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Disrupted visual input unveils
the computational details of
artificial neural networks for
face perception

Yi-Fan Li and Haojiang Ying*

Department of Psychology, Soochow University, Suzhou, China

Background: Convolutional Neural Network (DCNN), with its great

performance, has attracted attention of researchers from many disciplines.

The studies of the DCNN and that of biological neural systems have inspired

each other reciprocally. The brain-inspired neural networks not only achieve

great performance but also serve as a computational model of biological

neural systems.

Methods: Here in this study, we trained and tested several typical DCNNs

(AlexNet, VGG11, VGG13, VGG16, DenseNet, MobileNet, and E�cientNet)

with a face ethnicity categorization task for experiment 1, and an emotion

categorization task for experiment 2. We measured the performance of

DCNNs by testing them with original and lossy visual inputs (various kinds of

image occlusion) and compared their performance with human participants.

Moreover, the class activation map (CAM) method allowed us to visualize the

foci of the “attention” of these DCNNs.

Results: The results suggested that the VGG13 performed the best: Its

performance closely resembled human participants in terms of psychophysics

measurements, it utilized similar areas of visual inputs as humans, and it had the

most consistent performance with inputs having various kinds of impairments.

Discussion: In general, we examined the processing mechanism of DCNNs

using a new paradigm and found that VGG13 might be the most human-like

DCNN in this task. This study also highlighted a possible paradigm to study and

develop DCNNs using human perception as a benchmark.

KEYWORDS

artificial neural networks (ANN), face perception, cognitive science, vision,

computational vision
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1. Introduction

Deep Convolutional Neural Network (DCNN) is a type of

Artificial Neural Network (ANN) that was largely inspired by

Hubel and Wiesel’s research on the human visual neural system

(Hubel and Wiesel, 1959, 1962). After decades of iteration,

researchers now have built several DCNNs that can perform

on par with humans on many computationally complicated

tasks. AlexNet (Krizhevsky et al., 2012) is the first deep neural

network proposed, which introduced the concept of depth to

neural networks for the first time in practice based on the

traditional convolutional neural network LeNet (LeCun et al.,

1998), and caused the birth of deep learning as a machine

learning subfield and brought it to widespread attention. In

the follow-up study, the network continues to deepen, from

VGGNet (Simonyan and Zisserman, 2014), which can reach

up to 19 layers, as proposed in 2014, to ResNet (He et al.,

2016), which can achieve hundreds of layers. In addition to

these classical DCNNs, some widely popular DCNNs have been

developed in recent years through improved algorithms, such as

DenseNet (Huang et al., 2017), which densely connects different

convolutional layers, MobileNet (Howard et al., 2017, 2019;

Sandler et al., 2018), which improves the convolutional method

to reduce the parameters and training difficulty andmaintain the

performance, and EfficientNet (Tan and Le, 2019, 2021), which

improves on MobileNet by introducing three hyperparameters:

input resolution factor, network width and depth factor, and

introduces dynamic learning method, etc. the deep neural

network DCNN has the accuracy and performance to reach or

even surpass human in tasks such as target detection, semantic

segmentation, image classification, etc (Weyand et al., 2016; Yu

et al., 2017; Larmuseau et al., 2021). The performance of DCNN

has gradually improved over the years, not only for specific tasks

such as face-based identification tasks but also for general tasks

such as visual perception of liquids (van Assen et al., 2020), shape

perception (Kubilius et al., 2016), scene segmentation problems

(Seijdel et al., 2020), etc.

DCNN, typically with millions of parameters, is widely

regarded as a "black box", which means that researchers

currently do not have a thorough understanding of its specific

mechanisms and principles. Although, it is well known that

neural network models are inspired by the visual neural system

(Hubel and Wiesel, 1959, 1962); however, certain mechanisms

used in DCNN such as error back propagation (BP) learning

methods are considered to be impossible to occur in biological

neural networks by neuroscientists (Lillicrap et al., 2020). Some

other artificial intelligence methods such as vision transformer

(ViT) (Dosovitskiy et al., 2020) that have recently achieved

good performance seem to have mechanisms of action that are

more distant from the biological neural system. However, recent

advancements in artificial neural network studies highlighted

the importance of neural network structures but less on the

functional and computational mechanisms. Some recent studies

indicated that a renewed focus on the inspiration of the human

nervous system for neural networks could be more helpful

for the further improvement and development of artificial

intelligence. For example, the deep network PredNet (Lotter

et al., 2016) and the neural network robustness enhancement

package Predify (Choksi et al., 2021) are inspired by the concept

of predictive coding observed in neuroscience. In addition, the

brain-inspired replay method effectively solves the problem of

catastrophic forgetting of artificial neural networks (van de Ven

et al., 2020). And the recently re-emphasized spiking neural

network introduces a time series model of biological neurons

(Ghosh-Dastidar and Adeli, 2009; Tavanaei et al., 2019).

Reciprocally, having brain-inspired DCNN allows

researchers to use neural networks as a computational

model for the study of the human neural system. In some recent

studies, DCNN has been commonly considered to be studied

as a framework of the human visual system (Kriegeskorte,

2015; Kietzmann et al., 2018; Yang and Wang, 2020). For the

exploration of single neurons in artificial neural networks,

receptive field analysis (Mahendran and Vedaldi, 2015; Yosinski

et al., 2015) has shown that artificial neurons have similar

performance to ventral pathways (Luo et al., 2016), and

experiments related to ablation analysis (Morcos et al., 2018;

Zhou et al., 2018) have tentatively confirmed the possibility of

ablation analysis of single neurons in theoretical neuroscience

(Barrett et al., 2016), which is difficult to be performed in

biological neural networks (Miller et al., 1991). Additionally,

some recent studies have also confirmed that CNN models also

have some similarities with humans in gender classification

tasks by means of reversing correlation in terms of information

acquisition (Song et al., 2021). In another recent study, passive

attention techniques also revealed a significant overlap between

the selective estimation of artificial neural networks and that

of human observers (Langlois et al., 2021). In typical neural

network evaluation criteria, the performance of other neural

networks is generally used as the baseline. The layer-by-layer

convolutional structure of DCNN can simulate the human

visual system in a better way, so it is possible to evaluate the

performance of neural networks using humans. Here, we

not only tested the external behavior of DCNNs with human

psychophysics data, but also studied the information extraction

pattern of the DCNNs to further examine their processing

mechanisms. This paradigm would utilize the understanding

of human performance from cognitive science, as well as the

architecture of the human neural systems and DCNNs, to offer

a better understanding of DCNNs from the perspective of

function and processing mechanisms.

In this study, we further tested and explored the

performance and interpretability of the neural network

by using human performance as a benchmark for neural

networks. We tested seven deep convolutional neural networks,
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AlexNet, VGG11, VGG13, VGG16, DenseNet, MobileNet, and

EfficientNet on a simple ethnicity categorization task.

2. Methods

2.1. Overall experimental procedure

This study consisted of several parts of the experiment.

At first, we measured the human performance (psychometric

function) and set them as a benchmark to unveil themechanisms

of DCNNs. If a DCNN utilizes the processing mechanism

as humans, then it shall behave the same (in terms of

psychometric function) as humans. Moreover, from a backward

correlation perspective, if the DCNN is indeed human-like,

then it shall use the same visual input from faces (note that,

each face offers abundant visual information). Thus, certain

input impairments that would not affect human perception

shall not affect human-like DCNNs as well. On the other hand,

the human-like DCNNs shall ’attend’ to the same regions that

humans do.

Here in this study, we tested the DCNNs with different

kinds of impaired inputs. In Experiment part 1, we compared

the performance of humans and DCNNs with gray-scaled

inputs. In Experiment part 2, we compared the DCNNs

with essential facial features masked. And in Experiment

part 3, we further studied their performance with only

essential facial features available. To further interpret the

results, we took a modified Grad-CAM-based LayerCAM neural

network attention visualization approach for each part of

the experiment.

2.2. Artificial neural networks

2.2.1. Neural network architectures

In this study, we utilized 7 directly trained DCNNs

in ethnicity categorization task. The AlexNet is an 8-layer

deep convolutional neural network, which consists of five

convolutional layers and three fully connected (FC) layers,

where the convolutional layers are used for feature extraction

calculation of the image. The FC layers are used for the final

weighted classification. Nonlinear activation of Rectified Linear

Unit (ReLU) (Glorot et al., 2011) is performed after each

layer (including convolutional and FC layers, except the last

one) to prevent gradient explosion or disappearance. After

the convolutional layers of 1, 2, and 5 layers, a MaxPool

operation is taken to compress the features and information

to alleviate the over-sensitivity of the convolutional layers to

the position. The Dropout (p = 0.5) (Srivastava et al., 2014)

operation is also used before the first two fully connected

layers to discard some of the neural links to reduce the

possibility and degree of overfitting. Because we used single

GPU training and thus the actual parameters passed in the

convolutional layers would not match those reported in the

original paper, we used a different set of parameters that the

original authors subsequently matched for single GPU training

(Krizhevsky, 2014). The VGGNets are overall deeper than the

AlexNet with a smaller convolutional kernel operation, and use

a structure called VGG blocks. Usually, a VGGNet contains

five VGG blocks and three FC layers, therefore its general

structure is similar to that of AlexNet. VGG11, VGG13, and

VGG16 represent the 11-layer 13-layer 16-layer VGG network

(Simonyan and Zisserman, 2014), respectively, also using ReLU

nonlinear activation after each layer except the last one, and

using MaxPool operation after each VGG block, and using

dropoutmethod in the first two fully connected layers. DenseNet

(Huang et al., 2017) is a kind of ANN based on the development

of the ResNet, and the DenseBlock is utilized by connecting

all the convolutional layers through residuals, and preventing

the generation of excessively high-dimensional feature matrices

by transition layer. In our experiments, we utilized and

tested DenseNet-201. MobileNet (Howard et al., 2017) uses

depthwise separable convolution, which decomposes the normal

convolutional layers into Depthwise (DW) convolution and

Pointwise (PW) convolution, where DW convolution uses a

three-channel convolutional kernel to process the input, and

PW convolution uses multiple 1×1 convolutional layers. The

PW convolution uses multiple 1×1 convolution kernels to up-

dimension the result of DW convolution, replacing the normal

convolution operation with two smaller convolution operations,

which can significantly reduce the parameters of the network

and reduce the computing pressure. In its V2 version (Sandler

et al., 2018), the Inverted Residual block is introduced to

take advantage of the better properties of DW convolution for

high-dimensional data processing, and the information loss in

convolutional operations is reduced by first up-dimensioning

and then down-dimensioning, while in its V3 version (Howard

et al., 2019) the Squeeze-and-Excitation (SE) channel attention

module is introduced on the basis of the inverted residual

block, which can obtain better performance by increasing a

small amount of computation. In our experiments, we utilized

and tested MobileNetV3-Large. EfficienitNet (Tan and Le,

2019) introduces three hyperparameters to adjust the network

structure, i.e., increasing the depth, width, and input resolution

of the network, which can further improve the performance

of the network by mixing these three parameters, and the

main body of the network structure adopts the deconvolution

layer of MobileNet, which can balance the reduction of the

network structure with the deepening of the network structure.

parameters. In its V2 version (Tan and Le, 2021), the DW

and PW convolutions are merged back into a normal 3×3

convolution in the early convolution operation, and MBConv

is still used in the later layers. progressive learning is used to

dynamically adjust the size of the input and the regularization

method during training. In our experiments, we utilized and

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.1054421
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Li and Ying 10.3389/fncom.2022.1054421

tested EfficientNetV3-S. We used the open-source PyTorch

(Paszke et al., 2019) deep learning framework to build our

neural network and used its default kaiming_normal method

for initialization.

2.2.2. Device and environment

The network training and image pre-processing were

performed on a computer running Windows 10 (Microsoft,

WA) OS with AMD Ryzen 1700 CPU, 16GB ram, and a

GTX1070 GPU. The neural network framework was built

using PyTorch, using compute unified device architecture

(CUDA) version 11.6, PyTorch version 1.11.0, and the code

was implemented in Anaconda environment with python

environment (3.9.7).

2.2.3. Dataset processing

The VGGFace2 Mivia Ethnicity Recognition (VMER)

dataset (Greco et al., 2020) based on VGGFace2 was used to train

the neural networks for ethnicity categorization. This dataset

has 3M images containing 9,131 individuals. We choose faces

from East Asian and Caucasian ethnicities for the study, and in

order to balance the training time with the training effect, we

selected images equally from each ethnic group in the dataset,

which not only balances the differences between individuals, but

also balanced the numbers of faces from the two ethnicities in

the final dataset, and does the same for the training and test sets.

We did this for the reason that recent studies have shown that

unequal data sets can lead to bias in the neural network (Tian

et al., 2021). Finally, we created a training set containing 10,718

Caucasian and 10,660 East Asian and a validation set containing

1,140 Caucasian and 1,240 East Asian for the neural network

to learn.

To better validate the DCNNs, and to conduct a direct

comparison between humans and DCNNs, we prepared an

additional test set, which is a stream of 21 typical Caucasian

male faces and a typical Eastern Asian male face deformed

between the two types of Caucasian faces from London Face

dataset (DeBruine and Jones, 2017) and Eastern Asian faces

from the dataset (Yu and Ying, 2021). These faces are carefully

aligned and masked with only inner features visible. Then, we

controlled and equalized the luminance of these images using

SHINE toolbox (Willenbockel et al., 2010).

2.2.4. Neural network training

For the seven neural networks, based on our past

experimental experience, we used the same settings, set batchsize

to 32 (except for EfficientNet which was set to 16 due to

hardware [more specifically, vram] limitation) and learning rate

to 5 × 10−5, directly trained each network for 60 epochs in the

dataset we extracted from VMER for ethnicity categorization

task (Caucasian or Asian), and saved the model parameter data

with the highest accuracy on the validation set as the model

for the following experiments. Before the actual training, we

also performed random clipping of the training set and random

horizontal flipping to enhance our dataset.

2.3. Human experiment

The human data were from an existing experiment testing

the same perceptual task. We reused the data as a benchmark to

test the performance of the DCNNs.

2.3.1. Participant information

Thirty human participants (mean age = 20.3; 21 females and

9 males) volunteered for the ethnicity perception experiment

(part of data from a study currently under review). They offered

written consent before the experiment. This study was approved

by the Ethics Committee of Soochow University.

2.3.2. Experiment procedure

The procedure of this experiment is adapted from a recent

cognitive study using psychophysics methods (Ying et al., 2020).

In general, participants were asked to judge the perceived

ethnicity of the testing faces (one at a time) via a Two-

Alternative-Forced-Choice (Asian or Caucasian) paradigm

by pressing A (Asian) or S (Caucasian) on the keyboard.

Every participant completed 420 trials (21 testing faces ×20

repetitions) with randomized orders.

The testing stimuli are 21 faces genderated in a similar way

as Ying et al. (2020). They were created by morphing between

a typical Caucasian male face and a typical Eastern Asian male

face using WebMorph software. The two typical faces are the

averaged faces of Caucasian male faces from the London Face

dataset (DeBruine and Jones, 2017) and Eastern Asian face was

the average of all Asian male Faces from the dataset (Yap et al.,

2016). These faces are carefully aligned (by the two eyes) and

masked with only inner features visible. At last, the luminance

of the images was controlled and equalized using the SHINE

toolbox (Willenbockel et al., 2010).

The human behavioral experiment was conducted on a

PC running Matlab R2016a (MathWorks) via PsychToolBox

extensions (Brainard and Vision, 1997; Pelli and Vision, 1997)

with a 27-inch LCD monitor (spatial resolution 1, 920 × 1, 080

pixels, refresh rate 120 Hz. During the experiment, participants

sat in an adjustable chair, with their chins resting on a chin rest

which was placed at 85cm away from the monitor, and each pixel

subtended 0.025 on the screen.
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2.3.3. Comparison using psychophysics
methods

The results of the psychophysical experiment of human

participants were used as the baseline to evaluate the

performance of the neural network at other variable levels.

Psychophysical experimental methods were adapted from

previous psychological studies (Webster et al., 2004) that asked

each subject to judge the ethnic classification of the face tested

from two options [press A (Asian) or S or (Caucasian) on

the keyboard to make a judgment from two options.]. Each

subject performed 420 trials, (21 faces × 20 repetitions), in a

randomized order. For the machine, the same 21 face images

were given to the machine for recognition, and after a complex

CNN operation, a Softmax function was used for the resultant

values to calculate their recognition probability for the resulting

faces. Based on previous studies in Webster et al. (2004),

different people with different standards of ethnicity judgments

shall have different points of subjective equality (PSE). The PSE

of each curve was then measured. With the above data, we

can derive the PSE for humans and DCNNs, and we can then

compare the PSE of the two types of curves. We used the t-test

to compare the performance of each DCNN against the PSEs

of 30 participants (the PSE of each DCNN against the mean

and deviation of the human participants). Based on this, we will

also submit the masked face images to DCNNs for the same

operation and also baseline with the above human data to go

further with our experimental study.

2.4. Attention area analysis of neural
networks and human

To further validate our hypothesis on the similarities

and differences between neural networks and humans about

information processing, we employed different neural network

interpretability methods. The majority of neural network

interpretability methods can be divided into four types,

visual interpretation methods, interference-based interpretation

methods, knowledge-based interpretation methods, and causal

interpretation methods. The most intuitive approach is the

visual interpretation approach (Sun et al., 2022). Consequently,

we chose to compare neural networks with humans from the

perspective of attention. For humans, eye-tracking (Holmqvist

et al., 2011; Duchowski, 2017)methods are a commonmethod to

study visual attention. The gaze and fixation of eye movements

of human observers can be analyzed by devices such as eye-

tracker to be able to derive human attentional tendencies (Blais

et al., 2008; Miellet et al., 2013; Brielmann et al., 2014; Hu et al.,

2014; Arizpe et al., 2017), and the results are generally derived

by plotting heat maps. The results are often demonstrated in the

form of a semi-transparent heat map overlaid on the original

input image. For neural networks, the most widely used method

for visual interpretation analysis is the class activation map

(CAM) (Zhou et al., 2016), and a series of other improved

methods. CAM replaces the fully connected layer of the original

network for classification with global average pooling (GAP) and

uses the GAP operation on each channel of the feature layer

extracted from the convolutional layer to obtain the weights and

perform a simple weighted summation with the feature layer

channels to obtain the activation map of the neural network,

which is expressed mathematically as follows.

Mc
(x,y) =

∑

k

(
1

W ×H

∑

x

∑

y

Ak
xy)A

k
xy (1)

Thismethod, as early works on visual interpretation of neural

networks, enables us to obtain the region of interest of the neural

network, but still has some shortcomings. It is modified directly

on the original network and needs to be retrained before the

results can be obtained, which will inevitably have a negative

impact on the results. In subsequent work, the Grad-CAM

(Selvaraju et al., 2017) solved this problem by back-propagating

the gradient to obtain the desired weights equivalently and

introducing the ReLU activation function to remove the

result of negative activation, which is finally represented

as follows.

Mc
(x,y) = ReLU(

∑

k

(
1

W ×H

∑

x

∑

y

∂yc

∂Ak
xy

)Ak
xy) (2)

Grad-CAM methods are currently the most widely used

methods for this type of question, while studies using gradient-

based CAM methods combined with eye-movement analysis

are still relatively rare, and we believe this is an area worth

developing, and some researchers are currently trying and

following up on this, for example, in this study (Alarifi et al.,

2019) comparing eye-tracking experiments with activationmaps

for age estimation, and in another recent study (Ralekar et al.,

2021), the authors also compared eye-tracking data with neural

network attention regions for character recognition, combining

eye-tracking analysis with CAMmethods in this paper (Langlois

et al., 2021). It is important to note that there are still few

studies that combine the two. The above-mentioned studies, all

pointed to the conclusion that humans and neural networks have

some similarities in information acquisition and processing,

which is a very interesting finding, and our paper also aims to

conduct some experimental exploration of this relatively empty

field through a similar approach in this way. In our specific

study, we intend to use the newer LayerCAM (Jiang et al., 2021)

method proposed by Jiang et al. based on a modified version of

Grad-CAM.

Mc
(x,y) = ReLU(

∑

k

(ReLU
∂yc

∂Ak
xy

)Ak
xy) (3)

Note that, both the Grad-CAM and the LayerCAM are based

on gradient backpropagation. However, the LayerCAM utilizes
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FIGURE 1

Psychometric functions of human participants and DCNNs under grayscale and color input conditions in Experiment Part 1. Green lines and

symbols represent human participants, black lines and symbols represent AlexNet, red lines and symbols represent VGG11, magenta lines and

symbols represent VGG13, blue lines and symbols represent VGG16, azure lines and symbols represent DenseNet, yellow lines and symbols

represent MobileNet and brown lines and symbols represent E�cientNet. The horizontal coordinates represent the change in “Asian-ness” of

the input, and the vertical coordinates represent the transformed predicted probabilities corresponding to human subjects or DCNNs.

element-level weights; thus, it offers a more refined performance

than Grad-CAM.

3. The experiment

3.1. Experiment part 1: Comparing the
performance with grayscale and color
inputs

Humans can correctly and effortlessly categorize the

ethnicity of a grayscaled face from its shape, as many cognitive

science studies used grayscale faces to test face perception.

Therefore, a human-like DCNN shall perform the same as

humans in terms of the psychometric function with or without

color information. In this experiment, we exploit the neural

network layer-by-layer attention area by CAM in five stages,

with better performance in the earlier layers, which is the

advantage of our choice of LayerCAM.

3.1.1. Results of experiment part 1

The results of the psychometric functions were shown

in Figure 1. It was obvious that the performance of human

participants (green lines) followed a psychometric function

(M = 0.362, SEM = 0.012). The seven DCNNs also followed

similar performance as human participants based on the

psychophysical curves. The statistical results of PSE (point

of subjective equality) were shown in Table 1 (the p-values

were Bonferroni corrected), For the grayscaled input condition,

the performance of AlexNext, VGG11, and VGG13 closely

resembled the performance of human participants in terms of

PSE (all p-values closed to 1), the performance of VGG16

[t(29) = 2.971, p = 0.083] is not significantly different from

humans. However, the performances of much deeper ANNs

significantly deviate from human participants: DenseNet [t(29)
= –11.826, p < 0.001], MobileNet [t(29) = –5.858, p < 0.001],

and EfficientNet [t(29) = –12.540, p < 0.001]. On the contrary,

for the color input condition, all DCNNs performed differently

(all ps < 0.005) from human participants apart from the

DenseNet [t(29) = –2.038, p = 0.711] (Table 1). Therefore, the

addition of color information on top of the shape information

(from grayscale input) significantly jeopardized all DCNNs: the

weakest impairment was found in VGG13 , but the largest

impairments were found in deeper ANNs (MobileNet and

EfficientNet).

To better understand what visual information the DCNNs

used for processing, we used the CAM to interpret the

“attention” of the DCNNs. As shown in Figure 2, all DCNNs

extracted the eye region for face processing. However, it is

clear that the AlexNet, at both input conditions, extracted
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TABLE 1 The point of subjective equality (PSE) statistics for color and

grayscale inputs with human data as the baseline in Experiment Part 1.

PSE t(29) p

Color Input AlexNet 0.213 –12.709 <0.001

VGG11 0.291 –6.045 <0.001

VGG13 0.325 –3.192 0.047

VGG16 0.210 –12.905 <0.001

DenseNet 0.338 –2.038 0.711

MobileNet 0.312 –4.287 0.003

EfficientNet 0.213 –12.701 <0.001

Grayscale Input AlexNet 0.361 –0.076 1.000

VGG11 0.366 0.280 1.000

VGG13 0.351 –0.993 1.000

VGG16 0.397 2.971 0.083

DenseNet 0.223 –11.826 <0.001

MobileNet 0.431 –5.858 <0.001

EfficientNet 0.215 –12.540 <0.001

The p-values are Bonferroni corrected.

information from a large region around the center of the eyes.

Also, the CAM results suggested that VGG11, VGG16, and

MobileNet shifted the attentional regions between two kinds

of input conditions, suggesting that they extracted different

visual inputs when the inputs were with or without color

information. For the VGG13 , DenseNet, and EfficientNet,

the attentional shift was comparatively small among all seven

DCNNs. The VGG13 concentrate on the eye region; the

EffcientNet concentrated on the right eye region; the DenseNet

concentrated on a larger region involving both eyes and the

nose. Note that, the VGG13 was somewhat biased to the left eye

at the color input condition. This leftward bias resembled the

hemisphere lateralization found in human face perception (the

face processing circuits were located in the right hemisphere,

and thus humans rely more on the left part of the face for face

processing Burt and Perrett, 1997; Megreya and Havard, 2011;

Galmar et al., 2014; Tso et al., 2014).

3.1.2. Brief discussion of experiment part 1

In the first part of the experiment, the results from analyzing

the psychometric functions suggested that AlexNet, VGG11,

and VGG13 would perform in a human-like fashion when

dealing with only the shape information of a face (i.e., the

grayscaled version of faces). However, the addition of color

information significantly biased the DCNNs. Interstingly, the

deeper DCNNs performed poorly with shape information

and with additional color information. On the other hand,

huge performance improvement with the additional color

information found in DenseNet is staggeringly different

from other DCNNs, suggesting its unique architecture. Thus,

the results together suggested that the DCNNs are with

computational mechanisms that are similar but different

from humans.

The CAM method further illustrated that the attentional

shifts of the DCNNs might explain the degeneration of

performance. Although both VGG13 and EfficientNet attend

to the eye region, the VGG13 focuses on the left eye (human-

like), while the EfficientNet focuses on the right eye (opposite

to human). It is reasonable to assume the human-like results of

VGG13 can be explained by its information extraction methods.

On the contrary, even though the EfficientNet is deeper and

more advanced, its bias in information processing leads to a huge

deviation from human performance. Interestingly, the CAM

method showed that from Stage 2 to 4, the MobileNet has

a complicated attention mapping. This pattern coincides with

the distinguished convolution computation of MobileNet. Thus,

this finding serves as an interesting piece of evidence supporting

the utility of CAM method in unveiling the computational

details of ANNs.

3.2. Experiment part 2: Testing DCNNs
with essential facial features invisible

In the first part of the experiment, we found that the DCNNs

underperformed when dealing with color inputs. The reason can

be unveiled using CAM method (the attentional foci analysis).

Following these findings, we decided to further validate what

input information the DCNNs utilize when performing the

ethnicity categorization task. To do so, we masked the essential

regions of the faces. Inspired by the backward correlation

method, it is clear that if a region of input is not used by a neural

network for processing, then masking this region would hardly

affect the performance of this network.

An increasing number of studies using eye-tracking analysis

have supported the existence of certain patterns in human

fixation with face information. In a recent study (Arizpe

et al., 2017), researchers analyzed the spatial patterns of eye

movements in normal healthy people and found four natural

clusters. The clusters were more evenly distributed across the

eyes, the bridge of the nose, and across the nose, philtrum, and

upper lip. In the cross-cultural study of ethnicity recognition

(Blais et al., 2008; Miellet et al., 2013), a combination of Western

and Eastern gaze tendencies also revealed that human attention

to ethnic distinctions is also focused on the position of the

eyes and nose. The existence of such a specific pattern is also

supported by the results of ethnicity classification studies based

on different areas of interest (AOI) categories for different

angles (Brielmann et al., 2014) and for children and adults (Hu

et al., 2014). Therefore, if a DCNN is indeed human-like, then
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FIGURE 2

Activation maps for the seven models in grayscale and color conditions in Experiment Part 1. A sample image is used here for illustration

purposes (The activation map shown below for Experiment 1 applies the same selection.). The term “stage” means the one generated after the

final max-pooling activation of each stage. We know that VGG is a network composed of blocks, so each stage represents the stage at the end

of each VGG block operation. For the stages where no max-pooling layer exists in the AlexNet section (stage3, stage4) the corresponding ReLu

layer (layers 8, 10) is used instead. For DenseNet-201, stage 1 corresponds to the first max pooling layer in the network, stages 2–4 correspond

to the three transition layers in the network, and stage 5 is the final Batch Normalization layer. For MobileNetV3-Small, stage 1 corresponds to

the first convolution block, stages 2–4 to the 4th, 8th and 12th inversed residual block, and stage 5 to the last convolution block. For

E�cientNetV2-S, stages 1–2 correspond to the 2nd and 10th Fused-MBConv blocks, and stages 3–5 correspond to the 6th, 15th, and 30th

MBConv blocks.

the occlusion of the essential facial feature for human would

jeopardize the performance of that DCNN severely.

From this part of the experiment, we slightly altered the test

inputs for the DCNNs. Using the OpenCV library, we generated

a 162 × 63 black rectangle and masked the eyes, left eye, right

eye, nose, and mouth on the original image of size 562 × 762.

Thus, 6 sets of 21 face stream verification sets are generated

simultaneously. In the subsequent CAM analysis, we scaled the

image to a size of 224 × 224, and the corresponding occlusion

was scaled equally.

3.2.1. Results of experiment part 2

The results of Experiment Part 2 were shown in Figure 3

and the results of the analysis over the PSE (point of

subjective equality) were detailed in Table 2 (all of the p

values were Bonferroni corrected). For the nose covered input

condition (Figure 3B), all seven DCNNs have severally distorted

psychometric functions. Thus, covering the nose region (an

important hub for holistic processing found in human face

perception) significantly biased the performance of all DCNNs

tested here. At the mouth covered input condition (Figure 3C),

the performances of most DCNNs (apart from MobileNet)

tested here were similar to the performance in the original

unprocessed input condition (with all facial features available;

Figure 3A). For the both eyes covered input condition showed

(Figure 3D), the results favored the notion that most DCNNs

could not properly perform the face processing task. However,

VGG16 [t(29) = 1.095, p = 1.000] was similar to human

participants based on the psychophysical function and statistical

results of PSE. Comparing the left eye and right eye covered

condition shown in Figures 3E,F, the performance of most

DCNNs could not correctly perform the ethnicity judgment as

they can when all visual features are available. Interestingly, the
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FIGURE 3

The psychometric functions of human participants and DCNNs under original and occluded input conditions in Experiment part 2. Green lines

and symbols represent human participants, black lines and symbols represent AlexNet, red lines and symbols represent VGG11, magenta lines

and symbols represent VGG13, and blue lines and symbols represent VGG16, azure lines and symbols represent DenseNet, yellow lines and

symbols represent MobileNet and brown lines and symbols represent E�cientNet. The horizontal coordinates represent the change in

“Asian-ness” of the input, and the vertical coordinates represent the transformed predicted probabilities corresponding to human subjects or

DCNNs. Note that, the (A) is the same as Figure 1 (Left), we still present this subfigure for illustrative purpose only. (B) Faces with nose covered.

(C) Faces with mouth covered. (D) Faces with both eyes covered. (E) Faces with left eye covered. (F) Faces with right eye covered.

VGG16 [t(29) = 0.781, p = 1.000] performed in a fashion that

was closed to human participants in right eye covered condition

and it is similar for VGG13 [t(29) = –1.282, p = 1.000] in left eye

condition.

Figure 4 illustrated the CAM outputs of the DCNNs (the

last fully connected layer) processing the original as well as

disrupted inputs at different conditions. Almost all DCNNs

exhibited larger variations in the "attention" region compared

to the original input in the masked both eyes condition, while

the VGG16 has less variation. Comparing the results of the

left eye and right eye masked conditions, there was a degree

of asymmetry in the results, but this result did not seem to be

significantly reflected. The attentional areas of all DCNNs were

significantly affected in the control blocking nose condition. In

contrast to this is the condition controlling for masking of the

mouth, in which the effect on DCNNs was minimal (apart from

MobileNet).

3.2.2. Brief discussion of experiment part 2

Results of CAM and psychometric functions together

suggested that the eye regions (especially for both eyes) are

essential for DCNNs to perform the ethnicity categorization

task: covering them significantly impaired the performance.

Interestingly, the VGG16 seems to perform the task with

little influence when covering the eyes (Figure 3D). Moreover,

all DCNNs’ performances were disrupted when the nose of

the faces was covered, suggesting that the DCNNs do not

solely rely on the eyes but are more likely to process the

configural information of the faces (Blais et al., 2008). Previous

researchers found that humans would concentrate on the

nose region to better extract the configural information of

a face for holistic processing (Van Belle et al., 2010; Linka

et al., 2022). Therefore, from this point of view, all of

the DCNNs grabbed an important computational mechanism

as humans.
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From the results in PSE per se, one may conclude that

both VGG13 (best when the right eye covered condition)

and VGG16 (best at both eye covered and left eye covered

conditions) performed in human-like fashions at different

conditions occluding eyes.

The asymmetry performances of the DCNNs of inputs with

left (Figure 3E) and right (Figure 3F) eyes covered suggested that

these DCNNs (especially for AlexNet) do not rely on inputs

from both sides of face equally. It is well documented that

human face perception is left-face biased, probably because

the face processing brain circuits are in the right hemisphere

(Kanwisher et al., 1997). Thus, a human-like DCNN should

be more impaired when the left eye is covered than when

the right eye is covered. The VGG16’s performance was

much better (and almost human-like) when the right eye is

covered. Thus, it is reasonable to assume that the VGG16

captures the hemisphere lateralization found in the human

neural system. However, considering the fact that VGG16 is

not interrupted when both eyes are covered (Figure 3D), it

is more likely that additional information from the right eye

(when the left eye is covered; Figure 3E) severely impaired

its performance.

3.3. Experiment part 3: Testing DCNNs
with essential facial features visible

Based on the findings of Experiment Part 2, we expanded

the experimental design by reversing the input impairment

methods. Here, only the essential regions were visible. Studies

in human face perception suggested that human utilizes

holistic information (e.g., the second-order relationships of

facial features) from faces to process faces (Maurer et al.,

2002; Van Belle et al., 2010). Therefore, the essential facial

features (e.g., eyes and nose) alone would not support

face processing. On the other hand, if a DCNN process

faces only using certain essential facial features, then

it shall be able to perform the ethnicity categorization

task with similar accuracy as the condition with all facial

features visible.

In this part of the experiment, we carefully controlled the

face inputs, leaving only the eye region, nose, and mouth of the

faces visible to the DCNNs. In addition, we changed the size of

the masks: (1) the same as Part 2, (2) 216 × 84 for the larger

boxes, and (3) 90× 35 for the smaller boxes.

3.3.1. Results of experiment part 3

The psychometric functions were illustrated in Figure 5.

Almost every curve should be considered as disrupted, thus we

TABLE 2 The point of subjective equality (PSE) statistics for di�erent

occlusion inputs with human data as the baseline in Experiment Part 2.

PSE t(29) p

Original AlexNet 0.213 –12.709 <0.001

VGG11 0.291 –6.045 <0.001

VGG13 0.325 –3.192 0.074

VGG16 0.210 –12.905 <0.001

DenseNet 0.338 –2.038 1.000

MobileNet 0.312 5.858 0.004

EfficientNet 0.213 –12.540 <0.001

Both Eyes AlexNet N N N

VGG11 N N N

VGG13 0.541 15.197 <0.001

VGG16 0.375 1.095 1.000

DenseNet N N N

MobileNet N N N

EfficientNet N N N

Left Eye AlexNet N N N

VGG11 0.220 –12.081 <0.001

VGG13 0.347 –1.282 1.000

VGG16 0.171 –16.207 <0.001

DenseNet 0.270 –7.845 <0.001

MobileNet N N N

EfficientNet N N N

Right Eye AlexNet N N N

VGG11 N N N

VGG13 0.212 –12.803 <0.001

VGG16 0.372 0.781 1.000

DenseNet 0.193 –14.382 <0.001

MobileNet N N N

EfficientNet N N N

Nose AlexNet N N N

VGG11 N N N

VGG13 N N N

VGG16 N N N

DenseNet N N N

MobileNet N N N

EfficientNet N N N

Mouth AlexNet 0.237 –10.680 <0.001

VGG11 0.278 –7.174 <0.001

VGG13 0.343 –1.639 1.000

VGG16 0.155 –17.625 <0.001

DenseNet 0.260 –8.728 <0.001

MobileNet N N N

EfficientNet 0.315 –4.007 0.009

We did not report the PSE of condition with failure to fit or has a large bias. The p-values

are Bonferroni corrected.

N Indicates that the data failed to fit a proper psychometric function or had a large bias.

thus the results are not meaningful and had been discarded for analysis.
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FIGURE 4

Activation maps for di�erent networks under di�erent occlusion conditions in Experiment Part 2. The figures were generated using the

LayerCAM method. Note that, only the last “stage” is shown here.

did not further analyze the PSE. In other words, the DCNNs

were no longer sensitive to the task when only the essential facial

features are visible.

Figure 6 showed the CAM output for the last layer of each

DCNN. In most cases, the DCNNs concentrated on the visible

areas of the face. However, the AlexNet, VGG11, VGG16, and

DenseNet focused on the edge of the face, where no visual

inputs were available (e.g., the AlexNet at Original Input

condition, with Nose visible). Interestingly, the MobileNet

focused on random locations at all sizes of display area;

and the EfficientNet did so at most cases. Comparatively,

the VGG13 stuck with the available visual inputs at

all conditions.

3.3.2. Brief discussion of experiment part 3

All of the DCNNs tested in this study failed to categorize

the ethnicity of a target face with only the essential facial

features available, regardless of the size of the mask. It is

reasonable to conclude that the DCNNs do not rely on a

single facial feature to process facial ethnicity. Consequently,

the DCNNs do rely on holistic information from the face to

perceive them.

4. General discussion

In this study, we explored the impact of various kinds of

lossy inputs on the ethnicity categorization task performance

of seven Deep Convolutional Neural Networks (DCNNs;

AlexNet, VGG11, VGG13, VGG16 , DenseNet, MobileNet, and

EfficientNet) and examined their computational mechanisms

using human performance as a benchmark. Three parts of

experiments allowed us to explore the cognitive similarity

between DCNNs and humans in terms of psychophysics

function and the extraction of visual information. In the first part

of the experiment, we tested DCNNs with grayscale and color

image inputs. The results suggested that the AlexNet, VGG11,

and VGG13 performed in a human-like fashion with grayscale

inputs; however, the addition of color information significantly

jeopardized the performance of most of the DCNNs apart

from DenseNet, which performed better with color input. The

results from CAM methods further unveiled that the DCNNs

extracted different visual information from the faces, and thus

confirmed that different DCNNs utilized different visual inputs

to perform the same computational task. In the second part of

the experiment, we adapted the reverse correlation method to

unveil the information extraction pattern of the DCNNs the
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FIGURE 5

The psychometric functions of DCNNs under the conditions that only essential facial features are visible. Black lines and symbols represent

AlexNet, red lines and symbols represent VGG11, magenta lines and symbols represent VGG13, and blue lines and symbols represent VGG16,

azure lines and symbols represent DenseNet, yellow lines and symbols represent MobileNet and brown lines and symbols represent E�cientNet.

The horizontal coordinates represent the change in “Asian-ness” of the input, and the vertical coordinates represent the transformed predicted

probabilities corresponding to DCNNs. (A) Faces with Only eyes visible (small obstacle box). (B) Faces with only mouth visible (small obstacle

box). (C) Faces with only nose visible (small obstacle box). (D) Faces with only eyes visible (obstacle box). (E) Faces with only mouth visible

(obstacle box). (F) Faces with only nose visible (obstacle box). (G) Faces with only eyes visible (large obstacle box). (H) Faces with only mouth

visible (large obstacle box). (I) Faces with only nose visible (large obstacle box).

by testing the DCNNs with essential facial features occluded

(disrupted inputs). Out of all seven DCNNs that were tested,

the performance of VGG13 resembled human participants most

closely , followed by the DenseNet. Based on the findings

of Experiment Part 2, we only presented these facial features

to the DCNNs in Experiment Part 3 and found that the
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FIGURE 6

Activation maps for di�erent networks in the case of three sizes of the display area, with only the eyes, nose, and mouth displayed. The

illustrated figures were generated with the LayerCAM method. Note that, only the last “stage” was shown here.

DCNNs may need holistic information for face perception.

Three parts of the experiment together verified the interference

of lossy image inputs to the neural network by comparing

psychophysical methods with State-of-The-Art techniques in

visual artificial neural networks. In general, we examined the

processing mechanism of DCNNs in light of previous findings

in human face perception and found that VGG13 might be the

most human-like DCNN in this task. These results together

extended our understanding of DCNN and offered a new way

to unveil the processing details of neural networks.

In the first part of the experiment, by comparing the

performance of seven DCNNs under the input of grayscale

and color conditions, we found that the results of the two

produced large differences. In previous studies (Torres et al.,

1999; Yip and Sinha, 2002; Choi et al., 2009), it has been generally

accepted that color can transmit more useful information, but

our experimental results indicate that DCNN can learn shape

information about facial features well, and color information

becomes a distracting factor, and here DCNN is not similar

to human performance. Thus, future researchers in computer

vision should be cautious when training and using different

ANNs with or without color information.

Eyes, nose, and mouth regions, as well as the second order

relationship among them (Maurer et al., 2002), are vital for

humans to perceive a face (Blais et al., 2008; Miellet et al.,

2013; Brielmann et al., 2014; Hu et al., 2014; Arizpe et al.,

2017). Some researchers in face perception even argued that

the ability to from the holistic representation is a hallmark

for expertise in face processing (Maurer et al., 2002; Van Belle

et al., 2010; Linka et al., 2022). According to the effects of the

activation plots shown in Figure 2, the “perceptually” similar

DCNNs extracted different parts of information from faces for

the ethnicity categorization task. Thus, we employed the reverse

correlation method (Song et al., 2021) to examine the DCNNs.

In Experiment Part 2, we occluded these key facial information,

and input these disrupted visual information to the DCNNs. In

previous studies such as Itier et al. (2007), researchers found

that the eye region is the most important region for human face
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recognition in visual information processing. However, both

CAM and psychophysical results suggested that the VGG16 does

not seem to be interested in the eyes. On the contrary, the

VGG13 performed much better under all conditions. The fact

that all networks fail to properly perform when the nose was

obscured suggests that the area near the nose is also critical for

the network, which is in line with the recent study (Linka et al.,

2022). on humans, for whom positions close to the theoretical

optimum point for face identification to be between the eyes and

the nose.

In Experiment Part 3, we presented the DCNNs with only

important facial features visible. The performance of DCNNs

clearly indicated that they could not rely on these important

face features alone for the face ethnicity classification task. It

is reasonable to assume that the DCNNs need information

about the structure of the face or the whole face to perform

the correct face processing task, which is close to human visual

processing (Maurer et al., 2002). The CAM results indicated that,

except for VGG13, the network seems to be focusing on some

irrelevant non-face regions (on the edge of the input images).

Thus, the DCNNs (regardless of the “deep”-ness) still suffered

from over-fitting issues. Here the results hinted that the DCNNs

could hardly perceive the ethnicity of a face with only facial

features, suggesting that they (at least partly) require the global

information of a face for this high-level vision task. Although

these DCNNs performed poorly in this part of the experiment,

they do share similar processing characteristics to humans.

Among all seven DCNNs tested here, the results favored

the conclusion that the VGG13 is the most human-like and

the best ANN for the ethnicity categorization task. AlexNet

had the worst performance among all DCNNs tested here, not

only in terms of its poor robustness at various disrupted input

conditions (e.g., Figure 3), but also in terms of its imprecise

information extraction found in the CAM results. This finding

is reasonable, as AlexNet is not a complex model, and its

performance or "brain-like" properties are weaker than VGG

in many studies (Song et al., 2021; Nicholson and Prinz,

2022; Zhou et al., 2022). VGG11 had a similar behavioral

performance as AlexNet, but its information extraction was

more human-like. The VGG13 achieved the most human-like

performance across all experimental conditions. The VGG13

was able to accurately capture the key information in the input

compared to other networks (Figure 6). As shown in Figure 5.

Interestingly, the VGG13 also favored the left part of face like

humans do. VGG16 also seems to reflect the characteristics

of VGG13, but in general, it failed to achieve a robust result.

For example, in the result of Experiment part 2 (in Figures 3,

4), the occlusion of the eye area did not interfere much with

VGG16, indicating that it did not use eye regions for face

processing, which is deviated from human data (Adolphs et al.,

2005). The DenseNet can only perform human-like with the

additional color information but utterly failed with only the

shape information. The MobileNet as well as EfficientNet can

hard extract the most important facial features and performed

poorly. Why do deeper networks perform worse in this task

than the VGG13? In a recent theoretical study (Sun et al.,

2016) of the depth of neural networks, it is shown that as the

network deepens, the Rademacher Average (RA; a measurement

of complexity) increases accordingly, which has some negative

effects on the network. From the information acquisition point

of view, deeper networks may be overfitting in learning and

learning something unimportant, so the deeper networks do

not seem to be able to perform simple tasks on par with

computationally less sophisticated networks.

The data from Experiment Part 2 suggested that the well-

performed (human-like) VGG13 favored the right eyemore than

the left eye for the task ; while the relatively under-performed

EfficientNet extracted mainly on the right eye. However, the

VGG16, which does not need visual inputs from eyes, performed

much better with left eye input than right eye input. It has been

well established that people’s ability to face processing is better

when faces are presented in the left visual field, a phenomenon

known as left visual field superiority (LVP superiority, De Renzi

et al., 1968; Gazzaniga, 2000; Kanwisher and Yovel, 2006; Yovel

et al., 2008). As visual information from each side of the visual

field is sent to the contralateral hemisphere, convergent evidence

from neuroimaging has indicated that the VLP superiority

reflects the right hemispheric dominance for face perception

(Kanwisher and Yovel, 2006; Meng et al., 2012). Specifically,

the brain activation pattern in the left fusiform gyrus (known

as Fusiform Face Area) is specially related to face processing

(Kanwisher and Yovel, 2006; Meng et al., 2012). The VGG13

performedmuch better and human-like than VGG16; while they

have opposite visual field superiority. It is worth noting that

an ANN does not necessarily follow all specific lateralization

characteristics of human neural system.

According to Marr’s three-stage theory of computation

(Marr, 1982/2010), although artificial neural networks are

very different from biological neural networks at the level of

hardware implementation, they may be consistent at the level

of computational theory and even algorithms. The visual system

is essentially an information processing system, and this system

theory is similar to biological or machine neural networks,

that is, there are similarities between biological and machine

information acquisition levels from the visual perspective. This

study (Zhang et al., 2018) demonstrates that a good feature

can perform equally well in humans with different models,

a result that supports this theory. which is the theoretical

basis for our study. If we assume that a neural network is

also an information processing system, then understanding

its selectivity in processing information is an important task.

In this study (Adolphs et al., 2005), it was shown that for

humans, problems in the allocation of attention affect the

processing and perception of faces, and combined with Marr’s

theory of vision, a well-performing neural network should be

more similar to humans in terms of information acquisition.
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Thus, the information extraction, a good indicator of functional

mechanism, is the most important evaluation perspective.

The interpretability of neural networks is always the focus

of researchers in computer sciences. The current experiment

endeavored to explore the interpretability of neural networks

from the perspective of psychophysicsmethods. Apart from that,

we also used the reverse correlation method with the findings

in human perception in mind: we compared the information

extraction of DCNNs with human face viewing patterns.

To do so, we employed the State-of-The-Art visualization

method CAM, a critically acclaimed method for visualizing and

interpreting neural networks. Recently, a new passive attention

technique seems to be able to visualize neural networks in a way

that is closer to human understanding relative to CAM (Langlois

et al., 2021), and future researchers should consider using the

advanced version of this technique to further analyze the results.

On the other hand, future researchers should also extend the

present paradigm to neural networks trained with other face

processing tasks and further validate this approach.

In summary, this study endeavored to examine the

computational details of seven DCNNs (AlexNet, VGG11,

VGG13, VGG16 , DenseNet, MobileNet, and EfficientNet)

using different behavioral methods by presenting different

kinds of disrupted inputs to the DCNNs and tested the

performance of the DCNNs with human benchmarks. The

results suggested that: (1) these DCNNs have similar but

different behavioral performance (psychometric function) as

well as information acquisition patterns (CAM outputs) as

humans; (2) different image disruption methods affected

DCNNs’ performance differently, and these NNs have different

computational mechanisms and utilize different visual inputs for

the same computational task; and (3) the VGG13 outperformed

other DCNNs, the more complex networks do not necessarily

perform better on simple tasks. In general, we examined the

processing mechanism of DCNNs in light of previous findings

in human face perception and found that VGG13 might be the

most human-like DCNN in this task. These results together

extended our understanding of DCNNs and offered a new way

to unveil the processing details of neural networks.
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