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Asymmetric recurrent time-varying neural networks (ARTNNs) can enable

realistic brain-like models to help scholars explore the mechanisms of the

human brain and thus realize the applications of artificial intelligence, whose

dynamical behaviors such as synchronization has attracted extensive research

interest due to its superior applicability and flexibility. In this paper, we

examined the outer-synchronization of ARTNNs, which are described by the

di�erential-algebraic system (DAS). By designing appropriate centralized and

decentralized data-sampling approaches which fully account for information

gathering at the times tk and ti
k
. Using the characteristics of integral inequalities

and the theory of di�erential equations, several novel suitable outer-

synchronization conditions were established. Those conditions facilitate the

analysis and applications of dynamical behaviors of ARTNNs. The superiority of

the theoretical results was then demonstrated by using a numerical example.

KEYWORDS

asymmetric recurrent time-varying neural networks, di�erential-algebraic system,
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1. Introduction

A novel approach to artificial general intelligence (Yang et al., 2021a,b, 2022a,b,c) are

critical studies in the field of brain-inspired intelligence to realize high-level intelligence,

high accuracy, high robustness, and low power consumption in comparison with state-

of-the-art artificial intelligence works. The research of neural networks can promote or

accelerate the development of artificial intelligence. Due to their dynamic complexity

and a vast range of civil and military applications, neural networks (NNs) garner a

great deal of interest, such as associative memory, classification, identification, and

optimized calculations (Hu and Hu, 2019; Zhang et al., 2021a; Lv et al., 2022). With the

widespread application of NNs and the expansion of study, numerous varieties of NNs

have been proposed by researchers. Consider conventional NNs (CNNs), feedforward

NNs, and recurrent NNs (RNNs), for instance. RNNs are mostly employed to simulate

machine learning (Cho et al., 2014; Shi et al., 2017) and language processing (Mao et al.,

2014; Yin et al., 2017). Combining differential equations with RNNs yields asymmetric

RNNs (ARNNs) (Chang et al., 2019). Currently, relatively few studies have been
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conducted on ARNNs. Ansari (2022) suggested an ARNN

with a single layer for solving linear equations. This research

also provides a straightforward method for setting various

connection weights. Lu et al. (2016) explored outer-

synchronization of ARNNs via a data-sampling control

mechanism. For more related works on the network, refer to

Liu et al. (2019, 2020, 2021), Lv et al. (2022a,b), and Zhang et al.

(2020, 2021b).

The differential-algebraic system (DASs) are a broader

scope of modeling systems, sometimes known as singular

systems or restricted systems. DASs consist of differential

and algebraic equations (AEs), the latter of which illustrates

the limitations of systems. General DASs can be used to

model power systems, while stochastic DASs are used to

simulate just minor changes in transmission line parameters

and system loads (Federico and Zárate-Miñano, 2013).

This category includes aircraft flight trajectory tracking,

optimization control systems, and crafting processes. DASs

have superior modeling and simulation resulting in physics

and engineering compared to differential dynamical systems.

Consequently, research on the applications and theory of

DASs is proliferating. A study of the Lyapunov stability of

equilibria in DASs is presented (Bill and Mareels, 1990).

Constantinos (1988) determined whether a requirement

for additional restrictions satisfied by initial values can be

derived from the differentiation of a subset of nonlinear

DAS equations. In Esposito and Floudas (2000), two global

optimization techniques for DAS parameter estimation were

suggested. Non-regular linear DAS state estimation and

dynamic feedback stabilization have been investigated (Berger

and Reis, 2017).

Synchronization is the dynamic behavior of complex system

interactions. It refers to changes in the rhythm of a self-

sustained periodic oscillator as a result of weak interactions.

There are various types of synchronization, such as quasi,

complete, identical, finite-time, and generalized. There is no

loss of commonality among the various definitions of quai-

synchronization, which is when a system can start from

any beginning value and eventually converge to an error

bound with t. Any two system solutions that are in identical

synchronization will converge to zero with time t. The

system reaches finite-time synchronization reflecting the limit

of system error is equal to zero in a finite time. Due to

their varying control methodologies, various systems exhibit

various synchronization styles. Synchronization, in general,

is a steady state of equilibrium inside a system or between

the master-slave system. For NNs, multi-agents, and DASs,

synchronization as a key research hot topic yielded numerous

useful outcomes. Using the features of Mittag-Leffler functions

and stochastic matrices, Liu et al. (2018) derived two sets of

necessary requirements for the global synchronization of a

connected fractional-order system. Wu et al. (2019) suggested

a discrete-time-based periodic intermittent observation control

to investigate the synchronization of stochastic NNs. The fix-

time synchronization problem of discontinuous fuzzy inertial

NNs under uncertainty parameters is studied by constructing

a new type of discontinuous control input and applying

the Lyapunov-Krasovskii functional technique (Kong et al.,

2021). Chen et al. (2021) coupled aperiodic intermittent

control with event-triggered control, investigated the quasi-

synchronization problem of CDMNN, and derived an effective

criterion.

Sampled-data control is discrete rather than continuous-

time when delivered across a network (Chen and Han, 2013).

By building a proper control mechanism, sampling data

control utilizing only partial data reduces communication costs

significantly. The primary sampling control techniques for

the corresponding system primarily rely on the discrete-time

method, the impulsive system method, and the input delay

method. The selection of the sampling interval is a crucial

component of sampling control. How to use discrete sampling

data control to accomplish the goals of the control system is

the key problem of the research on the condition that the

sampling interval is as large as possible. In recent years, the

control problem of sampled data system has attracted interest of

scholars. The event-triggered strategy control based on sampled

data, for example, has the consensus of researchers (Su et al.,

2017). The sampling interval setting is crucial to the control

mechanism (Syed Ali et al., 2019). How to build the most

efficient and cost-effective sampling-based control system is thus

a topic worthy of investigation. For example, Liu et al. (2017)

offered a stored sampled data control strategy with constant

signal propagation delay to solve the stabilization problem of T-S

fuzzy systems by developing a Lyapunov functional.

Based on the above analysis, this research uses centralized

and decentralized data-sampling principles to explore the

conditions for the ARTNN to achieve outer-synchronization.

Utilizing efficient procedures to maximize access to information

with limited resources is an improvement. To develop a

reasonable solution, we thoroughly evaluated the system’s

structural characteristics and state variables in accordance with

the centralization and decentralization principles and selected

the optimal sampling interval. The practical conditions for the

outer-synchronization of the system are determined from the

characteristics of the DAS. The methodology in this paper has

promoted DAS research.

The remaining sections of the work are structured as stated

below. Section 2 offers the introduction and problem statement.

Section 3 lists principal results and evidence. Section 4 illustrates

the simulations. Section 5 concludes the article.

2. Preliminaries

In this section, a DANN model is established. Some basic

definitions and one useful lemma are presented.
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Enlightened by the frame work of Esposito and Floudas

(2000) and Berger and Reis (2017), the singular ARTNN is

expressed as follows:

E
dxi(t)

dt
= −Cxi(t)+ A

n
∑

j=1

fj(xj(t))+ Ji(t), (1)

where x(t) = (x1(t), · · · , xn(t)) ∈ Rn is the neuron state

vector. E is a singular constant matrix, and we suppose that

0 < rank(E) = r < n. C is the state coefficient matrix with

respect to time t and A is the connection weight matrix between

neurons. C,A ∈ Rn×n are regular. Ji(t) is the external input.

Model (1) is a singular NN with implicit constraints, how to

express constraints explicitly and explore the properties of such

systems is a challenging task.

We assume that C =

(

cr(t) 0

0 cn−r(t)

)

, A =

(

ar,s(t) ar,n−s(t)

an−r,s(t) an−r,n−s(t)

)

and E =

(

Ir 0

0 0

)

. Ir is a r × r

identity matrix.

Then, the model (1) is equivalent to the following system

Ir
dx

(1)
i (t)

dt
=− cr(t)x

(1)
i (t)+ ar,s(t)f

(1)
j (x

(1)
j (t))

+ ar,n−s(t)f
(2)
j (x

(2)
j (t))+ J

(1)
i (t), (2)

0 =− cn−r(t)x
(2)
i (t)+ an−r,s(t)f

(1)
j (x

(1)
j (t))

+ an−r,n−s(t)f
(2)
j (x

(2)
j (t))+ J

(2)
i (t). (3)

where xi(t) = (x
(1)
i (t), x

(2)
i (t)))T with x

(1)
i (t) ∈

Rr , x
(2)
i (t) ∈ Rn−r , fj(xj(t)) = (f

(1)
j (x

(1)
j (t)), f

(2)
j (x

(2)
j (t)))T

with f
(1)
j (x

(1)
j (t)) ∈ Rr , f

(2)
j (x

(2)
j (t)) ∈ Rn−r , and

Ji(t) = (J
(1)
i (t), J

(2)
i (t))T .

Models (2) and (3) are equivalent to model (1) with explicit

constraints when viewed as a whole. Evidently, model (2) is still

a differential system, and a class of AEs constrains model (3).

AEs are also nonlinear terms. Thus, DAARTNN is created by

merging models (2) and (3).

Remark 2.1 Obviously, when rank(E) = 0, the singular ARTNN

is an ordinary ARTNN. Here, we assume that 0 < rank(E) =

r < n is held only to show that the methods and conclusions are

also applicable to general NN models.

The coefficient matrices of models 2 and 3 are of different

dimensions, but in this paper, we assume that both the DEs and

the AEs are in the same dimension. Therefore, with a combined

model (2) and (3), we can obtain DAARTNN as follows























































dxi(t)
dt

= −ci(t)xi(t)+
n
∑

j=1
aij(t)fj(xj(t))

+
n
∑

j=1
bij(t)gj(yj(t))+ Ji

0 = −di(t)yi(t)+
n
∑

j=1
pij(t)hj(xj(t))

+
n
∑

j=1
qij(t)kj(yj(t))+ Ii

(4)

where ci(t), di(t), aij(t), bij(t), pij(t), and qij(t) are piece-wised

continuous and bounded. fj(∗), gj(∗), hj(∗), and kj(∗) satisfy

0 ≤
fj(u)− fj(v)

u− v
≤ Fj, 0 ≤

gj(u)− gj(v)

u− v
≤ Gj

0 ≤
hj(u)− hj(v)

u− v
≤ Hj, 0 ≤

kj(u)− kj(v)

u− v
≤ Kj. (5)

for all x 6= y, where Fj > 0,Gj > 0,Hj > 0, and Kj > 0 are all

constants and j = 1, . . . , n.

Under the strategy of centralized data sampling, the

continuous time variable t is replaced by a set of discrete

sampling time variable tk. After that, the model (4) can be

rewritten as































































dxi(t)
dt

= −ci(t)xi(tk)+
n
∑

j=1
aij(t)fj(xj(tk))

+
n
∑

j=1
bij(t)gj(yj(tk))+ Ji

0 = −di(t)yi(tk)+
n
∑

j=1
pij(t)hj(xj(tk))

+
n
∑

j=1
qij(t)kj(yj(tk))+ Ii

(6)

for j = 1, . . . , n.
{

tk

}+∞

k=0
is an increasing time sequence. At each

time point tk, all neurons broadcast their state to out-neighbors

to receive the state information sent by in-neighbors.

Similarly, under the strategy of decentralized data-sampling,

the system (1) can be rewritten as follows:























































dxi(t)
dt

= −ci(t)xi(t
i
k
)+

n
∑

j=1
aij(t)fj(xj(t

j
k
))

+
n
∑

j=1
bij(t)gj(yj(t

j
k
))+ Ji

0 = −di(t)yi(t
i
k
)+

n
∑

j=1
pij(t)hj(xj(t

j
k
))

+
n
∑

j=1
qij(t)kj(yj(t

j
k
))+ Ii

(7)

for j = 1, . . . , n. The increasing time sequence
{

ti
k

}+∞

k=0
ordered

as 0 = ti0 < ti1 < · · · < ti
k

< · · · is uniform for all
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the neuron i ∈
{

1, . . . , n
}

. Each neuron broadcasts its state

to its out-neighbors and receives the state information sent by

in-neighbors at time ti
k
.

Remark 2.2 For purposes of sampling-data control, the system

only updates its information at periods tk and t
i
k
. The distinction

between tk and ti
k

is that tk is centralized whereas ti
k

is

decentralized. There is a variance in the time at which the

information is updated. In the centralized style, information is

transferred at a specific time point t1, t2, t3, . . . , tk, . . ., but in the

decentralized style, information is transferred at a specific time

point t11 , t
2
1 , . . . , t

n
1 , t

1
2 , t

2
2 , · · · , t

n
2 , · · · , t

1
k
, t2
k
, · · · .

To begin the discussion, we give the following definitions

and lemmas.

Definition 1. There exist a positive constant ςi, (i = 1, . . . , n),

the l1 norm is defined as

‖x‖1,ξ =
n
∑

j=1
ςi|xi|.

Definition 2. Consider any two trajectories

(x(t), y(t)), (u(t), v(t)) of system (4) which starts from different

initial values (x(0), y(0)) and (u(0), v(0)). The system (4) is said

to achieve outer-synchronization if

lim
t→+∞

‖x(t)− u(t)‖ = 0, lim
t→+∞

‖y(t)− v(t)‖ = 0,

where ‖ · ‖ is the norm of state.

We aimed to transform DAS to the form of regular

differential equations by differential operations since they are a

combination of differential equations and AEs. The index of the

DAS is the quantity of differentials employed in this procedure.

For instance, a differential equation is index-0.

Lemma 1. The DAARTNN is said to be index-1, if and only if

−di(t)+

n
∑

j=1

pij(t)h
′

j(xj(t))+

n
∑

j=1

qij(xj(t))k
′

j(yj(t)) > 0

Based the research, we set

µj(ξ , t) = cj(t)− Fja
+
jj (t)− Fj

∑

i 6=j

ςi

ςj
|aij(t)|,

vj(ξ , t) = Gjb
+
jj (t)+ Gj

∑

i 6=j

ςi

ςj
|bij(t)|,

σj(t) =

p+jj (t)Hj + Hj
∑

i 6=j
|pij(t)|

dj(t)− q+jj (t)− Kj
∑

i 6=j
|qij(t)|

,

M1 = max
i≤j≤n

sup
t≥t0

{cj(t)+ Fja
+
jj (t)+ Fj

∑

j 6=i

ςi

ςj
|aij(t)|},

M2 = max
i≤j≤n

sup
t≥t0

{Gjb
+
jj (t)+ Gj

∑

i 6=j

ςi

ςj
|bij(t)|},

where a+ii (t) = max{aii(t), 0}, b
+
ii (t) = max{bii(t), 0}, a

−
ii (t) =

min{aii(t), 0}, and b−ii (t) = min{bii(t), 0}.

Because vj(ξ , t), δj(t) are bounded, this means that there is a

constant δ satisfying the following conditions

sup
t∈[0,+∞)

σj(t) ≤ δ,

sup{µj(ξ , s)− δvj(ξ , s)} ≤ N.

3. Main results

This section shows how to build the controls of the system

using the settings from the previous section and the centralized

and decentralized sampling of data principles.

3.1. Structure-dependent centralized and
decentralized data sampling

Denote w(t) = [w1(t), . . . ,wn(t)]
T and z(t) =

[z1(t), . . . , zn(t)]
T withwi(t) = xi(t)−ui(t), zi(t) = yi(t)−vi(t),

and f̄i(t) = fi(xi(t))−fi(ui(t)), ḡi(t) = gi(yi(t))−gi(vi(t)), h̄i(t) =

hi(xi(t))− hi(ui(t)), k̄i(t) = ki(yi(t))− ki(vi(t)). Then it holds



























dwi(t)
dt

= −ci(t)wi(tk)+
n
∑

j=1
aij(t)f̄j(tk)+

n
∑

j=1
bij(t)ḡj(tk)

0 = −di(t)zi(tk)+
n
∑

j=1
pij(t)h̄j(tk)+

n
∑

j=1
qij(t)k̄j(tk),

(8)

for all t ∈ [tk, tk+1), i = 1, . . . , n and k = 0, 1, 2, . . . .

The following theorem gives conditions that guarantee the

system (4) reaches outer-synchronization via l1−norm.

Theorem 1. Assume that εa ∈ (0, 1) and ε0 > 0 with Nεa ≤

ε0(2 − εa). Suppose µj(ξ , s) − δvj(ξ , s) ≥ ε0. Set an increasing

time-point sequence {tk} as

tk+1 = sup
τ≥tk

{

τ : min
j=1,...,n

∫ t

tk

[µj(ξ , s)−

δvj(ξ , s)]ds ≤ εa,∀t ∈ (tk, τ ]

}

. (9)

Proof. Since µj(ξ , s) − δvj(ξ , s) ≥ ε0 and the positive upper

bound of it, we have

ε0(t − tk) ≤

∫ t

tk

[µj(ξ , s)− δvj(ξ , s)]ds ≤ N(t − tk), (10)
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where j = 1, 2, . . . , n and t ∈ [tk, tk+1]. Based on data-sampling

principles (9), the state will not be sampled until the following

equation holds:

∫ t

tk

[µj(ξ , s)− δvj(ξ , s)]ds = εa, (11)

when t = tk+1, from (10) and (11),

ε0(tk+1 − tk) ≤ εa ≤ N(tk+1 − tk),

then

εa

N
≤ tk+1 − tk ≤

εa

ε0
, (12)

so,

∫ tk+1

tk

[µj(ξ , s)− δvj(ξ , s)]ds ≤ N(tk+1 − tk) ≤
Nεa

ε0
, (13)

combined (12) and (13), we have

εa ≤

∫ tk+1

tk

[µj(ξ , s)− δvj(ξ , s)]ds ≤ 2− εa. (14)

Consider wi(t)(i = 1, . . . , n) for each t ∈ [tk, tk+1], we have

n
∑

i=1

ςi|wi(t)|

=

n
∑

i=1

ςi|wi(tk)+

∫ t

tk

ẇi(s)ds|

=

n
∑

i=1

|ςiwi(tk)−

∫ t

tk

[ci(s)− aii(s)mi(s)]dsςiwi(tk)

+

∫ t

tk

[bii(s)ni(s)]dsςizi(tk)+
∑

j 6=i

∫ t

tk

[aij(s)
ςi

ςj
mj(tk)]ds

ςjwj(tk)+
∑

j 6=i

∫ t

tk

[bij(s)
ςi

ςj
nj(tk)]dsςjzj(tk)|, (15)

with

mj(t) =



















f̄j(t)

wj(t)
, wj(t) 6= 0

0, wj(t) = 0

(16)

nj(t) =



















ḡj(t)

zj(t)
, zj(t) 6= 0

0, zj(t) = 0

(17)

which implies 0 ≤ mj(t) ≤ Fj, 0 ≤ nj(t) ≤ Gj for all j = 1, . . . , n

and k = 0, 1, . . . , from above, note

(aii(s))
−Fi ≤ aii(s)mi(t) ≤ (aii(s))

+Fi

(bii(s))
−Gi ≤ bii(s)ni(t) ≤ (bii(s))

+Gi.

Then, it follows

n
∑

i=1

ςi|wi(t)|

≤

n
∑

j=1

{

|1−

∫ t

tk

[cj(s)− a+jj (s)Fj]ds

+
∑

j 6=i

ςi

ςj

∫ t

tk

[|aij(s)|Fj]ds|

}

ςj|wj(tk)|

+

n
∑

j=1

{

|

∫ t

tk

[b+jj (s)Gj]ds

+
∑

j 6=i

ςi

ςj

∫ t

tk

[|bij(s)|Gj]ds|

}

ςj|zj(tk)|. (18)

For static equation

di(t)zi(tk) =pii(t)h̄i(tk)+ qii(t)k̄i(tk)

+
∑

j 6=i

(pij(t)h̄j(tk)+ qij(t)k̄j(tk))

dj(t)zj(tk) =pjj(t)rj(tk)wj(tk)+ qjj(t)sj(tk)zj(tk)

+
∑

j 6=i

(pij(t)rj(tk)wj(tk)+ qij(t)sj(tk)zj(tk)), (19)

with

rj(t) =



















h̄j(t)

wj(t)
, wj(t) 6= 0

0, wj(t) = 0

(20)

sj(t) =



















k̄j(t)

zj(t)
, zj(t) 6= 0

0, zj(t) = 0.

(21)

From above, we have

[dj(t)− qjj(t)sj(tk)−
∑

j 6=i

qij(t)sj(tk)]zj(tk)

=[pjj(t)rj(tk)+
∑

j 6=i

pij(t)rj(tk)]wj(tk), (22)

we can obtain

zj(tk) =

pjj(t)rj(tk)+
∑

j 6=i
pij(t)rj(tk)

dj(t)− qjj(t)sj(tk)−
∑

j 6=i
qij(t)sj(tk)

wj(tk). (23)

Note that
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(pii(s))
−Hi ≤ pii(s)mi(tk) ≤ (pii(s))

+Hi

(qii(s))
−Ki ≤ qii(s)ni(tk) ≤ (qii(s))

+Ki,

thus we can get

zj(tk) ≤ σj(t)wj(tk), (24)

where

σj(t) =

pjj(t)rj(tk)+
∑

j 6=i
pij(t)rj(tk)

dj(t)− qjj(t)sj(tk)−
∑

j 6=i
qij(t)sj(tk)

. (25)

Combining (18) and (25), we can observe

n
∑

i=1

ςi|wi(t)|

≤

n
∑

j=1

{

|1−

∫ t

tk

[cj(s)− a+jj (s)Fj]ds

+
∑

j 6=i

ςi

ςj

∫ t

tk

[|aij(s)|Fj]ds|

}

ςj|wj(tk)|

+

n
∑

j=1

{

|

∫ t

tk

[b+jj (s)Gj]ds+
∑

j 6=i

ςi

ςj

∫ t

tk

[|bij(s)|Gj]ds|

}

σj(t)ςj|wj(tk)

≤

n
∑

j=1

|1−

∫ t

tk

[µj(ξ , s)ds− δvj(ξ , s)]ds|ςj|wj(tk)|, (26)

since the equality (9) occurs at t = tk+1, thus we have

n
∑

i=n

ςi|wi(tk+1)| ≤ (1− εa)

n
∑

i=n

ςi|wi(tk)|,

which implies

lim
t→+∞

‖w(tk)‖1,ξ = 0.

In addition, for each t ∈ (tk, tk+1), from the rule (9), the

inequality (16) implies that ‖w(t)‖1,ξ ≤ ‖w(tk)‖1,ξ . Hence, it

holds

lim
t→+∞

‖w(t)‖1,ξ = 0,

then from condition (11), we have

lim
t→+∞

‖z(t)‖1,ξ = 0.

The out-synchronization of the system (4) is proved.

Remark 3.1. The sampling interval is positive. Each interval has

a common positive lower bound based on (12). This result avoids

the Zeno phenomenon during sampling.

Under decentralized principles, this section will consider the

system below



















dwi(t)
dt

= −ci(t)wi(t
i
k
)+

n
∑

j=1
aij(t)f̄j(t

j
k
)+

n
∑

j=1
bij(t)ḡj(t

j
k
)

0 = −di(t)zi(t
i
k
)+

n
∑

j=1
pij(t)h̄j(t

j
k
)+

n
∑

j=1
qij(t)k̄j(t

j
k
),

(27)

for all t ∈ [t
j
k
, t
j
k+1

), i = 1, . . . , n and k = 0, 1, 2, · · · .

Remark 3.2. To further illustrate the mechanism of

decentralizing the sampling data, let lk be the time point

at which events are updated across the network. Then lk are

satisfied as follows

{lk}
+∞
k=0

=

+∞
⋃

k=0

n
⋃

i=1

tik,

The following theorem gives conditions that guarantee the

convergence of system (27) via l1 norm.

Theorem 2. Let εb ∈ (0, 1), ε0 > 0, and Nεb ≤ ε0 set at a

time point tk, the state will renew information until the following

condition holds:

tik+1 = sup
τ≥ti

k

{

τ : min
j=1,...,n

∫ t

ti
k

[µj(ξ , s)−

δvj(ξ , s)]ds ≤ εb,∀t ∈ (tik, τ ]

}

(28)

for i = 1, 2, . . . , n and k = 0, 1, 2, · · · , then the condition

guarantees the system (4) to reach outer-synchronization.

Proof. Just similar to (12)

εb

N
≤ tik+1 − tik ≤

εb

ε0
, (29)

εb ≤

∫ ti
k+1

ti
k

[µj(ξ , s)− δvj(ξ , s)]ds ≤ N(tik+1 − tik)

≤
Nεb

ε0
≤ 1. (30)

Consider wi(t) for any neuron i at triggering time ti
k+1

,

where i = 1, . . . , n, we have

n
∑

i=1

ςi|wi(t
i
k+1)|

=

n
∑

i=1

sign(wi(t
i
k+1))ςi[wi(t

i
k)+

∫ ti
k+1

ti
k

ẇi(s)ds],

=

n
∑

i=1

sign(wi(t
i
k+1))ςiwi(t

i
k)−

n
∑

i=1

sign(wi(t
i
k+1))

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2022.1029235
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fncom.2022.1029235

ςi

∫ ti
k+1

ti
k

[−ciwi(t
i
k)+

n
∑

j=1

aij(s)f̄j(w(t
j
k
))

+

n
∑

j=1

bij(s)ḡj(z(t
j
k
))]ds,

=

n
∑

i=1

sign(wi(t
i
k+1))ςiwi(t

i
k)

−

n
∑

i=1

sign(wi(t
i
k+1))ςiwi(t

i
k)

∫ ti
k+1

ti
k

cids

+

n
∑

i=1

sign(wi(t
i
k+1))ςi f̄i(w(t

j
k
))

∫ ti
k+1

ti
k

a+ii (s)ds

+

n
∑

i=1

sign(wi(t
i
k+1))ςiḡi(z(t

j
k
))

∫ ti
k+1

ti
k

b+ii (s)ds

+
∑

j 6=i

sign(wi(t
i
k+1))ςi

n
∑

i=1

f̄j(w(t
j
k
))

∫ ti
k+1

ti
k

a+ij (s)ds

+
∑

j 6=i

sign(wi(t
i
k+1))ςi

n
∑

j=1

ḡj(z(t
j
k
))

∫ ti
k+1

ti
k

b+ij (s)ds,

(31)

then, it holds

n
∑

i=1

ςi|wi(t
i
k+1)|

≤

n
∑

j=1

{

1−

∫ t
j

k+1

t
j

k

[cj − Fja
+
jj (s)]ds

+ Fj
∑

j 6=i

ςi

ςj

∫ t
j

k+1

t
j

k

|aij(s)|ds

}

ςj|wj(t
j
k
)|

+

n
∑

j=1

{∫ t
j

k+1

t
j

k

Gjb
+
jj (s)ds

+ Gj

∑

j 6=i

ςi

ςj

∫ ti
k+1

ti
k

|bij(s)|ds

}

ςj|zj(t
j
k
)|.

(32)

From static equation of system (27), we have

zj(t
j
k
) =

pjj(t)rj(t
j
k
)+

∑

j 6=i
pij(t)rj(t

j
k
)

dj − qjj(t)sj(t
j
k
)−

∑

j 6=i
qij(t)sj(t

j
k
)
wj(t

j
k
)

≤

p+jj (t)Hj +
∑

j 6=i
|pij(t)|Hj

dj − q+jj (t)Kj −
∑

j 6=i
|qij(t)|Kj

wj(t
j
k
)

=σj(t)wj(t
j
k
). (33)

Then, combining (32) and (33) we can get

n
∑

i=1

ςi|wi(t
i
k+1)|

≤

{ n
∑

j=1

{1−

∫ t
j

k+1

t
j

k

[cj − Fja
+
jj (s)]ds

+ Fj
∑

j 6=i

ςi

ςj

∫ ti
k+1

ti
k

|aij(s)|ds}

+

n
∑

j=1

{

∫ t
j

k+1

t
j

k

Gjb
+
jj (s)ds

+ Gj

∑

j 6=i

ςi

ςj

∫ ti
k+1

ti
k

|bij(s)|}σj(t)

}

ςjwj(t
j
k
)

≤(1− εb)ςjwj(t
j
k
). (34)

Based the triggering rule (28), we can obtain

n
∑

i=1

ςi|wi(t
i
k+1)| ≤ (1− εb)ςjwj(t

j
k
),

(35)

which means

lim
ti
k
→+∞

‖w(ti
k
)‖1 = 0.

For any time t ∈ (ti
k
, ti
k+1

], the state wi(t) becomes

n
∑

i=1

ςi|wi(t)|

≤

n
∑

j=1

{

1−

∫ t

t
j

k

[cj − a+jj (s)Fj]ds

+ Fj
∑

j 6=i

ςi

ςj

∫ t

ti
k

|aij(s)|ds+ σj(t)Gj

∫ t

t
j

k

b+jj (s)ds

+ σj(t)Gj

∑

j 6=i

ςi

ςj

∫ t

t
j

k

b+jj (s)ds

}

ςj|wj(tk)|

≤

n
∑

j=1

{

1−

∫ t

ti
k

[cj − a+jj (s)Fj]ds

+ Fj
∑

j 6=i

ςi

ςj
[

∫ t

ti
k

|aij(s)|ds+

∫ τ

t
|aij(s)|ds]

+ σj(t)Gj

∫ t

t
j

k

b+jj (s)ds

+ σj(t)Gj

∑

j 6=i

ςi

ςj
[

∫ t

t
j

k

b+jj (s)ds

+

∫ τ

t
|bij(s)|ds]

}

ςj|wj(tk)|

≤(1− εb)‖w(t
i
k)‖, (36)
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where ti
k+1

≥ τ > t > ti
k
. Thus

‖w(ti
k+1

)‖1 ≤ ‖w(t)‖1 ≤ (1− εb)‖w(t
i
k
)‖1,

for any t ∈ (ti
k
, ti
k+1

] and i = 1, . . . , n, which implies

lim
t→+∞

‖w(t)‖1 ≤ lim
ti
k
→+∞

‖w(ti
k
)‖1 = 0.

The proof for the out-synchronization of the system (4) is

completed.

Remark 3.3. Theorems 1 and 2 are based on centralized and

decentralized data sampling under the system structure, and

the research process is extremely dependent on the structural

characteristics of the model.

3.2. State-dependent centralized and
decentralized data sampling

In this section, we established a sampling controlmechanism

according to the state characteristics of the system. Under this

sampling mechanism, neurons transmit and update information

at the next triggering time point.

In system (6), the state measurement error is defined as

ei(t) = wi(tk)− wi(t),

and the state measurement of static equation is as follows:

ηi(t) = zi(tk)− zi(t),

where t ∈ [tk, tk+1), i = 1, . . . , n and k = 0, 1, 2, . . .

Theorem 3. Let h̄(t) be a positive decreasing continuous

function on [0,+∞) with ϕ(0) > 0. Set tk+1 as the triggering

time point such that

tk+1 = max
ı≥tk

{ı : ‖e(t)‖ ≤ h̄(t),∀t ∈ (tk, ı)}, (37)

for i = 1, . . . , n and k = 0, 1, 2 . . . There exist ςi, ifµj(ξ , t) ≥ ε3,

lim
t→+∞

h̄(t) = 0,

then, the system (4) reaches out-synchronization.

Proof. Consider wi(t) for any neuron i(i = 1, . . . , n) and

ςi > 0(i = 1, . . . , n)

d‖w(t)‖1

dt

=

n
∑

i=1

ςisign(wi(t))
d‖wi(t)‖

dt

=

n
∑

i=1

ςisign(wi(t))[−ciwi(tk)+

n
∑

j=1

aij(t)f̄j(wj(tk))

+

n
∑

j=1

bij(t)ḡj(zj(tk))],

=

n
∑

i=1

ςisign(wi(t))[−ciwi(t)+

n
∑

j=1

aij(t)f̄j(wj(t))

+

n
∑

j=1

bij(t)ḡj(zj(t))]+

n
∑

i=1

ςisign(wi(t))[−ci(wi(tk)− wi(t)]

+

n
∑

i=1

ςisign(wi(t))

n
∑

j=1

aij(t)[f̄j(wj(tk))− f̄j(wj(t))]

+

n
∑

i=1

ςisign(wi(t))

n
∑

j=1

bij(t)[ḡj(zj(tk))− ḡj(zj(t))],

(38)

from (38), it holds

d‖w(t)‖1

dt

=

n
∑

i=1

ςisign(wi(t))
d‖wi(t)‖

dt

≤−

n
∑

i=1

ςici|wi(t)| + ςici|ei(t)| +

n
∑

i=1

ςia
+
ii (t)Fi|wi(t)|

+

n
∑

i=1

ςib
+
ii (t)Gi|zi(t)| +

n
∑

i=1

ςia
+
ii (t)Fi|ei(t)|

+

n
∑

i=1

ςib
+
ii (t)Gi|ηi(t)| +

n
∑

j=1

∑

j 6=i

ςi|aij|Fj|wj(t)|

+

n
∑

j=1

∑

j 6=i

ςi|aij|Fj|ej(t)| +

n
∑

j=1

∑

j 6=i

ςi|bij|Gj|zj(t)|

+

n
∑

j=1

∑

j 6=i

ςi|bij|Gj|ηj(t)|,

=−

n
∑

j=1

[cj − Fja
+
jj (t)− Fj

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|wj(t)|

+

n
∑

j=1

[cj + Fja
+
jj (t)+

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|ej(t)|

+ [Gjb
+
jj (t)+ Gj

∑

j 6=i

ςi

ςj
|bij(t)|]ςj|zj(t)|

+ [Gjb
+
jj (t)+ Gj

∑

j 6=i

ςi

ςj
|bij(t)|]ςj|ηj(t)|. (39)

For static equation, we have

di(zi(tk)− zi(t)) =

n
∑

j=1

pij(t)[h̄j(wj(tk))− h̄j(wj(t))]

+

n
∑

j=1

qij(t)[k̄j(zj(tk))− k̄j(zj(t))], (40)
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so, we can get

diηi(t) ≤

n
∑

j=1

pij(t)Hjej(t)+

n
∑

j=1

qij(t)Kjηj(t), (41)

we can also get

di(t)|ηi(t)| ≤[p+jj (t)Hj +
∑

j 6=i

|pij(t)|Hj]|ej(t)|

+ [q+jj (t)Kj +
∑

j 6=i

|qij(t)|Kj]|ηj(t)|, (42)

so,

|ηj(t)| ≤

p+jj (t)Hj +
∑

j 6=i
|pij(t)|Hj

dj(t)− q+jj (t)Kj −
∑

j 6=i
|qij(t)|Kj

|ej(t)|

=σj(t)|ej(t)|. (43)

From (12) and (13), we can get

d‖w(t)‖1

dt

≤−

n
∑

j=1

[cj(t)− Fja
+
jj (t)− Fj

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|wj(t)|

+

n
∑

j=1

[cj(t)+ Fja
+
jj (t)+ Fj

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|ej(t)|

+

n
∑

j=1

Gjb
+
jj (t)+ Gj

∑

j 6=i

ςi

ςj
|bij(t)|]σj(t)ςj|wj(t)|

+

n
∑

j=1

Gjb
+
jj (t)+ Gj

∑

j 6=i

ςi

ςj
|bij(t)|]σj(t)ςj|ej(t)|, (44)

which implies

d‖w(t)‖1

dt
≤− µj(t)

n
∑

j=1

ςj|wj(t)| +M1

n
∑

j=1

ςj|ej(t)|

+ δvj(t)ςj|wj(t)| + δv(t)ςj|ej(t)|

≤[−µj(t)+ δv(t)]‖w(t)‖1

+ [M1 + δv(t)]h̄(t)

≤− ε3‖w(t)‖ + (M1 + δM2)h̄(t), (45)

forM1,M2 > 0, then we have

‖w(t)‖

≤‖w(t0)‖e
−ε2(t−t0) + (M1 + δM2)

∫ t

t0

e−ε2(t−s)‖h̄(s)‖ds

=e−ε2(t−t0)[‖w(t0)‖ + (M1 + δM2)

∫ t

t0

eε2(s−t0)‖h̄(s)‖ds],

(46)

for s ∈ [t0, t], t ∈ [tk, tk+1).

Based on the L
′
Hospital rule, we have

lim
t→+∞

‖w(t)‖ = lim
t→+∞

M1 + δM2

eε2(t−t0)

∫ t

t0

eε3(s−t0)‖h̄(s)‖ds,

= lim
t→+∞

M1 + δM2

ε3
‖h̄(t)‖,

=0. (47)

This means that the system (4) achieve

outer-synchronization. The proof is completed.

In system (27), the state measurement error is defined as

ei(t) = wi(t
i
k
)− wi(t),

and the state measurement of static equation is as follows:

ηi(t) = zi(t
i
k
)− zi(t),

where t ∈ [ti
k
, ti
k+1

), i = 1, . . . , n and k = 0, 1, 2, . . . . The

push-based decentralized updating rule is given as follows.

Theorem 4 Let  (t) be a positive decreasing continuous function

on [0,+∞) with φ(0) > 0. Set ti
k+1

as the triggering time point

such that

tik+1 = sup
ı≥ti

k

{ı : |ei(t)| ≤ i(t),∀t ∈ (tik, ı)}, (48)

for i = 1, · · · , n and k = 0, 1, 2, . . ., there exist ςi, if µj(ξ , t) ≥

ε4,

lim
t→+∞

i(t) = 0,

then the system (4) reaches out-synchronization.

Proof. Consider wi(t) for any neuron i(i = 1, . . . , n) and ςi >

0(i = 1, . . . , n)

d‖w(t)‖1

dt

=

n
∑

i=1

ςisign(wi(t))
dwi(t)

dt

=

n
∑

i=1

ςisign(wi(t))[−ci(t)wi(t
i
k)+

n
∑

j=1

aij(t)f̄j(wj(t
j
k
))

+

n
∑

j=1

bij(t)ḡj(zj(t
j
k
))],

=

n
∑

i=1

ςisign(wi(t))[−ci(t)wi(t
i
k)+

n
∑

j=1

aij(t)f̄j(wj(t))

+

n
∑

j=1

bij(t)ḡj(zj(t))]

+

n
∑

i=1

ςisign(wi(t))[−ci(wi(t
i
k)− wi(t))]
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+

n
∑

i=1

ςisign(wi(t))

n
∑

j=1

aij(t)[f̄j(wj(t
j
k
))− f̄j(wj(t))]

+

n
∑

i=1

ςisign(wi(t))

n
∑

j=1

bij(t)[ḡj(zj(t
j
k
))− ḡj(zj(t))], (49)

from (49), it holds

d‖w(t)‖1

dt

=

n
∑

i=1

ςisign(wi(t))
d‖wi(t)‖

dt

≤−

n
∑

i=1

ςici|wi(t)| + ςici|ei(t)| +

n
∑

i=1

ςia
+
ii (t)Fi|wi(t)|

+

n
∑

i=1

ςib
+
ii (t)Gi|zi(t)| +

n
∑

i=1

ςia
+
ii (t)Fi|ei(t)|

+

n
∑

i=1

ςib
+
ii (t)Gi|ηi(t)| +

n
∑

j=1

∑

j 6=i

ςi|aij|Fj|wj(t)|

+

n
∑

j=1

∑

j 6=i

ςi|aij|Fj|ej(t)| +

n
∑

j=1

∑

j 6=i

ςi|bij|Gj|zj(t)|

+

n
∑

j=1

∑

j 6=i

ςi|bij|Gj|ηj(t)|

≤ −

n
∑

j=1

[cj − Fja
+
jj (t)− Fj

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|wj(t)|

+

n
∑

j=1

[cj + Fja
+
jj (t)+

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|ej(t)|

+ [Gjb
+
jj (t)+ Gj

∑

j 6=i

ςi

ςj
|bij(t)|]ςj|zj(t)|

+ [Gjb
+
jj (t)+ Gj

∑

j 6=i

ςi

ςj
|bij(t)|]ςj|ηj(t)|. (50)

For static equation, we have

di(zi(t
j
k
)− zi(t))

=

n
∑

j=1

pij(t)[h̄j(wj(t
j
k
))− h̄j(wj(t))]

+

n
∑

j=1

qij(t)[k̄j(zj(t
j
k
))− k̄j(zj(t))], (51)

so, we can get

diηi(t) ≤

n
∑

j=1

pij(t)Hjej(t)+

n
∑

j=1

qij(t)Kjηj(t), (52)

we also can get

di|ηi(t)| ≤[p+jj Hj +
∑

j 6=i

|pij(t)|Hj]|ej(t)|

+ [q+jj Kj +
∑

j 6=i

|qij(t)|Kj]|ηj(t)|, (53)

so,

|ηj(t)| ≤

p+jj (t)Hj +
∑

j 6=i
|pij(t)|Hj

dj − q+jj (t)Kj −
∑

j 6=i
|qij(t)|Kj

|ej(t)|

=σj(t)|ej(t)|. (54)

From (50) and (54), we can get

d‖w(t)‖1

dt

≤−

n
∑

j=1

[cj − Fja
+
jj − Fj

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|wj(t)|

+

n
∑

j=1

[cj + Fja
+
jj + Fj

∑

j 6=i

ςi

ςj
|aij(t)|]ςj|ej(t)|

+

n
∑

j=1

Gjb
+
jj + Gj

∑

j 6=i

ςi

ςj
|bij(t)|]σj(t)ςj|wj(t)|

+

n
∑

j=1

Gjb
+
jj + Gj

∑

j 6=i

ςi

ςj
|bij(t)|]σj(t)ςj|ej(t)|,

(55)

which implies

d‖w(t)‖1

dt
≤− µ1(t)

n
∑

j=1

ςj|wj(t)| +M1

n
∑

j=1

ςj|ej(t)|

+ δv(t)ςj|wj(t)| + δv(t)ςj|ej(t)|

≤[−µj(t)+ δv(t)]‖w(t)‖1

+ [M1 + δM2]

n
∑

j=1

ςjj(t)

≤− ε4‖w(t)‖ + [M1 + δM2]‖ (t)‖, (56)

then, we have

‖w(t)‖ ≤‖w(ti0)‖e
−ε4(t−ti0) + (M1 + δM2)

∫ t

ti0

e−ε4(t−s)‖ (s)‖ds

=e−ε4(t−ti0)[‖w(ti0)‖ + (M1 + δM2)
∫ t

ti0

eε4(s−ti0)‖ (s)‖ds], (57)

for s ∈ [ti0, t], t ∈ [ti
k
, ti
k+1

).
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Based on the L
′
Hospital rule, we have

lim
t→+∞

‖w(t)‖ = lim
t→+∞

M1 + δM2

eε4(t−ti0)

∫ t

t0

eε4(s−ti0)‖ (s)‖ds,

= lim
t→+∞

M1 + δM2

ε4
‖ (t)‖,

=0. (58)

The proof is completed.

Remark 3.4 Theorems 3 and 4 make use of centralized

and decentralized data sampling principles by relying on state

variables. The systematic errors are used to estimate the

character of system synchronization.

Remark 3.5 Sampling control is a hot topic that cannot be

ignored in the field of control theory. The significance of the

control method lies in the size of the sampling interval and

trigger condition. As long as the trigger conditions are met,

information transmission can be started.

Remark 3.6 In this paper, we study the outer-synchronization

of ARTNNs, which are described by DAS. The DAS here

is the system of index-1. The method is to build an

acceptable sampling mechanism to make the system achieve

outer-synchronization, where the sample interval is fixed and

bounded. Therefore, in light of this work, the following next

research directions are suggested: (1) Higher index DASs can

be used as future research directions. (2) Intermittent sampling

and random sampling can be used as sampling mechanisms. (3)

Fractional systems can be considered.

Remark 3.7 The research purpose of this paper is to

create a workable sampling technique that will enable the

system to achieve outer-synchronization. The approach does

have certain drawbacks. (1) High index systems cannot use

this strategy; it is only applicable to DASs with index-

1. Differential equations cannot be created linearly from

high index DASs. (2) Many of the equalities in the study

require the upper and lower bounds, and the excitation

function in the system must satisfy constraints that are

equivalent to or even more stringent than the Lipschitz

condition. (3) Integral inequalities are used to draw inferences

utilizing data sampling techniques that heavily rely on the

system’s structure. As a result, the system’s model structure

imposes a major restriction on the approach used in this

research.

4. A numerical example

In this section, a numerical simulation demonstrates the

effectiveness of the conclusions.

4.1. Example description

Example.



























































dx1(t)
dt

= −c1(t)x1(t)+ a11(t)f1(x1(t))+ a12(t)f2(x2(t))

+b11(t)g1(y1(t))+ b12(t)g2(y2(t))+ J1

0 = −d1(t)y1(t) + p11(t)h1(x1(t))+ p12(t)h2(x2(t))

+q11(t)k1(y1(t))+ q12(t)k2(y2(t))+ I1
dx2(t)
dt

= −c2(t)x2(t)+ a21(t)f1(x1(t))+ a22(t)f2(x2(t))

+b21(t)g1(y1(t))+ b22(t)g2(y2(t))+ J2

0 = −d2(t)y2(t)+ p21(t)h1(x1(t))+ p22(t)h2(x2(t))

+q21(t)k1(y1(t))+ q22(t)k2(y2(t))+ I2

(59)

A =

(

a11(t) a12(t)

a21(t) a22(t)

)

=

(

−1.2 0

0 1.2

)

,

B =

(

b11(t) b12(t)

b21(t) b22(t)

)

=

(

0.3 −0.6

−1.2 −0.2

)

,

P =

(

p11(t) p12(t)

p21(t) p22(t)

)

=

(

1.4 0

0 1.4

)

,

Q =

(

q11(t) q12(t)

q21(t) q22(t)

)

=

(

0.3 −0.6

−1.2 −0.2

)

,

C =

(

c1(t)

c2(t)

)

=

(

1.6

1.6

)

,

D =

(

d1(t)

d2(t)

)

=

(

−0.5

−0.5

)

,

J =

(

J1

J2

)

=

(

0.2

0.2

)

,

I =

(

I1

I2

)

=

(

0.1

0.1

)

,

f (x) = h(x) = 1
1+e−x , g(y) = k(y) = 1

1+e−y ,

then, let Fj = Gj = Hj = Kj =
1
2 and ξ1 = ξ2 = 1. We can

calculate that,

max sup{µj(ξ , t) = cj(t)− Fja
+
jj (t)− Fj

ςi
ςj
|aij|} = 1.81

min{δj(t)} =

p+jj (t)Hj+Hj
∑

i6=j
|pij(t)|

dj(t)−q+jj (t)−Kj
∑

i6=j
|qij(t)|

= −0.7,
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FIGURE 1

States x1(t) and x2(t) of model (59) with consistent initial values

which x1(0), x2(0) ∈ {0.1, 0.3, and 0.5}.

max{vj(ξ , t)} = Gjb
+
jj (t)+ Gj

∑

i 6=j

ςi
ςj
|bij(t)| = 0.75,

M1 = max
i≤j≤n

sup
t≥t0

{cj(t)+ Fja
+
jj (t)+ Fj

∑

j 6=i

ςi
ςj
|aij(t)|} = 1.6,

M2 = max
i≤j≤n

sup
t≥t0

{Gjb
+
jj (t)+ Gj

∑

i 6=j

ςi
ςj
|bij(t)|} = 0.75,

then,

sup{µj(ξ , t)− δvj(ξ , t)} = 1.81− (−0.5) ∗ 0.75 = 2.185,

Fix N = 2.2, ε0 = 0.5. Then, εa = 0.7,εb = 0.2, and the

following inequality holds by calculation,

Nεa ≤ ε0(2− εa),Nεb ≤ ε0.

Fix  (t) = h̄(t) = 1
t+1 , satisfied

lim
t→+∞

 (t) = 0, lim
t→+∞

h̄(t) = 0, and lim
t→+∞

φ2(t) = 0.

4.2. Simulation results

In Figure 1, the state variable (x1(t), x2(t))

takes nine sets of initial values in turn and they

are (0.1, 0.1), (0.1, 0.3), (0.1, 0.5), (0.3, 0.1), (0.3, 0.3), (0.3, 0.5),

(0.5, 0.1), (0.5, 0.3), and (0.5, 0.5). Based on AEs of the model

(59), the value of an algebraic variable (y1(t), y2(t)) is certain. It

can be seen from the figure that the state function curve starting

from any initial value point reaches the outer-synchronization.

From a geometrical point of view, this means that the

state function from any initial value will converge to the stable

equilibrium point. When we consider a larger range of initial

values, the same evolutionary trend can still be seen. Figure 2

FIGURE 2

Phase diagram of di�erential states of model (59).

FIGURE 3

Evolution trend of state variables of the original system and the

error system under centralized control style.

shows that the phase curves (x1(t), x2(t)) from different initial

values converge to the stable equilibrium point (−0.248, 0.390).

Consider the data-sampling principles, the data can be

collected at certain time intervals for the time t. Figures 3,

4 show the evolution trend of the state function and system

error when the sampling interval is 1
2 and 1

6 . By comparing

Figures 3, 4, it can be seen that when the sampling time interval

is smaller, the error between the sampling system and the

original system will be smaller, but outer-synchronization will

be ultimately achieved.

Figures 5, 6 show the evolution trend of the state curve

and the error range before and after systematic sampling under

the decentralized data sampling principle, respectively. The

sampling intervals of time t in Figure 5 are 1
3 and 1

4 and those
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FIGURE 4

Evolution trend of state variables of original system and error

system under centralized control style.

FIGURE 5

Evolution trend of state variables of original system and error

system under decentralized control style.

in Figure 6 are 1
8 and 1

16 . Comparing Figures 5, 6, it is also

observed that when the sampling time interval is smaller, the

error between the sampling system and the original system will

be smaller, but outer-synchronization will be achieved in the

end. Figure 7 shows the release time point and release time

interval.

It can be observed from the simulation results that nomatter

which sampling method is used, as the conditions of Theorems

1−4 are satisfied, the system can be reached outer-synchronized

with the premise of more cost savings.

FIGURE 6

Evolution trend of state variables of the original system and the

error system under centralized control style.

FIGURE 7

Release time point and release time interval.

4.3. Simulation steps

The numerical simulation in this section is carried out

according to the following steps:

Step 1Define the original NN described by DAS, where the

independent variable of the state function is a continuous-

time variable t.

Step 2 Determine the initial values of state variables and

their derivatives and check the initial value compatibility.

Step 3 The ARTNN model represented by the DAS is

regarded as an implicit DE system, and the solutions of the

original system are solved by using the implicit DE.
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Step 4 Define the sampling function and replace the

variables t in the original system.

Step 5 By derivation, the AEs in the original system (1) are

transformed into equivalent DEs, and the original DAS (1)

is transformed into the equivalent differential system (2).

Step 6 Solving the equivalent differential System (2) by

using a method of neutral-type time-delay DE.

Step 7 Compare the solutions of the original DAS (1) and

the equivalent differential system (2).

Remark 4.1 The initial values of DAS (1) and the equivalent

differential system (2) are the same, so the initial value of the

solution in the sixth step is the same as the initial value of the

original system in the second step.

5. Conclusion

In this research, we demonstrated that outer-

synchronization of ARTNN may be achieved through the

application of suitable centralized and decentralized data

sampling procedures. These theoretical results enhanced

and enriched relevant research already in existence. By

establishing suitable sampling techniques, sufficient conditions

for the outer-synchronization of the system are obtained

in this study. The positive lower bound of the sampling

interval ensured that the system will not encounter the

Zeno phenomenon during the sampling procedure. This

paper contains ideas for future discussion: (1) outer-

synchronization of ARTNN taking both conservatism and

complexity into account; (2) analysis of outer-synchronization

of ARTNN subject to stochastic disturbance; (3) how

to increase the sampling interval so that the results

obtained by the error system are consistent with the

original system.
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