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Recent investigation on reinforcement learning (RL) has demonstrated

considerable flexibility in dealingwith various problems. However, suchmodels

often experience di�culty learning seemingly easy tasks for humans. To

reconcile the discrepancy, our paper is focused on the computational benefits

of the brain’s RL. We examine the brain’s ability to combine complementary

learning strategies to resolve the trade-o� between prediction performance,

computational costs, and time constraints. The complex need for task

performance created by a volatile and/or multi-agent environment motivates

the brain to continually explore an ideal combination of multiple strategies,

called meta-control. Understanding these functions would allow us to build

human-aligned RL models.

KEYWORDS

reinforcement learning, neuroscience of RL, prefrontal meta control, model-based
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1. Introduction

Suppose a new game was released. Reading the detailed “how to play” instructions

would be a desirable first step toward mastering the game. However, when such

instruction is not offered, we might consider playing the game without prior knowledge.

This undirected approach often works in practice. In fact, it is often the case that we

can understand the gist of the game after only a few trials, including its rules, goals, and

environmental structure, and how to draw up a draft strategy before deliberate planning.

Subsequent experience brings further improvement from such initial information,

rapidly refining a strategy suitable to various contexts and goals.

This example briefly describes the human capability of forming optimal behaviors

based on learning from experiences, the so-called theory of reinforcement learning

(RL) in the human mind. Inspired by the psychology and neuroscience of such human

behavior, RL theory provided themathematical scaffolding to describe how humans learn

from past experiences (Schultz, 1998; Sutton and Barto, 1998). Due to breakthroughs in

deep learning and a steep increase in computing power, RL theory and practice have

led to remarkable advances in our ability to design artificial agents with super-human
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performance. Results demonstrate the applicability of RL in

various domains, including games (Mnih et al., 2015; Silver

et al., 2016, 2017a,b, 2018; Schrittwieser et al., 2020), large-

scale Markov decision problems (Sutton and Barto, 1998;

Szepesvári, 2010; Sigaud and Buffet, 2013; Covington et al., 2016;

Evans and Gao, 2016; Dulac-Arnold et al., 2021), and non-

linear and stochastic optimal control problems without explicit

representations of environments (Bertsekas and Tsitsiklis, 1995;

Si, 2004; Busoniu et al., 2010; Fujimoto et al., 2019; Vecerik et al.,

2019).

Nevertheless, the computational principles underpinning RL

algorithms still differ from the manner in which human RL

works. The goal of RL is to develop a policy that specifies the

choice of action for each state of the world so as to maximize

the expected amount of future reward (Sutton and Barto, 1998).

It is common to divide the space of principles supporting RL

algorithms into two categories called, respectively, model-free

(MF) and model-based (MB). Most state-of-the-art RL agents

only incorporate the model-free (MF) RL principle (Doya et al.,

2002; Daw et al., 2005), whereas human brains employ both MF

and MB principles simultaneously (Dolan and Dayan, 2013).

In animals, MF RL is guided by the dopaminergic striatal

system (Montague et al., 1996; Schultz et al., 1997). Based on

the “trial-and-error” concept, MF RL incrementally updates

the values of actions based on reward prediction error, which

is the quantity that represents the discrepancy between the

agent’s prediction regarding reward and the actual rewards it

receives from the environment. Iterating this process is a way

to improve a policy, continually adjusting it to obtain more

rewards until convergence. Many repetitions of a contingency

are usually required to incorporate it into a policy by MF RL.

As a result, policies learned by MF RL are said to be habit-

like and automatic, making it harder to respond quickly to

changing context. For instance, when there is a sudden change

in the environment, or when a new goal is established, a

major number of classical MF RL agents is likely to require re-

learning to adapt to the change. This is often time-consuming

and computationally inefficient. In particular, it requires a

massive amount of new experience, since the effect of old

information will only slowly decay by averaging as more and

more contradictory information comes in later.

Humans can learn to adapt to environmental changes

with a small amount (or an almost absence) of experience.

As illustrated by the game example, human brains can go

beyond the MF RL strategy to achieve impressive scores with

high efficiency, speed, and flexibility in learning and behavior

control—whether the game is entirely new or not (Lake et al.,

2017). Recent progress in decision neuroscience indicates that

the human brain also employs another learning strategy besides

MF RL, called model-based (MB) RL (Daw et al., 2005; Dolan

and Dayan, 2013). Using this strategy, the brain learns about

different structures in the world, such as a state space or

reward structure, leading to a deliberate behavioral policy that

is sensitive to changes in the structure of the state space or

goals (Kuvayev and Sutton, 1996; Doya et al., 2002; Daw et al.,

2005; O’Doherty et al., 2015). In addition, humans have the

ability to learn from a small number of observations: neural

computations underlying rapid learning comprising so-called

one-shot inference, can be distinguished from those used for

incremental learning (Daw et al., 2006; Boorman et al., 2009;

Badre et al., 2012; Lee et al., 2015; Meyniel et al., 2015). One-shot

inference refers to the situation in which an agent learns rapidly

from only a single pairing of a stimulus and a consequence,

as often required for goal-driven choices. Incremental learning

refers to the situation in which an agent gradually acquires new

knowledge through “trial and error,” as seen in MF RL. A proper

combination of these two types of learning may guide optimal

behavior control in various situations within a relatively short

time with access to a relatively small set of experiences (or data)

in practice.

A neural mechanism called “meta-control” on top of

multiple systems utilized for human RL accounts for behavioral

flexibility, memory efficiency, and rapid learning speed in

humans. Recent neuroimaging studies and the computational

modeling used in RL studies have identified not only the

respective neural correlates of MF and MB RL (Gläscher et al.,

2010), but also the neuro-anatomical circuits responsible for

arbitration between the two types of RL. The above studies

are based upon the proposal that the arbitration is governed

by the relative amount of uncertainty in the estimates of the

two systems (Lee et al., 2014). Another meta-control ability

is that of determining when to learn incrementally or rapidly

to make inferences regarding the state of the world (learning

from a few observations). This meta-control process can be

extremely useful in guiding behavior during learning (Meyniel

et al., 2015), in deciding whether to explore a new alternative

or to pursue the currently available option (Daw et al., 2006;

Badre et al., 2012), and in evaluating an alternative course of

action (Boorman et al., 2009). It is noted that learning regarding

the state-space is necessary for MB RL because the probabilistic

representation of the state-space is an essential component

required for computing the expected amount of future reward.

Understanding how the human brain implements these

abilities, which state-of-the-art RL algorithms do not possess,

would help us improve the design of RL algorithms as follows.

First, an agent with an MB RL strategy would learn about the

model of the environment and leverage this knowledge to guide

goal-driven behavior. This includes action planning to foresee

future episodes, even if they are computationally expensive,

based on the model of the environment that the RL agent has in

mind. Second, we expect that an RL agent with a rapid inference

ability would learn a model of its environment from a very

small number of samples, expediting theMB RL process. Finally,

adaptive control of these functions serving RL, dubbed meta-

control of RL, would resolve the trade-offs among prediction

performance, computational load, and training efficiency.
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This paper is organized as follows. In Section 2, we briefly

overview the computational principles of RL and explore a few

situations posing significant challenges to recent RL algorithms.

We then discuss how the brain solves these challenges in a point-

by-point manner in Section 3. We will specifically discuss MB

and MF RL, one-shot inference in MB RL, and the meta-control

process over these strategies. This discussion leads us to potential

research questions presented in Section 4. A concluding remark

is provided in Section 5.

2. Reinforcement learning—Basic
ideas and challenges

2.1. Basic concepts

The theory of RL is a normative framework to account

for the general principle describing how value-based, sequential

decision-making takes place in humans (Mnih et al., 2015). RL

algorithms in computer science are usually based on Markov

Decision Processes (MDPs) (Bellman, 1957), which commonly

model various sequential decision problems incorporating

uncertainty in the environment.

Sequential choices, which occur in a range of real-

world problems, is a fundamental task that any intelligent

agents (including humans and animals) encounter in extended

actions/interactions with their environment (Littman, 1996).

In this circumstance, the agents iteratively try to make an

optimal decision to achieve a goal in a sequential manner,

through learning and inference. The agents need to act on

what they have learned, use them to infer the decision which

can possibly bring about the best outcomes, and learns from

the obtained outcome for decision-making in the future. With

this aim in mind, agents are capable of dealing with these

sequential decision problems by means of programming, search

and planning, or learning approaches. In general, agents who

learn to make optimal decisions take into consideration a

combinatorial approach—they carry out the planning in order

to establish long-term actions in uncertain domains on the

foundation of the learning about the environment. Sometimes

the choice between exploiting what they already know and

exploring new options that may lead to better outcomes (or

worse) takes place for the purpose that either maximizing

the effect of actions or toward a higher learning performance

assuring a better model of an environment enabling the better

outcomes (van Otterlo and Wiering, 2012).

These sequential decision problems are usually solved either

by learning and planning given a model of the MDP referred

to as MB RL, or by learning through actions/interaction with

an unknown MDP referred to as MF RL. During the process,

the desirability or undesirability of actions that agents choose in

each state, and their effects are evaluated by a reward codified in

a single scalar objective function. The objective of the agents is

then the maximization of the (discounted) expected sum of the

scalar reward at each step over time (Roijers et al., 2013).

A solution to the MDP is characterized by the Bellman

optimality equation (Sutton and Barto, 1998).

Q∗(s, a) = E(s,a,s′)

[

R+ γ max
a′

Q∗(s′, a′)
]

=
∑

s′

P(s, a, s′)
(

R+ γ max
a′

Q∗(s′, a′)
)

(1)

where the tuple 〈s, a, s′〉 refers to the current state s, an action

a, and the state in the next time step s′, and Q(s, a) refers to the

state-action value. P(s, a, s′) and R refer to the state-action-state

transition probability and an immediate reward, respectively. It

specifies that the value estimate for states and actions is based on

the expectation over a state-space distribution of the quantity

consisting of the amount of immediate reward plus the value

estimate of the possible next state.

The goal of RL is to learn an optimal policy by

estimating the expected amount of reward for each state or

action Q∗(s, a). Classical RL agents have employed various

iterative methods (Sutton, 1988; Watkins, 1989; Barto and

Duff, 1994; Singh and Sutton, 1996), but learning exact

representations of value functions in high dimensional state

space is often computationally intractable. In recent deep

reinforcement learning research, non-linear, parameterized

function approximation techniques are used to represent value

functions, policies, and models of the environment. The

combination of RL with deep learning has led to rapid advances

in RL algorithm design with outstanding performance in many

applications, including games, robot control and simulated

environments (Silver et al., 2014; Lillicrap et al., 2015; Mnih

et al., 2015, 2016; Van Hasselt et al., 2016; Kalashnikov et al.,

2018; OpenAI, 2018; Vecerik et al., 2019). Mounting evidence

suggests that similar algorithms are present in the mammalian

brain and are embedded in different types of human decision-

making systems (Daw et al., 2005; Dayan and Daw, 2008; Rangel

et al., 2008; Balleine and O’doherty, 2010; Dolan and Dayan,

2013; Gesiarz and Crockett, 2015).

2.2. Major challenges

The combination of deep learning and RL used in the state-

of-the-art RL algorithms has shown dramatic success in both

theory and practice. Nonetheless, the computational principle

of deep RL is still different from the way human RL works.

Let us recall Bellman’s optimality equation (Equation 1). The

optimality of the policy is in principle determined by the

expected amount of long-term cumulative rewards over a state-

action-state transition probability distribution, each of which we

call rewards and themodel of the environment, respectively.

A majority of RL agents, including state-of-the-art RL

algorithms, usually incorporate the MF RL principle. Here, the
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state-action-state transition probability is often replaced with an

empirical sampling from the environment; it does not require an

explicit representation of the model of the environment. Recent

works such as Muesli (Hessel et al., 2021) exhibited the capacity

to learn a model of sophisticated state representation as opposed

to this, but they are mostly limited to show the planning capacity

on top of the model learned i.e., learning from a simulation

of possible futures using a model of an environment. This is

likely to fail to demonstrate the human’s capability to introspect

their thought process (MB RL), and to account for the human’s

behavioral flexibility in arbitrating between MF and MB, the

characteristics called “meta-control.”

It thus lacks the ability to develop goal-directed policies,

making itself less flexible although RL algorithms are a simple

and effective way to find and explore better policies. For

example, a major number of classical MF RL agents requires

all new learning when a new goal, such as “find a piece of

cheese instead of a cup of water,” “achieve the lowest possible

score,” or “achieve a goal without embarrassing your opponent,”

is established (Lake et al., 2017). This is time-consuming and

inefficient; it requires a lot of experience (resampling from the

environment) because an MF RL agent mostly is likely to rely

on the retrospective learning principle i.e., learning from past

experience. This in consequence makes the training of RL agents

slower and less flexible, which has been a challenge from a

computational point of view.

Due to the perceived shortcomings of MF RL approaches,

a growing number of MB RL algorithms have been suggested

(Moerland et al., 2020) as neuroscientific findings on MB RL

agents have been shown to achieve goal-directed behavioral

adaptations (Doya et al., 2002; Lee et al., 2014). MF RL

algorithms require a massive amount of experience to learn.

This in turn leads to a significant diminution in their ability

to rapidly adapt to dynamic environments where a context and

its associated required tasks are frequently changed. As widely

known, MB RL algorithms appear to have many potential gains

to this end, such as sample efficiency, or fast adaptation to

environmental changes (Daw et al., 2011; Moerland et al., 2020).

However, it is not entirely clear that MB RL is always

superior to MF RL in sample efficiency, particularly in a

single task. It is still in doubt that the time for learning a

model and planning with the model is quicker than that for

learning an optimal policy directly from the episodes under

this circumstance. In addition, it is arguable whether MB RL

is always better than MF RL with respect to its fast adaptation

ability (Kim and Lee, 2022; Wan et al., 2022). For instance, a

recent MF RL algorithm was able to achieve zero-shot learning

to new goals that it never experienced during learning (Stooke

et al., 2021). This algorithm was clearly MF RL, since it does not

possess any model learning or planning capacity.

There is mounting evidence in decision neuroscience that

has led to clarification of the principles of how the brain solves

the aforementioned issues. One line of evidence suggests that

the human brain employs not only MF RL but also MB RL.

Other evidence indicates that the brain has the ability to learn

from a few or even a single observation(s) in a process dubbed

“one-shot inference” (Lee et al., 2015; Garcia and Bruna, 2018).

Specifically, the human brain is engaged in determining when

to learn incrementally or rapidly to make inferences regarding

the state of the world. This process can be extremely useful

in guiding an agent’s behavior during learning (Meyniel et al.,

2015), in deciding whether to explore a new alternative or pursue

a currently available option (Daw et al., 2006; Badre et al.,

2012), or in evaluating an alternative course of action (Boorman

et al., 2009). In the following section, we will investigate how

the human brain implements MF/MB RL itself and one-shot

inference to guide MB RL, and how these different functional

units are controlled in the brain.

3. Computational principles of RL in
the human brain

It is widely accepted that human behavior is accounted for

by two different behavior control strategies: stimulus-driven and

goal-directed behavior control (for a more extensive review on

these strategies, see O’Doherty et al., 2017). Historically, the

brain has been thought to exert stimulus-driven behavior control

(Thorndike, 1898). According to this theory, a biological agent

exhibits habitual response patterns that are highly insensitive

to changes in the consequences of its actions (Thibodeau et al.,

1992). This has been contrasted with the idea of goal-directed

behavior control, wherein deliberative actions are motivated by

a specific goal (Tolman, 1948; Valentin et al., 2007).

Each strategy provides a different complementary solution

considering accuracy, speed, and cognitive load (O’Doherty

et al., 2017). Goal-directed behavior control allows humans

to pursue adaptation to environmental changes without re-

experiencing (or re-sampling) (Tolman, 1948). However, it is

cognitively demanding and therefore slow. In contrast, stimulus-

driven behavior control is cognitively productive, automatic, and

fast despite being fragile in a volatile environment (O’Doherty

et al., 2017). It appears that humans use specific principles to

determine the dominating type of control to guide behavior in

different contexts (Dickinson et al., 1983).

The above behavioral findings highlighting the two

contrasting behavior control strategies beg the question of

whether and how the human brain implements respective RL

strategies (Doya, 1999; Daw et al., 2005; O’Doherty et al., 2015).

As Daw et al. (2005) have proposed, the two distinct types of

RL (MF and MB RL) guide human behavior, and can account

for habitual and goal-directed behavior control, respectively.

In the following section, we will focus on exploring the neural

correlates of MB and MF RL in order to better understand the

computational principles underlying RL in humans.
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3.1. Neural correlates of RL

Animals learn to survive by making choices that lead to

the receipt of rewards (e.g., food or water) and avoidance of

penalties (e.g., sickness or death). In doing so, the animal should

be able to estimate the value of each environmental option.

This ecological conception has motivated research on the neural

representations of value signals in the brain (Camerer et al.,

2005; Padoa-Schioppa and Assad, 2006; Glimcher and Fehr,

2013; Juechems et al., 2017). Such investigations indicate that

the value signals are found in several brain regions including the

amygdala, orbitofrontal cortex, ventromedial prefrontal cortex,

and ventral and dorsal striatum (Saez et al., 2015; O’Doherty

et al., 2017), as well as the parietal and supplementary motor

cortices (Hampton et al., 2006; Gläscher et al., 2008; Boorman

et al., 2009).

The quantity representing the discrepancy between

predicted future rewards and actual rewards, called a reward

prediction error (RPE) signal, is required to update the value

signal. The reward prediction error signal encodes the phasic

activity of dopamine neurons, as seen in Figure 1A (Schultz

et al., 1997).

Since the reward prediction error plays a key role in

RL, the RL framework has been used in a wide range of

neuroscience disciplines. In particular, RL has been used to

explain the computational functions of neuromodulators such

as dopamine, acetylcholine, and serotonin (Sutton, 1988; Sutton

and Barto, 1998). Phasic firing patterns of dopaminergic neurons

reflect the characteristics of temporal difference prediction error

in humans (Niv, 2009). Earlier studies have reported that

dopaminergic neurons convey information regarding current

events and the predictive value of the current state, and that the

circuitry involving dopaminergic nuclei uses this information

to compute a temporal difference-style reward prediction error

(Christoph et al., 1986; Floresco et al., 2003; Nakahara et al.,

2004; Geisler and Zahm, 2005; Matsumoto and Hikosaka, 2007).

Human neuroimaging studies have also reported evidence for

the presence of temporal difference prediction error signals

in dopamine neurons (Glimcher, 2011; Lee et al., 2012) and

reward/state prediction errors in the human brain, as shown in

Figure 1B (Lee et al., 2014). In summary, these findings indicate

that MF RL, including the temporal difference model, is by

far the most appropriate theoretical principle to explain how

animals, including humans, learn to survive.

3.2. Trade-o� between prediction
performance and computational costs:
Model-based and model-free RL

Typical MF RL algorithms can successfully account for

choice patterns in simple decision-making tasks. However, they

fail to explain the choice patterns inmulti-stageMarkov decision

tasks (Gläscher et al., 2010; Lee et al., 2014). There is thus a need

to test the hypothesis that additional type(s) of RL strategies may

be used at different time points (Dickinson et al., 1983).

Behavioral evidence indicates that there are at least two types

of behavior manifesting at different time points. For example, in

the early stage of training, an agent is likely to select an action

based on predicted outcomes, while later on, action is elicited

by a prior antecedent stimulus. The former and latter are called

goal-directed and habitual behavior, respectively. Accumulating

evidence supports the existence of separate neural substrates

guiding these two types of behavior (Dickinson et al., 1983;

Dayan and Berridge, 2014; Nasser et al., 2015; O’Doherty et al.,

2017).

Figure 2A provides an example of the above phenomena

in the context of the strategic game Tic-Tac-Toe. An MF RL

agent would attempt to choose the next strategy so as to win the

game and is in favor of maximizing the value. Here, the MF RL

(right panel in Figure 2A) would update the value via sampling

without consideration of the model of the game. Such action

patterns associated with habitual behavior are accounted for by

MF RL algorithms, which learn the values of actions based on

reward prediction errors in a process of backward learning. In

contrast, an MB RL agent (middle panel in Figure 2A) would

first learn a model for the game (i.e., state-action-state transition

probability). It would then decide on an option to win the game.

The action patterns associated with this goal-directed behavior

are accounted for by MB RL, which uses state-prediction errors

to learn the values of actions online by combining information

regarding the estimated outcome and the learned model of

the environment. Therefore, an exploration stage to model an

environment (e.g., a few more plays with the opponent in this

case) is necessary in this context.

The major distinction between MB and MF RL is

the assumption that the agent uses the knowledge of the

environment to update action values as described above. For

example, the MB learner computes the expected future outcome

using a state-action-state transition probability distribution,

whereas the MF learner does not rely on the availability of a

perfect state-transition model. Neural evidence supports this

assumption, as shown in Figures 2A, B. Based on the prediction

error signals described in Figure 1B, a neural mechanism would

process value signals from several brain regions in human RL.

These brain regions include the dorsomedial prefrontal cortex,

which encodes an MB value (Wunderlich et al., 2012; Doll

et al., 2015), the posterior putamen, which encodes an MF value

(Tricomi et al., 2009), and the ventromedial prefrontal cortex,

which integrates MB and MF values (Boorman et al., 2009; Hare

et al., 2009; Rushworth et al., 2012).

This computational distinction suggests that there is an

inevitable compromise between the two strategies. MB RL

provides more accurate predictions than MF RL in general,

though both processes converge upon an optimal behavior
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FIGURE 1

Evidence of RL in the brain. (A) Midbrain dopamine neurons encode information regarding the discrepancy between a predicted outcome and

the actual outcome, an essential component in regulating RL (Figures are adapted from Schultz et al., 1997). (B) Neural evidence for the use of

prediction errors in the human brain: state prediction error and reward prediction error (the figure was taken from Lee et al., 2014).

strategy. As a result, performance differences between the

two strategies diminish over time. Nevertheless, MB RL is

computationally heavier than its counterpart. This indicates

that there is a trade-off between prediction performance and

computational costs.

3.3. Trade-o� between prediction
performance and time constraints:
Incremental and one-shot learning

It is not surprising that RL agents require a sufficient

number of experiences to fully learn causal relationships in the

presence of different environmental factors. This is the basic

principle underlying incremental inference. In this case, the

agents gradually learn through trial and error to identify stimuli

leading to particular consequences. There has been substantial

progress in understanding the computational mechanism

underlying incremental inference. Various algorithms, such as

the Rescorla-Wagner rule (Rescorla and Wagner, 1972), the

probabilistic contrast model (Jenkins and Ward, 1965), the

associative learning model (Pearce and Hall, 1980; McLaren

and Mackintosh, 2000), and Bayesian causal inference (Griffiths

and Tenenbaum, 2009; Holyoak et al., 2010; Carroll et al.,

2011) provide computational accounts for the behavioral

characteristics associated with incremental inference. Note that

an MB RL agent would gradually learn about the model of the

environment if the incremental inference strategy is used.

Unlike in incremental inference, the agent sometimes learns

the associations very rapidly after a single exhibition of a

novel event never experienced before. This is called “one-

shot” inference. This ability has been demonstrated in animal

learning (Moore and Sellen, 2006; Schippers and Van Lange,

2006; Garety et al., 2011; Moutoussis et al., 2011) and object

categorization (Fei-Fei et al., 2006). Although the distinctive

case of one-shot inference has been relatively well-discussed

in behavioral studies (Moore and Sellen, 2006; Garety et al.,

2011; Moutoussis et al., 2011), its computational mechanism

has received scant attention. Lee et al. (2015) investigated the

computational and neural mechanisms underlying one-shot

inference. They presented evidence indicating that the level

of uncertainty regarding “cause-effect” relationships mediates

the transition between incremental and one-shot inference. For

example, more causal uncertainty leads to the assignment of a

higher learning rate to a stimulus. This in turn helps resolve

uncertainty and facilitates very rapid one-shot inference. This

explains when and how one-shot inference occurs in preference

to incremental inference, and how the brain is able to switch

between the two learning strategies.

Figure 2 provides an example of the behavioral and neural

evidence regarding incremental and one-shot learning in MB

RL. Incremental inference (bottom-left panel in Figure 2A)

usually requires considerable experience or frequent exposure to

a cause-effect pairing to learn the causal relationship between

the two events. On the other hand, one-shot inference learning

(top-left panel in Figure 2A) requires only a single exposure to
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FIGURE 2

(A) Behavioral evidence for MB/MF RL and incremental/one-shot inference in MB RL in the context of the game of Tic-Tac-Toe. (B) Neural

evidence for MB/MF RL and one-shot inference. Figures are adapted from Wunderlich et al. (2012); Doll et al. (2015) for MB value, Tricomi et al.

(2009) for MF value, Boorman et al. (2009); Hare et al. (2009); Rushworth et al. (2012) for MB/MF value integration and Lee et al. (2015) for

one-shot inference. (C) Neural evidence of meta-control over MB and MF RL (right figure is adapted from Lee et al., 2014), and incremental and

oneshot-inference (left figure is adapted from Lee et al., 2015).

a cause-effect pairing or a single experience. In the Tic-Tac-Toe

game context, a player may establish the winning strategy based

on the number of game plays when he or she is using incremental

inference. However, a player may also establish the winning

strategy based on a single novel experience when using one-shot

inference. Recent findings proposed by Lee et al. (2015) describe

the neural activity associated with one-shot learning. As seen in

Figure 2B, the ventrolateral prefrontal cortex (vlPFC) encodes

causal uncertainty signals and the fusiform gyrus encodes the

novelty of a given cause-effect pair. The fusiform gyrus then

plays a crucial role in the implementation of switching control

between incremental and one-shot inference.
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Note that there is a trade-off issue here as well. For instance,

an RL agent that learns incrementally provides more reliable

predictions but is slower than one based on one-shot inference.

Determining the strategy that the agent pursues would depend

on prediction performance and time constraints.

3.4. Prefrontal meta-control to resolve
the performance-e�ciency-speed
trade-o�

As described earlier, the brain exerts control over behavior

using multiple complementary strategies: (i) MB and MF

RL, and (ii) incremental and one-shot learning. The former

addresses the trade-off between prediction performance and

computational efficiency, while the latter addressed the trade-off

between prediction performance and learning speed.

These findings beg the question of whether the brain

implements a principled policy to arbitrate between the two sets

of strategies. Earlier theoretical work hypothesized that there

exists a brain region that determines the amount of influence of

each strategy on behavior (Daw et al., 2005). Subsequent studies

have found evidence for the existence of such a mechanism in

the human brain: the arbitration between MB and MF RL (Lee

et al., 2014), and that between incremental and one-shot learning

(Lee et al., 2015).

Such arbitration processes are predominantly found in the

ventrolateral prefrontal cortex (Lee et al., 2014, 2015), as seen in

Figure 2C. On the one hand, the ventrolateral prefrontal cortex

computes the decision uncertainty in MB and MF RL while

taking into account the prediction error (reward prediction error

in MF RL and state prediction error in MB RL). This results in

the model choice probability (PMB). The ventrolateral prefrontal

cortex chooses the more reliable system (either MF or MB)

depending on PMB. This would in turn control the behavior,

as appropriate given the situation (right panel in Figure 2C).

On the other hand, the ventrolateral prefrontal cortex is also

involved in the choice of the mode of inference depending

upon the degree of functional coupling between the ventrolateral

prefrontal cortex and hippocampus. Specifically, the degree

of functional coupling increases when one-shot inference is

predicted to occur and decreases when incremental inference is

predicted in the hippocampus.

The main finding of the above studies is that the key variable

for arbitration is uncertainty in the prediction performance

for each strategy. For example, let us assume that the MF

RL agent has recently indicated high reward prediction errors,

while the MB RL system has indicated low state prediction

errors simultaneously at a particular moment. This would imply

that the MF agent is less reliable while the MB system (i.e.,

goal-directed system) is warranted at this moment. In this

situation, the behavioral policy would be influenced by the

MB system while the brain reduces the influence of the MF

system. However, it is noted that MB RL is a computationally

expensive process, so the brain seems to resort to the MF RL in

situations wherein the agent does not gain considerable benefit

from learning the environment, such as when the environment

is sufficiently stable for MF RL to make precise predictions, or

when it is extremely unstable to the extent that the predictions

of MB RL become less reliable than those of MF RL.

The same principle applies to the arbitration between

incremental and one-shot learning. When the uncertainty in

the estimated cause-effect relationships is high, the brain tends

to transition to one-shot learning by increasing its learning

rate. This would help the agent quickly resolve uncertainty

in predicting outcomes. However, when the agent is equally

uncertain about all possible causal relationships, the brain seems

to resort to incremental learning. In summary, one of the

important goals of RL in the human brain is to reduce the total

amount of uncertainty in prediction performance. In doing so, it

naturally resolves the trade-offs among prediction performance,

computational efficiency, and learning speed. When using the

above approach (based on the accuracy of predictions), the

cognitive effort required for behavior control (FitzGerald et al.,

2014) and the potential cumulative benefits inferred by an

MB strategy (Pezzulo et al., 2013; Shenhav et al., 2013) are

often taken into account in the meta-control of MB and

MF RL.

3.5. Multi-agent model-based and
model-free RL

New issues arise when you have a system consisting of

multiple interacting agents. There are two basic cases, the

cooperative case where agents have fully aligned objectives. This

case is important for many applications (Claus and Boutilier,

1998; Panait and Luke, 2005). The other case, more common

in nature, is called non-cooperative. Interactions in non-

cooperative situations may be either fully competitive (zero-sum

in the language of game theory) or partially competitive.

AlphaGo (Silver et al., 2016), an agent that defeats top

human Go players is arguably the most successful example

to date of an artificial system that combines MB and MF

mechanisms. However, it does not attempt to combine them in

a biologically-plausible manner. AlphaZero works by alternating

learning a policy network byMF RL and improving it byMonte-

Carlo tree search (an MB RL method) (Silver et al., 2017a,b).

One reason MB methods work so well on board games but

not in other domains is that a perfect model is available in

these cases. The rules of the game are a complete description

of the one-step transition function, and they are assumed to be

known a priori and perfectly. This assumption is true of board

games like Go and Chess but it does not even hold for games
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of imperfect information like Poker, much less for complex

real-world environments.

Many multi-agent interactions that have been important

in human evolution have partially competitive and partially

aligned incentives. In particular, there are social dilemma

situations. These are situations where individuals profit from

acting selfishly, but the group as a whole would do better if all

individuals curbed their egoism and instead acted toward the

common good (Kollock, 1998). Famous social dilemmas arise

in cases where there are resources that have properties making

it difficult for any individual to exclude others from accessing

them. For example, if all community members may access a

common fishery, each individual is expected to catch as many

fish as they can since they each gain from every additional

fish they catch. But if all behave this way then the stock of

still uncaught fish will be depleted too quickly causing the

fishery to decline in productivity. This scenario and others like

it have been called the tragedy of the commons (Hardin, 1968).

Diverse theories of human evolution agree that navigating social

dilemmas like these have been critical, especially as we have

become more and more of an obligate cultural species, unable

to survive even in our own ancestral ecological niche (hunting

and gathering) without significant cooperation (Henrich, 2015).

There is a large classical literature concerned with agents that

cooperate in abstracted matrix game models of social dilemma

situations like iterated prisoner’s dilemma (Rapoport et al., 1965;

Axelrod and Hamilton, 1981). More recently, several algorithms

have been described that achieve cooperation in more complex

temporally extended settings calledMarkov games. Formally this

setting is a straightforward generalization of Markov decision

processes to multiple players (Littman, 1994). Some recent

algorithms can be seen as MB (Kleiman-Weiner et al., 2016;

Lerer and Peysakhovich, 2017), like in AlphaGo, the agent is

assumed to have a perfect model of the rules of the game. These

algorithms work in two stages, first there is a “planning” stage

where the agent simulates a large number of games with itself

and learns separate cooperation and defection policies from

them by applying standard MF RL methods toward both selfish

and cooperative objectives independently. Then in the execution

phase, a tit-for-tat policy is constructed and applied using the

previously learned cooperate and defect policies.

Some recent algorithms have sought to break down the strict

separation between planning and execution stages and instead

work in a fully on-line manner. One model-based example is the

LOLA algorithm (Foerster et al., 2018). In addition to assuming

perfect knowledge of the game rules, this model also assumes

that agents can differentiate through one another’s learning

process. That is, it assumes that all agents implement a policy

gradient learning algorithm. This allows agents to “learn to

teach” since they can isolate the effects of their actions on the

learning of others. It is possible that learned models for the

environment and the learning updates of other players could

be substituted in the process, but this has not yet been shown

convincingly.

Another line of research on resolving multi-agent social

dilemmas is based on MF RL. It drops the need for assuming

perfect knowledge of the game rules (a perfect model) and

works most naturally in the standard fully online setting (Leibo

et al., 2017; Perolat et al., 2017). Considerable evidence from

behavioral economics shows that humans have inequity-averse

social preferences (Fehr and Schmidt, 1999; Henrich et al., 2001;

McAuliffe et al., 2017). One algorithm in this class, proposed

first for matrix games (Gintis, 2000; De Jong et al., 2008), and

later extended to Markox games (Hughes et al., 2018), modifies

standard MF RL to use the following inequity-averse reward

function.

Let r1, . . . , rN be the payoffs achieved by each of N players.

Each agent receives the subjective reward

Ui(ri, . . . rN ) = ri

−
αi

N − 1

∑

j 6=i

max
(

rj − ri, 0
)

(2)

−
βi

N − 1

∑

j 6=i

max
(

ri − rj, 0
)

,

The alpha parameter controls disadvantageous inequity

aversion (“envy”) and the beta parameter controls advantageous

inequity aversion (“guilt”). Simulations of agents with high beta

parameters show that they are able to discover cooperative

equilibria more easily than selfish agents since individuals are

disincentivized from improving their policy in directions from

which they benefit at the expense of the rest of the group. In

addition, agents with high alpha parameters sometimes appear

to act as “police”, punishing anti-social behavior in other agents,

thereby disincentivizing defection and promoting cooperative

outcomes (Hughes et al., 2018).

Disadvantageous inequity aversion is thought to be present

in other species while advantageous inequity aversion may

be uniquely human (McAuliffe et al., 2017). Both depend on

the same neural circuity for valuation that support non-social

decision-making (Fehr and Camerer, 2007). One especially

relevant study found that activity in the ventral striatum and

ventromedial prefrontal cortex were significantly affected by

both advantageous and disadvantageous inequity (Tricomi et al.,

2010).

4. Potential research directions

Here, we show that the convergence of computer science

and decision neuroscience can extend our understanding of how

the human brain implements RL. Given the evidence thus far,

human RL appears to utilize not only multiple systems, but also

a flexible meta-control mechanism to select among them.
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Figure 3C is a schematic diagram summarizing the brain

network for human RL. The multiple systems facilitating human

RL comprise (i) an MB system that is flexible but cognitively

demanding, (ii) an MF system that is simple but inflexible, (iii)

an incremental inference system that is careful while learning

but slow, and (iv) a one-shot inference system that is fast in

learning but has the potential to misattribute (Figures 4A, B).

Based on the characteristics of the multiple systems, human

RL flexibly chooses the most appropriate system while taking

into account performance, efficiency, and speed. When situated

in a completely new environment, meta-control accentuates

speed and performance: the human RL system learns about the

environment as fast as possible using the one-shot inference

system while utilizing the cognitively demanding MB system to

maximize performance with (relatively) lower confidence based

on prior knowledge. In other situations, meta-control prioritizes

efficiency and speed: the human RL system uses simple and

efficient MF systems to maximize performance with accurate

knowledge that is carefully constructed over time using the

incremental inference system (Figure 4C).

This principle of human RL could shed light on the manner

in which fundamental issues in engineering are resolved with

a focus on the trade-offs among performance, efficiency, and

speed, particularly in the design of artificial agents and their

embodiments, robots. As highlighted in the game example, the

discordance between human RL and algorithmic RL is seen

in Figures 3B, C lies in the existence of the ability to flexibly

control the agent’s behavior in the face of dynamic changes in the

environment (e.g., goals and rewards). Therefore, the principle

of human RL will fuel the advent of embodied algorithms

enabling RL agents to show super-human or super-artificial

intelligence performance.

Of course, previous studies focusing on individual RL

systems have substantially contributed to the birth of various

RL algorithms. As seen in Figure 3B, MF RL algorithms,

such as Monte-Carlo methods (Barto and Duff, 1994; Singh

and Sutton, 1996), TD methods (Sutton, 1988), Q-Learning

(Watkins and Dayan, 1992), and SARSA (Rummery and

Niranjan, 1994; Sutton, 1995), share a resemblance to the

function of the striatal system (that guides habitual behavior).

MB RL algorithms, such as DynaQ (Sutton and Barto, 1998),

KWIK (Li et al., 2008), E3 (Kearns and Singh, 2002), R-

Max (Brafman and Tennenholtz, 2002), and Learning with

Opponent-Learning Awareness (Foerster et al., 2018), have a

potential to arguably implement the function of the prefrontal

cortex (that guides goal-directed behavior). In the human brain,

the ventrolateral prefrontal cortex plays an important role in the

meta-control among multiple systems. Inspired by this process,

dynamic arbitration (Lee et al., 2014) algorithm has introduced

the preliminary implementation of meta-control while meta-

learning (Wang et al., 2016, 2018) emulated similar behavioral

characteristics based on the MF RL approach. While using

a context-aware, model-based RL to control the model-free

to manage low-level skills is another viable solution of meta-

control (Lee et al., 2009; Kulkarni et al., 2016; Hamrick et al.,

2017), it doesn’t appear to match with the prefrontal RL strategy

(Lee et al., 2014;Wang et al., 2018; O’Doherty et al., 2021; Correa

et al., 2022). A deeper investigation of the theory of RL in the

human brain has not only inspired, but also justified the design

of advanced RL algorithms (e.g., actor-critic, Barto et al., 1983)

in addition to such progress. Rapid advances in deep neural

network design enable the acceleration of such developments.

Such dramatic advances have resulted in the emergence

of new unresolved issues. As discussed in Section 1, the

fundamental principle of advanced algorithmic RLs is still

(somewhat) far from that used in human RL. Figure 3B provides

a good simple example highlighting this issue. While individual

learning systems have been well-studied, the system(s) working

at the meta-level (ventrolateral prefrontal cortex in this case),

which is seen as a means to drive the optimal learning strategy

subject to changes in goals and environments, has not been

carefully taken into account.

We expect that an RL agent lacking the meta-control ability

to integrate multiple learning strategies may not guarantee

reliable prediction and adaptation performance. For example,

an agent with an MB RL bias would start to make incorrect

predictions when the measurement becomes noisy (i.e., due

to high measurement noise or increasing uncertainty in the

environmental structure) despite consuming a large amount of

computing resources. Another possible scenario is that an RL

agent with a fixed high learning rate (one-shot learning) may

become unstable in learning about the environmental structure.

In practice, little investigation of the unified framework

approach at the algorithmic level during RL has been performed.

This is despite the fact that in the past few years, the

neuroscientific community has made progress in understanding

the neural basis of human intelligence. At the neuroscience

level, progress has been made in identifying the neural

circuit engaged during learning, as described in this paper.

Converging evidence implicates the frontal pole as the core

element of a second-order network able to read out the

uncertainty associated with computations performed by other

cortical circuits (Fleming et al., 2010; De Martino et al., 2013).

Nevertheless, the lack of a clear algorithmic description of

how meta-control appraisal interacts with learning has severely

limited progress in our understanding of how striatal RL systems

and the prefrontal meta-controller interact in an integrated

single framework.

We firmly believe that the integration of new findings

regarding MB/MF RL, and the use of rapid and slow RL in

a single framework (as seen in Figure 3A) would be a natural

resolution to the problems described above, as this is what

our brains perform in daily life. First, supplementing MF

RL with a functional module encapsulating MB RL would

enable goal-directed decision-making based on a model of the

environment. It will also enable rapid action selection to achieve
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FIGURE 3

(A) Toward high performance, memory-e�cient, and fast reinforcement learning—meta-control over MB/MF RL, and incremental/one-shot

inference could ultimately accelerate the overall performance of algorithmic RL. (B) Neural evidence supporting algorithmic RL. (C) A brain

network for human RL.
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FIGURE 4

Characteristics of multiple systems in human RL: (A) Trade-o�

between performance and e�ciency in MB/MF systems. (B)

Trade-o� between performance and speed in one-shot and

incremental inference systems. (C) A neural mechanism in the

human mind that resolves the trade-o� issues among prediction

performance, e�ciency, and speed.

a goal in a dynamic environment. Second, supplementing

an incremental learner with a one-shot learning module

would ensure that RL agents would perform rapid learning

based on information from a small number of episodes.

Finally, implementing meta-control on these disparate learning

strategies would afford us the leverage to rapidly achieve high

prediction performance with a minimal loss of computational

costs. Our view is supported by the recent evidence showing

that in humans, the engagement of model-based RL mitigates

the risk of assigning credit to outcome-irrelevant cues (Shahar

et al., 2019). This result highlights the necessity of a control

mechanism to determine when the MB system should override

the MF system.

It is also noted that the meta-control has a great potential

for dealing with conflicting demands in multiple agent learning,

such as competition v.s. cooperation or envy v.s. guilt. As

recent studies demonstrate that the MB and MF RL can provide

pragmatic solutions for diverse social dilemma problems,

implementing meta-control would also create a possibility for

optimizing the performance of multi-agent learning systems.

For example, such principles can be used to deal with a

competition-cooperation issue in a smart home system in which

multiple robot agents and human users interact with each other,

or possibly to deal with an envy-guilt dilemma in social networks

or online multiplayer games.

5. Conclusion

Deeply rooted in interdisciplinary research, including

computer science, cognitive psychology, and decision

neuroscience, reinforcement learning theories provide

fundamental learning principles used to solve various real-

world optimal control problems. In this paper, we reviewed

a computational reinforcement learning theory, as well as

its applications and challenges. We then discussed how the

brain may perform analogous kinds of learning. We discussed

MB/MF RL and one-shot/incremental inference, as well as

meta-control over multiple learning strategies and discussed the

implications of MB and MF RL in problems involving multiple

interacting agents. We believe that the integrated conceptual

framework incorporating these functions will lead to a major

breakthrough in RL algorithm design where the trade-offs

among prediction performance, computational costs, and time

constraints are resolved.
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