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With the development of network science and graph theory, brain network

research has unique advantages in explaining those mental diseases, the

neural mechanism of which is unclear. Additionally, it can provide a new

perspective in revealing the pathophysiological mechanism of brain diseases

from the system level. The selection of threshold plays an important role

in brain networks construction. There are no generally accepted criteria for

determining the proper threshold. Therefore, based on the topological data

analysis of persistent homology theory, this study developed a multi-scale

brain network modeling analysis method, which enables us to quantify various

persistent topological features at different scales in a coherent manner. In

this method, the Vietoris–Rips filtering algorithm is used to extract dynamic

persistent topological features by gradually increasing the threshold in the

range of full-scale distances. Subsequently, the persistent topological features

are visualized using barcodes and persistence diagrams. Finally, the stability

of persistent topological features is analyzed by calculating the Bottleneck

distances and Wasserstein distances between the persistence diagrams.

Experimental results show that compared with the existing methods, this

method can extract the topological features of brain networks more

accurately and improves the accuracy of diagnostic and classification. This

Frontiers in Computational Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2022.1024205
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2022.1024205&domain=pdf&date_stamp=2022-10-05
https://doi.org/10.3389/fncom.2022.1024205
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2022.1024205/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1024205 September 29, 2022 Time: 15:53 # 2

Guo et al. 10.3389/fncom.2022.1024205

work not only lays a foundation for exploring the higher-order topology of

brain functional networks in schizophrenia patients, but also enhances the

modeling ability of complex brain systems to better understand, analyze, and

predict their dynamic behaviors.

KEYWORDS

topological data analysis, persistent homology, complex brain networks,
schizophrenia patients, persistent topological features, EEG signal

Introduction

Topological data analysis (TDA) (Edelsbrunner and Harer,
2010; Ibekwe et al., 2014; Taylor et al., 2015) is related to data
analysis, algebraic topology, computational geometry, computer
science, and statistics. The main goal of TDA is to use geometry
and topology theories to study the qualitative features of data.
To achieve this, a precise definition of qualitative features and
computational tools in specific practical applications is required.
Theories ensure the stability and robustness of these features.
One way to achieve this goal is using persistent homology
(PH) in TDA (Aktas et al., 2019). Currently, researches on
the application of PH to brain network analysis are gaining
increasing attention (Lee et al., 2012; Caputi et al., 2021;
Xu et al., 2021).

When processing and analyzing brain imaging data, a
matrix representing the connection strength between nodes is
generated, and a threshold is selected to binarize the matrix.
Finally, the adjacency matrix is generated to construct brain
networks. The selection of the threshold plays an important
role in network construction because it affects the connection
density and network topology (Khalid et al., 2014; Chung et al.,
2015; Sizemore et al., 2018). Generally, there are three methods
for network binarization (Telesford et al., 2011). First, when a
connection density is selected as a single threshold, for example,
the structure of networks is fully connected when 2

N lgN is
selected (Castro et al., 2011; Li and Fan, 2013), where N is
the number of nodes in the networks. This implies that there
are no isolated points in the networks. However, this method
cannot be applied to real networks because it is suitable only
for random networks. The second method involves using a
predefined threshold space, wherein the threshold is selected
indirectly, and statistical methods are usually use to eliminate
the weak connections or pseudo connections. However, the
process of threshold selection is complex and not universal
when data is changed (Yin et al., 2020; Zhu et al., 2020).
Moreover, some important information transmission may be
deleted when the weak connections are deleted. The third
method involves using a threshold space at condition limits;
essentially, the brain network with small-world attributes is built
on the selected threshold space. The construction of a random

network requires a mean degree of nodes greater than 2lgN and
the same number of nodes and degree of nodes as the original
network.

Numerous new thresholding methods have been reported,
such as the network’s minimum spanning tree, which builds an
unbiased network. Minimum spanning tree is not sensitive to
thresholds and density values, so it is considered a good method
for network binarization. However, this unbiased network
is extremely sparse, which results in several important local
connections being ignored (Tewarie et al., 2015). A windowless
method based on a thermonuclear Gaussian core has been
reported (Huang et al., 2019; Jin et al., 2019). In this method, the
false rapid changing states of brain connections in the networks
are reduced, and the problem of high-frequency noise is solved
when the sliding window method is applied to dynamic brain
network analysis.

Although numerous methods have been proposed for
selecting a threshold when the brain networks are constructed
in different ways, the selection of a network threshold remains
difficult because there is no consensus on the best strategy
(van Wijk et al., 2010). Therefore, the PH theory in the TDA
method was introduced into brain network analysis (Shnier
et al., 2019; Caputi et al., 2021). The advantages of this method
are that the construction of brain networks does not require
binarization, the networks can be analyzed on full-scale, and
persistent topological features in the brain networks can be
extracted across multiple scales.

Background

We reviewed some fundamental notions and results from
PH that are relevant to our work. For more mathematical
introductions, see Zomorodian and Carlsson (2005), Adler et al.
(2010), Otter et al. (2017), and Aktas et al. (2019).

Definition 1

Let a topological space U on set X be a subset on 2X , namely,
U ⊂ 2X , if the following conditions are met: (1) 8, X ⊂ U; (2)
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u1, u2 ⊂ U, u1 ∪ u2 ⊂ U; (3) u1, u2 ⊂ U, u1 ∩ u2 ⊂ U; then,
(X, U) is called the topological space of the finite set X (Horak
et al., 2009; Edelsbrunner and Harer, 2010).

Definition 2

In the n-dimensional vector space Rn of the real number
field, there are a set of vectors a0, a1, a2, · · · , an, which
make {a1 − a0, a2 − a0, · · · , an − a0} linearly independent.
We set up E = θ0a0+ θ1a1 + · · · + θnan | θ0 + θ1 + · · · + θn =

1, θi > 0, and the point set E is called an n-dimensional simplex
(Horak et al., 2009).

A zero-dimensional simplex is a point, a one-dimensional
simplex is a line segment, a two-dimensional simplex is
a triangle, and a three-dimensional simplex is a three-
dimensional triangle.

Definition 3

Let K be a finite set of simplexes, if the following conditions
are met: (1) If σ ∈ K, then any face of any simplex in K still
belongs to K. (2) For σ1, σ2 ∈ K, if σ1 ∩ σ2 is an empty set
or σ1 ∩ σ2 is on the common side of σ1 and σ2, then K is
called a simple complex (Horak et al., 2009). The maximum
dimension of a simplex in simplex K is called the dimension of
K, expressed as

dimK ∈ max{dimσ}

Definition 4

For a point cloud aggregation X, let d (, ) represent the
distance between two points in a point cloud set. R (X, ε) is
a Vietoris–Rips (VIPs) complex (Carlsson, 2009) if and only if
its k-dimensional simplex [x0, x1, · · · , xk] satisfies d

(
xi, xj

)
≤

ε, 0 ≤ i, j ≤ k.

Full-scale brain network analysis
model based on PH

The full-scale brain network analysis model designed in
this study according to the PH data analysis method and
the features of electroencephalography (EEG) signal processing
is shown in Figure 1. First, the input of the model is the
EEG time series signal, these electrical signals will convert
to point clouds, see Section “From data to point clouds” for
details. Second, according to Pearson correlation measure, the
adjacency matrix of the nodes coordinate was constructed
in this measure space, the construction process is shown in
Section “Construction of the adjacency matrix.” Subsequently,

the VIPs filtering algorithm is selected to calculate the persistent
topology features of the network in Section “Filtering the brain
network complexes,” and visualize it as barcodes and persistence
diagrams in Section “Visualization of persistent topological
features.” Finally, in Section “Stability analysis of persistent
topological features,” according to the persistence graph stability
theorem, the Bottleneck distance and Wasserstein distance are
selected to analyze the stability of persistence features from
the aspects of local details and global differences, and then
determine the persistence topological features of networks.
Section “Experiment and analysis” is the experimental part of
the above process.

From data to point clouds

The preprocessed EEG time series signal is used as the
input of the model, and the time series are transformed into
points by down-sampling, and then into point clouds after
defining the metric space and distance. However, selecting
an appropriate distance for translate data points to point
clouds is a key issue (Otter et al., 2017). The metric space
in EEG data can choose distance metric, correlation metric,
or synchronization metric. Scalp electrodes are often used
as brain network nodes; however, the collected EEG signals
are non-stationary owing to the volume conduction effect,
and each node in the network has non-linear dynamic
characteristics. Therefore, distance measurement is unsuitable.
According to the preliminary experimental work of Zalesky
et al. (2012), Pearson correlation is selected to measure the
distance between nodes to construct an undirected weighted
network. The detailed construction process will be introduced in
Section “Construction of the simple complex in schizophrenia
task-based data.”

Construction of the adjacency matrix

The preprocessed EEG time series signal was input
into the model and the Pearson correlation measurement
space was selected to construct the adjacent matrix for each
channel data (i.e., point cloud) of the EEG signal. Based
on the characteristics of the EEG signals, an undirected
weighted network was constructed, and the electrode
channels were taken as network nodes, thus signifying a
one-dimensional simplex.

Filtering the brain network complexes

The process of constructing a nested brain network complex
is the process of using PH filtering algorithm to filter. PH is
divided into two parts: homology and persistence. Homology
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FIGURE 1

Framework of the full-scale brain network analysis model based on PH.

in group theory is a tool for classifying topological sets
and measuring the specific structure of a simple complex.
Persistence is used to extract all given ε persistent structures,
that is, to obtain persistent topological features. Among the
features, valuable features can be maintained for long durations,
whereas noise can be maintained for short durations. This
process is called PH. The key steps in constructing the
complex are selecting the appropriate filtering threshold ε and
filtering algorithm.

Selection of the filtering threshold
The selection of the filtering threshold ε is very important

(Otter et al., 2017). The common method for this involves
selecting different ε values to construct the complex and
subsequently finding the ε value corresponding to the effective
result. If ε is too small, then the complex may be the original
point clouds or several edges of the point clouds. If ε is too large,
the original point clouds could form a huge super-dimensional
complex.

Selection of filtering algorithm
For different practical applications, different types of simple

complexes with different attributes must be constructed. Some
are easy to describe mathematically and easy to calculate,
whereas others are simple but inefficient. For example, some
common algorithms for constructing a simple complex are
Cech complex algorithm (Espinoza et al., 2020), VIPs algorithm
(Choudhary, 2017), alpha algorithm (Jamil and Kim, 2019), and
witness algorithm (Guibas and Oudot, 2008). Based on graph
filtering, the VIPs complex algorithm is suitable for complex
brain networks in complex construction based on graph theory;
furthermore, this algorithm has good performance in processing
high-dimensional data. Therefore, the VIPs complex algorithm

(Zomorodian and Graphics, 2010) was selected for filtering in
this experiment.

Visualization of persistent topological
features

When the VIPs filtering algorithm is used to calculate the
persistent topological features of the network, with the change in
filtering threshold ε, the topological features of the VIPs complex
change. During the filtering process, changes in the network
topology are visualized using barcodes or persistence diagrams
(Carlsson et al., 2005; Ghrist, 2008). The filtering process is
used primarily to calculate the p-dimensional Betti number
interval [εbirthεdeath], where the εbirth is the start time of the p-
dimensional hole in the simple complex and the εdeath is the time
of its disappearance. Furthermore, they are also the start and
end points of the barcode in the barcode’s visualization. These
intervals are represented graphically as persistent barcodes, and
the persistence diagrams are equivalent to barcodes. In the
barcodes, the abscissa represents the time when the persistent
features appear, that is, εbirth; whereas the ordinate represents the
time εdeath when the persistent features disappear. The interval
set [εbirthεdeath] obtained in the filtering process is considered
as coordinates of the midpoint of the persistence diagrams,
and all pairs of interval sets represent the coordinates to draw
the persistence diagrams. The abscissa represents the filtering
threshold ε, and the length of [εbirthεdeath] represents the length
of the barcodes. The barcode with a large length represents
the persistent topological feature, and the barcode with a short
length or only one point represents noise. Correspondingly,
the points far from the diagonal represent persistent features,
whereas the points close to the diagonal represent noise in the
persistence diagrams.
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Stability analysis of persistent
topological features

Stability analysis of topological features, i.e., the statistical
analysis of barcodes, is a rapidly developing research
direction (Lee et al., 2017). This requires the development
of corresponding statistical methods and using persistence
diagrams to compare and analyze. In the network matching
problem, a persistence diagram is created for each network;
subsequently, the persistence diagram is compared to obtain
the similarity of the network (Agarwal and Sharathkumar,
2014). Currently, three methods can be used to solve the
statistical analysis of barcodes (Otter et al., 2017). The first
method involves studying the topological features of a random
simple complex (Adler et al., 2010; Young et al., 2017).
Essentially, when studying the PH, the random simple complex
is considered an empty model and the experimental data is
compared with it (Stolz, 2014). The second method, which is
presently the most common method, involves studying the
features of persistence diagrams in specific metric space. The
third method involves mapping the space of the persistence
diagram to a space suitable for statistical analysis and machine
learning methods, such as Banach space (Bubenik, 2015;
Bubenik and Dłotko, 2017; Kerber et al., 2017). Such methods
include the use of algebraic functions, persistence diagrams
and kernel techniques, and persistent landscapes in geometric
function space. The second method, which is experiential
and suitable for brain network analysis, was selected in this
experiment.

The common stability metrics are the Bottleneck distance
and Wasserstein distance. A small disturbance to the
dataset that causes only a small change in the persistence
diagrams before this standard indicates that this is a stable
measurement standard.

Definition 5
Let p ∈ [1,∞), and the p-order Wasserstein distance

(Zavlanos et al., 2008; Kerber et al., 2017) between two diagrams
X and Y is defined as

Wp
[
d
]
(X, Y) = inf

∅:X→Y

[∑
xX

d [x,∅(x)]p

]1/p

,

where ∅ : X→ Y are mappings from X to Y. When p = ∞,
distance d is a measure of a two-dimensional space, and the
above formula is expressed as

W∞
[
d
]
(X, Y) = inf

∅:X→Y
sup
x∈X

d [[x,∅ (x)]] ,

where W∞[d∞] is the Bottleneck distance (Efrat et al., 2001).
The Bottleneck distance measures the maximum distance

between the corresponding matching points of the two
diagrams, which can capture large changes of persistence
diagrams. The Wasserstein distance measures the total distance
between the corresponding matching points of two diagrams,
which can provide the overall change in similarity between
persistence diagrams. In addition, it is sensitive to small changes
in the persistence diagrams.

Experiment and analysis

Experimental data and preprocessing

The dataset used in this study was task-based EEG data;
it was collected from Beijing Huilongguan Hospital. The
experimental paradigm used the modified Sternberg’s short-
term memory scanning task (SMST) (Manoach et al., 1999)
paradigm (see Figure 2). The experimental processing was
divided into three stages, namely, encoding, maintenance, and
retrieval.

The Sternberg’s short-term memory scanning task (SMST)
paradigm (Sternberg, 1966; Jungeblut et al., 2021) is described
in previous studies. Subjects were presented sets of 5 digits from
0 to 9 and were asked to memorize them. In each trial, an
initial fixation was presented for 2 s; next, the 5 digits sets were
presented for 1 s each (encoding phase) (Figure 2). Following a
3-s delay (maintenance phase), a probe stimulus was presented
for 2.5 s (retrieval phase). Participants were asked to indicate
whether the probe number was in the previous set of digits by
pressing buttons. Probe digits that were present or absent from
the encoding phase were presented 50 times each. The reaction
time and probe identification accuracy were recorded. Trials in
which the reaction time was less than 200 ms were excluded
from the analysis.

encoding maintenance retrieval

4 6 7

1s

2 3 2

1s 1s 1s 1s 3s 2.5s

FIGURE 2

SMST paradigm.
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TABLE 1 Demographic and clinical characteristic of patients with
schizophrenia and controls.

Item Control group Schizophrenia
patients

p-value

Numbers Male:20 Male:13 0.8438

Female 15 Female 22

Ages (Years) 37.1± 13.8 (21–58) 40.1± 11.1 (20–51) 0.3129

Education (years) 11.1 (9–15) 11.4 (9–16) 0.9743

Response time (ms) 1034.9± 202.4 1163.3± 259.0 0.0001

Response accuracy 0.945± 0.076 0.929± 0.051 0.0001

PANSS total 52.4 (12.4)

PANSS positive
symptoms

13.3 (5.4)

PANSS negative
symptoms

11.2 (4.2)

PANSS general
symptoms

27.9 (6.2)

The subjects came from the Schizophrenia Spectrum
Disorder Project of Beijing Huilongguan Hospital. All patients
were inpatients of Beijing Huilongguan Hospital and normal
controls were recruited from the surrounding community and
university. To select proper sample size, we have performed
power analysis with G. PowerWin_3.1.9.3 software, and the
parameter settings are as follows: effect size | ρ| was 0.5,
significance level α was 0.05, power value 1 − β was 0.9. This
yielded 34 individuals in per group. So we selected 35 individuals
in this experiment. Thirty-five adult inpatients with a Diagnostic
and Statistical Manual of Mental Disorders-IV (DSM-IV)
(Segal, 2010) diagnosis of schizophrenia were recruited in the

present study. Patients with a history of substance abuse within
6 months prior to the date of the experiment or additional
neuropsychiatry diagnoses were excluded. Current clinical
symptoms were assessed using positive and negative syndrome
scale (PANSS) (Kay et al., 1987). An additional 35 normal
control participants were recruited from the surrounding
community through poster advertisements. Control subjects
with a history of mental illness or substance abuse were
excluded. There were no significant differences between the
two groups with respect to age and sex through using with
the double independent sample t-test method to compare
(Table 1).

After re-reference, segmentation, removal of eye electric
artifacts, and electromyography, the scale of network nodes was
60 and was divided into five bands, namely, θ (4–7 Hz), α

(7–14 Hz), β1 (14–20 Hz), β2 (20–30 Hz), and γ (30–40 Hz)
(Li et al., 2020).

Construction of the adjacency matrix
based on PH

In the experiment, the construction of the adjacency matrix
was based on the Pearson correlation (Benesty et al., 2009;
Li et al., 2017) metric space, wherein the reciprocal of the
Pearson correlation coefficient was taken as the weight of the
connection between nodes and an undirected weighted network
with dimensions of 60 × 60 was generated. The dynamic
adjacency matrix constructed at different sparsity in the coding
stage of working memory (WM) in schizophrenia is shown in
Figure 3.

FIGURE 3

Adjacency matrices at different connection densities in the encoding stage: (A) control group, (B) schizophrenic patients.
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FIGURE 4

Adjacency matrices at different bands and means in the encoding stage: (A) control group, (B) schizophrenic patients.

FIGURE 5

Point clouds from adjacency matrices through ISOMAP algorithm in encoding stage: (A) control group, (B) schizophrenic patients.

Figure 3 shows that: (1) When the network connection
density is small, approximately 20%, there is a significant
difference in brain networks between the control group and
schizophrenic patients. (2) The change in the connection
matrix between the control group and schizophrenic patients
gradually decreased from approximately 50% of the network
connection density; this indicates that the connection matrix
between the control group and schizophrenic patients in
the WM coding stage had significantly different features.
Moreover, the same result can be observed from the
adjacency matrix constructed without the threshold in
Figure 4.

Construction of the simple complex in
schizophrenia task-based data

We used the JavaPlex1 software package developed
by the topology computing group of Stanford University
Based on PLEX library. To construct a complex, the
following four parameters must be determined. (1) The
point clouds coordinate file (.txt), constructed by the
edge weight matrix. (2) Maximum filtering threshold ε.

1 JavaPlex[EB/OL]. http://appliedtopology.github.io/javaplex/.
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TABLE 2 Max filtering threshold ε max.

Band Control group Schizophrenic patients

Full band 5.8886 5.2562

θ 5.1701 4.1602

α 4.7748 4.4373

β1 6.6283 5.4902

β2 6.628 6.5929

γ 6.2851 6.4945

(3) Maximum dimension εmax. (4) Number of filtering
steps (Fs). These parameters were determined according
to the experimental conditions to achieve the best
experimental results.

Construction of point clouds coordinate file
from the edge weight matrix

First, the adjacency matrix was transformed into an edge
weight matrix with each row of “i j ωij.” Next, the high-
dimensional matrix that represents the distance between two
nodes was mapped to the low-dimensional matrix using the
ISOMAP algorithm (Chen et al., 2018). Accordingly, the
distance between two points was equal to their distance in
the high-dimensional matrix after dimensionality reduction
and a group of new sample points were found in the low-
dimensional matrix. The ISOMAP algorithm preserves the
geometric structure of non-linear data and maintains the global
structural information.

The dimensions of 60 × 60 adjacency matrices of the
control group and schizophrenic patients in full band
and other five bands were reduced and reconstructed
using the ISOMAP algorithm; the results are shown in
Figure 5.

Maximum filtering threshold ε

After constructing the edge weight matrix, the maximum
distance between nodes in each stage was used as the maximum
filtering threshold in this experiment. The maximum filtering
thresholds in the full band and five bands are listed in
Table 2.

TABLE 3 Experimental results in three Fs.

Fs 20 100 1000

Complex numbers 512444 512444 512444

Running time(s) 28.3281 35.9219 37.2188

Numbers of persistent features in Dim0 60 60 60

Number of persistent features in Dim1 11 13 16

Number of persistent features in Dim2 2 2 4

Number of persistent features in Dim3 0 0 0

Dimension and number of Fs
The complex numbers: running time, dimension0 (Dim0),

dimension1 (Dim1), dimension2 (Dim2), and dimension3
(Dim3) persistent feature numbers constructed in the three
stages were compared. Herein, Dim0 simplex is the connected
components, Dim1 simplex is the tunnels, Dim2 simplex
is voids, and Dim3 simplex is three-dimensional triangle.
An example of an N-dimensional simplex is shown in
Figure 6.

We set the initial value of the maximum dimension to 3;
that is, the persistent topological features were extracted in the
four dimensions of Dim0, Dim1, Dim2, and Dim3. The number
of Fs was the size of Fs. According to literature (Otter et al.,
2017), Fs is usually set to 20. In this experiment, Fs was set as
20, 100, and 1000 to extract the persistent topological features
and determine the optimal Fs in the model. The experimental
results are summarized in Table 3.

The running time in Table 3 was obtained using a computer
configured as CPU with specifications: Intel (R) core (TM) i7-
6700, 32 GB memory, and Windows x64 bit operating system.
The data presented in Table 3 shows that the total number of
complexes constructed in the three cases remained unchanged.
The running time when Fs was set as 100 was 21.14% longer
than that when Fs was set as 20; however, the number of
features did not change significantly. In addition, when Fs was
1000, the running time was 3.49% more than 100 and the
number of features changed significantly. Therefore, to weigh
the time efficiency and the number of features, Fs can be 20,
100, or 1000 when the amount of data is large. The final Fs was
determined by visualizing persistence diagrams. Figures 7–9

0-simplex 1-simplex 2-simplex 3-simplex

FIGURE 6

Example of complex.
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FIGURE 7

Persistence diagrams (Fs = 20) of the coding stage of the control group.

FIGURE 8

Persistence diagrams (Fs = 100) of the coding stage of the control group.

FIGURE 9

Persistence diagrams (Fs = 1000) of the coding stage of the control group.

show the persistent topological features of the control group
when Fs were selected as 20, 100, and 1000.

Persistent topological features in
schizophrenia patients

Based on the above experimental conclusions, the optimal
parameters are as follows. (1) The maximum dimension was
2. (2) The maximum filtering threshold εmax of the control

group and schizophrenic patients in each band were the values
corresponding to those presented in Table 2. (3) The optimal
Fs was 20. The persistent features of the brain network in the
full band and five bands can be extracted and visualized by
barcodes and persistence diagrams, respectively. The barcodes
of the full band persistent features of schizophrenic patients
and the control group in the coding stage are shown in
Figures 10, 11.

Figures 7–9 show that the features of Dim0 are the same.
For Dim1 and Dim2, when Fs was selected as 100 and 1000,
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FIGURE 10

Barcodes of three dimensions in schizophrenic patients coding stage.

FIGURE 11

Barcodes of three dimensions in the control group coding stage.

although the number of features was greater than that when
Fs was 20, most of the features that were distributed near the
diagonal in Figures 8, 9 were noise. Only those that existed in

the interval of [3.474274, 3.709818] were persistent topological
features. Therefore, the optimal value of Fs was 20. Moreover,
the data presented in Table 3 shows that the number of features
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TABLE 4 Bottleneck distances between persistence diagrams.

Band Dim0 real Dim0 approximate Dim1 real Dim1 approximate

Full band 0.53 0.52 0.75 0.71

θ 0.26 0.22 0.21 0.18

α 0.17 0.09 0.22 0.26

β1 0.30 0.31 0.27 0.35

β2 0.49 0.46 0.29 0.27

γ 0.63 0.59 0.63 0.08

of Dim3 was always zero; thus, the maximum dimension of
filtering was 2.

Stability analysis of persistent
topological features in schizophrenia
patients

In this experiment, we used the Bottleneck distance and
Wasserstein distance as metrics to compare the persistence
diagrams and measure the stability of persistent features. The
bottleneck distance and Wasserstein distance were calculated
using the GUDHI package in Ripser in the Python environment.

Bottleneck distance
The important parameter for calculating the Bottleneck

distance is accuracy e, which was set as 0.01 to calculate the
approximate value; additionally, the same value of 0.01 was set
as the default value to calculate the real value. A comparison of
the calculation results is presented in Table 4.

The data presented in Table 4 shows that except for band
α of Dim0 and band γ of Dim1, the errors between the
approximate value and real value were very small; further, there
may be singular values in the persistent topological features of
the two bands.

Wasserstein distance
The results of the Wasserstein distance of the Dim0 and

Dim1 dimensions in the full band and the five bands of the
control group and schizophrenic patients are presented in
Table 5.

TABLE 5 Wasserstein distances between persistence diagrams.

Band Dim0 Dim1

Full band 1.54 1.12

θ 0.87 1.44

α 0.83 1.62

β1 0.76 0.96

β2 1.98 0.64

γ 2.80 0.59

Results analysis

In this study, a full-scale complex brain network model was
proposed and applied to the WM data analysis of schizophrenic
patients, and the related parameters and algorithms of the model
were selected according to the experimental analysis. The 60-
dimensional matrix was dropped to between 34 and 38 by the
ISOMAP algorithm when the edge weight matrix and point
clouds file were exchanged, which provided a good foundation
for subsequent efficient data processing.

Several important parameters were determined through an
all-round experimental effect comparison, listed as follows.
(1) The maximum dimension was 2. (2) Experiments showed
that there were no persistent topological features in bands
β2, θ, and γ of the control group, and bands β2 and γ of
schizophrenic patients in Dim2. Therefore, the stability analysis
required Dim0 and Dim1. (3) The maximum Fs was 20, which
preserved the important features, improved the time efficiency,
and eliminated noise.

For the stability analysis, the results of the Bottleneck
distance between persistence diagrams revealed that the
approximate value was closer to the real value when the accuracy
parameter e was the default value, but there was slight difference
between the two values when there was no singular value in
the persistence diagrams. In addition, the Bottleneck distance
in bands α and θ was small; that is, the overall change in the
persistence diagrams of the control group and schizophrenic
patients was not significant. Therefore, the output of the model
can be a persistent topological feature of the two bands.

Conclusion and future works

In this study, a full-scale brain network analysis model based
on PH was proposed. The related algorithm and parameters in
the data processing of the model were analyzed and some key
problems were investigated, including the construction of nodes
and edge weight matrix and the selection of filtering threshold
in this network. Furthermore, the model was applied to task-
based schizophrenic patients to extract persistent topological
features and analyze their stability. The experimental results
suggest that the full-scale brain network analysis model can
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be a stable biological reference standard for stability and
noise immunity.

Topological data analysis can extract more hidden
topological signal features, which are difficult to be decoded
using general signal processing tools. Because the low-
dimensional persistent features calculated by VIPs can
capture noise (short survival time in barcodes and data
points near the diagonal in the persistence diagrams) of
the preprocessed data set; hence, the features of persistence
diagrams are almost equivalent to those obtained from noiseless
data. Therefore, applying PH theory to EEG brain network
analysis can solve the problem of threshold selection and
noise elimination.

The implicit goal of this study was to extract the topological
features of the networks that persist across multiple scales in
schizophrenia EEG data. However, there are some limitations
to this study. First, the application of the schizophrenia
EEG brain network analysis method based on PH theory in
large-scale clinical EEG analysis needs further discussion and
continuous research. This is required because most of the
existing filtering algorithms focus on computational efficiency
and cost, and rarely analyze the stability of their applications
in large-scale networks. Second, although persistence diagrams
are important tool in TDA, the use of machine learning
algorithms in the space of persistence diagrams is challenging.
One way to resolve this is by transforming the persistent
diagram into a vectorized summary, which can be easily used
for machine learning tasks. Some alternative representations to
persistence diagrams include persistence landscapes (Bubenik,
2015; Vipond, 2020), persistence images (Adams et al.,
2017; Som et al., 2020), Betti curves (Giusti et al., 2015;
Curto et al., 2021), thermonuclear (Reininghaus et al., 2015),
and persistence entropy (Chintakunta et al., 2015; Atienza
et al., 2020). Applying these transformed features to popular
machine learning methods is another work that our groups
are carrying out; herein, persistent topological features are
extracted using adaptive thresholding during the persistent
homology filtrations. The distribution state of these features
are represented by heatmaps and persistence entropies. The
process states of persistent feature generation are interpreted
by Betti curves and persistence landscapes. Finally, the amount
of calculation of high-dimensional data filtered by the Vietoris-
Rips algorithm is high and increases exponentially. Dynamic
determination of the Vietoris-Rips filtering threshold ε, which
significantly saves calculation time and improves the efficiency
of analysis compared with the well-established approaches, will
be used in our next study.
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