10. The pre-CS and the post-CS distributions are the
same (compare left and right panels in Figure 10), as are the
distributions for the first and last 1s windows (compare black
and red distributions within panels).

Seventy-five percent of the Fano factors are beyond the
upper limit on a plausible Fano factor from a stationary Poisson
process. Moreover, and perhaps more importantly, even for the
rare cells for which all 4 Fano factors were within the plausible
Poisson limits, the distributions of interspike intervals were not
well fit by the exponential distribution that describes intervals
generated by a Poisson process. The distributions for these three
Cells have a fatter tail than the exponential (Figure 11). These

properties—an extremely steep rise and a long, fat tail—are
more marked in the great majority of the inter-spike interval
distributions than they are in the examples in Figure 11. It
would seem that the endogenous process that generates the high
rate of spontaneous spiking in Purkinje cells is not a Poisson
process and it is not stationary.

Pause statistics
Using our algorithm for finding pause onsets and offsets (see

PauseCode),3 we found trial-by-trial pause onsets and offsets
for the data sets from each of 106 cells. From the offsets and
onsets, we computed the pause widths. We also computed the
maximum interspike interval between each pause on and pause
off and the latency from pause on to the onset of the longest
interspike interval.

The top row of Figure 12 gives scatter plots of the pause-
onset latencies, the pause-offset latencies and the pause widths
(the difference between the two latencies), while the bottom
row gives the coefficient of variation (CoV) in these statistics.
The CoV is the ratio between the standard deviation of a
random variable and its mean. In time-scale-invariant measures,
measures that obey Weber’s Law, the standard deviation in the
measure increases in proportion with the mean, so the CoV is
constant. We do not graph the fifth basic statistic—the latency
from pause onset to the beginning of the longest within-pause
inter-spike interval—because most pauses begin with the longest
within-pause inter-spike interval, regardless of the duration of
the CS-US interval. From this and other aspects of the data, we
conclude that the unusually long interspike interval is the pause.

Pause statistics scale with the training interval
The most conspicuous aspect of the results in Figure 12 is

that the pause onset and pause offset and the interval between
them become progressively longer as the CS-US interval during
training increases (top row of Figure 12). A second feature is
that CoVs for these intervals are constant. In other words, these
statistics exhibit scalar variability. Scalar variability is ubiquitous
in behavioral timing (Gibbon, 1977, 1992; Gibbon et al., 1984;
Gallistel and Gibbon, 2000; White et al., 2000; Simen et al.,
2013). It is a manifestation of Weber’s Law and of time-scale
invariance, both of which are quantitatively important aspects
of associative learning (Gallistel and Gibbon, 2000). The range
covered by the CoVs of the pause offset latencies is the same
as that observed in behavioral experiments on the timing of
conditional responses (Gallistel and Gibbon, 2000; Kehoe et al.,
2010).

The systematic increase in the central tendencies of
the timing quantities and the proportionate increase in
their variability are further examples of the many ways in
which the quantitative properties of this cellular-level learning

3 https://osf.io/879pk/?view_only=34820e6bd9584bf486aee56c8872
5ba4
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FIGURE 11

Empirical probability distributions of interspike intervals (after subtraction of the minimum interval) in the three cells with Fano factors
consistently within the Poisson range (solid curves) and the best-fitting exponential distributions (dashed lines) on semilog. The empirical
distributions have fatter-than-exponential tails.

phenomenon match the quantitative properties that are known
to obtain at the behavioral level (Jirenhed and Hesslow,
2016). This correspondence between quantities measured at
the cellular level and corresponding quantities measured at
the behavioral level stands in marked contrast to the situation
with LTP (long term potentiation) and STDP (spike-timing-
dependent plasticity). None of the quantitative properties of
these cellular level phenomena agree with the behaviorally
determined quantitative properties of associative learning
(Martin and Morris, 2002; Gallistel and Matzel, 2013).

Pause onset latency can be extremely short
The onset latencies are remarkably short when cells

are trained with a 0.15s CS-US latency. This latency is
close to the shortest CS-US interval that will produce a
conditional eye blink (0.1s), which is also the shortest interval
that will produce a conditional pause in the Purkinje cell
(Schneiderman and Gormezano, 1964; Salafia et al., 1973;

Jirenhed and Hesslow, 2016). The median of the median
onset latencies in the group trained with a 0.15s CS-US
interval is slightly less than 20 ms. Thus, in 50% of the
cells, half the pauses began before the delivery of the second
pulse in the train of CS pulses that was delivered to the
dorsum of the forepaw. In the much more numerous group
of cells trained with a 0.2s CS-US interval, the median
of the median pause onset latency was 40ms and the
median of the 1st quartiles was just over 20 ms. Thus,
on half the trials in this condition, the pause began at
or before the delivery of the 3rd pulse in the train of
CS pulses, and on slightly less than 25% of the trials it
began at or before the delivery of the 2nd pulse in the CS
stimulation of the forepaw.

Pause onsets and offsets are step-like
The first inter-spike interval within the pause is more often

than not the longest inter-spike interval within the pause. This is
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FIGURE 12

(Top row) Scatter plots of mean pause-onset latencies, mean pause-offset latencies and mean pause widths as a function of the CS-US training
interval. (Bottom row) The coefficients of variation.

a major reason for our conclusion that on any given trial a single
unusually long interspike interval is the pause. This hypothesis
explains why the distributions of pause widths and of the longest
inter-spike intervals within the pause are so similar, as may
be seen in Figure 13, which plots the cumulative distributions
of the pause-width-distribution quartiles (left columns) and
the cumulative distributions of the quartiles of the longest-
within-pause inter-spike interval distributions (right column).
The onset latency and duration of this unusually long inter-
spike interval are determined by the memory of the previously
experienced CS-US intervals (the engram).

To check whether there was evidence of any lengthening
of the inter-spike intervals after CS onset but before what our
algorithm identified as the onset of the pause, Figure 14 give
scatter plots for the successive inter-spike intervals encountered
when looking backward from pause onset to CS onset in a

representative sample of cells trained with a 0.3s CS-US interval.
These plots do not suggest any reliable upward trend in the
inter-spike intervals between CS onset and pause onset. These
retrospective plots are only possible for cells in which there
are trials with two or more spikes within the CS prior to the
estimated locus of pause onset, which is why we confined this
analysis to cells conditioned with CS-US intervals≥ 300 ms. The
complete set of such plots is available in this repository (see text
footnote 1).

The question arises whether the unusually long interspike
interval is the culmination of a sequence of lengthening
interspike intervals or whether, as we have suggested, the pause
simply is the unusually long interspike interval. As a more
rigorous check on whether the interspike intervals tend to
grow longer as the appearance of the unusually long interspike
interval draws nearer, we computed the linear regression of
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FIGURE 13

Quartiles of the within-group distributions of pause width (left columns) and longest within-pause inter-spike interval (right column). Cells are
grouped by the CS-US interval during their conditioning (given to left of each row). The second quartile (the median) is plotted with a solid line;
the first and last quartiles with dashed lines.

the interspike intervals backward from the onset of the longest
interspike interval within the pause to the onset of the CS. We
did this for all those trials in the CS-US ≥ 0.3 s conditions
in which there were at least 5 interspike intervals between CS
onset and the estimated onset of the pause. Figure 15 gives
the cumulative distribution functions for the slopes of these
regressions, for the lower limit on the slope, and for the variance
explained. The bulk of the slopes are positive (Figure 15, top),
which is to say that interspike intervals farther back in the
retrospective sequence (closer to CS onset) tend to be longer
than those that are earlier in the retrospective sequence (closer
to the pause onset). This is the opposite of what one expects if
the interspike intervals get progressively longer as the onset of
the longest approaches. The tendency is, however, very weak,
because in 75% of the regressions, the lower confidence limit on
the slope is negative (Figure 15, middle)—thus, the confidence
interval includes 0—and 80% of the regressions explain less than
7% of the variance (Figure 15, bottom). In short, there is no

tendency for the inter-spike interval to grow longer as the onset
of the pause draws nearer; the very weak and unreliable tendency
that exists is in the opposite direction.

We also made plots like those in Figure 14 but taking the
onset of the longest interspike interval within the CS as the
0th spike, so a spike that preceded it but still fell within the
CS defined the first backward interspike interval and so on.
These plots may also be viewed in the same repository (see text
footnote 1). They, too, give no consistent indication of a decline
in momentary spike probability prior to the onset of the longest
interspike interval.

We conclude that the conditional pause in the firing of
the cerebellar Purkinje cell consists more often than not of a
single unusually long inter-spike interval whose onset and offset
latencies are a scalar function of the CS-US training interval.
There is no sign of the graded increase in inter-spike intervals
that would be expected if a gradually strengthening inhibitory
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A B

FIGURE 14

(A) Successive inter-spike intervals encountered when looking backward from pause onset to CS onset. Pause onset is at 0 at the right edge of
each plot; −1 is the first interval encountered; −2, the second, and so on, as one progresses leftward (backward in time from pause onset). Each
plot is for a cell trained with a 0.3 CS-US interval, because pause onset was generally well after CS onset in this condition. If there were a gradual
increase in the inter-spike interval prior to the onset of the longest inter-spike interval, these scatter plots would drift upward, but they do not.
(B) Same as A but for cells trained with a 0.4 s CS-US interval (top 2 rows 7 and first panel in 3rd row) or 0.45 s CS-US interval (remaining panels).
Only the bottom right plot shows the upward drift one would expect to see if there were a gradual increase in post-synaptic membrane prior to
the onset of the longest inter-spike interval.

synaptic input increased postsynaptic membrane polarization in
a temporally graded manner.

Correlations among pause parameters
Figure 16 shows for each CS-US interval group the pairwise

correlations among the 4 pause parameters: pause onset, pause
offset, pause width and the longest within-pause inter-spike
interval. The structure is the same regardless of the CS-US
training interval (compare across panels in Figure 16). The
correlation between pause onset latency (↑) and pause offset
latency (↓) is highly variable between cells within a group, but
the central tendency is close to 0. By contrast, the correlation
between pause width (W) and pause onset latency is consistently
negative, often strongly so: a late onset predicts a short pause.
Because the pause very often begins and ends with the beginning
and end of the longest within-pause inter-spike interval (M),
it is not surprising that a late onset also predicts that the
longest inter-spike interval within the pause will be relatively
short. In this same light, it is also not surprisingly that pause
width and the longest within-pause inter-spike interval are
strongly and positively correlated with pause-offset latency,

and very strongly correlated with one another. We defer to
the General Discussion a discussion of the implications of
these correlations.

Experiment 3: Conditional
stimulus is stimulation of the
parallel fibers

In this experiment, the CS was direct pulsatile electrical
stimulation of the parallel fiber input to the Purkinje cell at 50 or
100Hz (0.1ms pulse width), and the US was, as usual, two very
short bursts of very high frequency (500Hz) stimulation of the
climbing fiber. In this experiment, there was direct control of the
presynaptic signal to the Purkinje cell. In previous experiments,
the CS signal was generated by stimulation delivered at a
remove of two or more synapses from the Purkinje cell. Hence,
it was possible that neurons intervening between the site of
CS stimulation and the Purkinje cell provided a presynaptic
signal with a rise and fall that might explain the pause. In
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FIGURE 15

Cumulative distributions of the results of the regression analysis
of inter-spike interval vs the count of inter-spike intervals,
counting backward from the estimated pause onset to CS onset
in those trials with at least 5 spikes within that retrospective
interval. A positive slope implies that the inter-spike intervals
near the CS onset tended to be longer than those near the
pause onset.

this experiment, the presynaptic signal—the signal seen at the
synapses between the parallel fibers and the Purkinje cell—was
under direct experimental control.

We here analyze 22 cells from this experiment. Nine of
them were conditioned with a CS-US interval of 0.15s but a CS
duration of 0.3s. In other words, CS offset was not coincident
with US onset during training; it occurred well after the US.
Therefore, in the 20 probe trials with no US, which followed
the conditioning, and which provide the data we here analyze,
CS offset was not coincident with the time at which a US was
anticipated but failed to occur. Thus, the termination of CS
stimulation did not play a role in the generation of the pause
offsets—the recovery of spontaneous firing at the time when
a US was anticipated. The recovery occurred well before the
termination of the CS stimulation.

Five of the 22 cells were conditioned with CS-US intervals
of 0.2s but CS durations of 0.8s. Again, in these 5 cells,
the termination of CS stimulation occurred long after the
time at which a US was anticipated. Two more cells were
conditioned with the same CS-US interval (0.2s) and with CS
termination at US onset.

FIGURE 16

The pairwise correlation structure among four pause
parameters: pause onset latency (↑), pause offset latency (↓),
pause width (W), and longest within-pause inter-spike interval
(M). The CS-US training interval varies between panels. v, versus.

Finally, six cells were conditioned with CS-US intervals of
0.3s and US onset at CS termination.

Results

The most striking thing about the results is their similarity
to the results obtained with CS stimulation delivered at a
greater remove from the immediately pre-synaptic parallel fiber
projection. Figure 17 give examples from the three different
CS-US interval groups. Figures like these for all 23 cells are
in the repository (see text footnote 1).

Figure 18 gives scatter plots of the pause-on latencies, the
pause-off latencies and the pause widths (top panel) and their
coefficients of variation (bottom panel). As previously explained,
to the extent that the variation is time-scale invariant—that is, to
the extent that these measures obey Weber’s Law—the CoV will
be constant. Figure 19 plots the pairwise correlations for 4 pause
statistics: pause-on latency, pause-off latency, pause width, and
the longest within-pause inter-spike interval.
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FIGURE 17

(A) Left: Raster plot from 20 probe trials (no US trials), with pause onsets (green asterisks) and offsets (red asterisks) found by the algorithm. The
blue verticals mark the CS onset time and the US onset time during training. The CS–US interval was 0.15 s. The CS duration was 0.3 s–twice
the CS–US interval–both during training and on these probe trials. Right: Probability distribution functions pre-, during-, and post-CS. (B) The
CS–US interval was 0.2 s, as was the CS duration during training and on these probe trials. Thus, for this cell, CS offset during training coincided
with US onset. (C) The CS–US interval was 0.2 s, but the CS duration during training and on these probe trials was 0.8 s, four times as long as the
CS–US interval. (D) The CS–US interval was 0.3 s, as was the CS duration. Thus, for this cell, CS offset during training coincided with US onset.
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The general conclusion from this experiment is that when
the CS signal arriving at the Purkinje cell is produced by direct
pulsatile electrical stimulation of the immediately presynaptic
afferents to the Purkinje cell, the quantitative characteristics of
the pause are the same as when the pause is elicited by a sensory
CS (stimulation of the dorsum of the paw). This conclusion
strongly suggests that mechanisms intrinsic to the Purkinje cell
itself determine the quantitative properties of the learned pause
in its firing triggered by the onset of parallel fiber input, because
the pause is in every way the same under conditions where it
is unlikely that there is any time-varying input to the Purkinje
cell during a CS.

General discussion

Agreement between behavioral
measurements and cellular
measurements

When attempting to establish the material basis for a
mechanism known only from its behavioral effects, it is essential
to establish a quantitative correspondence between properties
of that mechanism established by measurements based only on
its behavioral effects and properties measured by “more direct”
non-behavioral means that bring one closer to the presumed

locus of the unknown mechanism. For example, when Du Bois-
Reymond asserted that the “action current” (now called the
action potential), which he had discovered in nerve, was the
physical realization of the nerve impulse (Du Bois-Reymond,
1848), it was clear that, for his hypothesis to be true, the
velocity of the action potential had to be the same as the
velocity of the nerve impulse. At about the same time as Du
Bois-Reymond did his electrophysiological work, Helmholtz,
his friend and colleague in the laboratory of Johannes Müller,
measured the velocity of the nerve impulse in frog motor nerve
and human sensory nerve (Helmholtz, 1850, 1852), using the
difference in reaction time method, which remains a staple
of cognitive neuroscience (Luce, 1991). In 1871, a student of
Du Bois-Reymond did the behavioral measurements and the
electrophysiological measurements on the same preparation
(the frog sciatic-gastrocnemius preparation) and found the
velocities to be the same within the errors of measurement
(Bernstein, 1871), as required by his advisor’s hypothesis.

In attempting to establish the material basis of memory,
the same considerations apply (Gallistel et al., 1981): the
quantitative properties of a putative cellular level manifestation
of the engram must align with the quantitative properties
established by behavioral experiment. Electrophysiologically
measured synaptic plasticity fails to satisfy this requirement:
No measured property of Long Term Potentiation (LTP),
Long Term Depotentiation (LTD) or Spike Timing Dependent
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FIGURE 18

Mean pause-onset latencies as a function of the CS-US interval during training (upper panels) and the CoVs in the onset latencies as a function
of the CS-US interval (bottom panels). The flat CoV plot implies that the variability scales with the mean, which is Weber’s Law.
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The pairwise correlations of 4 pause parameters: pause-on latency (↑), pause-off latency (↓), longest within-pause inter-spike interval (M) and
pause width (W). The pattern is the same as that seen in Figure 16. v, versus.

Plasticity (STDP) corresponds to any behaviorally measured
property of associative learning (Gallistel and Matzel, 2013).

The only electrophysiologically measurable phenomenon
whose quantitative properties align with the behaviorally
established properties of the corresponding associative learning
phenomenon is the conditional pause in the spontaneous
firing of the cerebellar Purkinje cells, the cells that have
been shown to control the timing of the conditional eyeblink

(Heiney et al., 2014; Johansson et al., 2016). Jirenhed and
Hesslow (2016) review and document the following quantitative
correspondences: The numbers of trials required for the
acquisition of the conditional response (CR) fall, in both cases,
within the same range, as do the numbers required for its
extinction. In the cellular preparation as in the behavior of
the intact subject, CS-US intervals shorter than 80-100 ms
do not induce a CR. In both, reacquisition of the CR
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following its extinction occurs much more rapidly than the
original acquisition. Preliminary results obtained by one of
us (Johansson) suggest that lengthening the intertrial interval
causes the CR to appear after fewer trials, as it does for the
behavioral CR in the intact rabbit (Gallistel and Gibbon, 2000,
Figure 10). And, of course, the timing of the cellular CR depends
on the CS-US interval in the same way as does the timing of the
behavioral CR, and the offset of the conditional pause occurs at
approximately the latency at which the US is expected, which is
the time at which lid or membrane closure attains its maximum.

The results we here report add to the list of quantitative
correspondences. They show that the CoV for the offset latency
in the conditional firing pause of Purkinje cells in the C3
microzone of the decerebrate ferret overlaps the range observed
in the CR of the intact rabbit (White et al., 2000), which is 0.12
(SD = 0.045) —see bottom middle panels of Figures 12, 18:
median 0.22; (inter-quartile interval = 0.18 –0.29). Given that
the cellular data come from decerebrate ferrets while the
behavioral data come from intact rabbits, this may perhaps be
regarded as a reasonable correspondence. It is, however, clearly
desirable that both the cellular and the behavioral measurements
be made on the same preparations. Also, of course, if the
between-cell sources of variance are independent and if the
behavioral variance depends on the pooling of the signals from n
cells, then the behavioral standard deviation will be smaller than
the cellular standard deviation by the square root of n.

Duration engrams store Shannon
information

Pavlovian conditioning protocols play a fundamental role in
research dedicated to discovering the neurobiological realization
of the engram. In contemporary theorizing about the engram
in Pavlovian conditioning, the engram does not store Shannon
information (Grossberg, 1991; Grossberg and Schmajuk, 1991;
Meck, 2003; Mauk and Buonomano, 2004; Yamazaki and
Tanaka, 2009; Bareš et al., 2018; Hardy and Buonomano, 2018).
The engram is a Hebbian synapse that connects a state triggered
by the conditional stimulus to a motor output.

In these models, the lag between conditional stimulus
and the CS-conditional response that gives the CS-conditional
response its anticipatory character is attributed to an innate
dynamics of temporal “grandmother cells “excited by the CS.
(A ‘grandmother cell’, aka a “Jennifer Aniston neuron” is a
neuron that represents a complex but specific concept; the
problem being that such concepts are potentially infinite in
number, as are the number of different durations to which
brains may be sensitive. On the kind of theory satirized, we
respond to our grandmother because we have neurons that are
selectively excited by her and only her.) Temporal grandmother
cell theories of timing posit a spectrum of neurons whose
firing rates in response to CS input rise and fall with differing

latencies (Grossberg and Schmajuk, 1991; Ludvig et al., 2008;
Gershman et al., 2014; Buonomano, 2017). The associative
process operating on Hebbian synapses selectively connects the
grandmother cells whose peak firing latency matches the CS-
US interval to the conditional response. Whether one finds
this kind of theory plausible or not, the important thing to
note is that the connection itself—the Hebbian synapse (the
engram)— does not encode anything (Gallistel, 2017). It is not a
symbol for the duration of the CS-US interval nor for anything
else about the subject’s conditioning experience (Langille and
Gallistel, 2020; Gallistel, 2021). Therefore, it does not store
Shannon information. Nor is it read by subsequent CS inputs
in the sense in which the Shannon information stored in a
computer register is read in the course of computations that
operate on that information. There are no such computational
operations in conventional neurobiological thinking about the
engram, because, in that thinking engrams are not the symbols
for quantities on which neurobiologically realized arithmetic
operations may operate.

The informationless conception of the duration engram
is not consistent with the experimental facts on the role
of temporal information in Pavlovian conditioning (Balsam
et al., 2006; Balsam and Gallistel, 2009; Gallistel and Balsam,
2014; Kalmbach et al., 2022). The ratios between remembered
durations and differences in remembered intervals are critical
determinants of the conditioned behavior (Matzel et al., 1988;
Barnet et al., 1997; Denniston et al., 1998; Gallistel and Gibbon,
2000; Arcediano and Miller, 2002; Balsam et al., 2010; Ward
et al., 2012, 2013; Kalmbach et al., 2019). The learning rate is
a scalar function of this ratio; the greater the ratio, the faster
subjects learn over most of its range, until the ratio approaches
1, the value at which the CS provides no information about
the rate of reinforcement, at which point the rate of learning
becomes 0 (Gibbon and Balsam, 1981, Figure 7.2, p. 224).
These ratios and intervals would appear to be extracted from
remembered experience by arithmetic operations on temporal
maps and remembered durations (Honig, 1981; Taylor et al.,
2014; Chandran and Thorwart, 2021; Namboodiri and Stuber,
2021).

The informationless conception of the Pavlovian engram
is also not consistent with the experimental facts about the
conditional pause in the spontaneous firing rate of the cerebellar
Purkinje cell, the pause whose duration controls the timing of
the conditional blink (Medina and Ruffolo, 2014; Johansson
et al., 2016). The experiments in which the CS signal is produced
by direct stimulation of the parallel fibers appear to rule out
engramless models of timing. The crucial assumption in these
experiments is that the parallel fiber input seen by the Purkinje
cell directly reflects the train of evenly spaced stimulating pulses
delivered to the parallel fibers. If that is the case, the dynamics of
presynaptic circuits are irrelevant, because the experimenter has
gained control of the relevant presynaptic input to the Purkinje
cell. In that case, the experiment insures that an appropriately
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timed signal is not delivered to the Purkinje cell by a presynaptic
signal from an innate timing mechanism. Given that a signal
indicative of the CS-US interval is not present in the parallel
fiber input, the timing of the CS-US interval, the encoding and
storing of its duration, and the generation of an appropriately
informed pause duration on subsequent occasions occur within
the Purkinje cell itself, which is the first point at which the CS
onset signal and the US signal converge (Johansson, 2019).

That parallel fiber input evokes the conditional pause
in the critical parallel-fiber-stimulation experiments is
strongly implied by two pharmacological results cited in
our introduction: (1) Blocking the mGluR7 receptor in the
post-synaptic side of the parallel- fiber-to-Purkinje cell synapse
blocks the pause. (2) Blocking the known inhibitory inputs
to the Purkinje cell with a general-purpose GABA blocker
(gabazine), given in a dose that blocks the very strong inhibitory
effect of off-beam stimulation, does not block the elicitation of
the conditional pause.

Also relevant is that, to our knowledge, neither the
granule cells from which the parallel fibers originate, nor
any other neurons in the cerebellum have been shown to
exhibit the properties required of the temporal grandmother
cells that have been postulated to control the timing of the
conditional response.

Given the far-reaching implications for further research of
the conclusion that there is an engram for the CS-US interval
intrinsic to an intracellular biochemical cascade that begins
with the activation of the mGluR7 receptor, it is important to
consider whether the experimental facts so far obtained permit
of an alternative conclusion.

One such alternative might begin with the fact that direct
stimulation of the parallel fibers triggers antidromic volleys of
action potentials, as well as orthodromic volleys. Might these
antidromic signals reach the Purkinje cell by a path other
than the directly stimulated parallel fibers? Several colleagues,
reviewers and speakers at scholarly meetings have suggested this
as an alternative explanation. We consider this possibility with
reference to the diagram of cerebellar circuitry in Figure 20.

Antidromic volleys in parallel fibers could excite Golgi
cells, which are inhibitory interneurons. However, Golgi cells
inhibit the granule cells, which are the source of the parallel
fibers. They do not inhibit the Purkinje cells, so this antidromic
pathway would appear to be a dead end so far as explaining
the conditional pause. We know of no other way that an
antidromic signal in a population of directly stimulated parallel
fibers could reach a population of unstimulated parallel fibers
(see Figure 20). Thus, the hypothesis that there are unstimulated
granule cells excited by antidromic signals in the stimulated
parallel fibers requires the postulation of an unknown pathway
and the postulation of the requisite grandmother-cell dynamics
for the unstimulated granule-cells. There is neither evidence nor
independent motivation for either postulate.

Parallel fibers also excite stellate cells, which make inhibitory
(GABAergic) synapses on the outer reaches of Purkinje cell
dendrites. (This effect need not be considered antidromic).
However, potentiation of the parallel-fiber-to-stellate -cell
synapse cannot mediate the conditional pause, because the
climbing fiber does not innervate the stellate cell. That is,
the stellate cell does not have access to both the CS and the
US signals. This access is essential to the conditioning of an
appropriately timed pause. Instead their inputs consist of far
fewer parallel fibers and excitation from multiple climbing fibers
only through diffusion of spillover glutamate from climbing
fibers that contact Purkinje cells (Szapiro and Barbour, 2007).
This is directly opposite to the Purkinje cell whose input
architecture enables more than 100,000 different parallel fiber
inputs to predict one and only one climbing fiber input.

One might, however, entertain the following hypothesis:
Parallel fiber stimulation excites a population of inhibitory
stellate cells (antidromically, orthodromically or both). The
excited population consists of temporal grandmother cells with
an appropriate range of delayed-peak response latencies. The
climbing fiber stimulation selectively and enduringly enhances
the postsynaptic effects of the GABA released onto the Purkinje
cell from those stellate grandmother cells whose firing peaks at
the time of climbing fiber stimulation. This inhibitory action of
GABA is not blocked by doses of gabazine sufficient to block the
profound inhibitory effect of off-beam stimulation.

The following considerations weigh against this alternative
hypothesis:

• It does not explain why blocking the mGluR7 receptor
blocks the conditional pause. The mGluR7 receptor is
postsynaptic to the glutamatergic parallel fiber input to
the Purkinje cell. It is not postsynaptic to the stellate cell
GABAergic input, nor is it a GABA receptor. Thus, on this
hypothesis, there appears to be no explanation for the fact
that blocking the mGluR7 receptor blocks the conditional
pause; whereas blocking any of the other 7 post-synaptic
receptor types in the glutaminergic synapse does not.
• There is no evidence that the stellate cells have the

requisite dynamics.
• A fortiori, there is no evidence that these dynamics are

triggered by the first volley in parallel fiber and are
unaffected by the temporal distribution of subsequent
volleys. Known synaptic mechanisms rarely have the
latter property.
• There is no evidence that gabazine, a general-purpose

GABA blocker, fails to block the inhibitory effect of the
GABA that the stellate cells release onto the Purkinje cells.
It is the preferred blocker of GABA action.

In the light of current neuroanatomical,
neuropharmacological and electrophysiological evidence,
there does not appear to be a plausible alternative to the
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FIGURE 20

Cerebellar circuitry. Each parallel fiber contacts tens of thousands of Purkinje cells and each Purkinje cell receives input from hundreds of
thousands of granule cells, but from only one climbing fiber. The parallel fibers also make excitatory synapses on the stellate cells and on the
Golgi cells. The basket cells make powerful inhibitory synapses on the Purkinje cell soma; they get their excitatory input from other Purkinje
cells. Not shown are the Lugaro cells, which are excited by Purkinje cell collaterals and which make inhibitory synapses on stellate cells, basket
cells and Golgi cells.

hypothesis that the mechanisms that time, record and read out
the CS-US interval in eyeblink conditioning are intrinsic to the
cerebellar Purkinje cell.

Implications of the current results for the
putative intracellular engram-reading
processes
• The pause is created by an abrupt shut down of the

mechanism that generates the rapid but extremely irregular
spontaneous firing of the Purkinje cell. The pause is not a
graded modulation of that endogenous firing rate; it is a
complete shutdown, with no measurable sloping off in the
firing rate prior to the cessation of firing.
• The shutdown is triggered by the arrival of the first

synchronic volley of nerve impulses in a subset of directly
stimulated presynaptic parallel fibers.
• Later volleys have no effect on the pause, regardless of their

temporal distribution. If there is no cell-intrinsic temporal
memory, there has to be a temporal code in the input
signal. It seems impossible to reconcile that assumption
with the fact that the elicited pause is the same whether
stimulation of the parallel fibers lasts 20 ms or several
hundred milliseconds and whether the pulse frequency is
50 Hz or 500 Hz.

• When the CS-US interval is short, the latency to shut down
of the firing can be shorter than 20 ms; the engram read-out
mechanism can shut down firing in less than 20 ms after the
synaptic input that triggers read-out.
• The pause onset latency is, however, determined by the

engram for the duration of the CS-US interval, because the
latency to shut down firing is proportional to the duration
of that remembered interval.
• The latency to terminate the shutdown is also determined

by the duration engram; it, too, is proportional to the
duration of the remembered interval.
• The correlation structure for the pause parameters implies

that the two latencies are produced by independent
readings of the engram: The offset (↓) and onset (↑) of
the shutdown are only weakly and inconsistently correlated
(see the ↓v↑ correlations in Figures 16, 19). This stochastic
independence has the consequence that the duration of
the shutdown (M) is strongly negatively correlated with
onset latency (Mv↑ in Figures 16, 19) and strong positively
correlated with offset latency (↑v↓ in Figures 16, 19,
scatterplots). In other words, a late onset of the pause
predicts a short shutdown and an early offset retrodicts
a short shutdown. If both latencies were determined by
a single reading of the duration engram, these latter
correlations would have positive sign.
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• The process leading to the initiation of the shutdown and
the process leading to its termination are independently
initiated by the synaptic input that causes the reading of
the engram. If the process leading to termination were
initiated by the onset of the shutdown, then the latency
to terminate the shutdown would be positively correlated
with the latency to initiate it and the CoV of the shutdown
latency would be greater than the CoV of the initiation
latency. In fact, however, the two latencies are uncorrelated
or even weakly and inconsistently negatively correlated
(Figures 16, 19), and the CoV of the termination latency
is smaller than the CoV of the onset latency (Figure 18,
compare bottom middle panel to bottom left panel).
• The endogenous spike-generating process is not

Poisson. The Fano Factors are generally much greater
than expected from a stationary Poisson process.
The distribution of the endogenously generated
interspike intervals has an extremely abrupt rise after
a “refractory” interval that ranges from 3 to 8 ms,
depending on the cell. The steep rise is followed by
an initially steep decline and then by a remarkably
prolonged tail. The tail includes the very long
interspike intervals that constitute the conditional
pauses. However, when these occur at any time other
than immediately after CS onset, their duration is
not proportional to the CS-US interval, the interval
encoded in the engram.
• The greatly prolonged tail in the inter-spike interval

distribution of the spontaneously firing Purkinje cell means
that pauses like those that constitute the conditional
pause appear often. Whatever the process is that produces
these spontaneous pauses, the process that produces
the CS-conditional pause can preempt or supervene
on a spontaneous pause. The unusually long interspike
intervals that constitute the conditional pause (most
often a single such interval) may begin during one of
the spontaneously occurring long interspike intervals.
When the CS-US interval is short, this often produces
a conditional pause that appears to begin before CS
onset.

A molecular biological agenda

The engram is the mechanism that preserves facts gleaned
from experience for use in computations to be performed in
the indefinite future. The simplest and most readily varied facts
are the quantitative facts. The duration of the interval between
two events, such as the onset of a conditional stimulus and
the event that it predicts, is an example of an easily varied
quantitative fact. The encoded duration of the CS-US interval,
plays two fundamental roles in associative learning (Gibbon
and Balsam, 1981; Gallistel and Gibbon, 2000; Balsam et al.,

2002, 2006, 2010; Drew et al., 2005; Balsam and Gallistel, 2009;
Ward et al., 2012; Gallistel and Balsam, 2014; Morè and Jensen,
2014):

• The duration of the CS-US interval and whether that
duration is fixed or variable determines the latency at which
the conditional response follows the onset of the CS, and,
the pattern of responding within the CS.
• The ratio between the average CS-US interval and the

average US-US interval determines the learning rate (trials
to acquisition) and the vigor of responding during the CS.

Because the Purkinje-cell engram preserves the duration of
the CS-US interval that the cell has experienced, there must be
an invertible (one-one) mapping between the duration of an
experienced interval and the structural change it produces in
the engram. In other words, there must be a code (Gallistel,
2017). Because the engram appears to be intrinsic to the Purkinje
cell, one may infer that the structural change that encodes
the duration of the CS-US interval is a change in a cell-
intrinsic, molecular-level structure. Thus, a key step in the
discovery of the material realization of the engram must be
the deciphering of the code that relates a molecular change
within the Purkinje cell to the duration of the inter-event
interval that induces it and that it encodes. The discovery
of such a mapping would be powerful evidence that the
material realization of the engram (or at least an engram)
had at long last been discovered. Decisive evidence would
come from artificially inducing the structural modification
that encoded a given interval and demonstrating that the
duration of the firing pause in response to parallel-fiber
input is predicted by that modification. This confirmation
of the cell-intrinsic molecular-engram hypothesis would be
analogous to the eventual confirmation of two hypotheses that
were once profoundly controversial: (1) brains contain clocks
(Richter, 1922; Beiling, 1929; Wahl, 1932); (2) the clock is a
molecular-level cell-intrinsic mechanism that does not depend
on neural circuitry for its function (Bruce and Pittendrigh, 1957;
Ralph et al., 1990; Le Sauter and Silver, 1994; Silver et al.,
1996). Neuroscientists have been slow to recognize the role
of molecular level cell-intrinsic mechanisms in the complex
computations that are the foundation of cognition.

The search for the molecular engram in the Purkinje cell
should probably begin with a focus on the metabotropic mGlu7
receptor, because blocking that receptor prevents presynaptic
input from the parallel fibers from triggering the conditional
pause. Metabotropic receptors convert extracellular signals (the
transmitter release by a presynaptic spike) into intracellular
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biochemical cascades. The first step in most such cascades is a
structural change in a G protein. G-protein-initiated cascades
are known to lead to alterations in many aspects of cellular
physiology, including gene transcription. In this case, the
cascade must read the engram before it comes to the membrane-
intrinsic ionic channel or channels whose modification abruptly
shuts down endogenous firing, because the latency to the
shutting down of the endogenous firing is determined by the
encoded duration. Given this knowledge and the further facts
revealed by this analysis, it seems that a concerted investigation
of this intracellular biochemical cascade might bear fruit within
a reasonable time span.
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