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Extensive studies in rodents show that place cells in the hippocampus have
firing patterns that are highly correlated with the animal's location in the
environment and are organized in layers of increasing field sizes or scales along
its dorsoventral axis. In this study, we use a spatial cognition model to show that
different field sizes could be exploited to adapt the place cell representation to
different environments according to their size and complexity. Specifically, we
provide an in-depth analysis of how to distribute place cell fields according
to the obstacles in cluttered environments to optimize learning time and
path optimality during goal-oriented spatial navigation tasks. The analysis
uses a reinforcement learning (RL) model that assumes that place cells
allow encoding the state. While previous studies have suggested exploiting
different field sizes to represent areas requiring different spatial resolutions,
our work analyzes specific distributions that adapt the representation to the
environment, activating larger fields in open areas and smaller fields near goals
and subgoals (e.g., obstacle corners). In addition to assessing how the multi-
scale representation may be exploited in spatial navigation tasks, our analysis
and results suggest place cell representations that can impact the robotics field
by reducing the total number of cells for path planning without compromising
the quality of the paths learned.

hippocampus, spatial navigation, multi-scale, place cells, spatial learning, spatial
cognition, reinforcement learning

1. Introduction

The study of spatial cognition requires understanding how space is represented in
the brain and how these representations are formed, used, and maintained. Although
early behavioral studies suggested the existence of a “cognitive map” in the brain
(Tolman, 1948), it was not until 1971 that any light was shed regarding possible
neural implementations.
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Since 1971, electrophysiological studies have reported
multiple types of neurons that encode spatial information
in the brain, providing possible substrates for implementing
the cognitive map. Initial studies reported the existence of
“place cells” from recordings of individual pyramidal cells in
the hippocampal substructures CA1 and CA3 (O’Keefe and
Dostrovsky, 1971). Place cells are neurons whose activation is
highly associated with the animal’s position in space, forming
compact firing fields dependent on local and distal cues but
independent of the animal’s bearings (O’Keefe and Nadel,
1978; McNaughton et al., 1996). Later on, Ranck discovered
the existence of head direction cells that encoded allocentric
orientation in the azimuthal plane resembling an internal
compass (Ranck, 1984; Taube et al., 1990; Chen et al., 1994;
Taube, 1998; Guzowski et al., 2004). As with place cells, the
activity of head direction cells is driven both by visual cues
and egocentric motion signals, the latter enabling orientation
even when moving in darkness (Cho and Sharp, 2001; Rolls,
2005). More recently, Moser and Moser identified the existence
of grid cells located in the entorhinal cortex as part of a “neural
odometry” system for rat navigation (Fyhn et al., 2004; Hafting
et al., 2005; Moser et al,, 2008). Additionally, neurons have
also been reported to encode environmental boundaries (border
cells and boundary vector cells) (Savelli et al., 2008; Solstad
et al,, 2008; Lever et al., 2009), objects (object cells, object-trace
cells, and obstacle-vector cells) (Deshmukh and Knierim, 2011;
Deshmukh et al., 2012; Tsao et al., 2013; Hoydal et al., 2018;
Andersson et al., 2021), and target goals and landmarks in the
environment (Deshmukh and Knierim, 2013; Sarel et al., 2017).

Previous research shows that place cells have a multi-scale
organization along the dorsoventral axis of the hippocampus,
with dorsal place cells having smaller compact fields and ventral
cells having larger, less stable fields (Jung and Wiener, 1994;
Maurer et al, 2005; Kjelstrup et al., 2008; Keinath et al,
2014; Long et al.,, 2015). Initially, this difference was explained
by assigning different roles to each region, with dorsal cells
associated with spatial navigation and memory and ventral cells
with planning, learning, and emotion (Fanselow and Dong,
2010; Poppenk et al., 2013; Strange et al., 2014). In contrast,
newer studies suggest that ventral place cells are also involved
in spatial navigation (de Hoz et al., 2003; Harland et al., 2017;
Contreras et al., 2018).

In previous work, we developed a multi-scale spatial
cognition model based on the differences between the dorsal
and ventral hippocampus and the basal ganglia (Scleidorovich
et al,, 2020). The model implemented a reinforcement learning
algorithm that learned a goal-oriented spatial navigation task
based on theories suggesting that dopamine implements a
reinforcement learning signal and that place cells may provide
a basis set for computing value functions (Montague et al.,
1996; Suri, 2002; Gustafson and Daw, 2011; Sutton and Barto,
2018). Experiments with the model assessed the benefits of using
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different scales for navigating open-field mazes with up to two
obstacles by distributing place cell fields uniformly over space.

In this article, we update the multi-scale spatial cognition
model and use it to study its behavior in complex, obstacle-
rich environments. Particularly, we assess how the number
of obstacles affects the learning for different fields sizes, we
introduce metrics for evaluating the “relevance” of each scale
for encoding value functions in multi-scale models, and we
assess how to adapt the place cell field representation to the
environment to enable more robust and efficient navigation. We
hypothesize that areas near navigation goals and subgoals (i.e.,
obstacle corners) require high resolution and benefit from using
an increased number of smaller fields to represent space. On
the other hand, we hypothesize that areas further away require
less resolution and benefit from using fewer, larger fields that
can generalize experience quickly. As a result, we hypothesize
that distributing place cells according to the environment can
reduce the total number of cells used and the time required to
learn a navigation task without decreasing navigation efficiency
(i.e., without increasing the number of actions required to reach
the goal).

This article presents the updated spatial navigation model
and analyzes results from different experiments varying the
place cell spatial distribution methods. The experiments
were designed to investigate and assess the impact of place
cell distributions on navigation and learning depending
on environment configuration. Specifically, the experiments
were designed to study: 1) the relationship between the
number and size of uniform single-scale place fields and the
number and configuration of obstacles in the environment,
2) the contribution of different scales in uniform multi-
scale distributions based on the number and configuration of
obstacles in the environment, 3) the impact of smaller place
fields around goals and subgoals in the environment, and 4)
the distribution of non-uniform multi-scale place cell fields to
optimize all metrics simultaneously (number of cells, learning
time, and navigation efficiency).

The main contributions of this article are:

1. A study for distributing multi-scale place cell fields for
optimizing spatial navigation founded on empirical and
theoretical computational background.

2. Ananalysis of how different field sizes interact with obstacles.

3. A proposal of how hierarchical reinforcement learning
algorithms  could leverage the

proposed  spatial

representation.

This work suggests a possible methodology for distributing
place cell fields in specific environments in order to exploit
their multi-scale nature in reinforcement learning algorithms.
This research is based on experimental studies in rats and
computational models developed by our group, impacting
both our understanding on place cell activiations and
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spatial navigation and learning in other domains, including
autonomous robot systems.

In the rest of this article, Section 2 presents related work,
Section 3 presents the research methods, Section 4 presents the
experimental results, and Section 5 presents the discussion.

2. Related work

This section reviews related works in spatial cognition
modeling. Our work assesses different place cell distribution
methods for navigating cluttered environments using a
reinforcement learning spatial cognition model based on
the hippocampus. Due to the diverse topics, we divide
the related works into three categories according to their
aim, including using models to explain how the multi-
scale place cell representation is formed, developing
multi-scale models for navigation, and developing models
for navigating complex and cluttered environments. In
addition the following subsections, we note that related
work by Tessereau et al. (2021) provides a survey on
spatial cognition models inspired by the hippocampus
(HC), while Madl et al. (2015) reviews cognitive models
of spatial memory, categorizing them according to the
environment’s complexity and the possibility of mapping them

to neural substrates.

2.1. Field size explanatory models

In general, multi-scale computational models have been
developed to explain the differences between dorsal and ventral
HC. In Neher et al. (2017), the authors argue that realistic
place field sizes cannot be explained by feedforward models
using grid cells as the only input. Instead, the authors propose
adding nonspatial information and using recurrent connections
between place cells to account for realistic field sizes. Similarly,
Lyttle et al. (2013) extend the work by de Almeida et al.
(2009) to assess whether nonspatial inputs can explain the
field size differences observed between dorsal and ventral
HC. As a result, their model suggests a shift in the type
of information encoded by each region. In Navratilova et al.
(2012), a model of grid cells is described based on attractor
dynamics. The model can account for phase precession and
the difference between grid cell field sizes in the medial
entorhinal cortex (MEC). Although this is not a model of the
hippocampus, the multi-scale representation in HC is believed
to depend on the MEC’s multi-scale representation. In Burgess
et al. (2000) and Barry et al. (2006), the authors present a
computational model of place cells that use boundary vector cells
as input. The model can explain how place cells react to some
environmental manipulations such as environment rescalings
or obstacle additions and removals. The model attributes larger
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field sizes to greater uncertainties when coding long distances
to boundaries.

2.2. Multi-scale navigation models

In another group of articles, bioinspired multi-scale models
have been developed to improve different navigation aspects. In
Chen etal. (2013,2014, 2015), Fan et al. (2017), and Hausler et al.
(2020), authors developed a multi-scale model for localization
based on the medial entorhinal cortex (MEC), using visual input
to drive layers of grid cell-like objects. The model was compared
against state-of-the-art localization algorithms from traditional
robotics showing it could outperform them by recognizing
more locations without losing precision. Additionally, the
model was used to provide insights into the number of
place field scales and sizes the brain should use. In Erdem
and Hasselmo (2012, 2014), the authors describe a spatial
cognition model mimicking preplay during sharp-wave ripples
(Olafsdéttir et al., 2018). The model was based on the MEC
and HC and used multi-scale place cells to extend the distance
covered by preplay sequences, thus allowing the model to
plan paths farther away from goals. In Chalmers et al.
(2016), the authors describe a multi-scale spatial cognition
model inspired by the hippocampus combining model-based
reinforcement learning, preplay-like processes, and context-
driven remapping of place cells. Experiments with the model
illustrate how the multi-scale representation allowed faster
learning by reducing the computational requirements for
adapting the agent to new or changing environments. In
Llofriu et al. (2015) and Scleidorovich et al. (2020), the authors
describe reinforcement learning multi-scale models for spatial
cognition based on the difference between the dorsal and
ventral hippocampus. The models use uniform distributions of
place fields to assess the benefits of a multi-scale architecture
regarding learning time, path optimality, and the number of
cells. Experiments were performed in open mazes with few or
no obstacles.

Although our article assesses methods to improve navigation
using a multi-scale place field model, unlike the previous related
works, this paper analyzes the effect of obstacles on place field
distributions. In particular, we analyze how place fields should
be distributed to support navigation in complex and obstacle-
rich environments.

2.3. Navigation models in complex
environments

Other articles assess how the brain may support navigation
in complex and cluttered environments. In these studies, articles
follow two main (complementary) approaches. One approach
implements neurons that encode obstacle information, as
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observed in electrophysiological experiments (Savelli et al.,
2008; Solstad et al., 2008; Lever et al., 2009; Deshmukh
and Knierim, 2011; Deshmukh et al, 2012; Tsao et al,
2013; Hoydal et al.,, 2018; Andersson et al., 2021), while the
other implements hierarchical reinforcement learning methods
that add subgoals to tasks (Parr and Russell, 1997; Sutton
et al., 1999; Dietterich, 2000; Barto and Mahadevan, 2003).
In Llofriu et al. (2019), the authors use a multi-scale spatial
cognition model in semi-dynamic environments. The model
incorporates “object-interactive” place fields that enable learning
different policies when obstacles are present by activating
or deactivating fields when introducing intersecting obstacles.
The model was used to reproduce rat experiments where
inactivating dorsal or ventral hippocampus impaired open-
field navigation only in cluttered environments. In Edvardsen
et al. (2020), the authors describe a spatial cognition model
capable of navigating toward goals in cluttered environments,
exploiting unexplored novel shortcuts. The model implements
grid cells to support vector navigation, border cells to allow
obstacle avoidance, and place cells to use as a topological
map along a preplay model to set subgoals when the
agent gets stuck during vector navigation. In Botvinick
et al. (2009), Botvinick (2012), and Botvinick and Weinstein
(2014), the authors analyze hierarchical reinforcement learning
methods and assess neural mechanisms that might allow
their implementation in the brain by reviewing empirical
findings. Similarly, Brunec and Momennejad (2022) analyze
human fMRI recordings to assess whether the hippocampus
and the prefrontal cortex may encode multi-scale predictive
representations, as suggested by computational models using
reinforcement learning’s successor representation. In Chalmers
et al. (2016), place cell preplay-like events are used to choose
subgoals in a hierarchical reinforcement learning model. The
resulting algorithm was used in semi-dynamic environments
and allowed reducing learning times by generalizing knowledge
across environments.

In our work, instead of neurons encoding obstacle
information or hierarchical learning, we associate obstacle
corners with subgoals and consider the benefits of adapting the
number of place fields, their position, and their size according to
the distance to the closest subgoal. This place field distribution
method may complement hierarchical reinforcement learning
models by providing a space representation that encodes
subgoals naturally.

3. Research methods

To assess our hypotheses, we performed multiple

experiments in simulated environments where a robot
had to do the same goal-oriented task, using different place
field distributions and obstacle configurations. The details are

provided in the following sections.
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3.1. Task

The task consisted in having an agent (simulated rat) learn to
navigate a maze toward a single goal from multiple predefined
starting locations. Note that both the goal and the set of
starting locations varied according to the maze (see Section 3.2
for details).

Agents were given N trials to learn the shortest paths, where
each trial corresponds to navigating the maze once from each
starting location. The order of starting locations varied every
trial and was chosen by sampling a random permutation from
a uniform distribution. Each navigation began after placing the
agent at the respective starting location and ended by reaching
either the goal or a timeout. Rewards were given only at the goal,
and timeouts were defined as performing 4,000 actions without
reaching the goal. Note that the shortest paths measured 23 steps
on average, leaving ample room for the agent to find the goal.
The agents were considered to reach the goal when arriving at
any position within 8 cm from the goal (the body of a rat is about
20 cm long). Figure 1A illustrates the task.

3.2. Mazes

In total, we used 63 mazes of identical dimensions
(22 m by 3 m), each with its own goal, starting locations,
Of the 63 mazes,
automatically and were used to assess

and obstacles. 60 were generated
the effect of
obstacles over different place field sizes. Automatically
generated mazes had either 10, 20, .., or 60 25 cm long
obstacles (10 mazes per obstacle number). The other 3
mazes were generated manually to assess non-uniform
distributions. Figure 1B shows the 3 handmade mazes (top
row) and 3 of the 60 automatically generated mazes. See
Supplementary Section 1 for a full description of the mazes
and a discussion of how adding starting locations increases
task difficulty.

3.3. Spatial navigation model

The paper describes a modified multi-scale spatial cognition
model based on Scleidorovich et al. (2020). The following
sections describe the model, highlighting the key differences
between the original and latest model. Note that, throughout the
document, indices i, j, t, and T represent place field i, action j,
time t, and trial T, respectively.

3.3.1. Overview

The model uses an Actor-Critic RL algorithm with
linear function approximation, using Gaussians as the radial
basis functions and eligibility traces (Konda and Tsitsiklis,
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A Task illustration

FIGURE 1

Sample mazes used in the experiments.

B Sample mazes

Task and mazes. (A) Rats have N trials to learn the path to the goal (red dots) from multiple starting locations (green dots). On each trial, the
agent traverses the maze once per starting location in random order (path numbers). Traversals end by reaching the goal or a timeout. (B)

1999; Sutton and Barto, 2018). The model’s objective is
to allow an agent (real or simulated robot) to learn to
reach a goal from multiple starting locations on a maze.
At each time step, the model uses the position of the
R? as input and chooses to perform one
{0,...,7} as
output. Action j represents moving one step (8 cm) in the

robot Xy €
of eight possible allocentric actions a; €

cardinal direction ¢; = 7j. The computational model is
illustrated in Figures 2A-C, and its pseudocode is shown
in Supplementary Algorithm 1. Figure 2A illustrates the non-
uniform place cell representation along with the robot and
the possible actions, Figure 2B illustrates an overview of the
actor-critic model (described in the following subsections),
and Figure 2C illustrates the place cell model (described in
Section 3.3.2).

The biological counterpart of our model’s architecture
is presented in Figure 2D. The model assumes that the
basal ganglia enable the brain to perform reinforcement
learning-like processes, using dopamine as a reinforcement
signal (Montague et al., 1996; Suri, 2002; Sutton and Barto,
2018). Additionally, we assume that place cells encode the
reinforcement learning state providing a basis for computing
value functions (Gustafson and Daw, 2011). Using these
hypotheses, the model provides the information from the
hippocampus (HC) as input to a learning module comprised of
the dopaminergic neurons of the ventral tegmental area (VTA),
the dorsomedial striatum, and the ventral striatum (nucleus
accumbens - NA). In particular, the different hippocampus
place cells project their output to a value estimating network,
with input relayed to the nucleus accumbens, VTA, and
in the
Dopaminergic error signals are projected to the dorsomedial

action selection structures dorsomedial striatum.

striatum, where they are used to learn the associations

between situations (stimulus) and actions (response). All action
selection information converges on a common structure for
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final action selection (Globus Pallidus), corresponding to
navigation direction.

3.3.2. Place cells

Our model represents place fields with normalized
Gaussians that serve as the basis for the linear function
approximators in the RL algorithm (Bugmann, 1998; Sutton
and Barto, 2018). To compute the activity of a place cell, each
place cell is assigned a circular field with center X; and radius
r;. Outside the radius, the activity is set to 0. Inside the radius,
the activity is calculated by using the Gaussian kernel and then
normalizing the results by the sum of all cells, as described
in Equations (1) and (2). The place cell model is illustrated

in Figure 2C.

0 diy < 1

/ 2
Py = —Lin(a) @
e i otherwise
P
Py = =1 (2)
> i P

Where

° P;t and Pj; represent the activity of place cell i at time t
before and after normalization.

o dj; = ||x¢ —X;|| is the Euclidean distance from x; (the center
of place field i) to X; (the position of the agent at time ¢).

e 7; is the radius of place cell i.

e « isa constant (set to 0.001) that represents the value of the
Gaussian when dj; = r;.

e ¢ and In are the exponential and natural logarithm
functions, respectively.
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FIGURE 2

Modelillustration. (A) The robot in a rectangular maze with 4 differently sized place cells (P; to P4). Color illustrates the activity of each place
cell. Arrows illustrate the 8 possible directions that the robot can take (actions). (B) The actor-critic network. Circles illustrate neurons and black
arrows illustrate information flow between layers. Blue arrows indicate the action associated to each cell. Place cells are fully connected to the
actor critic layers. The softmax and bias layers convert the actor’s output into a set of probabilities for each action. (C) Variables involved in
computing the gaussian place cell model (see Section 3.3.2). (D) Our model’s biological counterpart. Red arrows show information flow while
cells highlighted in red indicate active cells. D, NA, and VTA stand for dopamine, nucleus accumbens, and ventral tegmental area. This diagram is
an adaption of our previous model described in "A Computational Model for a Multi-Goal Spatial Navigation Task inspired by Rodent Studies” by
Llofriu et al,, IJCNN, 2019, pp. 1-8.

3.3.3. Function approximation Qjt = ZPitQijt (4)
As we use a continuous state space ¥; € R2, our model uses i

linear function approximators for both the actor and the critic to

generalize the information gathered from discrete observations Where

(Sutton and Barto, 2018). The approximators associate each

place cell i with a set of parameters V; and Qjj. Although V¢ is the state value at time ¢.

not precisely the same, these parameters can be, respectively, Vit is the state value associated with place cell i at time ¢.

thought of as representing the value at state X; (i.e., the Qjt is the preference for action j at time .

expectancy of future reward if starting from x;) and the actor’s Qijt is the preference for action j associated with place cell i
preference for performing action 4; at state X;. Using the place at time ¢.

cells as kernels and the parameters, we compute the current state

value and the preference for each action according to Equations

(3) and (4. 3.3.4. Action selection

After computing the preference for each action, action

selection is performed by converting the preferences into a set

Vi = Z PV 3) of pro.bablhtles accord'mg to Equations '(5) a'nd '(6) .and then
; sampling a random action from the resulting distribution.
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FIGURE 3

samples, the red dots indicate the feeders.

Place cell distribution type samples. (A) Uniform single-scale, 20 cm cells, 14 x 10 grid. (B) Uniform single-scale, 32 cm cells, 14 x 10 grid. (C)
Uniform single-scale, 32 cm cells, 9 x 6 grid. (D) Uniform multi-scale. (E) Locally uniform multi-scale. (F) Non-uniform multi-scale. In all

Equation (5) computes an initial probability set mj; from
the action preferences by applying the softmax function but
setting to 0 the probability of actions impeded by obstacles
(see example in Supplementary Figure S2). Although we could
allow the model to choose impeded actions, removing them
prevents the robot from performing unnecessary actions and
hitting obstacles.

bjre

> g bieeQ ®

th =

Where

e 7j; is the probability of performing action j at time ¢
according to the actor’s policy.

e bj; is a Boolean variable indicating whether action j can be
performed at time ¢ or not. In other words, by = 1 if the

Frontiers in Computational Neuroscience

robot can move one step in the respective direction without
hitting any walls or obstacles. Otherwise, bj; = 0.

After computing (Equation 5), we use Equation (6) to
bias the initial distribution and compute the probabilities for
sampling the next action to be performed. The bias, which we
call motion bias, increases the probability of actions that are
similar to the last action performed and decreases the probability
of dissimilar actions, as exemplified in Supplementary Figure S2.
The objective is to reduce initial runtimes by increasing the
likelihood of repeatedly choosing similar actions, thus avoiding
trajectories such as constantly moving back and forth.

%7
/'t
i ]

== (6)
Y kb e

Where
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/
° T
adding the motion bias.

is the probability of performing action j at time ¢ after

o b]’-t is the motion bias for action j at time ¢ calculated as b]/'t =
Brlj — a;—1], where By is a circular array of predefined
weights for trial T given by Equation (7), and a;_1 is the
action performed during the previous cycle.

As the number of trials increases, we reduce the magnitude
of the bias incorporated in the action selection process to exploit
the solutions found by the reinforcement learning algorithm. If
the bias is not reduced, the model takes longer to start choosing
the policy learned by the reinforcement learning algorithm, and
the policy may converge prematurely. To reduce the bias, we
interpolated an array of predefined weights with a uniform
distribution at the start of each trial. The interpolation is done
so that, as trials go by, the initial array exponentially decays
to a uniform distribution according to Equation (7). Note
that as the weights become uniform, the biased distribution
”j/t
unbiased distribution 7j;. The predefined weights and the

resulting from Equation (6) becomes more similar to the

exponential decay rate were constant across all simulations and
were empirically chosen to decrease initial runtimes and to
prevent the policy from converging prematurely (leading to
longer final trial paths).

Brljl = u+vT(Boljl — ) )

Where

e Br is the circular array of biases for trial T. The array
exponentially decays to a uniform distribution.

e u is a constant (set to 871) representing the uniform
distribution.

e By is the circular array of biases used in the first trial. The
array is set so that By[0] = 0.83, By[1] = By[—1] = 0.06,
and By[j] = 0.01 for all other j.

e v is a parameter (set to 271/50) that controls the array’s
decay rate.

3.3.5. Eligibility traces

We use eligibility traces to improve the algorithm’s efficiency
(Sutton and Barto, 2018). As opposed to updating one state at a
time, eligibility traces keep track of previously visited states and
assign rewards to all of them based on how long ago they were
active. Our model’s eligibility traces for the critic and the actor
are computed according to Equations (8) and (9).

As in Scleidorovich et al. (2020), the equation for the
critic (Equation 8) is an adaptation from Llofriu et al. (2019)
to normalized radial basis functions, but here, we update the
mechanism that deals with very small traces. This mechanism
reduces the number of computations per cycle by setting very
small traces to 0. The original model sets to 0 all traces that are
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smaller than constant. Instead, this model introduces a counter
for each cell that keeps track of the last time it was active. Then,
using the counters, traces are set to 0 when their respective cell
has not been active for a given number of cycles.

As opposed to the critic, we replaced the actor’s traces from
Scleidorovich et al. (2020) with Equation (9). The new equation
is an adaptation of the traces for actor-critic algorithms (as
defined in Sutton and Barto, 2018) to our implementation of the
actor. As for the critic, we used the counters to set very small

traces to 0.
0 Cit > CV
“it = v : (8)
max{\"zj;_1,Pjt} otherwise
0 cit > CQ
A Y j . ©)
ARzijr—1 + (8a, — 7jt)Pir  otherwise
Where

e zjjr and z;; are the traces associated with place cell 4, action
j, at time ¢ for the actor and critic, respectively.

e 22 and 1" are the decay rates for the actor and critic,
respectively. For our experiments, we set 2Q = 1Y, and
all experiments were performed with and without traces
(decay rates were set to 0.7 and 0, respectively).

° 8{1 , is the Kronecker delta function that takes the value of 1
if a; = j and 0 otherwise.

e ¢ is a counter that keeps track of the number of cycles
passed since the last time cell i was active. The counter is
setto 0if Py > 0, or else it is set to ¢js—1 + 1.

o CV and CQ are constant parameters (set to % and
lnlga%m , respectively) that regulate how many cycles can a

trace be active before resetting it to 0. Note that when traces
are 0, the constants also become 0.

3.3.6. RL error and learning rule

To update the learning weights associated with each place
cell for both the actor and the critic, we use the actor-critic
learning rule using semi-gradient descent and the 1-step return
bootstrap error (Sutton and Barto, 2018). The formulas for the
update are shown in Equations (10)-(13). Equation (10) shows
how to compute the bootstrap (ie., the new approximation
of the state value computed from the old approximation and
the new data), Equation (11) shows the reinforcement learning
error, and Equations (12) and (13) show the update rules for the
critic and actor, respectively.

/ Tt if terminal state
V) = (10)
re+vy Y iPiVig—1 otherwise
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8=V~ Vi1 11
Vie = Vig1 + " 8izip1 (12)
Qijt = Vije—1 +azij—1 (13)

Where

e V, is the 1-step return bootstrap.

o ¢ is the reward received at time ¢.

e y is the discount factor (set to 0.95).

e Vi1 is the value associated with place cell i computed at
time t — 1.

e §; is the reinforcement learning error computed at time ¢.

e V;_1 is the state value computed at time ¢ — 1.

e zj—1 and zjj;— are the eligibility traces computed at time
t — 1 for both the critic and actor, respectively.

e oV and «® are the learning rates (both set to 0.4) for the
critic and actor, respectively.

3.4. Place field distributions

Throughout the experiments, we used 4 types of place field
distributions. Each type is illustrated in Figure 3 and described
in the rest of this section.

Uniform single-scale distributions (Figures 3A-C) cover
the entire maze by arranging place fields of identical size over a
single rectangular grid with identical distances between columns
and rows. To cover the maze, the corners of the grids coincide
with the corners of the mazes. Uniform layers were used to
assess how obstacles affect different field sizes and to assess
optimal cell numbers based on the number of obstacles and place
field size.

Uniform multi-scale distributions (Figure 3D) cover the
maze by combining multiple uniform layers, each covering
the entire maze. This distribution type was used to assess
whether a reinforcement learning algorithm would give
preference to small or large fields based on the distance
to obstacles.

Locally uniform multi-scale distributions (Figure 3E)
cover the maze by combining uniform layers whose
corners do not necessarily coincide with those of the
uniform  multi-scale distributions,

maze. Contrary to

each sublayer in a locally uniform distribution may
cover a small portion of the maze. This distribution
type was used to assess whether the results from uniform
distributions could be improved by adding additional place
cells at specific locations, namely around the goal and
near obstacles.

Non-uniform multi-scale distributions (Figure 3F) cover
the maze by placing place fields of different sizes anywhere

on the maze, i.e., they are neither restricted in size nor to
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a grid in space. Non-uniform layers were created manually
based on the hypothesis that small scales are helpful in
areas where the policy changes rapidly over space (i.e., near
obstacle corners and goals) and vice versa. This distribution
type was used to show the advantages of adapting the
place field representation (field sizes and positions) to the
specific environment.

3.5. Evaluation metrics

To evaluate the model, define

metrics: “extra steps ratio,” “learning time,” and “scale

we the following

contribution.” The first two metrics analyze how well
and how fast the agents learn the task, while the latter
measures how relevant a scale is for solving a task. They are
described next.

3.5.1. Extra steps ratio-path optimality

In Equation (14), we define the metric “extra steps ratio”
to assess the optimality of the paths learned by the agents.
The metric measures the number of extra steps taken to
complete a trial beyond the shortest path’s length. The concept is
illustrated in Supplementary Figure S3. To calculate the metric,
Equation (14) first subtracts the minimum number of actions
required to complete a trial from the number of actions
performed by the rat. Results are then normalized to make them
independent from the shortest path’s length. As a result, the
metric can be thought of as the number of extra steps taken per
required step.

Ar—M
er = ———

Where

e e is the optimality ratio in trial T for a given rat

e Ar isthe number of actions performed by the agent during
trial T

e M is the minimum number of actions required to reach the
goal in the respective maze

Note that although, in theory, extra step ratios should
always be greater or equal to 0, results may be negative
as M in Equation (14) is only an approximation of the
shortest path, calculated using the A-star algorithm (Hart
et al, 1968) by discretizing space into a 1 mm square
grid. As a result, ratios may be smaller than 0 if the
reinforcement learning algorithm finds a better solution than the
A-star algorithm.
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3.5.2. Learning time

We define the metric “learning time” in Equation (15)
to measure how fast each agent learns. The metric measures
the number of trials that an agent requires to reach a given
extra steps ratio for the first time. The concept is illustrated
in Supplementary Figure S3. Note that with this definition,
learning times may vary greatly depending on the chosen
threshold, and there is no guarantee that the extra steps ratio
will not increase at a later trial. Nonetheless, the objective of
defining the learning time in this way is to assess the initial
behavior of the curve “extra steps ratio vs. trial” while ignoring
its asymptotic behavior.

I = argmint({er < E}) (15)

Where

e [ is the learning time of a given rat, which we define as
the first trial in which the extra steps ratio is below a given
threshold

e e is the rat’s extra steps ratio on trial T

e Eis the chosen constant threshold (set to 1)

3.5.3. Scale contributions

Scale contributions assess the involvement of each scale
in solving the task. We propose two metrics which we term
“action contribution” and “value contribution.” Both metrics
are measured after the final trial of each simulated rat.

The value contribution of a scale is defined in Equation
(16). The metric measures the magnitude of the state value
contributed by the cells of the respective scale (the numerator
in the equation). The magnitude is measured as a percentage
of the total state value function (the denominator). Since the
quotient depends on the position where it is measured, results
average multiple locations (the set X). An alternative way of
thinking about the metric is that it measures how much the state
value function would change by deactivating (i.e., not using) the
given scale.

\% 1 Z | Zi:rizs VIPI(;C))l (16)
X = Tyl .
s Xl = [ Y ViPi(%))]
Where
° cg( is the value contribution of scale s for a given agent

measured on the set of positions X

e |- | denotes either set cardinality or absolute values

e r; is the radius of place cell i

e P;(x) is the activation of place cell i as defined by Equation
(2) but for position x rather than x;

e V; is the resulting state value associated with place cell i
after the final trial of the given rat.
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The action contribution of a scale is defined by Equation
(17) and is very similar to the value contribution. As opposed to
the state value function that defines a single value per state, the
action value function defines a vector of values per state (one for
each action). Thus, the only difference between both equations
is the use of the vector norms (rather than the absolute values)
to measure the contribution.

Y5 s QPG
IEREN

1
cg}:ﬁz

xeX

Where

A

sX
measured on the set of positions X

is the action contribution of scale s for a given agent

e |- | denotes set cardinality

e || - || denotes the Euclidean norm

e r;is the radius of place cell i

e P;(x) is the activation of place cell i as defined by Equation
(2) but for position x rather than X;

e Q; is the resulting vector of action values associated with
place cell i after the final trial of the given rat.

Note that in the definitions above, both equations depend
on the set X where the metrics are evaluated. Our experiments
consider different sets, but the details are left to the

respective sections.

4. Experiments and results

In total, we performed 4 experiments with the model using
the SCS simulator®. The code for this project can be found on our
labs GitHub repository?. Parallel simulations were performed
using CIRCE, which is one of University of South Florida’s
computer clusters®.

The experiments described in this section present variations
in place cell representations adapted to different environments.
Results are analyzed in terms of the previously described
evaluation metrics. We start by analyzing single-scale uniform
layers and then non-uniform multi-scale distributions. Note
that although all experiments were performed with and without
eligibility traces (with decay rates set to 0.7 and 0, respectively),
results were similar for both settings, and thus we only report
results without traces unless otherwise stated.

1 SCS-https://github.com/biorobaw/scs.
2 Multiscale project-https://github.com/biorobaw/Multiscale- V2.
3 CIRCE-https://wiki.rc.usf.edu/index.php/CIRCE_Hardware.
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4.1. Experiment 1-field size vs. obstacles

4.1.1. Objective

The goal of experiment 1 is to analyze the effects of
single-scale place field representations, i.e., place field sizes, on
different obstacle configurations. We evaluate learning times,
path optimalities, and the optimal numbers of cells, for single-
scale uniform distributions on variations in the number of
obstacles. We hypothesize that, 1) as the number of obstacles
increases, both learning times and extra step ratios will also
increase, 2) higher cell numbers will result in slower learning
but will reach better results (lower extra step ratios during final
trials), 3) optimal distributions will require more cells at higher
obstacle densities, and 4) compared to larger place fields, the
results obtained with smaller fields will be more robust against
changes in the number of obstacles.

4.1.2. Parameter configuration

Experiment 1 evaluates the model using 97 uniform single-
scale place cell distributions in 61 mazes with 7 different
numbers of obstacles.

The number of obstacles used in the mazes for this
experiment varied from 0 to 60 in increments of 10. For each
non-zero obstacle number, 10 mazes were randomly generated
by placing obstacles in different configurations as described in
Section 1. Sample mazes are illustrated in Figure 1B.

Single-scale uniform distributions involved variations in
the number of cells and the field sizes. Field radii ranged
from 4 to 56 cm in increments of 4 cm. The total number
of cells was controlled by modifying the number of columns
in the uniform grid. Columns varied between 5 and 40 in
increments of 5, generating distributions between 35 and 2,200
cells. Additionally, we tested the minimal coverage distribution
(MCD) of each scale corresponding to the least number of
cells necessary to cover the maze. Figures 3A-C illustrate 3
sample distributions. See Supplementary Section 2.1 for a full
description of all uniform distributions used.

To generate statistical data, we simulated 135,800 agents in
total with 100 agents per group, i.e., 100 agents per distribution,
per number of obstacles, per trace. For each condition with
non-zero number of obstacles, 10 agents were simulated for
each obstacle configuration to avoid biases introduced by any
specific configuration.

4.1.3. Results-learning time

Figures 4 (top row) and 5 show sample learning times
achieved by the agents using the single-scale uniform
distributions. Figure 4 illustrates the effects of varying the
number of cells and the scale, while Figure 5 focuses on the
effects of changing the number of obstacles. Only a subset
of the results are shown as the experiment compared 1,358
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parameter configurations. More detailed results are shown in
Supplementary Figures S5, S6.

As observed in Figure 4, results show that increasing either
cell numbers or field sizes increased learning times. This was
true in all cases except when using 35 cells or less in obstacle-
rich environments. In such circumstances, increasing either the
scale or the number of cells reduced learning times. Based on the
results discussed in Section 4.1.4, we attribute these exceptions to
difficulties in learning when using very sparse representations.
In other words, it is not that very sparse representations yield
slower learning but that they are unable to learn efficient paths
in cluttered environments.

When comparing factors, one key observation is that the
number of cells was more relevant than the field size in
determining learning times. This is best observed in Figure 4,
where the lowest learning times were obtained by reducing
the number of cells to 140. Although reducing field sizes
also led to shorter learning times, the reduction due to the
number of cells was a larger order of magnitude. Importantly,
this observation provides motivation to reduce the number of
cells when constructing non-uniform layers and thus reduce
learning time.

Considering obstacles, our first observation is that adding
obstacles made more evident learning time differences between
different scales and cell numbers. For example, when using
2,200 cells in Figure 5, the difference in learning time between
scales 8 and 56 was about 250 trials in empty mazes but about
2,000 in mazes with 60 obstacles. This observation highlights the
importance of testing the model in cluttered environments and
suggests that differences in dorsal and ventral place cells should
be assessed in complex rather than simple environments.

Our second observation regarding obstacles is that the
learning times of larger scales were more affected by the
number of obstacles than smaller scales. Figure 5 shows that
learning times consistently increased when switching from 0
to 10 obstacles, but results varied for higher obstacle numbers.
For smaller scales, such as scale 8, learning times remained
unchanged. For larger scales, such as scale 56, learning times
increased at a rate proportional to the field size. Although
the number of cells also modulated the rate, differences
between scales were observed regardless of the number of cells.
Consequently, results suggest that smaller fields are better suited
for cluttered environments than larger fields.

See Supplementary Section 2.2 for a discussion of whether
longer learning times due to obstacles could be explained by
longer exploration times during initial trials.

4.1.4. Results-extra steps ratio

The bottom row of Figure 4 shows sample extra step ratios
achieved by the agents during the final trial of the experiment.
The figure illustrates the effects of varying the number of cells
and the scale. As for the learning times, the figure only show
a subset of the results due to the large number of parameter
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FIGURE 4

First experiment results as a function of the field size. The figure compares the learning time (top row) and extra step ratio (bottom row) box
plots of seven field sizes for different cell numbers (columns) when using 60 obstacles. For 24 and 140 cells, some field sizes are missing as the
resulting layers would not cover the entire maze.
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Learning time as a function of the number of obstacles in the first experiment. The figure compares the learning time box plots of seven
obstacle numbers for different field sizes (columns) and cell numbers (rows).
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configurations tested. Additionally, although we plotted the
extra step ratios vs. the number of obstacles, results are very
similar to its learning time counterpart. Thus, we will assess the
results but omit the extra figure. More detailed results are shown
in Supplementary Figures S8, S9.

Although we hypothesized that higher place cell numbers
would lead to better extra step ratios during final trials, Figure 4
shows this was not the case. Instead, optimal cell numbers
varied according to the scale and the number of obstacles (see
Supplementary Section 2.3 for details). With few exceptions, the
best results were achieved using 560 cells or less. Increasing the
number of cells above the optimum gradually increased the extra
step ratios. On the other hand, reducing the number led to sharp
deterioration. This is best exemplified by scale 40 in Figure 4. In
mazes with 60 obstacles, scale 40 reached a peak performance
of about 0.1 extra steps ratio at 140 cells. Although adding cells
slowly increased the ratio, removing cells increased it quickly to
its worst value reached at 35 cells.

We attribute the existence of a ‘sweet spot’ in the number
of cells to the following two factors. 1) The fast deterioration
of extra step ratios when using very few cells suggests that very
sparse distributions have difficulties learning the optimal paths.
This is further evidenced by noting that sparse distributions were
more sensitive to the number of obstacles than distributions with
more cells (see Supplementary Figure S8). 2) Longer learning
times can explain the increased extra step ratios when using
more cells. Taking scale 40 from Figure4 as an example, if
we assume that all distributions with more than 140 cells can
learn the optimal paths, the only difference would be the time
it takes to learn them. Results from Section 4.1.3 showed that
increasing the number of cells led to longer learning times.
Thus, if a layer has not yet finished learning, adding cells
would lead to larger final extra step ratios. Combined, these
observations imply that larger place cell numbers allow for
better representation and learning of the paths (i.e., shorter
learning times and extra step ratios), but adding more cells
than required slows learning and increases final extra step
ratios. These observations are important because they suggest
that optimal distributions should use the least number of cells
required to solve a maze.

As observed in Figure 4, increasing field sizes led to
results that varied according to the number of cells. When
using 560 cells or more, final extra step ratios increased
proportionally to the field size, with the best results achieved
by the smallest scales. When using 35 cells or less, results
were inverted, with larger scales outperforming smaller scales.
For intermediate cell numbers, results varied between the two
extremes, typically achieving the best results within the 3
smallest scales. Similar to the learning times, adding obstacles
also increased the difference between scales. Also, note that
distributions using very few cells were the most affected by
adding obstacles, abruptly increasing their extra step ratios (see
Supplementary Figure S8).
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Lastly, when assessing the effect of the number of obstacles,
results were very similar to those obtained with the learning
times. The extra step ratios increased for large scales but
remained unchanged for small scales. The only difference with
the results shown for the learning times is that there is no jump
in extra step ratios between the 0 and 10 obstacle conditions.
Due to the similarity between plots, we believe that the larger
extra step ratios were caused by the longer learning times and
not by higher difficulty representing the optimal paths.

4.2. Experiment 2-scale contribution

4.2.1. Objective

For the second experiment, we want to assess the
“importance” of each scale for encoding the final policy in a
uniform multi-scale model. By “importance,” we mean “how
much does the final policy and value functions depend on a
given scale?.” To answer the question, we defined metrics “action
contribution” and “value contribution” in Section 3.5.3. Each
metric quantifies how much the state and action value functions
would change when deactivating (not using) a given scale. The
objective of the experiment is to show that smaller scales are
more relevant for encoding areas near decision points, while
larger scales are more relevant for encoding open spaces far from
decision points.

Given the contribution metrics, we hypothesize that: 1) the
contribution of smaller scales will increase near subgoals (i.e.,
places where the agent must change directions) and decrease
farther away, 2) the contribution of larger scales will decrease
near subgoals and increase farther away, and 3) as the number
of obstacles increases, the number of decision points will also
increase, leading to the same prediction as in 1. These hypotheses
are based on the idea that larger fields are useful to reduce
the number of cells required, while smaller scales are useful to
encode details.

4.2.2. Parameter configuration

For experiment 2, we assessed the contributions of all scales
in a single uniform multi-scale distribution. The distribution
is illustrated in Figure 3D and combines the minimal coverage
distributions of scales 4, 16, and 52 from experiment 1.

Experiment 2 was performed in all mazes from experiment
1 except for the empty maze. As a result, we simulated 10 agents
per maze in 60 obstacle-rich environments or, alternatively, 100
agents per obstacle number.

For each rat, contribution metrics were evaluated over two
sets of positions: “All positions” from a rats final trial, and
“Turns only,” final trial positions where the agent made a turn
(i.e., where it changed directions). The objectives for choosing
these sets were two-fold. First, we want to avoid measuring the
contribution in areas that are irrelevant to the final trial. Such
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FIGURE 6
Scale contributions of the multi-scale uniform distribution used in experiment 2. The plots show each scale’s action and value contributions
(first and second rows, respectively) for three obstacle numbers. The first and second columns show the contributions measured in the set of all
positions and in the set of turns, respectively. The third column shows the difference (subtraction) between the results of the second and first
columns. The red dotted line highlights the 0 y-coordinate.

areas may not be optimized by the algorithm and thus may
contain irrelevant information. Second, the set of turns should
closely reflect the policy’s decision points as agents explore little
after convergence. As a result, we expect that contributions in
the set of turns will increase for smaller scales and decrease for
larger scales when compared to the set of all positions.

4.2.3. Results

The results of the experiment are shown in Figure 6. The
figure shows the action and value contributions for each scale
for sample obstacle numbers. The plots in the first two columns
show the results in the set of all positions and the set of turns,
respectively. The third column shows the subtraction between
the contributions of both sets, highlighting their difference.
Positive numbers indicate that the contribution was higher in
the set of turns than in the set of all positions and vice versa.

Results show that the contribution differences between both
position sets varied across scales. As hypothesized, contributions
increased for smaller scales (4 and 16) and decreased for
larger scales (52), suggesting that smaller scales become more
relevant near decision points and vice versa. This pattern
was consistent for both metrics for all obstacle numbers.
Additionally, although we expected that the contributions of
scale 4 would increase more than scale 16, this was only true for
the value contribution metric.

When assessing the effect of increasing the number of
obstacles, there were no consistent increases or decreases in the
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contribution of smaller and larger scales. Since this contradicted
our hypothesis, we decided to investigate further.

First, we performed Kruskal Wallis tests for each scale
and position set to assess statistical differences between the
number of obstacles. After confirming statistical differences (p
<0.05), we followed the results with Dunn tests using Bonferroni
corrections. Results from the Dunn tests showed that most
distributions were not significantly different. When significant
differences were present, we did not find any patterns except
for the following. Value contributions for scales 4 and 16 could
be partitioned into one group with 40 or fewer obstacles and
another with 50 or more. For that partition, differences were
significant across groups but not within groups.

Since most differences between obstacle numbers were not
significant, we plotted the optimal path lengths, the extra
step ratios during the final trial, and the number of turns
performed by the agents. Our hypothesis assumed that adding
more obstacles would increase the number of turns made by
the agents, but the results indicated this was not the case.
Supplementary Figure S11 shows that the length of the optimal
paths is the same for 58 out of the 60 mazes. Also, for mazes
with 50 and 60 obstacles that have significantly higher numbers
of turns (p <0.05 in Dunn test), the extra step ratios were also
significantly higher. Taking all into account, rather than the
optimal policies requiring more turns, our results suggest that
the increase in turns is due to the multi-scale model having
higher difficulties learning optimal policies in these obstacle-
rich environments.
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4.3. Experiment 3-locally uniform layers

4.3.1. Objective

In the third experiment, we wanted to assess whether
learning times and extra step ratios could be jointly optimized
using locally uniform layers. The idea is to cover the maze using
large uniform layers to reduce learning times and to add smaller
place cells at strategic regions to reduce the extra steps.

Here we hypothesize that adding additional place fields
around subgoals can reduce extra step ratios without
significantly increasing learning times. The underlying
idea is that high place cell densities are not required throughout

the whole maze but only in specific regions.

4.3.2. Parameter configuration

Experiment 3 was performed in mazes 0 and 1 (both
illustrated in Figure 1B). Maze 0 is an empty maze chosen for
its simplicity. In contrast, maze 1 includes two walls that divide
the maze in halves and connect them through a small gap, thus
generating an extra non-rewarded subgoal. Maze 1 was designed
to maximize the difficulty for large scales by creating an area
where high precision is required to solve the maze.

To assess our hypothesis, experiment 3 compares single-
scale uniform distributions before and after adding two extra
layers of place cells. We use the term base layers to refer
to the uniform distributions before adding subgoal cells. Base
layers include the 10 minimal coverage distributions used
in experiment 1 with field sizes between 20 and 56 cm.
Distributions using smaller or fewer place cells were excluded
as the idea of the base layers is to cover the maze with few
larger cells.

For each base layer, two locally uniform distributions were
generated. The first locally uniform distribution added a 3 x 3
grid of 16 cm place cells centered around the goal. The second
layer added an extra 4 x 4 grid of 16 cm place cells centered
around the gap in maze 1. We use the terms “goal distributions”
and “goal and gap distributions” to refer to the respective
locally uniform distributions. In contrast to base layers and goal
distributions that were tested in mazes 0 and 1, goal and gap
distributions were only tested in maze 1 as they were designed
explicitly for this maze. In total, 30 distributions were assessed
in this experiment. Sample distributions of each type are shown
in Figure 7.

In total, 100 agents were simulated for each distribution
and maze.

4.3.3. Results

Figures 8, 9 show the experiment results, comparing the
extra step ratios and learning times before and after adding
the additional layers of place cells. For this experiment, results
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are shown with and without eligibility traces as qualitative
differences were observed.

For maze 0, results show that adding 9 place cells around the
goal effectively reduced the extra step ratios during the final trial
without increasing the learning times. Exceptions were found for
scales 20, 36, 48, 52, and 56 only when using traces. For scale 20,
adding cells did not improve the extra step ratios as they were
already optimal. On the other hand, for scales 36, 48, 52, and
56, extra step ratios were significantly decreased at the expense
of longer learning times which took about 10-15 more trials to
reach an extra steps ratio of 1.

For maze 1, results were similar, but the main difference was
that the agent had trouble learning optimal solutions with most
of the original layers, as seen in Figure 8. This was expected
as the maze was explicitly designed to be more challenging for
larger scales. Note that if we only looked at the results without
traces, we could think that mid and large scales were incapable
of learning optimal solutions to the maze, but this was not the
case, as illustrated by the results using traces. Also, contrary
to intuition, the largest scales reached smaller optimality ratios
than medium scales. Upon investigation, this is likely due to the
automatic placement of cells in uniform layers.

As for maze 0, adding cells around the goal in maze
1 significantly reduced extra step ratios without leading to
increased learning times. When not using traces, exceptions
were found for scales between 28 and 44 that correspond with
the scales that had trouble learning the maze, as seen in Figure 8.

Adding more cells around the gap in maze 1 also decreased
final extra step ratios but at the expense of slower learning
times (see Figures 8, 9); nevertheless, the increased learning time
was still shorter than uniform layers with higher numbers of
cells. Exceptions were found only for scales 20 and 24. For
scale 24, after adding cells, there was no statistical difference
in extra step ratios during the final trial, but the ratio was
already near-optimal. On the other hand, although the ratio
increased for scale 20, we would argue that this is likely due to
the extended learning time as the difference almost disappears
when using traces.

Supplementary Section 3 assesses qualitative effects of
adding cells around the goal and gap.

4.4, Experiment 4-non-uniform
distributions

4.4.1. Objective

In the last experiment, we wanted to assess the ability of the
model to jointly optimize the number of cells, learning times,
and extra step ratios using non-uniform place cell distributions.
In particular, we hypothesized that non-uniform distributions
could achieve simultaneous optimizations using field sizes
proportional to the distance to subgoals (decision points).
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Sample distributions used for in experiment 3. (A) Base layer distribution. (B) Goal distribution. (C) Goal and gap distribution.
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Extra step ratios comparing uniform with their respective locally uniform layers after adding cells at the goal and the gap. Rows show results for
mazes 0 and 1, respectively. Columns show results with and without traces, respectively. Note that the y axis uses a logarithmic scale.

Our hypothesis is based on the idea that larger scales
are more relevant for encoding areas where the policy
changes slowly over space, while smaller scales are more
relevant for encoding areas where the policy changes fast.
Within information theory (Reza, 1994), this can be intuitively
thought of in terms of compression rates and amounts of
information. Places where the policy changes slowly have little
information and can be encoded using a few larger cells.
On the other hand, places where the policy changes fast
encode more information and require more cells. Previous
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experiments suggest that in such regions, place cells should
be smaller to reduce learning times and prevent incorrect
policy generalizations.

that field
optimal distributions should be modulated by the distance

Furthermore, we also suggest sizes in
to subgoals. Evidence can be found by observing that
the rate of change of the optimal policy is indirectly
proportional to these distances. The idea is illustrated in
Supplementary Figure S13, where the further away from

the next subgoal, the less the policy changes within a
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given region. This can be explained considering that the
optimal policy in a circle centered at the next subgoal
would move the agent in a straight line (radially) toward
the subgoal. Thus, the rate of change would be equivalent
to the circle’s curvature, which is inversely proportional
to the radius (Pressley, 2001) (ie, to the distance to
the subgoal).

4.4.2. Parameter configuration

To assess our hypothesis, we compared the learning time,
extra step ratios, and the number of cells of the model using
uniform and non-uniform distributions. Uniform distributions
included the 14 minimal coverage distributions used in
experiment 1.

Non-uniform distributions were manually designed for each
maze assuming field sizes should be proportional to the distance
to possible subgoals. Possible subgoals include the goal itself
and non-convex vertexes in the maze (vertexes whose interior
angle is greater than 180 degrees). The presence of non-convex
vertexes indicates that not all pairs of points can be connected
through a straight line. In such cases, the shortest path between
points consists of a polyline passing through any number of non-
convex vertexes, thus the reason for considering them possible
subgoals. In our mazes, the non-convex vertexes correspond to
the corners of the obstacles. As an example, the gap in maze 1
is considered a subgoal since it is close to the corners of the
walls. As such, an agent must pass through the gap to move from
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one half of the maze to the next. Based on these ideas, non-
uniform distributions were generated by placing smaller place
fields around the goal and obstacle corners and then recursively
surrounding them with larger fields.

Since non-uniform distributions were manually generated,
we only assessed 3 non-uniform layers for 3 specific mazes.
Figure 10 illustrates the distributions in their respective mazes.
In total, 100 agents were simulated for each distribution
and maze.

4.4.3. Results

Figures 11, 12 the

comparing

ratios and
of

each maze.

extra
the
for

show step
uniform
As in
experiment 3, qualitative differences were observed when
Thus,

learning  times, results

and non-uniform distributions
using traces. we included the results with and
without traces.

As observed in Figure 11, non-uniform distributions
reached the lowest extra step ratios using fewer cells than
the best uniform layers of each case. This was true for all
mazes and traces. For uniform layers, the best results use
at least 117 cells on maze 0 and 165 on mazes 1 and 2. In
contrast, non-uniform layers used 38 cells on maze 0, 79
on maze 1, and 128 on maze 2. Note that as the number
of obstacles increases, the difference in the number of cells
becomes smaller. This is expected as more obstacles imply

more areas where higher place cell densities are required.
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FIGURE 10

Handmade non-uniform distributions used in experiment 4 for each maze. (A) Maze 0, (B) Maze 1, and (C) Maze 2.
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Also, even though by maze 8, the difference in the number
of cells is approaching 0, it must be noted that multi-scale
distributions were designed following the ideas from Section
4.42, and it is likely that optimized distributions would use
fewer cells.

When assessing learning times, we again found that the total
number of cells is the main factor contributing to the results.
This can be observed in Figure 12, where the learning time
decreases monotonically with the total number of cells with

few exceptions.
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Since the resulting learning times can be sorted by the
number of cells, not only did non-uniform layers reach the
lowest extra step ratios, but also, they did it faster than
all uniform layers that achieved similar extra step ratios.
To show this, we plotted the extra step ratios vs. trial in
Supplementary Figure S14. Although layers with fewer cells had
lower learning times, the solutions found by them had higher
extra step ratios, and in some cases, they even had issues
learning, as previously exemplified by agents getting stuck

in maze 1.
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. Discussion

In this article, we investigated how to distribute place
fields in cluttered environments to simultaneously optimize the
learning time and path distance metrics while also reducing
the total number of activated place cells. The experiments
presented in the paper assessed uniform, non-uniform, single-
scale, and multi-scale place field distributions. Results suggest
that non-uniform multi-scale place field representations can
simultaneously optimize the different metrics by assigning field
sizes proportional to their distance to the closest subgoal. As
part of the study, we made the following observations when
assessing the effects of different numbers of obstacles: 1) When
using single-scale distributions, all scales could solve the mazes
provided sufficient cells were used. 2) Increasing the number
of obstacles led to longer learning times and required higher
numbers of cells on average. 3) The results of small fields were
more robust against changes in the number of obstacles than
the results of large fields. 4) Increasing the number of obstacles,
the number of cells, or the field sizes led to longer learning
times, but the number of cells was the most significant factor
between them. 5) Optimal cell numbers for single-scale uniform
models varied according to the maze and field size and were
generally achieved using nearly the minimum number of cells
to cover the maze for all scales. Using fewer cells destabilized
learning and led to longer final paths while using more cells
increased learning times also leading to less optimal solutions.

Frontiers in Computational Neuroscience

19

A more in-depth discussion of the results is described in the
following subsections.

5.1. Experiment 1

When assessing optimal numbers of cells, each scale had
a “sweet spot” that minimized final extra step ratios. The
sweet spot was generally achieved using just enough cells
to learn the task. Using fewer cells sharply disrupted the
layers’ ability to represent paths accurately and destabilized
learning. On the other hand, using more cells increased
learning times and, as a result, final extra step ratios. For
most scales, the best results were achieved using between
140 and 300 cells. Exceptions included very small fields that
could, otherwise, not cover the maze. Also, adding obstacles
slightly increased the optimal number of cells when averaging
all scales.

When comparing the different field sizes, results suggest that
smaller scales are better than larger scales at encoding cluttered
environments and optimizing extra step ratios. Evidence comes
from the following. First, smaller scales generally reached lower
extra step ratios than larger scales when using the same number
of cells. Second, results for smaller scales were more robust
than larger scales when adding obstacles. That is, although
adding obstacles increased the learning time and final extra
step ratios of all scales, the increase was higher for larger
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scales than for smaller ones. Increasing the number of cells
only made the differences more visible. Additionally, results
after adding obstacles remained nearly unchanged for the
smallest scales.

As opposed to the extra steps, larger scales were more
useful than smaller scales for reducing learning times by
encoding large obstacle-free regions. Results showed that the
number of cells was the most critical factor in minimizing
learning times. As a result, although smaller scales allow
for faster learning than larger scales when using the same
number of cells, larger scales can reduce the number of cells
required to cover an environment and can thus reach shorter
learning times.

When combined, results suggest the use of smaller cells
to encode obstacle cluttered areas and few larger cells to
encode open fields. These predictions go in hand with other
computational models that suggest place fields should account
for the environment’s layout (Gustafson and Daw, 2011; Harland
etal., 2021). This is further supported by biological experiments
that found some place fields activate or deactivate when obstacles
are introduced (Muller and Kubie, 1987; Rivard et al., 2004) and
by the discovery of boundary and object vector cells in the brain
(Lever et al., 2009; Hoydal et al., 2018) that are thought to drive
place cell activity (O’ Keefe and Burgess, 1996; Burgess et al.,
2000; Hartley et al., 2000).

5.2. Experiment 2

Experiment 2 assessed the contributions of different scales in
a uniform multi-scale model. As hypothesized, results showed
that both the action and value contributions increased near
decision points for smaller scales and decreased for larger scales.
As aresult, the experiment motivates the idea that non-uniform
distributions should use smaller scales near decision points and
larger scales when far.

When adding obstacles, we did not observe significant
differences. Although this contradicts our original predictions,
our premise was that more obstacles meant more turns (decision
points). To our surprise, this was not the case, as there were
no statistical differences in the number of turns made by the
robot in the different mazes. As a result, we found that randomly
placing 10 to 60 small obstacles in a maze did not significantly
increase the difficulty of representing the final policy and
value functions.

5.3. Experiments 3 and 4

Experiments 3 and 4 assessed two types of non-uniform
place field distributions. The objective was to assess whether
the distributions could jointly optimize the number of cells, the
learning time, and the final extra steps ratio.
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Experiment 3 used locally uniform layers and acted as
a proof of concept. The experiment assessed whether the
final extra step ratios of uniform layers could be reduced by
adding a few fields at key decision points without extending
the learning times. Despite its success in improving the
extra step ratios, this method did not result in optimal
solutions. Furthermore, consistent with experiment 1, adding
cells significantly increased learning times only when the
resulting distribution had substantially more cells (percentually)
than the original distribution.

Experiment 4 proposed that field sizes in optimal
distributions should be proportional to the distance to the
closest subgoal. Subgoals include the goal itself and places
where the robot is forced to change directions, such as near
obstacle corners. Results showed that non-uniform multi-scale
distributions used fewer cells, learned faster, and reached better
final extra step ratios. Notably, although the advantages over
the uniform distributions decreased when adding obstacles,
distributions were manually designed, and automatic methods
will likely find better solutions using fewer cells.

While all experiments were performed with and without
eligibility traces, traces did not affect the overall results for
experiments 1 and 2. In contrast, when not using traces in
experiments 3 and 4, agents using single-scale distributions
with field sizes between 20 and 42 cm had trouble learning
mazes that required precision, resulting in final trial trajectories
between 30 and 60 times longer than the optimal paths. Adding
eligibility traces solved this issue, reducing their lengths to at
most twice the optimal paths. Therefore, these results suggest
that the difficulties in learning the mazes were not the result of
limited representational abilities of sparse distributions.

5.4. Main takeaways and observations

The main takeaways of our experiments are how the
different field sizes along the dorsoventral axis interact with
obstacles and how they can be arranged in non-uniform multi-
scale distributions to optimize all metrics simultaneously. As
an added benefit, non-uniform distributions can potentially
increase the number of memories recalled by a robot as fewer
cells are required to solve a task. In turn, this may allow the robot
to learn more tasks or details.

Although our experiments suggest that the best results are
achieved using very little redundancy (overlap between place
fields), this is not necessarily the case as we did not use any
noise. Omitting noise allowed us to simplify the analysis of the
model’s theoretical capabilities, but more redundancy could help
filter noisy cell activity or prevent memory loss by cell decay in
real scenarios.

Although our work did not use hierarchical reinforcement
learning (HRL), the proposed space representation shares
ideas similar to HRL and could be used to complement
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such algorithms. HRL speeds up learning by breaking tasks
into smaller subtasks (each with a subgoal) that are learned
independently along with a method for switching between them
(Sutton et al., 1999; Barto and Mahadevan, 2003). Similarly,
our model also speeds up learning although by adapting the
space representation to the particular environment. As the
multi-scale model distributes place cells concentrically around
subgoals using higher densities near subgoals, the proposed
space representation could naturally lend itself to further speed
up HRL algorithms. Additionally, the representation could also
be used to enhance automatic subgoal discovery. Finding useful
subgoals is a difficult task in HRL (McGovern and Barto, 2001;
Goel and Huber, 2003; Botvinick, 2012). With the multi-scale
model, subgoal discovery could be performed by finding areas
with high concentrations of smaller fields. In our algorithm,
place fields concentrate around obstacle corners as we assumed
obstacle corners to be subgoals (which conforms with rat
experiments Shamash and Branco, 2021; Shamash et al,, 2021).
Nonetheless, an HRL algorithm may want to use only a subset
of these locations. Thus, the suggested space representation may
hint useful subgoals, but another mechanism could further filter
them out.

5.5. Biological context

Our model was inspired by differences in the dorsoventral
axis of the hippocampus. In building the model, as several
other models, we used reinforcement learning to simulate
the brain’s learning process based on observations where
dopaminergic neurons predict error signals as temporal
differences (James et al., 1994; Schultz et al, 1997; Doya,
2008). Additionally, we assumed that place cells provide
the state in a locale learning system and that both the
dorsal and ventral hippocampus are involved in spatial
navigation (de Hoz et al., 2003; Harland et al., 2017; Contreras
et al., 2018).

Based on experimentation, our model predicts the possible
effects of inactivating dorsal or ventral place cells. Inactivating
ventral place cells should increase learning times and reduce
the ability to generalize actions. Furthermore, it may also
reduce the number of tasks or the amount of detail that
an animal can learn as inactivating ventral cells will require
substantially more dorsal cells to encode a task. On the other
hand, inactivating dorsal place cells should increase learning
time in obstacle-rich environments as the representation will
rely on larger fields. Either way, our experiments showed that
any scale could be used to learn a task, provided enough
cells are used. Thus, deactivating either dorsal or ventral
place cells should not prevent an animal from learning,
but it should affect how they react to different obstacle
numbers as they rely more heavily on one representation.
Note how obstacles had a more significant effect on larger
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fields than smaller fields in experiment 1. In Llofriu et al.
(2019), the authors analyzed how dorsal or ventral hippocampus
deactivation affected the time to complete a spatial navigation
task using a computational model in cluttered environments.
Similar to our predictions, all agents were able to learn the
task, although deactivating either region resulted in longer
completion times.

Our model also predicts that place field representations
should be denser around subgoals and sparser when further
away. Similarly, smaller fields should concentrate around
subgoals, and field sizes should increase when further away.

In the available literature, several rat electrophysiological
studies have observed varied spatial distribution of place cell
fields according to the environment, e.g., higher place cell field
concentrations near goals in the dorsal hippocampus (Hollup
et al,, 2001; Fyhn et al.,, 2002; Hok et al., 2007; Dupret et al.,
2010; Tryon et al, 2017). Additionally, dorsal and ventral
hippocampus experiments found that smaller fields aggregate
around walls while fewer larger fields are more prevalent in
the middle of the maze, with both types seen throughout
the complete environment (Harland et al.,, 2021; Tanni et al,,
2022). Importantly, these experiments were performed in mazes
without obstacles and fixed goals and, therefore, cannot assess
field distribution in relation to them. Although our non-uniform
distributions did not have small fields near walls or throughout
the maze, the distributions were manually generated to assess the
benefits of distributing field sizes based on goals and subgoals,
ignoring other factors that might be used to instantiate fields,
such as the specific location of visual cues or landmarks. In
Harland et al. (2021), there is an extensive number of visual cues,
including distal on the room walls and proximal on the maze
walls and on the floor itself. This cue-richness may explain the
activation of small place fields across the entire environment,
including the observation by Harland et al. (2021) of small
place fields in the center of the maze, likely because of the
floor cues.

5.6. Alternative models

We discuss in this section other models that have been used
to assess how the different place field sizes might be used for
navigation and to make predictions about the spatial distribution
of place fields.

In the boundary vector cell model (Burgess et al., 2000;
Barry et al., 2006), place cell firing is the result of combining
the output of multiple boundary vector cells, which are neurons
that activate when a boundary is detected at a given distance
and allocentric direction from the rat. This model predicts that
smaller place fields should be more numerous than larger place
fields and that the concentration of each type should increase
when close and far from boundaries, respectively. On the other
hand, this model does not explain how place cells are affected
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by goals nor how they are used for learning. Interestingly, if
the boundary vector cell model also incorporated object vector
cells (Hoydal et al., 2018) as input for place cells, the resulting
distributions might resemble the non-uniform distributions
proposed in this paper.

Although our article used place cells to represent the
state (current position) in reinforcement learning algorithms,
the successor representation model assumes that place cells
encode “a predictive representation of future states given the
current state” (Stachenfeld et al., 2017). Under this theory,
the dorsoventral multi-scale representation is the result of
encoding the successor representation using multiple discount
factors, which enables using different temporal abstraction levels
for decision-making.

5.7. Future work

As part of future work, we plan to evaluate the model
with autonomous robots in physical environments to assess the
effects of noise in optimal distributions. In order to achieve
this goal, some optimizations would be required. First, we need
to activate place cells driven by sensory-motor cues rather
than global positioning. Second, place field representations
should not be manually generated. Instead, place fields should
automatically adapt to the environment according to the
distance to subgoals. This could be done either by generating
a single multi-scale layer for each specific environment (as in
this paper) or by generating multiple single-scale layers, each
covering the entire maze (such as in the uniform multi-scale
distributions) and then choosing which layers to activate based
on environmental cues. In either case, our work suggests that
place fields should get smaller near the goal, but it may be argued
that its location is a priori unknown. While this may be true
during the initial trials, the position of the goal should be known
later on, as suggested by electrophysiological studies that found
neurons that encode the distance and egocentric angle to the
goal even when not seen (Deshmukh and Knierim, 2013).

Our current model assigns a single place field to each place
cell, but recent experiments in large environments show this is
not the case (Fenton et al., 2008; Rich et al., 2014; Lee et al., 2020;
Eliav et al., 2021; Harland et al., 2021). Instead, experiments
show that both dorsal and ventral place cells can have multiple
fields of different sizes, forming a multi-field multi-scale space
representation. Additional future work should update the model
to reflect the corresponding findings.
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