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Recent RNN models deal with various dimensions of MTS as independent

channels, which may lead to the loss of dependencies between di�erent

dimensions or the loss of associated information between each dimension

and the global. To process MTS in a holistic way without losing the inter-

relationship among dimensions, this paper proposes a novel Long-and Short-

term Time-series network based on geometric algebra (GA), dubbed GA-

LSTNet. Specifically, taking advantage of GA, multi-dimensional data at each

time point of MTS is represented as GA multi-vectors to capture the inherent

structures and preserve the correlation of those dimensions. In particular,

traditional real-valued RNN, real-valued LSTM, and the back-propagation

through time are extended to the GA domain. We evaluate the performance

of the proposed GA-LSTNet model in prediction tasks on four well-known

MTS datasets, and compared the prediction performance with other six

methods. The experimental results indicate that our GA-LSTNet model

outperforms traditional real-valued LSTNet with higher prediction accuracy,

providing a more accurate solution for the existing shortcomings of MTS

prediction models.

KEYWORDS

geometric algebra, recurrent neural network, long-and short-term time-series

network, prediction, multi-dimensional time-series

1. Introduction

Multi-dimensional time-series (MTS) are ubiquitous in our daily lives, including

stock market prices, traffic flow on highways, output from solar power plants,

temperatures in different cities, and so on. Prediction of these time-series can serve as

the basis for many practical applications. However, there are usually complex dynamic

interdependencies among the variables of these data (Faloutsos et al., 2018), and how to

capture and utilize this information for efficient and reliable prediction is a long-standing

research hotspot.
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Traditional methods for MTS prediction include linear

support vector regression (Cao and Tay, 2003), autoregressive

integrated moving average models (Gurland andWhittle, 1951),

vector autoregression (VAR) (Han et al., 2015), and so on. The

most common approach is to treat observations at a point

in time as vectors and model dynamic time using VARs and

linear dynamical systems. Essentially, these models rely on

AR coefficient matrices or dynamical matrices to capture the

correlation structure between different time-series. Chen et al.

(2021) extended the VAR model for third-order tensor time-

series by introducing two AR coefficient matrices to characterize

the correlation structure. Mohammad et al. (2019) also achieved

excellent results in time-series data prediction using a stochastic

model approach. However, the large number of parameters in

the coefficient matrix and the high computational cost make

these model parameters very difficult to estimate and prone

to overfitting. At the same time, the performance of these

traditional models in time-series with mixed long-and short-

termmodes is always insufficient, and cannot accurately capture

the complex nonlinear relationship between sequence data.

Due to the excellent performance of deep learning in

applications such as image recognition and machine translation,

its potential in the field of MTS prediction has also attracted a

lot of attention. Recent studies have indicated that modern deep

learning techniques not only achieve state-of-the-art prediction

performance but also systematically reduce the complexity of the

prediction process significantly, thus improving maintainability

(Hochreiter and Schmidhuber, 1997).

Recurrent neural network (RNN) and long short-term

memory (LSTM) (Hochreiter and Schmidhuber, 1997) are the

earliest neural networks to deal with time-series. Subsequently,

the emergence of gated recurrent units (Cho et al., 2014)

reduces the number of network parameters, reducing the risk

of overfitting compared to LSTMs. At the same time, there are

also many works showing that specific convolutional neural

network structures can also achieve good results, such as

convolution-based gated linear units (Dauphin et al., 2017) and

temporal convolutional networks (Bai et al., 2018). Due to the

complex structural information among the dimensions of multi-

dimensional time-series, it is difficult for a single network to

achieve a good processing effect. Therefore, the emergence of

hybrid deep networks has brought prediction accuracy to a new

level. LSTNet (Ai et al., 2017) combines CNN, LSTM, attention

mechanism, and AR autoregressive process to extract short-

term local dependence patterns among variables and long-term

dependence patterns of time-series. DeepState (Syama et al.,

2018) combines state-space models with deep recurrent neural

networks to learn the parameters of the whole network by

maximum log-likelihood function. DeepGLO (Sen et al., 2019)

is a hybrid model that includes a global matrix decomposition

model normalized by a temporal convolutional network and

a temporal network that captures the local properties of each

time-series and associated covariates.

In addition, graph convolutional neural networks (GCNs)

have also been shown to capture the correlation between

partial time-series. Spatio-temporal graph convolutional neural

network (ST-GCN) (Yu et al., 2018) is a deep learning

framework for traffic prediction, which fully exploits the graph

structure of road networks by integrating graph convolutions

and gated linear units for faster training. Li et al. (2017) directly

stacked graph convolution and temporal modules to capture

spatial and temporal dependencies in traffic data streams, but the

network requires predefined relational topology. Graph wavenet

(Wu et al., 2019) combines graph convolution layers, adaptive

adjacency matrices, and expanded stochastic convolution to

capture spatio-temporal dependencies. However, most of them

either ignore the correlation between data or require reliance

on the graph as a priori. In addition, the Fourier transform

has shown its advantages in previous work, especially the joint

Fourier transform (Grassi et al., 2018; Isufi et al., 2019; Loukas

and Perraudin, 2019), which enables prediction tasks in the fields

of weather information, traffic data, and seismic waveforms.

The discrete Fourier transform can also be used for time-

series analysis. For example, state-frequency memory networks

(Zhang et al., 2017) combine the advantages of the discrete

Fourier transform and LSTM for stock price prediction together.

Nevertheless, none of the existing solutions jointly captures

temporal patterns and multivariate correlations in the spectral

(Parcollet et al., 2019).

Accurate prediction based on historical time-series data

is challenging because it requires joint modeling of the

temporal patterns of the data and correlations among the

data. How to capture and exploit the dynamic correlations

among multiple variables is a huge research challenge for

MTS prediction. At present, there are more studies based on

multi-dimensional time-series prediction, however, they are all

based on the real number, and there is no more advanced

theoretical breakthrough. Moreover, in the process of multi-

dimensional time-series processing and final fusion, real-valued

networks have the problem of information loss inevitably. It

is worth noting that Parcollet et al. (2019) constructed new

quaternion recurrent neural networks and quaternion long

short-term memory networks with quaternions, placing the

three feature values of speech signals on each of the three

imaginary parts of the quaternion, and exploiting the potential

structural dependence within the quaternion to obtain better

performance than real RNNs and LSTMs in practical automatic

speech recognition applications. However, for signals with

more features, such as MTS that usually have dozens or even

hundreds of features, quaternion recurrent neural networks and

quaternion long short-term memory networks are powerless.

Geometric algebra (GA) has opened up new directions

for the study and application of MTS. Through the potential

structural dependence within the multi-vector, the multi-

dimensional features are combined into a single entity

input to the network for processing, capturing the internal
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relationships between the sequence features, allowing the

structural information inherent in the multi-dimensional

features to be well preserved.

Therefore, this paper proposes new geometric algebra based

recurrent neural network (GA-RNN) and geometric algebra

based long-and short-term time-series network (GA-LSTM)

and constructs a new geometric algebra based long-and short-

term time-series network, (GA-LSTNet). Firstly, the multi-

dimensional time-series is represented as a GA multi-vector,

preserving the correlation states of its channels. Secondly, each

layer of the network and the training algorithm are extended

to the GA space, and the corresponding processing algorithm is

provided for the input GA multi-vector to ensure the retention

of multi-channel information in signal processing. Essentially,

each feature of the multi-dimensional signal is mapped to each

component of the GA multi-vector separately, and then the

overall computation based on the GA multi-vector is performed

to maximize the retention of the potential features of the multi-

dimensional signal.

The rest of this paper is organized as follows. Section

2 introduces the basics of GA and neural networks based

on GA. Section 3 describes the proposed GA-RNN and GA-

LSTM. Comparison experimental results between GA-LSTNet

and real-valued methods are provided in Section 4, followed by

concluding remarks drawn in Section 5.

2. Preliminary

GA was first described by William K. Clifford, also called

Clifford Algebra. For multi-dimensional signals, GA is not

only an effective framework to handle the representation and

computation issues but also a useful tool for widespread use in

mathematics and physics (Hestenes, 1986; Rafal, 2004; López-

González et al., 2016).

Mathematically, suppose Gn denotes a 2n dimensional

vector space, and there exist a set of orthogonal bases

{e1, e2, . . . , en}. The power set γ = {1, · · · , n} can turn the basis

into an ordered one with the index set Ŵ.

Ŵ : = {(a1, · · · ar) ∈ γ , 1 ≤ a1 · · · ar ≤ n} (1)

Then, the basis ofGn is denoted by

{

eI : = ea1 · · · ear | I ∈ Ŵ
}

(2)

For example, the basis in the 23 vector space can be described

as

{1, e1, e2, e3, e12, e13, e23, e123} . (3)

For convenience, in the rest of the paper, e1 · · · er will be

denoted by e1···r . In general, the multiplication in GA will follow

the following rules

{

e2i = 1, i = 1, . . . , p

e2i = −1, i = p+ 1, . . . , p+ q
(4)

and Gn can also be denoted as Gp,q, with 2n = p + q. An

arbitrary element of the GA is given by

x =

n
∑

t=0

〈x〉t =
∑

I∈Ŵ

[x]IeI (5)

Where [x]A ∈ R, represents the value of each component of

the multi-vector. For example, an element in the 23 vector space

can be represented as

x =〈x〉0 + 〈x〉1 + 〈x〉2 + 〈x〉3

=x0 + x1e1 + x2e2 + x3e3

+ x12e12 + x13e13 + x23e23 + x123e123

(6)

The addition in GA can be defined as

x+ y =
∑

I∈Ŵ

(

[x]I + [y]I
)

eI (7)

The geometric product in GA can be written in the following

form

x⊗p,qy = x · y+ x ∧ y (8)

Where x · y and x∧ y represent the inner and outer products

in GA, respectively.

The geometric product between two multi-vectors can also

be converted into matrix operations. Assuming that there is a

multi-vector, the multi-vector can be expressed as

x = [[x]0, [x]1, [x]2, . . . , [x]I , . . .] · [1, e1, e2, . . . , eI , . . .]
T

= Fx · Nx

(9)

Where Fx ∈ R
1×2n is the coefficientmatrix ofmulti-vector x

andNx is the corresponding orthogonal basis matrix. According

to the calculation rules between different eI , R(x) can be defined

as its real representation matrix (Roy et al., 2020). Then,

x⊗p,q y =
[

R(y) · (Fx)
T
]

· Nx(y) (10)

The inversion of multi-vector is denoted by

x̃ =

n
∑

t=0

(−1)
t(t−1)

2 〈x〉t (11)

The conjugation of multi-vector is denoted by

x∗ =

n
∑

t=0

(−1)
t(t+1)

2 〈x〉t (12)
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For any two multi-vectors x, y ∈ Gn, dot product is defined

by

x⊙ y =
∑

i∈Ŵ

[x]I[y]IeI (13)

In addition, similar to quaternion, the basic element of GA

also has the concept of module. For any multi-vector, its module

is defined by

‖x‖ =

√

∑

I∈Ŵ

([x]I)
2 (14)

3. Methods

GAprovides a new direction for the research and application

of MTS. Through the latent structural dependencies within the

multi-vector, the multi-dimensional features are combined into

a single entity as input for network processing, and the internal

relationship between the sequence features is captured, so that

the inherent structural information in the multi-dimensional

features is well preserved.

In this section, we extend RNN and LSTM from the real-

value domain to the GA domain. In our proposed networks,

inputs, outputs and weights are represented by GA multi-

vectors. The operations in each layer and the training algorithm

will be introduced in the following.

3.1. Geometric algebra based recurrent
network layer

The learning process of the geometric algebra based RNN

layer (GA-RNN) is similar to that of the real-valued RNN, the

difference is that the input and network parameters have become

multi-vectors, as shown in Figure 1. The multi-dimensional

features at each time point are converted into multi-vectors as

input for GA-RNN. The weights of the input features are also

multi-vectors.

Suppose that the dimension of input vector xt at time t is N,

the number of neurons in the hidden layer is H and the number

of neurons in output layer is K. In addition, σ and α represent

the sigmoid and tanh activation functions, respectively. Then

the forward propagation process of the GA-RNN basic unit is

denoted by

at = σ

(

U ⊗p,q x
t +W ⊗p,q a

t−1 + θ
a
)

bt = α

(

V ⊗p,q a
t + θ

b
)

at =
[

at1 . . . at
h

. . . atH

]T

at =
[

bt1 . . . bt
k

. . . btK

]T

(15)

Where xt and at are multi-vector formed from the original

input real-valued data and hidden state, respectively. U ,W, and

V are the weight matrices of the input, hidden state and output,

respectively. θa and θ
b are the bias terms of the hidden state and

output layer, respectively. bt is the output target.

In addition, for a multi-vector x, assuming that f is any

standard activation function, then

f (x) =
∑

I∈Ŵ

f ([x]I) eI (16)

The activation function of multi-vector output is essentially

the activation function operation in the real domain for each

component of the multi-vector.

3.2. Geometric algebra based
back-propagation through time

The principle of back-propagation algorithm through time

of GA-RNN (GA-BPTT) is the same as that of real-valued

RNN. After the sample information is modeled by GA, it

is transmitted to the output layer through the input layer

to obtain the actual output, and then the loss function is

used to calculate the error E between actual output and true

labels. Then backpropagation corrects the weight matrix and

bias parameters, respectively, until the error converges to a

certain threshold.

Similar to the multi-vector activation function, the loss

function of multi-vector output is essentially the loss function

in the real domain for each component. In the real domain, the

dynamic loss is only based on all previously connected neurons,

while the difference of GA-BPTT is that the multi-vector loss

is calculated for each component of the multi-vector neuron

parameter, which can act as a regularizer during training.

According to Equation (15), the output bt
k
can be written as

btk =
∑

I∈Ŵ

[

btk

]

I
eI (17)

Suppose that yt is the true labels, bt in Equation (15) is the

actual output, the final loss function is defined as the sum of the

mean squared errors at each moment

E =

T
∑

t=1

Et =
1

2

T
∑

t=1

∥

∥

∥
yt − bt

∥

∥

∥

2
(18)

Because the loss function is computed separately for each

component of the multi-vector, the loss E is also a multi-vector.
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FIGURE 1

Multi-vectorization of real-valued RNN layer.

3.2.1. GA-RNN output layer weight matrix

The weight matrix V of the output layer is used to calculate

the actual output bt , that is,

∂E

∂V
=

T
∑

t=1

∂Et

∂V

∂Et

∂V
=











∂Et

∂v11
· · · ∂Et

∂vH1
...

. . .
...

∂Et

∂v1K
· · · ∂Et

∂vHK











=









∇Etv11 . . . ∇EtvH1
...

. . .
...

∇Etv1K · · · ∇EtvHK









(19)

Each item in Equation (19) can be calculated individually,

i.e.,

∇Etvhk =
∑

I∈Ŵ

∂Et

∂
[

vhk
]

I

eI (20)

For each component in Equation (20), the chain rule is

applied for parameter updating, that is,

∂Et

∂
(

vhk
)

I

=
∑

B∈Ŵ

∂Et

∂

[

mt
k

]

B

·
∂

[

mt
k

]

B

∂
[

vhk
]

I

(21)

The calculation of Equation (21) can be divided into the

activation function part and the propagation function part, as

shown in Equations (22, 23), respectively.

∂Et

∂

[

mt
k

]

B

=
∂Et

∂

[

bt
k

]

B

·
∂

[

bt
k

]

B

∂

[

mt
k

]

B

=
([

btk

]

B
−

[

ytk

]

B

)

· α′
([

mt
k

]

B

)

=
[

δtk

]

B
(22)

TABLE 1 Datasets used in the experiment.

Dataset Sequence
length

Number of
variables

Sampling
interval

Traffic 17,544 862 1 h

Electricity 26,304 321 1 h

Solar-Energy 52,560 173 10 min

Exchange-Rate 7,588 8 24 h

∂

[

mt
k

]

B

∂
[

vhk
]

I

=
{

R
(

ath

)}

(b,i)

∂

[

mt
k

]

B

∂

[

at
h

]

B

=
[

vhk
]

0

(23)

Where
{

R
(

at
h

)}

(b,i)
is the value in row b column i of real

representation matrix R(at
h
). Therefore,

∂Et

∂
[

vhk
]

I

=
∑

B∈Ŵ

[

δtk

]

B
·
{

R
(

ath

)}

(b,i)
(24)

That is,

∇Etvjk =
∑

I∈Ŵ





∑

B∈Ŵ

[

δtk

]

B
·
{

R
(

ath

)}

(b,i)





I

eI (25)
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3.2.2. GA-RNN hidden layer weight matrix

The derivation process of the backpropagation for W is as

follows:

∂E

∂W
=

T
∑

t=1

∂Et

∂W
(26)

Similarly,

∂Et

∂W
=











∂Et

∂w11
· · · ∂Et

∂wH1
...

. . .
...

∂Et

∂w1H
· · · ∂Et

∂wHH











=









∇Etw11
· · · ∇EtwH1

...
. . .

...

∇Etw1H
· · · ∇EtwHH









(27)

Since the weights of the hidden layer are related to the state

of the previous moment, consider

at+1
h

= σ





N
∑

i=1

uih ⊗p,q x
t+1
i +

H
∑

h′=1

wh′h ⊗p,q a
t
h + θah





bt+1
k

= α

(

mt+1
k

)

= α





H
∑

h=1

vhk ⊗p,q a
t+1
h

+ θbk





(28)

We have

∇Etwh′h
=

∑

I∈Ŵ

∂Et

∂
[

wh′h

]

I

eI (29)

In Equation (29), the calculation of each component is

denoted by

∂Et

∂
[

wh′h

]

I

=
∑

B∈Ŵ

∂Et

∂

[

mt
k

]

B

·
∂

[

mt
k

]

B

∂

[

at
h

]

B

·
∂

[

at
h

]

B

∂

[

zt
h

]

B

·
∂

[

zt
h

]

B

∂
[

wh′h

]

I

+
∑

B∈Ŵ

∂Et

∂

[

mt+1
k

]

B

·
∂

[

mt+1
k

]

B

∂

[

at+1
h

]

B

·
∂

[

at+1
h

]

B

∂

[

zt+1
h

]

B

·
∂

[

zt+1
h

]

B

∂
[

wh′h

]

I

(30)

Where

∑

B∈Ŵ

∂Et

∂

[

mt
k

]

B

·
∂

[

mt
k

]

B

∂

[

at
h

]

B

·
∂

[

at
h

]

B

∂

[

zt
h

]

B

·
∂

[

zt
h

]

B

∂
[

wh′h

]

I

=
∑

B∈Ŵ

[

δtk

]

B
·
[

vhk
]

0 · σ
′
([

zth

]

B

)

·
{

R
(

at−1
h

)}

(b,i)

+
∑

B∈Ŵ

∂Et

∂

[

mt+1
k

]

B

·
∂

[

mt+1
k

]

B

∂

[

at+1
h

]

B

·
∂

[

at+1
h

]

B

∂

[

zt+1
h

]

B

·
∂

[

zt+1
h

]

B

∂
[

wh′h
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(31)

3.2.3. GA-RNN input layer weight matrix

The updating of input layer weight matrix U is the same as

that of the hidden layer, that is,

∂E

∂U
=

T
∑

t=1

∂Et

∂U

∂Et

∂U
=











∂Et
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. . .
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∂Et
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








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(32)

Where

∇Etuih =
∑

I∈Ŵ
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∂
[
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I

eI
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(33)

That is,

∇Etuih
=

∑

I∈Ŵ
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(34)

3.2.4. GA-RNN output layer bias
∂E

∂θ
b can be written as

∂E

∂θ
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(35)

Similarly,
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Therefore,

∇Et
θb
k

=
∑

I∈Ŵ

[

δtk

]

I
eI (37)
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FIGURE 2

Convergence curves of GA-LSTNet and LSTNet on di�erent

datasets. (A) Solar-Energy and (B) Tra�c.

3.2.5. GA-RNN hidden layer bias

Same as Equations (35, 36):

∇Et
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h
=

∑

I∈Ŵ

∂Et

∂

[
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]

I

eI (38)

The difference is that the weight updating of the hidden layer

takes into account the state of the previous moment, namely:
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Therefore,
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∑
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]

0 · σ
′
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eI (40)

3.3. Geometric algebra based long
short-term memory network layer

Due to the “long-term dependence” problem caused by the

disappearance of the RNN gradient, LSTM emerged. It has the

ability to learn long-distance dependencies. This mechanism can

be easily extended to the GA (GA-LSTM). Gates of LSTM is

the core components, and the GA gates are characterized by

the fusion process of each component of the multi-vector input

signal after multiplication with the components of the multi-

vector gate parameters. Let f t , it , ot , ct , and ht be the forget

gate, input gate, output gate, cell state and hidden state of the

GA-LSTM unit at time step t, respectively. Then the GA-LSTM

propagation process can be defined as:

f t = σ

(

U f ⊗p,q x
t +Wf ⊗p,q h

t−1 + θ
f
)

it = σ

(

U i ⊗p,q x
t +Wi ⊗p,q h

t−1 + θ
i
)

ct = f t ⊙ ct−1 + it ⊙ α

(

Uc ⊗p,q x
t +Wc ⊗p,q h

t−1 + θ
c
)

ot = σ

(

Uo ⊗p,q x
t +Wo ⊗p,q h

t−1 + θ
o
)

ht = ot ⊙ α

(

ct
)

(41)

4. Results and discussion

4.1. Datasets

This experiment uses four publicly available datasets, namely

Traffic, Electricity, Solar-Energy and Exchange-Rate. As shown

in Table 1, Traffic records the occupancy rates (0–1) measured

by simultaneous interpreting 862 different sensors on the San

Francisco Bay expressway within 2 years (2015–2016 years),

and the data are collected once 1 h. Electricity records the

power consumption of 321 customers from 2012 to 2014. The

data is collected every 15 min. This part converts the data

to reflect the hourly consumption; Solar-Energy is the solar

power generation record of 137 photovoltaic power stations in

Alabama in 2006, which is sampled every 10 min. Exchange-

Rate is the summary of daily exchange rates of eight countries

including Australia, the United Kingdom, Canada, Switzerland,

China, Japan, New Zealand and Singapore from 1990 to 2016.

These datasets are real-world data and contain linear and

nonlinear interdependencies (Jordan et al., 2003). All datasets

are divided into training set (60%), verification set (20%) and

test set (20%) in chronological order. The download address of

the four datasets is here.
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TABLE 2 Prediction results using RAE as indicator.

Dataset Horizon AR LSVR LRidge TRMF GP LSTNet GA-LSTNet

Traffic 3 0.4491 0.4929 0.4965 0.5823 0.5148 0.3238 0.311

6 0.461 0.5483 0.5115 0.4653 0.5759 0.3254 0.3144

12 0.47 0.7454 0.5198 0.4868 0.5316 0.3433 0.3308

24 0.4696 0.4761 0.4846 0.5352 0.4829 0.354 0.3357

Electricity 3 0.0579 0.0858 0.09 0.1032 0.0907 0.0493 0.0485

6 0.0598 0.0816 0.0933 0.1269 0.1137 0.0526 0.0541

12 0.0603 0.0762 0.1268 0.1328 0.1043 0.0534 0.0561

24 0.0611 0.069 0.0779 0.201 0.0776 0.0545 0.0593

Solar-Energy 3 0.1846 0.1082 0.1227 0.1326 0.1419 0.1462 0.1083

6 0.3242 0.2451 0.2098 0.1984 0.2189 0.1462 0.1315

12 0.5673 0.4362 0.407 0.4786 0.4095 0.1917 0.1959

24 0.9221 0.618 0.6977 0.9527 0.7599 0.3042 0.2542

Exchange-Rate 3 0.0181 0.0148 0.0144 0.0289 0.023 0.0364 0.0189

6 0.0224 0.0231 0.0225 0.0517 0.0239 0.0207 0.025

12 0.0291 0.036 0.0358 0.0429 0.0355 0.0286 0.0323

24 0.0378 0.0571 0.0602 0.058 0.0547 0.0475 0.0505

The bold values indicate the best RAE and RSE of the prediction results of the seven methods.

TABLE 3 Prediction results using RSE as indicator.

Dataset Horizon AR LSVR LRidge TRMF GP LSTNet GA-LSTNet

Traffic 3 0.5991 0.574 0.5833 0.6708 0.6082 0.4896 0.4798

6 0.6218 0.658 0.592 0.6261 0.6772 0.4909 0.4852

12 0.6252 0.7714 0.6148 0.5956 0.6406 0.507 0.5002

24 0.6293 0.5909 0.6025 0.6442 0.5995 0.5188 0.5026

Electricity 3 0.0995 0.1523 0.1467 0.1802 0.15 0.0851 0.0844

6 0.1035 0.1372 0.1419 0.2039 0.1907 0.0941 0.0935

12 0.105 0.1333 0.2129 0.2189 0.1621 0.0967 0.0975

24 0.1054 0.118 0.128 0.3656 0.1273 0.1046 0.1101

Solar-Energy 3 0.2435 0.2021 0.2019 0.2473 0.2259 0.2067 0.1976

6 0.379 0.2999 0.2954 0.347 0.3286 0.2606 0.2462

12 0.5911 0.4846 0.4832 0.5597 0.52 0.3563 0.3445

24 0.8699 0.73 0.7287 0.9005 0.7973 0.4695 0.4306

Exchange-Rate 3 0.0228 0.0189 0.0184 0.0351 0.0239 0.0431 0.0234

6 0.0279 0.0284 0.0274 0.0875 0.0272 0.0256 0.0297

12 0.0353 0.0425 0.0419 0.0494 0.0394 0.0352 0.0401

24 0.0445 0.0662 0.0675 0.0653 0.058 0.0475 0.0594

The bold values indicate the best RAE and RSE of the prediction results of the seven methods.
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FIGURE 3

Prediction results using CORR. (A) Electricity, (B) Tra�c, (C)

Solar-Energy, and (D) Exchange-Rate.

FIGURE 4

Prediction results of electricity by LSTNet and GA-LSTNet when

horizon = 12.

FIGURE 5

Prediction results of tra�c by LSTNet and GA-LSTNet when

horizon = 6.

4.2. Experimental design

In order to verify the performance of the proposed neural

networks based on GA, several MTS prediction algorithms with

the proposed network are implemented, which are:

1) AR: Standard autoregressive model,

2) LSVR (Li and Cyrus, 2018): Vector autoregressive model

with support vector regression objective function,

3) Lridge: Vector autoregressive model with L2

regularization,

4) TRMF (Hsiang et al., 2016): Autoregressive model of time

regularization matrix decomposition,

5) GP (Roberts et al., 2012): Gaussian process for time-series

modeling,
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6) LSTNet (Lai et al., 2018): Deep neural network for

modeling long-term and short-term time patterns,

7) GA-LSTNet: A geometric algebra based depth neural

network for modeling long-term and short-term time patterns

proposed in this paper.

For the first six comparison methods, the parameter setting

used in this experiment is the same as that of Lai et al.

(2018). That is, grid search is performed for all adjustable

hyperparameters on the verification set of each method and

each dataset. Specifically, the regularization coefficient of AR

is selected from {0.1, 1, 10} to achieve the best performance.

The value range of LSVR and LRidge regularization coefficients

is
{

2−10, 2−9, . . . , 29, 210
}

. TRMF, the search ranges of hidden

dimension and regularization coefficient are
{

22, 23, . . . , 26
}

and

{0.1, 1, 10}, respectively.

The GA-LSTNet used in this paper is composed of

convolution layer and LSTM of GA instead of convolution layer

and LSTM of LSTNet. LSTNet and GA-LSTNet have the same

network structure and parameter settings. Their differences are

the form of data input and the calculation method of network

layer. Specifically, the selection range of hidden dimensions of

LSTM and convolution layer is {50, 100, 200} and {20, 50, 100}.

For the number of RNN-skip layers, Electricity and Traffic

are set to 24, and the adjustment range of Solar-Energy and

Exchange-Rate is 21–26. In addition to the input and output

layers, dropout with a size of 0.1 or 0.2 is set after each layer.

The optimizer for the two models is Adam.

In order to quantify and represent all experimental results,

the seven methods in this section follow the same evaluation

index (Hsiang et al., 2016): relative absolute error (RAE), root

relative square error (RSE) and correlation coefficient (CORR).

The first evaluation criterion RAE is defined as:

RAE =

√

∑t1
t=t0

∑n
i=1

∣

∣

(

yt,i − ŷt,i
)
∣

∣

√

∑t1
t=t0

∑n
i=1

∣

∣

∣
ŷt,i − ŷt0 : t1,1 : n

∣

∣

∣

(42)

The second evaluation criterion RSE is defined as:

RSE =

√

∑t1
t=t0

∑n
i=1

(

yt,i − ŷt,i
)2

√

∑t1
t=t0

∑n
i=1

(

ŷt,i − ŷt0 : t1,1 : n

)2
(43)

The third evaluation criterion CORR is defined as:

CORR =
1

n

n
∑

i=1

∑t1
t=t0

(

yt,i − yt0 : t1,i
)

(

ŷt,i − ŷt0 : t1,i

)

√

∑t1
t=t0

(

yt,i − yt0 : t1,i
)2

(

ŷt,i − ŷt0 : t1,i

)2

(44)

Where y is the predicted value, ŷ is the real value of the test set,

y represents the mean value of the set, and t ∈ [t0, t1] is the

data label of the test set. For RAE and RSE, the lower the value,

the better the prediction result. On the contrary, for CORR, the

higher the value, the better the prediction result.

4.3. Experimental results and analysis

In this part, seven methods will be used to conduct

prediction experiments on four datasets, and the prediction

range horizon is set to {3, 6, 12, 24}. According to Table 1,

for Electricity and Traffic, the prediction range is set to

{3, 6, 12, 24} h. For Solar-Energy, the prediction range is set to

{30, 60, 120, 240} min. The prediction range for Exchange-Rate

is set to {3, 6, 12, 24} days.

This part first compares the convergence curves of

the two networks on Traffic and Solar-Energy. Figure 2A

shows the convergence curve of GA-LSTNet and LSTNet

predicting power generation in the next 240 min on the

Solar-Energy dataset; Figure 2B shows the convergence curve

of GA-LSTNet and LSTNet predicting traffic flow in the

next 6 h on the Traffic dataset. The curves of the two

experiments show that under the same network configuration,

the convergence rate of GA-LSTNet is faster than LSTNet,

and the final convergence value and the training error

are smaller.

Tables 2, 3, respectively, show the comparison of RAE and

RSE of the prediction results of the seven methods, in which the

best results are shown in bold.

It can be seen from the results in Tables 2, 3 that on

the Traffic and Solar-Energy datasets, the GA- LSTNet model

proposed in this part has absolute advantages over the LSTNet

model with the same structure and achieves lower prediction

error. On the Electricity dataset, although LSTNet achieved

the best results in some predictions, it can be observed that

the difference between GA-LSTNet and LSTNet is no more

than 0.002, which is a very small gap. The experimental results

show the feasibility of GA-LSTNet, because it can capture more

useful information in different data channels when it represents

MTS as GA multi-vector. Therefore, the LSTM based on GA

has better performance than the real-valued LSTM in MTS

prediction.

In addition, in order to more intuitively observe the

prediction results, Figure 3 shows the prediction results of

seven different methods under different conditions using CORR

as an index. In Figure 3, the higher the bar chart, the

greater the CORR representing the corresponding prediction

task and the higher the prediction accuracy. As shown in

Figure 3, GA-LSTNet obtained the highest CORR value in

each prediction task of Electricity, Traffic and Exchange-

Rate. In the prediction task of horizon = 3 for Solar-

Energy dataset, the accuracy is slightly lower than LSTNet,

but with the growth of prediction time, the superiority

of GA-LSTNet is gradually obvious. It can be seen that

the introduction of GA into real-valued RNN and LSTM

will not change their basic properties. The capture of the

correlation between different features by GA enhances the

long-term dependent learning ability of real-valued neural

networks.
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From the above quantitative results, it can be seen

that the overall accuracy of GA-LSTNet is improved

compared with LSTNet, which means that the predicted

positions of some points will be more consistent with

the real labels. As shown in Figures 4, 5, two networks

are selected to visually observe all the prediction results

of Electricity and some prediction results on Traffic

dataset.

In Figure 4, red represents the real value of power

consumption and blue represents the predicted value.

GA-LSTNet and LSTNet are similar to the real value

trend on the whole, but GA-LSTNet performs better

in details, especially in some prominent troughs. For

example, in 2,000–2,500 h, the gap between GA-LSTNet

and the real value is smaller and closer to the real

value.

In Figure 5, the red curve represents the real value of

Traffic occupancy within 160 h of the test set, the green curve

represents the predicted value of LSTNet, and the blue curve

represents the predicted value of GA-LSTNet. Both are basically

consistent with the real value at the trough, but among the six

peaks shown in Figure 5, five are GA-LSTNet, which is closer

to the real value. It can be seen from the comparison figure

that after replacing the corresponding real-valued network with

GA convolution and LSTM, GA-LSTNet retains more useful

relevant information in the original data due to the multi-

dimensional consistency of GA, and the prediction performance

is significantly improved.

5. Conclusion

This paper focuses on the construction of the geometric

algebra based RNN and LSTM for the processing of MTS.

Under the framework of GA, the MTS is encoded into GA

multi-vectors to avoid the loss of structural relationships

among multi-dimensional variables. And then the forward and

backpropagation algorithms for the proposed GA-RNN, GA-

LSTM are derived. The experimental results show that the GA-

LSTNet has good convergence and more accurate prediction

accuracy in MTS prediction, and has certain advantages

compared with the real-valued LSTNet. GA-RNN and GA-

LSTM provide a more accurate solution for the existing

shortcomings of MTS prediction models. At next steps, we will

focus on more practical MTS applications with the proposed

networks.
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