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In this paper, the precision hovering problem of UAV operation is studied.

Aiming at the diversity and complexity of the UAV operating environment,

a high-precision visual positioning and orientation method based on image

feature matching was proposed. The image feature matching based on the

improved AKAZE algorithm is realized, and the optimal matching point pair

screeningmethod based on the fusion of Hamming distance andmatching line

angle is innovatively proposed, which greatly improves the robustness of the

algorithm without a�ecting the performance of the algorithm. The real-time

image is matched with the benchmark image for image feature matching.

By reducing the deviation of image feature, the pose state correction of UAV

hovering is achieved, and the precision hovering of the UAV is realized. Both

simulation and real UAV tests verify the e�ectiveness of the proposed UAV

high-precision visual positioning and orientation method.

KEYWORDS
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Introduction

In the inspection process of bridges, towers, transmission lines, and other facilities,

unmanned aerial vehicles (UAVs) often need to hover at fixed points for key parts. The

stability of the UAVs hovering will greatly affect the quality of the operation, and even

affect the smooth completion of the operation. At present, UAVs mainly rely on the

inertial navigation system and the global navigation satellite system’s (GNSS) navigation

and positioning system. Due to the accumulation of errors in the inertial navigation

system, the GNSS is affected by signal strength and accuracy is limited, and the UAVs

are hindered by external wind gusts, which often leads to pose deviation and is difficult

to correct.

Using traditional navigation methods, it is difficult to achieve high-precision fixed-

point hovering of UAVs. At present, many UAVs’ pose guidance through machine vision

has been carried out at home and abroad. The fixed-point hovering control of small

quadrotor UAVs based on optical flow and ultrasonic module is mentioned in literature

(Zhang et al., 2018). However, the optical flow algorithm will be disturbed by the slight

shaking of ground objects and the change of light and shade, and the robustness of the
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algorithm is poor. Literature (Yu et al., 2021) proposed the

indoor fixed-point hovering method of UAVs based on the

pyramid optical flow method. This method can only obtain the

horizontal moving speed of the UAV, and its height needs to

depend on the barometer, so the algorithm has poor robustness

in corridors and other scenes. Wang et al. (2019) proposed a

fixed-point hoveringmethod for a quadrotor based on theHarris

algorithm. The corner detection method was used to obtain

the overlapping area of the image to calculate the UAV height.

However, the corner detection method is not scale invariant and

is only suitable for hovering control of the UAV under small

disturbances. Therefore, this paper proposes an image matching

method based on image scale-invariant features for UAV pose

guidance during hovering operation.

As shown in Figure 1, the schematic diagram of the UAV

visual guidance system is based on feature matching. In UAV

operation, the reference image is set as the reference matching

object, and the visual navigation computer preprocesses the

real-time image, further extracts image features, and matches

image features with the reference image. The positioning

information of the real-time image relative to the reference

image, including translation, rotation, and scaling, is calculated

and entered into the flight control computer as the pose

compensation parameters to correct the UAV pose. By reducing

the feature deviation between the real-time image and the

reference image, accurate visual guidance can be achieved when

the UAV is hovering.

During the flight of the UAV, the dynamic images are often

affected by rotation, scale scaling, brightness change, angle of

view change, affine transformation, noise, and so on. In this case,

to achieve better image matching, it is necessary to find an image

matching algorithm that can overcome these disturbances. In

order to satisfy the scale invariance of the feature matching

algorithm, it is necessary to construct different scale spaces

for feature extraction. The main construction methods of scale

space are as follows: (1) convolution of gaussian kernel function

with gray image; and (2) construct by using a nonlinear

filtering function.

The matching algorithms that use the Gaussian kernel

function to construct scale space include the SIFT algorithm

(Bellavia, 2022; Liu et al., 2022), SURF algorithm (Liu et al.,

2019a; Liu Z. et al., 2021; Fatma et al., 2022), and ORB algorithm

(Liu et al., 2019b; Chen et al., 2022; Xie et al., 2022; Xue et al.,

2022), etc. This kind of algorithm has good robustness and fast

matching speed, but the Gaussian kernel convolution operation

will lead to the loss of edge information of the image, which

seriously affects the stability of feature points and descriptors.

The main algorithms that use nonlinear filtering function to

construct scale space include the KAZE algorithm (Khalid et al.,

2021; Liu J.-B. et al., 2021; Roy et al., 2022), AKAZE algorithm

(Sharma and Jain, 2020; Ji et al., 2021; Pei et al., 2021; Yan

et al., 2021), etc. The scale space constructed by the nonlinear

filtering function can better protect the information at the

edge of the image and increase the robustness of the matching

algorithm. The feature point detection and descriptor of the

KAZE algorithm are all borrowed from the SURF algorithm, but

the robustness of the KAZE algorithm is stronger than that of

the SURF algorithm, which is enough to prove the superiority

of nonlinear scale space. AKAZE (Accelerated-KAZE) is an

improved feature point detection and description algorithm

proposed by KAZE at the 2012 ECCV Conference. AKAZE

improves the KAZE algorithm in two main ways:

(1) The fast explicit diffusion (FED) framework is introduced

to solve partial differential equations. The scale space

established by FED is faster than other nonlinear models,

and more accurate than the airborne optical sectioning

(AOS) method;

(2) An efficient modified local difference binary descriptor

(M-LDB) is introduced to improve the rotation and scale

invariant robustness compared with the original LDB, and

the scale spatial gradient information constructed by FED

is combined to increase the uniqueness.

Compared with the SIFT and SURF algorithms, the AKAZE

algorithm is faster. Meanwhile, compared with the BRISK

(Niyishaka and Bhagvati, 2020; Singh and Singh, 2020; Shi

et al., 2021), FAST (Feng et al., 2021; Yang et al., 2022; Zhang

and Lang, 2022) and ORB algorithms, the repeatability and

robustness are greatly improved. The descriptors obtained by

the AKAZE’s feature algorithm have rotation invariance, scale

invariance, illumination invariance, space invariance, etc., and

have high robustness, feature uniqueness, and feature accuracy.

In view of the real-time requirements of the algorithm and the

characteristics of rotation, scaling, and translation of the UAV

operation images, this paper studies the UAV visual navigation

(Cao et al., 2022; Guo et al., 2022; Qin et al., 2022; Zhao et al.,

2022) algorithm based on the improved AKAZE algorithm,

especially the precise hovering problem in UAV operation.

Visual navigation algorithm design

Visual navigation based on improved
AKAZE algorithm

Construct nonlinear scale space

First, it is necessary to carry out nonlinear diffusion filtering

on the image. The advantage of a nonlinear diffusion filtering (Li

et al., 2016; Feng and Chen, 2017; Jubairahmed et al., 2019; Liu

et al., 2019c) algorithm is that it can filter the image noise while

preserving important boundary and other details. The nonlinear

diffusion filtering algorithm is mainly a diffusion process in

which the gray image changes at different scales are expressed
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FIGURE 1

UAV Visual guidance system based on feature matching.

FIGURE 2

Location feature point.

as flow functions. The nonlinear partial differential equation can

be expressed by Equation (1).

∂L

∂t
= div(c(x, y, t)∇L) (1)

where, L represents gray image information, div represents

diffusion of flow function, ∇ represents image gradient,

and c
(

x, y, t
)

is conduction function. The time parameter t

corresponds to the scale factor, which is controlled by the

image gradient size during the diffusion process. The conduction

function formula is defined by Equation (2).

c(x, y, t) = g(
∣

∣∇Lσ (x, y, t)
∣

∣) (2)

where, ∇Lσ represents the gradient image of gray image L

after Gaussian filtering. The conduction kernel function is

selected optimally for regional diffusion smoothing, as shown in

Equation (3).

g =
1

1+ |∇Lσ |
2

λ2

(3)
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FIGURE 3

Selection of principal direction of feature points.

FIGURE 4

Schematic of UAV visual navigation system.

where, the parameter λ is the contrast factor controlling the

diffusivity, and the decision factor determining the enhancement

and flat region filtering in the edge region.

The AKAZE algorithm constructs nonlinear scale space in

a similar way to the SIFT algorithm, both of which need to set

groups o and layers s. The calculation formula of image scale

parameters σi is expressed by Equation (4).

σi (o, s) = 2
o+s
s (4)

The scope of the variable can be expressed by Equation (5).

o ∈ [0, 1, . . . ,O− 1] , s ∈ [0, . . . , S− 1] , i ∈ [0, . . . ,M − 1] (5)

where, o is the number of groups, is the number of layers in

each group, and M is the total number of filtered images. The

scale parameters σ of nonlinear scale space are converted into

time units, and the mapping relationship can be expressed by

Equation (6).

ti =
1

2
σ 2
i , i = 0 . . .M (6)

The core idea of the FED algorithm is to change the step size

τj of n explicit diffusion processes to carry out M steps of the

cycle. The formula for calculating the step size τj is expressed by

Equation (7).

τj =
τmax

2cos2
π(2j+1)
(4n+2)

(7)

In the formula, τmax is themaximum step size threshold, and

in order to ensure the stability of the constructed scale space, τ is

smaller than τmax, and τmax represents the maximum iteration

step that does not destroy the stability of the explicit equation.

Equation (1) above can be expressed by a vectorization matrix,

as shown in Equation (8).

L(i+1) − Li

τ
= A

(

Li
)

Li (8)
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FIGURE 5

Deviation of the real-time image from the reference image.

where, A
(

Li
)

is the conduction matrix for image coding, and

τ is a constant time step. In the explicit method, the solution

of L(i+1) will be directly calculated through the previous image

evolution Li and image conduction function A
(

Li
)

, as shown in

Equation (9).

L(i+1,j+1) =
(

I + τjA
(

Li
))

L(i+1,j), j = 0, 1, . . . , n− 1 (9)

The matrix A
(

Li
)

remains the same throughout the FED

loop. When the FED loop ends, the algorithm recalculates the

matrix A
(

Li
)

.

Feature point detection and localization

After building the scale space, it is necessary to further detect

the feature points. By calculating the determinant of the Hessian

for each filtered image Li in the non-linear scale space, the

normalized differential multiscale operator σ 2
i is used to find

the maximum point of the determinant of the Hessian matrix.

As shown in Figure 2, the response value of the sampling point

is compared with eight neighborhood points in the same scale

and 2 × 9 neighborhood points in adjacent scales to determine

whether it is the maximum value.

The determinant of the Hessian matrix is expressed by

Equation (10).

LiHessian = σ 2
i

(

LixxL
i
yy − LixyL

i
xy

)

(10)

where, σi is the initial value of scale factor; Lixx is the second

transverse derivative; Liyy is the second longitudinal derivative;

Lixy is the second cross differential.

Find the principal direction of the feature points

After locating the feature points, the principal direction of

the feature points should be further solved. As shown in Figure 3,

the circular area is determined with the feature points as the

center and 6σ as the radius, and the first-order differential values
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FIGURE 6

System algorithm flow chart.

Lx and Ly of the points in the neighborhood of the feature

points are calculated respectively, and the Gaussian weighting

operation is carried out. Rotate the fan window with angle π/3 ,

superimpose the vectors of points in the neighborhood, and

select the direction of the longest vector in the sum of unit

vectors as the main direction. Then rotate the sector window

around the origin, recalculate all the Gaussian weighted vectors

in the sector area after rotation, and repeat this operation

until the whole circular area is counted. Finally, the direction

represented by the sector region with the highest superposition

value is taken as the principal direction of the feature point.

Construct the M-LDB descriptor

After extracting the feature points in the nonlinear scale

space and establishing the principal direction of the feature

points, the feature points are described by the M-LDB

descriptor. The specific construction method is as follows:

In the first step, the M-LDB descriptor is constructed by

selecting an appropriate sampling region P centered on the

feature points, and the sampling region P is divided into n × n

meshes. The average value of all pixels in a n × n single grid is

calculated by Equation (11).

Iavg (i) =
1

mi

mi
∑

k=1

I
(

k
)

(11)

where, I
(

k
)

is the pixel value of the gray image;m is the number

of pixels in each partition grid; i is the number of grids that the

sampling area is divided into.

In the second step, the gradients of pixels in each grid in the

x and y directions are calculated and encoded according to the
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FIGURE 7

JETSON NANO B01.

TABLE 1 The algorithm verifies the platform performance parameters.

Item Value

Computing Power: 472 GFLOPS

CPU: Quad-core ARMr Cortexr-A57 MPCore

processor

GPU: NVIDIA MaxwellTM architecture with 128

NVIDIA CUDAr cores 0.5 TFLOPS(FP16)

Memory: 4 GB 64 bits LPDDR4 1600 MHz-25.6 GB/s

Operating System: ubuntu 18.04 LTS

average pixel value of each grid and the gradient value of grid

pixels, which can be expressed by Equation (12).

Func (•) =

{

Funcint ensity (i) , Funcdx (i) , Funcdy (i)
}

(12)

where, Funcint ensity (i) = Iavg (i),Funcdx (i) = Gradientx (i) =

dx,Funcdy (i) = Gradienty (i) = dy.

In the third step, it can be obtained from the above equation

that the LDB descriptor compares the average intensity and

gradient between paired grid cells respectively and is set to 0 or

1 according to the comparison results. The formula is expressed

by Equation (13).

τ
(

Func (i) , Func
(

j
))

=

{

1
(

Func (i) − Func
(

j
))

> 0

0 other
(13)

Then the M-LDB descriptor can be expressed by

Equation (14).

fn =
∑

1≤i<N

2i−1τ
(

Func (i) , Func
(

j
))

(14)

Descriptor matching and image localization

Since the M-LDB is a binary descriptor, Hamming distance

is used to calculate the similarity of descriptors. Hamming

distance can calculate the distance of binary descriptors only

through XOR operation, so the matching efficiency of feature

points is high. In addition, in order to improve the matching

accuracy of feature points, the homography matrix between two

images is calculated by the RANSAC algorithm, and the wrong

matching is eliminated to obtain accurate matching results of

feature points. The Hamming distance can be calculated by the

following Equation (15).

dist
(

−→a ,
−→
b
)

=
∑

i

(

ai == bi
)

?1 : 0 (15)
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FIGURE 8

Images taken while the UAV is rotating.

FIGURE 9

Matching e�ect of original algorithm.

FIGURE 10

Matching e�ect of the optimized algorithm.

After the aforementioned feature point matching

and screening, the correctly matched feature point

pairs can be obtained, and the motion parameters of

the real-time image and the benchmark image can

be correctly estimated through these feature point

pairs. In this paper, affine transformation is used to

model the motion between images, which is defined by

Equation (16).
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





x

y

1






= H







x′

y′

1






(16)

where, H =







a11 a12 a13

a21 a22 a23

0 0 1






is the affine transformation

matrix, also known as the homography matrix, with 6 degrees of

freedom; a13 and a23 are used to describe the translation change

between images; a11, a12, a21, and a22 are used to describe

rotation and scaling changes between images;
(

x′, y′
)

represents

the pixels of the previous image;
(

x, y
)

represents the pixels of

adjacent images after affine transformation.

Matching point selection based on hamming
distance and matching line angle fusion

In this paper, the Hamming distance is considered as a

preliminary method to eliminate mismatches, and an adaptive

threshold method is proposed for different scenes. The specific

steps are as follows:

(1) First, the matching points are sorted according to

their Hamming distance to obtain the minimum

Hamming distance.

(2) The threshold is set as d = n× dmin, and all feature point

matching points are traversed. The Hamming distance

of each feature point is compared with the threshold

d. The feature matching point pairs with a Hamming

distance less than d are returned and saved as sub-

optimal matching points. Here, the value of n needs to be

adjusted according to different scenes. In this paper, by

establishing the threshold library of scenes, the algorithm

automatically loads the adaptive threshold parameters

through scene analysis to realize the effective compatibility

of the algorithm in multiple scenes.

After the screening of the Hamming distance, the screening

effect is often not good, and there will be some obviously wrong

matching points. Through a large number of experiments, it is

found that the wrong matching lines often have a large deviation

angle from most of the correct matching lines. This paper

innovatively proposes that the matching line with the shortest

Hamming distance is taken as the benchmark to calculate the

angle between other matching lines and the reference line and

filters the wrong matching point pairs by setting angmax. The

correct matching condition is set by Equation (17).

(

ang < angmax & & dit < d
)

(17)

Through repeated experimental verification, the robustness

of the algorithm is greatly improved without affecting the

TABLE 2 The output calculated by the visual navigation module.

Tx Ty Rot Sx Sy

−1.66501 −13.6392 0.234247 0.945235 0.950384

Tx and Ty are measured in px, and others have no units of measurement.

performance of the algorithm, which lays a theoretical

foundation for the engineering application of the algorithm. The

angle between the matching line l2 and the reference line l1 is

deduced as follows:

The equation of the line l1 is expressed by Equation (18).

a1x+ b1y+ c1 = 0 (18)

The equation of the line l2 is expressed by Equation (19).

a2x+ b2y+ c2 = 0 (19)

Then the intersection point of l1 and l2 is calculated by

Equation (20).

{

a1x+ b1y+ c1 = 0

a2x+ b2y+ c2 = 0
⇒

{

x =
b1c2−b2c1
a1b2−a2b1

y = a1c2−a2c1
a2b1−a1b2

(20)

The intersection point p0
(

x0, y0
)

, the end point p2
(

x2, y2
)

of l1, and the end point p4
(

x4, y4
)

of l2 form a triangle, then the

length of each side is expressed by Equation (21), Equation (22)

and Equation (23).

a =

√

(x4 − x2)
2 + (y4 − y2)

2 (21)

b =

√

(x4 − x0)
2 +

(

y4 − y0
)2

(22)

c =

√

(x2 − x0)
2 +

(

y2 − y0
)2

(23)

The angle θ is derived from the law of cosines, as shown in

Equation (24).

a2 = b2 + c2 − 2bc cos θ ⇒ cos θ =
b2 + c2 − a2

2bc
⇒ θ

= arccos

(

b2 + c2 − a2

2bc

)

(24)

UAV position and attitude modification

The image matching and positioning are realized,

and the deviation of image features needs to be further

calculated to form data connection with the flight control
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FIGURE 11

Images taken when the UAV panned and climbed.

FIGURE 12

Matching e�ect of original algorithm.

FIGURE 13

Matching e�ect of the optimized algorithm.

computer. Figure 4 shows the schematic diagram of the

high-precision visual positioning system in this paper. The

real-time image collected by the UAV and the set benchmark

image are used as the input end of the visual navigation

module. After the image matching and positioning of the

visual navigation system, the translation, rotation, and

scaling of the real-time image relative to the benchmark

image are output. Taking the amount of translation,
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TABLE 3 The output calculated by the visual navigation module.

Tx Ty Rot Sx Sy

−62.5681 45.6894 0.00135039 0.422023 0.409761

Tx and Ty are measured in px, and the others have no units of measurement.

rotation, and scaling as the input parameters of the flight

controller, the deviation between the real-time image and the

reference image can be reduced by modifying the horizontal

position, heading, and altitude of the UAV, so as to realize

the closed-loop control of the UAV visual positioning

and orientation.

As shown in Figure 5, is the deviation diagram between

the real-time image and the reference image. Tx is the X-

axis offset of UAV in the reference image coordinate system;

is the Y-axis offset of UAV in the reference image coordinate

system; Tx and Ty are input quantities for UAV plane position

correction. Rot is the rotation angle of the real-time image

relative to the reference image, and Rot is the input of the

UAV heading correction. Sx and Sy are the scaling ratio of

the real-time image relative to the benchmark image, and Sx

and Sy are the input quantities for UAV height correction.

By reducing the offset of image features, the UAV 3D pose

correction can be realized, and high-precision visual positioning

and orientation can be realized. Tx and Tycan be calculated by

Equation (25).

(Tx,Ty) = O1(x, y)− O(x, y) (25)

From the formula of the angle between vectors, it can be

known that, as shown in Equation (26).

cosRot =

−→
OX ×

−−−→
O1X1

∣

∣

∣

−→
OX ×

−−−→
O1X1

∣

∣

∣

(26)

Then, the rotation angle of the real-time image relative to the

reference image can be calculated by Equation (27).

Rot = arccos

−→
OX ×

−−−→
O1X1

∣

∣

∣

−→
OX ×

−−−→
O1X1

∣

∣

∣

(27)

Sx is the scaling quantity of the real-time image

relative to the reference image in the width direction,

and Sy is the scaling quantity of the real-time

image relative to the reference image in the length

direction. The calculation formula is expressed by

Equation (28).

Sx = W1/W , Sy = H1/H (28)

System algorithm flow

This system uses the improved AKAZE image matching

algorithm for the precise hovering of UAV operation. The

algorithm flow of the system is as follows:

(1) Set the reference image of UAV operation;

(2) The key points of the benchmark image and real-time

image are detected respectively;

(3) M-LDB descriptors of key points of two images

are calculated;

(4) BruteForce-Hamming is used to match

descriptor vectors;

(5) The best matching points are selected based on the fusion

of Hamming distance and matching line angle;

(6) The RANSAC algorithm is used to calculate the

homography matrix between two images;

(7) The feature deviation and position information of

the real-time image relative to the reference image

are calculated;

(8) The rotation, translation, and scaling of the real-time

image relative to the reference image are calculated and

input to the flight controller for UAV pose correction.

Above is the algorithm flow of this experiment, and the

algorithm flow chart is shown in Figure 6.

Algorithm embedded device
verification

As shown in Figure 7, the JETSON NANO B01 embedded

computer serves as the verification platform for algorithm

implementation (Kalms et al., 2017; Bao et al., 2022; Edel and

Kapustin, 2022; Zhang et al., 2022). The UAV is equipped with a

vision computer, and the camera is used as the image acquisition

terminal to calculate the features of the real-time image and

the benchmark image. The real-time image is located in the

benchmark image by feature matching, and the translation,

rotation, and scaling of the real-time image are calculated and

input into the flight controller as compensation parameters of

flight control, so as to realize the pose correction of the UAV.

Based on the OpenCV 4.5.5 computer vision library, this paper

applies the Qt 5.14.2 software development platform to develop

visual algorithm software.

As shown in Table 1, the performance parameters of the

JETSON NANO B01 are embedded into the computer for

algorithm verification.

In this paper, a large number of algorithms have been verified

for various scenes such as ordinary road surface and grass, and

the image matching localization method has been fully verified

in the process of translation, rotation, and climbing of the UAV.

The input image size of the visual navigationmodule is 640×480,
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FIGURE 14

Images taken while the UAV is rotating.

FIGURE 15

Matching e�ect of original algorithm.

FIGURE 16

Matching e�ect of the optimized algorithm.
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which can realize real-time image processing (Jiang et al., 2015;

Soleimani et al., 2021) and ensure the real-time demand of the

flight control response cycle.

Scenario 1: Common pavement
scenario verification

(1) The UAV rotates, that is, the UAV heading changes.

As shown in Figure 8, a set of images is captured by

the camera when the UAV rotates. As shown in Figure 9,

the matching and positioning results of the original AKAZE

algorithm are shown. It is obvious that some wrong matching

points with too large an angle deviation are seen in the figure. In

this paper, an innovative method based on Hamming distance

and matching line angle fusion is proposed to screen the best

matching points. As shown in Figure 10, in order to obtain

matching effect, the improved algorithm greatly improves the

robustness of the algorithm without affecting the performance

of the algorithm. The bold red line in Figure 10 is the matching

line with the minimum Hamming distance, which is used as

the reference line. A matching point that pairs with a too large

deviation angle is eliminated through the algorithm to obtain

more accurate matching results.

TABLE 4 The output calculated by the visual navigation module.

Tx Ty Rot Sx Sy

10.4906 75.4823 0.162642 0.910785 0.883817

Tx and Ty are measured in px, and the others have no units of measurement.

As shown in Table 2, are the translation (Tx, Ty), rotation

(Rot), and scaling (Sx, Sy) of the two groups of images in Figure 8

calculated by the visual navigation module.

(2) The UAV panned and climbed.

As shown in Figure 11, a group of pictures is collected by

the UAV under the condition of translation and height climbing.

As shown in Figure 12, through the matching point results of

the original AKAZE method, the matching points with too large

a deviation angle can also be obviously found, which further

verifies the necessity of improving the direction of the algorithm

in this paper. By fusing the angle deviation condition, the

matching result as shown in Figure 13 is obtained, and the wrong

matching points are eliminated effectively. The premise of UAV

visual guidance is to obtain more accurate matching results. The

algorithm in this paper has been repeatedly verified and has

strong practicability and effectiveness, which greatly improves

the robustness of the algorithm. The bold red line in Figure 13 is

the matching line with the minimum Hamming distance, which

is used as the base line for angle elimination condition.

As shown in Table 3, the translation (Tx, Ty), rotation (Rot),

and scaling (Sx, Sy) of the two groups of images in Figure 11 are

calculated by the visual navigation module.

The algorithm is verified by a large number of

ground scenes. The above are typical processing effects

of several groups of algorithms, which can achieve good

image matching effects under the conditions of UAV

rotation, translation, and height climbing, indicating that

the improved algorithm can achieve better application

effects. By calculating the deviation between the images,

the navigation parameters required by the UAV can be

further calculated. When used as the motion compensation

parameters of the UAV, it can effectively assist the UAV

to complete the visual navigation and achieve accurate

fixed-point hovering.

FIGURE 17

Images taken when the UAV panned and climbed.
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FIGURE 18

Matching e�ect of original algorithm.

FIGURE 19

Matching e�ect of the optimized algorithm.

Scenario 2: Grassland scenario
verification

(1) The UAV rotates, that is, the UAV heading changes.

As shown in Figure 14, a set of images is captured

by the camera when the UAV rotates. By detecting the

features of the two images, matching of the two images is

further realized. As shown in Figure 15, the matching results

of the original AKAZE algorithm can obviously find some

wrong matching points with too large a deviation angle,

which will affect the accuracy of the subsequent calculation

of motion parameters. In order to solve this problem, this

paper proposes the best matching point screening method

based on Hamming distance and matching line angle fusion,

which achieves very good results. The matching effect of the

improved algorithm is shown in Figure 16, where the bold

red line is the matching line with the shortest Hamming

distance, which is regarded as the base line. The matching

point pairs that deviate too much from the baseline line are

often wrong.

As shown in Table 4, the translation (Tx, Ty), rotation (Rot)

and scaling, (Sx, Sy) of the two groups of images in Figure 14 are

calculated by the visual navigation module.

(2) The UAV panned and climbed.
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TABLE 5 The output calculated by the visual navigation module.

Tx Ty Rot Sx Sy

36.2779 −35.5712 ≤0.001 0.583277 0.572635

Tx and Ty are measured in px, and the others have no units of measurement.

As shown in Figure 17, a group of pictures is collected

by the UAV under the condition of translation and altitude

climbing. As shown in Figure 18, matching results are obtained

by image feature matching for the original AKAZE algorithm.

The red arrow in the figure indicates that some wrong matching

points with too large a deviation angle are excluded. In view

of these shortcomings of the original algorithm, the matching

effect as shown in Figure 19 is obtained following improvements

outlined in this paper, which can effectively eliminate these

obvious wrong matching points and greatly improve the

robustness of the algorithm, thus laying a foundation for UAV

visual guidance. In this way, more accurate matching results

can be obtained, and the amount of feature deviation can

be calculated more accurately, which makes the guidance of

UAV hovering more accurate. In Figure 19, the bold red line

is the matching line with the shortest Hamming distance,

which is the benchmark reference line innovatively proposed in

this paper and provides a reference for eliminating erroneous

matching points.

As shown in Table 5, the translation (Tx, Ty), rotation (Rot),

and scaling (Sx, Sy) of the two groups of images in Figure 17 are

calculated by the visual navigation module.

Through the repeated test of the grassland scene, good

experimental results are also obtained, which fully verifies that

the proposed algorithm can achieve good image matching

effects in multi-scenes and is suitable for multi-scene UAV

visual guidance. This paper has achieved good results in the

direction of improving the robustness of the AKAZE algorithm,

and innovatively proposed the best matching point screening

method based on Hamming distance and matching line angle

fusion. A large number of experiments have been carried out

on ordinary ground, grassland, and other scenes, which fully

verified the feasibility and effectiveness of the algorithm.

Conclusion

Aiming at the high-precision hovering problem of

UAV operation, this paper proposes a high-precision visual

positioning and orientation method of UAVs based on image

feature matching. The image feature matching based on the

improved AKAZE algorithm is realized, and the optimal

matching point pair screening method based on the fusion

of Hamming distance and matching line angle is innovatively

proposed, which greatly improves the robustness of the

algorithm without affecting the performance of the algorithm.

Aiming at the diversity and complexity of the UAV operating

environment, the application of image scale invariant features

for UAV visual navigation is proposed. By setting the reference

image of UAV operation, the real-time image is matched with

the reference image for feature matching, and the translation,

rotation angle, and scaling ratio of the image are calculated as

the input parameters of the aircraft pose control, so as to reduce

the image feature deviation and achieve the UAV pose state

correction. A lot of tests and verification are carried out. Finally,

the multi-scene UAV flight environment verification is carried

out, and good application results are obtained, which shows that

the algorithm has high engineering application value.
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