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In this article, we consider the problem of reconstructing an image that is downsampled

in the space of its SE(2) wavelet transform, which is motivated by classical models of

simple cell receptive fields and feature preference maps in the primary visual cortex. We

prove that, whenever the problem is solvable, the reconstruction can be obtained by an

elementary project and replace iterative scheme based on the reproducing kernel arising

from the group structure, and show numerical results on real images.
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1. INTRODUCTION

This article introduces an iterative scheme for solving a problem of image reconstruction,motivated
by the classical behavior of the primary visual cortex (V1), in the setting of group wavelet analysis.
The mathematical formulation of the problem is that of the reconstruction of a function on the
plane which, once represented as a function on the group SE(2) = R2 ⋊ S1 of rotations and
translations of the Euclidean plane via the group wavelet transform, is known only on a certain two-
dimensional subset of this three-dimensional group. This problem is equivalent to that of filling in
missing information related to a large subset of the SE(2) group and ultimately inquires about the
completeness of the image representation provided by feature maps observed in V1.

One of the main motivations for the present study comes indeed from neuroscience and the
modeling of classical receptive fields of simple cells in terms of group actions restricted to feature
maps such as the orientation preferencemaps. The attempts tomodel mathematically themeasured
behavior of the brain’s primary visual cortex (V1) have led to the introduction of the linear-
nonlinear-Poisson (LNP) model (Carandini et al., 2005), which defines what is sometimes referred
to as classical behavior. It describes the activity of a neuron in response to a visual stimulus as
a Poisson spiking process driven by a linear operation on the visual stimulus, modeled by the
receptive field of the neuron, passed through a sigmoidal nonlinearity. A series of thorough studies
of single cell behavior could find a rather accurate description of the receptive fields of a large
amount of V1 cells, called simple cells, within the LNP model, in terms of integrals over Gabor
functions located in a given position of the visual field (Marcelja, 1980; Ringach, 2002). This
description formally reduces the variability in the classical behavior of these cells to few parameters,
regulating the position on the visual field, the size, the shape, and the local orientation of a two-
dimensional modulated Gaussian. A slightly simplified description of a receptive field activity F in
response to a visual stimulus defined by a real function f on the plane, representing light intensity,
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is the following: denoting by x =
(x1
x2

)
, y =

(y1
y2

)
∈ R2,

F = s
√
2π

∫

R2
f (y)e−2π ip

(
(x1−y1) cos θ+(x2−y2) sin θ

)
e−2π2s2|x−y|2dy

(1)
where the parameters s, p ∈ R+ define the local (inverse) scale
and spatial frequency, the angle θ ∈ [0, 2π) defines the local
direction and x ∈ R2 define the local position of the receptive
field in the visual field, while the complex formulation can be
formally justified by the prevalence of so-called even and odd
cells (Ringach, 2002). We will focus on the sole parameters x, θ .
This may be considered restrictive (Hubel andWiesel, 1962; Sarti
et al., 2008; Barbieri, 2015), but it is nevertheless interesting since
angles represent a relevant local feature detected by V1 (Hubel
and Wiesel, 1962) whose identification has given rise to effective
geometrical models of perception (Petitot and Tondut, 1999; Paul
C. Bressloff, 2002; John Zweck, 2004; Citti and Sarti, 2006, 2015).
We will give more details below concerning this restriction. In
this case, one can then model the linear part of the classical
behavior of simple cells in terms of an object that is well-studied
in harmonic analysis: by rephrasing Equation (1) as

F = F(x, θ) (2)

for fixed values of p, s, we obtain a SE(2) group wavelet transform
of f (refer to Section 2). On the other hand, classical experiments
with optical imaging have shown that not all parameters θ ∈ S1

are available for these cortical operations (Blasdel and Salama,
1986; Bonhoeffer and Grinvald, 1991;Weliky et al., 1996; Bosking
et al., 1997; White and Fitzpatrick, 2007). Furthermore, with
single-cell precision two-photon imaging techniques (Ohki et al.,
2006), we can say with a good approximation that in many
mammals, a pinwheel-shaped function 2 :R2 → S1 determines
the available angle at each position. This feature map can be
introduced in the Model (1) by saying that the receptive fields
in V1 record the data.

{F(x,2(x)) : x ∈ R
2}. (3)

Within this setting, a natural question is, thus, whether this data
actually contains all the sufficient information to reconstruct the
original image f , and how can we reobtain f from these data.
This is the main problem we aim to address. Note that one can
equivalently consider the graph G2 = {(x, θ) ∈ R2 × S1 : θ =
2(x)} of the feature map 2 instead of the feature map itself: this
would allow us to address the problem as that of the injectivity
of the restriction of the function (Equation 2) to the subset G2,
which is the point of view taken in Section 3.

Before proceeding, we recall that a severe limitation of
the purely spatial Model (Equation 1) is that of disregarding
temporal behaviors (DeAngelis et al., 1995; Cocci et al., 2012).
Moreover, the classical behavior described by the LNP model
is well-known to be effective only to a limited extent: several
other mechanisms are present that describe a substantial
amount of the neural activity in V1, such as Carandini-Heeger
normalization (Carandini and Heeger, 2012), so-called non-
classical behaviors (Fitzpatrick, 2000; Carandini et al., 2005), and
neural connectivity (Angelucci et al., 2002). However, spatial
receptive fields and the LNP provide relevant insights on the

functioning of V1 (Ringach, 2002). Moreover, the ideas behind
the LNP model have been a main source of inspiration in
other disciplines, notably for the design of relevant mathematical
and computational theories, such as wavelets and convolutional
neural networks (Marr, 1980; LeCun et al., 2010). We also point
out that the use of groups and invariances to describe the
variability of the neural activity has proved to be a solid idea to
build effective models (Citti and Sarti, 2006; Anselmi and Poggio,
2014; Petitot, 2017), whose influence on the design of artificial
learning architectures is still very strong (Anselmi et al., 2019,
2020; Montobbio et al., 2019; Lafarge et al., 2021).

We would like to mention that, in addition, some other
simplifications already at the level of modeling the receptive
fields of V1 cells are assumed when considering (Equation 3) as
the data collected by V1, i.e., by restricting the parameters of
interest to only (x, θ) and by considering just one angle θ for
each position x. First, in Equation (1), one performs operations
x − y, meaning that both x and y are coordinates on the
visual plane. On the other hand, it is known that a nontrivial
retinotopic map links the cortical coordinates with the visual field
(Tootell et al., 1982). Thus, in order for a cortical map 2 to be
compared with actual measurements such as those of Blasdel and
Salama (1986), Bonhoeffer and Grinvald (1991), Weliky et al.
(1996), Bosking et al. (1997), Ohki et al. (2006), White and
Fitzpatrick (2007), in Equation (3), we should not consider 2
as computed directly on the visual field coordinate x but rather
compose 2 with the retinotopic map. Equation (3) is, thus, to
be considered, from the strictly neural point of view, either as a
local approximation or as a formulation where 2 also contains
the retinotopic map. Moreover, we are assuming yet another
simplification of what would be a realistic model by considering
the parameters p, s in Equation (1) as fixed. More specifically,
it is known that the spatial frequency p of the receptive field
is itself a feature that is organized in a columnar fashion, i.e.,
by a cortical map (Ribot et al., 2013), which is correlated with
that of orientations, and recent refined mathematical models are
able to reproduce these cortical maps on the basis of the sole
structure of the receptive field (Baspinar et al., 2018). Concerning
the (inverse) scale parameter s, it is known (Hubel and Wiesel,
1974) that it does not only vary horizontally on the cortex, but
it also changes along the transverse direction, hence providing a
local analysis at more than one scale. Moreover, considering the
variation of the transversal average local scale with respect to the
horizontal cortical coordinates, it has been observed that, up to
the scatter variations, this scale is also correlated with another
cortical map, the retinotopic map (Harvey and Dumoulin, 2011).
Finally, the two parameters p and s appear to be statistically
correlated in the populations of simple cells whose receptive
fields have been measured and fitted with the Gabor model
(Ringach, 2002). If these assumptions are considered satisfactory,
however, it becomes easy to reconcile a description such as that
of Equation (3) with other classical ones based on the concept
of tuning curves (refer to e.g., Webster and Valois, 1985. An
orientation tuning curve for a given V1 cell is a measured bell-
shaped curve that shows the response of the cell to different
orientations. That is, it describes how a cell that has a given
orientation preference θ0 actually has a nonzero activation when
a visual stimulus with similar but not equally oriented stimuli
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are presented in its receptive field area. In this sense, each cell
is not sensitive to just one orientation, in the same way as it is
not sensitive to just one point in the visual space. These areas
of influence in the parameter space (x, θ) for a given cell of
V1 can actually be related to the structure of receptive fields
and the uncertainty principle of the SE(2) group (Barbieri et al.,
2014), and orientation tuning curves too can be obtained from
Gabor-like receptive fields (Barbieri, 2015).

For the sake of completeness and previously unfamiliar
readers, we also recall that simple cells receptive fields
are sometimes modeled as scaled directional derivatives of
Gaussians. This model, which can actually reproduce quite
closely certain Gabor functions, was initially introduced for
its theoretical interest and its neural plausibility (Webster and
Valois, 1985; Young, 1985; Koenderink and vanDoorn, 1987) and
later used extensively in the scale space theory in computer vision
(Florack et al., 1992; Lindeberg, 1994) as well as for a largely
developed axiomatic theory of receptive fields (Lindeberg, 2013,
2021). A thorough discussion on the relationship between this
model and that of Gabor functions can be found in (Petitot, 2017,
Ch. 3).

Another motivation for studying the completeness of the
data collected with Equation (3) comes from the relationship
of this problem with that of sampling in reproducing kernel
Hilbert spaces (RKHS). The RKHS structure, in this case, is
that of the range of the group wavelet transform, and will be
discussed in detail, together with the basics on the SE(2) wavelet
transform, in Section 2. Reducing the number of parameters in
a wavelet transform is a common operation, that one typically
performs for discretization purposes (refer to e.g., Daubechies,
1992), or e.g., because it is useful to achieve square-integrability
(Ali et al., 1991). The main issue is that these operations are
typically constrained nontrivially in order to retain sufficient
information that allows one to distinguish all interesting signals.
For example, when discretizing the short-time Fourier transform
to obtain a discrete Gabor Transform, the well-known density
theorem (Heil, 2007) imposes a minimum density of points in
phase space where the values of the continuous transform must
be known in order to retain injectivity for signals of finite energy.
Much is known about this class of problems in the context of
sampling, from classical Shannon’s theorem and uncertainty-
related signal recovery results (Donoho and Stark, 1989) to
general sampling results in RKHS (Fuhr et al., 2017; Grochenig
et al., 2018). However, the kind of restriction implemented by
feature maps does not seem to fit into these settings, even if
some similarities may be found between the pinwheel-shaped
orientation preference maps (Bonhoeffer and Grinvald, 1991)
and Meyer’s quasicrystals, which have been recently used for
extending compressed sensing results (Candes et al., 2006; Matei
and Meyer, 2010; Agora et al., 2019).

We remark that this article does not focus on dictionary
learning techniques for image representation that may give
rise to realistic receptive fields and feature maps, such as
e.g., those studied in Hyvarinen and Hoyer (2001) and
Miikkulainen et al. (2005). We will consider only the problem
of reconstruction of the SE(2) wavelet transform from a given
feature map.

The plan of the article is as follows. In Section 2, after a
brief overview of the SE(2) transform and its RKHS structure,
we will formalize in a precise way the problem of functional
reconstruction after the restriction (Equation 3) has been
performed. In Section 3, we will introduce a technique to tackle
this problem, given by an iterative kernel method based on
projecting the restricted SE(2) wavelet transform onto the RKHS
defined by the group representation. Moreover, we will consider
a discretization of the problem and, in the setting of finite
dimensional vector spaces, we will give proof that the proposed
iteration converges to the desired solution. Finally, in Section 4,
we will show and discuss numerical results on real images.

2. OVERVIEW OF THE SE(2) TRANSFORM

The purpose of this section is to review the fundamental notions
of harmonic analysis needed to provide a formal statement of
the problem. We will focus on the group wavelet transform
defined by the action on L2(R2) of the group of rotations and
translation of the Euclidean plane, expressed as a convolutional
integral transform.

We will denote the Fourier transform of f ∈ L1(R2) ∩ L2(R2)
by

f̂ (ξ ) =
∫

R2
e−2π ix.ξ f (x)dx

and, as customary, we will use the same notation for its extension
by density to the whole L2(R2). We will also denote by ∗ the
convolution on R2:

(f ∗ g)(x) =
∫

R2
f (y)g(x− y)dy.

Let S1 be the abelian group of angles of the unit circle, which
is isomorphic either to the one dimensional torus T = [0, 2π)
or to the group SO(2) of rotations of the plane R2. The group
SE(2) = R2 ⋊ S1 is (refer to e.g., Sugiura, 1990, Ch. IV) the
semidirect product group with elements (x, θ) ∈ R2 × S1 and
composition law

(x, θ) · (x′, θ ′) = (x+ rθx
′, θ + θ ′)

where rθ =
(
cos θ − sin θ
sin θ cos θ

)
. Its Haar measure, which is the

(Radon) measure on the group which is invariant under group
operations, is the Lebesgue measure on R2 ⋊ S1.

A standard way to perform a wavelet analysis with respect
to the SE(2) group on two-dimensional signals is given by the
operator defined as follows.

DEFINITION 1. Let us denote by R : S1 → U(L2(R2)) the unitary
action by rotations of S1 on L2(R2):

R(θ)f (x) = f (r−1
θ x) , f ∈ L2(R2) , θ ∈ S

1.

Let ψ ∈ L2(R2), and denote by ψθ = R(θ)ψ . The SE(2) wavelet
transform on L2(R2) with the mother wavelet ψ is

Wψ f (x, θ) = (f ∗ ψθ )(x) , f ∈ L2(R2). (4)
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In terms of this definition, we can then see that if we choose
s, p ∈ R+, and let ψs,p ∈ L2(R2) be

ψs,p(x) = s
√
2πe−2π ipx1e−2π2s2|x|2 , (5)

we can write (Equation 1) as F = Wψs,p f (x, θ).
Moreover, by making use of the quasiregular representation of

the SE(2) group

5(x, θ)f (y) = f (r−1
θ (y− x)) , f ∈ L2(R2) (6)

and denoting by ψ†(x) = ψ(−x), we can rewrite (Equation 4) as
follows:

Wψ f (x, θ) = 〈f ,5(x, θ)ψ†〉L2(R2)

which is a standard form to write the so-called group wavelet
transform (refer to e.g., Führ, 2005; Deitmar and Echterhoff,
2014). Note that, in the interesting case (Equation 5), we have

ψ
†
s,p = ψs,p.
The SE(2) transform (Equation 4), together with the notion of

group wavelet transform, has been studied in multiple contexts
(refer to e.g., Weiss and Wilson, 2001; Antoine et al., 2004; Führ,
2005; Duits et al., 2007; Deitmar and Echterhoff, 2014; Dahlke
et al., 2015 and references therein), and several of its properties
are well-known. In particular, ifWψ f is a bounded operator from
L2(R2) to L2(R2 × S1), which happens e.g., for ψ ∈ L1(R2) ∩
L2(R2) by Young’s convolution inequality and the compactness
of S1, it is easy to see that its adjoint reads

W∗
ψF(x) =

∫

S1

(
F(·, θ) ∗ ψ†

θ

)
(x) dθ . (7)

It is also well-known (Weiss and Wilson, 2001) thatWψ f cannot
be injective on the whole L2(R2), i.e., we cannot retrieve an
arbitrary element of L2(R2) by knowing its SE(2) transform.
However, as shown in Duits (2005); Duits et al. (2007), and
applied successfully in a large subsequent series of works (e.g.,
Duits and Franken, 2010; Zhang et al., 2016; Lafarge et al.,
2021), it is possible to obtain a bounded invertible transform
by extending the notion of SE(2) transform to mother wavelets
ψ that do not belong to L2(R2), or by simplifying the problem
and reduce the wavelet analysis to the space of bandlimited
functions, that are those functions whose Fourier transform is
supported on a bounded set, whenever a Calderón’s admissibility
condition holds. Since our main point in this article is not the
reconstruction of the whole L2(R2), we will consider the SE(2)
transform with this second, simplified, approach. In this case,
the image of the SE(2) transform is a reproducing kernel Hilbert
subspace of L2(R2 × S1) whose kernel will play an important
role in the next section. For convenience, we formalize these
statements with the next two theorems, and provide a sketch
of the proof in the Appendix, even if they can be considered
standard material.

THEOREM 2. For R > 0, let BR = {ξ ∈ R2
: |ξ | < R} and let

HR = {f ∈ L2(R2) : supp̂f ⊂ BR}. (8)

The SE(2) wavelet transform (Equation 4) for a mother wavelet
ψ ∈ L2(R2) is a bounded injective operator from HR to L2(R2 ×
S1) if and only if there exist two constants 0 < A ≤ B < ∞ such
that

A ≤
∫

S1
|ψ̂(r−1

θ ξ )|2dθ ≤ B (9)

holds for almost every ξ ∈ BR.

Before stating the next result, we repeat the observation of
Weiss and Wilson (2001) and show, using this theorem, that the
SE(2) transform cannot be a bounded injective operator on the
whole L2(R2). Indeed, using that

ψ̂θ (ξ ) =
∫

R2
e−2π ix.ξψ(r−1

θ x)dx

=
∫

R2
e−2π ix.(r−1

θ ξ )ψ(x)dx = ψ̂(r−1
θ ξ ).

we can see that the Calderón’s function in condition (Equation 9)
is actually a radial function

Cψ (ξ ) =
∫

S1
|ψ̂(r−1

θ ξ )|2dθ

=
∫

S1
|ψ̂(|ξ | cosϕ, |ξ | sinϕ)|2dϕ = Cψ (|ξ |) (10)

which, by Plancherel’s theorem, satisfies
∫ ∞
0 Cψ (ρ)ρdρ =

‖ψ‖2
L2(R2)

. Hence, the lower bound in condition (Equation 9)

cannot be satisfied on the whole R2 by any ψ ∈ L2(R2).
On the other hand, for the mother wavelet (Equation 5), since

ψ̂(ξ ) =
1

s
√
2π

e−|ξ+(p0)|
2/2s2 , we have

Cψ (ξ ) =
∫

S1
|ψ̂θ (r−1

θ ξ )|2dθ =
1

2πs2

∫

S1
e
−|ξ+(p cos θp sin θ)|

2/s2
dθ

=
e
− |ξ |2+p2

s2

2πs2

∫

S1
e
− |ξ |p

s2
cosα

dα.

From here, we can see that Cψ (ξ ) > 0 for all ξ ∈ R2, so, even
if Cψ (ξ ) → 0 as |ξ | → ∞, we have that the lower bound in
Equation (9) is larger than zero for any finite R.

The next theorem shows how to construct the inverse of the
SE(2) wavelet transform on bandlimited functions, and what is
the structure of the closed subspace defined by its image.

THEOREM 3. Let ψ ∈ L2(R2) and R > 0 be such that Equation
(9) holds. Let also γ ∈ L2(R2) be defined by

γ̂ (ξ ) =
χBR (ξ )

Cψ (ξ )
ψ̂(ξ ) (11)

where χBR (ξ ) =
{
1 ξ ∈ BR
0 otherwise

, and letHR be as in Equation (8).

Then

(i) For all f ∈ HR, it holds W
∗
γWψ f = f .
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(ii) The space Wψ (HR) is a reproducing kernel Hilbert subspace
of continuous functions of L2(R2 × S1), and the orthogonal
projection P of L2(R2 × S1) onto Wψ (HR) is

PF(x, θ) = WψW
∗
γ F(x, θ) (12)

=
∫

S1

(
F(·, θ ′) ∗ ψθ ∗ γ †

θ ′
)
(x) dθ ′ , F ∈ L2(R2 × S

1).

Since Wψ (HR) is a Hilbert space of continuous functions, it
makes sense to consider its values on the zero measure set
provided by the graph of a function2 :R2 → S1, as in Equation
(3). We can then provide a formal statement of the problem
discussed in Section 1:

for f ∈ HR and2 :R
2 → S

1, reconstruct f

using only the valuesWψ f (x,2(x)). (13)

For this problem to be solvable, the graph G2 = {(x, θ) ∈
R2 × S1 : θ = 2(x)} must be a set of uniqueness for Wψ (HR).
That is, the following condition must hold:

if F ∈ Wψ (HR) and F|G2 = 0 , then F = 0. (14)

Indeed, if this was not the case, for any nonzero F ∈ Wψ (HR)
that vanishes on G2, the function fF = W∗

γ (Wψ f + F) ∈ HR

would be different from f but Wψ fF would coincide with Wψ f
on G2. That is, we could not solve the problem (Equation 13).

Condition (Equation 14) is in general hard to be checked, and
the formal characterization of the interplay betweenψ and2 that
makes it hold true is out of the scope of this article. However,
in the next section, we will provide a technique for addressing
(Equation 13) in a discrete setting, which will allow us to explore
in Section 4, the behavior of this problem for various functions2
inspired by the feature maps measured in V1.

3. A RECONSTRUCTION ALGORITHM

In this section, we describe the discretization of the problem
(Equation 13) which is used in the next section. Then, we
introduce a kernel based iterative algorithm and prove its
convergence to the solution whenever the solvability condition
(Equation 14) holds.

3.1. Discretization of the Problem
The setting described in Section 2 can be discretized in a standard
fashion by replacing L2(R2) with CN×N , endowed with the
usual Euclidean scalar product, circular convolution, and discrete
Fourier transform (FFT), which amounts to replacing R with
ZN , the integers modulo N. Explicitly, given f ,ψ ∈ CN×N ,
x =

(x1
x2

)
, y =

(y1
y2

)
, ξ =

(y1
ξ2

)
∈ ZN × ZN , we have

f ∗ ψ(x) =
N−1∑

y1=0

N−1∑

y2=0

f (y)g
(
(x− y)mod N

)
, and f̂ (ξ )

=
N−1∑

x1=0

N−1∑

x2=0

e−2π i
x1ξ1+x2ξ2

N f (x).

With a uniform discretization of angles, i.e., by replacing S1

with 2π
M ZM = {0, 2πM , 4πM , . . . , 2π M−1

M }, we obtain the following
discretization of the SE(2) transform with the mother wavelet
(Equation 5):

Wψ f (x, j) = f ∗ ψθj (x) , where ψ̂θj (ξ ) = e
−
∣∣ξ+(p cos θj

p sin θj
)
∣∣2/2s2

for x, ξ ∈ ZN × ZN and θj = 2π
M j, j = 0, . . . ,M. Thus, in

particular, Wψ f ∈ CN×N×M . Note that here, for simplicity, we
have removed the normalization used in Equation (5).

This allows us to process N ×N digital images while retaining
the results of Theorems 2 and 3 as statements on finite frames
(refer to e.g., Casazza et al., 2013) since Plancherel’s theorem
and Fourier convolution theorem still holds. In particular, when
computing numerically the inverse of Wψ using (i), Theorem
3, one has to choose an R > 0 so that Calderón’s condition
(Equation 9) for

Cψ (ξ ) =
M−1∑

j=0

e
−
∣∣ξ+(p cos θj

p sin θj
)
∣∣2/2s2

(15)

holds with some 0 < A ≤ B < ∞ for all ξ ∈ BR = {ξ ∈
ZN × ZN : ξ 21 + ξ 22 < R2}. This is the injectivity condition

on HR = {f ∈ CN×N
: f̂ (ξ ) = 0∀ ξ /∈ BR} and, due to

the finiteness of the space, now it can be achieved for all R,
i.e., without bandlimiting. However, since this is equivalent to

the frame inequalities (Equation 24), the quantity
√

B
A defines

actually the condition number of Wψ . Thus, in order to keep
stability for the inversion, the ratio B

A cannot be arbitrarily large
(refer to e.g., Duits et al., 2007; Casazza et al., 2013). Once the
parameters s, p,R are chosen in such a way that this ratio provides
an acceptable numerical accuracy, one can then compute the
projection P given by (ii), Theorem 3, on F ∈ CN×N×M , by
making use of Fourier convolution theorem:

P̂F(ξ , j) =
χBR (ξ )

Cψ (ξ )
ψ̂θj (ξ )

M−1∑

ℓ=0

F̂(ξ , ℓ)ψ̂θℓ (ξ ). (16)

We note at this point that this standard discretization, in general
(for M different from 2 or 4), retains all of the approaches of
Section 2 but the overall semidirect group structure of R2 ⋊ S1.

Let us now consider the discretization of the problem
(Equation 13) and denote the graph of 2 :ZN × ZN → ZM by
G2 = {(x, j) ∈ ZN × ZN × ZM : j = 2(x)}. If we denote by O2
the selection operator that sets to zero all the components of an
F ∈ CN×N×M that do not belong to G2, i.e.,

O2F(x, j) =
{
F(x, j) (x, j) ∈ G2

0 (x, j) /∈ G2

We can see that this is now an orthogonal projection ofCN×N×M .
Hence, problem (Equation 13) can be rewritten in the present
discrete setting as follows: given f ∈ HR, find F ∈ CN×N×M that
solves the linear problem

{
PF = F

O2F = O2Wψ f .
(17)
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The meaning of Equation (17) is indeed to recover Wψ f , and
hence f , knowing only the valuesWψ f (x,2(x)).

We propose to look for such a solution using the following
iteration in CN×N×M : for F0 = O2Wψ f , compute

Fn = PFn−1 −O2PFn−1 + F0 , n = 1, 2, . . . (18)

The idea behind this iteration is elementary: we start with the
values of Wψ f selected by 2, we project them on the RKHS
defined by the image of Wψ , and we replace the values on G2

of the result with the known values of Wψ f . The convergence
of this iteration is discussed in the next section. Before that, we
observe that Equation (18) can be seen as a linearized version
of the Wilson, Cowan, and Ermentrout equation (Wilson and
Cowan, 1972; Ermentrout and Cowan, 1980). Indeed, denoting
by K = (1 − O2)P, Equation (18) can be seen as a forward
Euler scheme (time discretization) for the vector valued ordinary
differential equation.

d

dt
F(t) = −F(t)+ KF(t)+ F0.

Apart from the absence of a sigmoid, this is indeed a classical
model of population dynamics. Here, the “kernel” K is not just
the reproducing kernel P, but it also contains the projection on a
feature map O2. Returning to the model of V1, here, the forcing
term F0 is the data collected by simple cells, while the stationary
solution F, if it exists, is the full group representation of the visual
stimulus defined as the solution to the Volterra-type equation
F = KF + F0.

3.2. The Project and Replace Iteration
We show here that, whenever the problem (Equation 17) is
solvable, the iteration (Equation 18) converges to its solution.
Since the argument is general, we will consider in this subsection
the setting of an arbitrary finite dimensional vector space V
endowed with a scalar product and the induced norm, and
two arbitrary orthogonal projections P,Q. For an orthogonal
projection P, we will denote by P⊥ = 1 − P the complementary
orthogonal projection. We will also denote by Ran the range, or
image, and by Ker the kernel, of a matrix.

We start with a basic observation, which is just a restatement
of the solvability condition (Equation 14) as that of a linear
system defined by an orthogonal projection, in this case, Q, on a
subspace, in this case, characterized as Ran(P). The simple proof
is included for convenience, and it can be found in theAppendix.

LEMMA 4. Let P,Q be orthogonal projections of a finite
dimensional vector space V. The system

{
PF = F
QF = QF̃

(19)

has a unique solution in V for any F̃ ∈ Ran(P) if and only if

Ker(Q) ∩ Ran(P) = {0}. (20)

The problem posed by the system (Equation 19) is a problem
of linear algebra: if we know that a vector F belongs to a
given subspace Ran(P) ⊂ V , and we know the projection
of F on a different subspace Ran(O) ⊂ V , can we recover
F? The next theorem shows that, if the system (Equation 19)
has a unique solution, such a solution can be obtained by the
project and replace iteration (Equation 18). Its proof is given in
the Appendix.

THEOREM 5. Let V be finite dimensional vector space, and let P,Q
be orthogonal projections of V. Given F̃ ∈ Ran(P), set F0 = QF̃,
and let {Fn}n∈N, {Hn}n∈N ⊂ V be the sequences defined by the
project and replace the iteration.

{
Hn = PFn−1

Fn = Q⊥Hn + F0
, n = 1, 2, . . . (21)

If condition (Equation 20) holds, then

lim
n→∞

Hn = lim
n→∞

Fn = F̃

and the errors ‖̃F − Hn‖, ‖̃F − Fn‖ decay exponentially with the
number of iterations n.

4. NUMERICAL RESULTS

We present in this study the reconstruction results of the
project and replace iteration on the restriction to feature maps
of the SE(2) transform of real images. We have chosen eight
512 × 512 pixels, 8-bit grayscale digital images {fi}8i=1 ⊂
{0, . . . , 255}512×512, which are shown in Figure 1 together
with their Fourier spectra. Note that, for processing, they
have been bandlimited in order to formally maintain the
structure described in Section 2. However, this bandlimiting
has minimal effects, not visible to the eye, since the spectra
have a strong decay: for this reason, the bandlimited images are
not shown.

For the discrete SE(2) transform, we have chosen a
discretization of S1 with 12 angles, so that, with respect to the
notation of the previous section, we have N = 512 andM = 12.
We have also chosen the parameter values s = 51, p = 170,R =
252. The mother waveletψ and dual wavelet γ produced by these
parameters are shown in Figure 2, top and center, on a crop of
the full 512 × 512 space for better visualization. We stress that
the stability of the transform and the numerical accuracy of the
projection (Equation 16) depend only on the behavior of the
Calderón’s function, while the accuracy of image representation
under bandlimiting with radius R depends on the decay of the
spectra of the images. The Calderón’s function Cψ , computed
as in Equation (15), is shown in Figure 2, bottom left: the
chosen parameters define a ratio B/A ≈ 6 · 103, corresponding
to a condition number for Wψ of less than 102. In Figure 2,
bottom right, we have shown in log10 scale the multiplier χBR/Cψ
that defines the dual wavelet γ as in Equation (11), and in
particular, we can see the bandlimiting radius, to be compared
with the spectra of Figure 1. For visualization purposes, in
Figure 3, we have shown in spatial coordinates the integral kernel
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FIGURE 1 | Original test images (top) and their Fourier spectra in log10 scale (bottom).

defining the projection (Equation 16), which is the reproducing
kernel for the discrete SE(2) transform. Its real and imaginary
parts are shown on the same crop used to display the wavelet
of Figure 2.

We have implemented iteration (Equation 18) for the
restriction of this discrete SE(2) transform to different types of
feature maps 2, shown in Figure 4. We will comment below
each one of these cases. We have chosen to illustrate the effect

of that iteration as follows. We have computed the sequence
{Hn}νn=1 as in Equation (21), for a number ν of iterations, and
applied the inverse SE(2) transform W∗

γ to each Hn. This allows
us to obtain real images that are directly comparable with the
original ones. We then have shown W∗

γH1, representing the first
image that can be directly retrieved from the feature parameters,
and W∗

γHν , that is the image obtained when we stopped the
iteration.Moreover, as ameasure of reconstruction error, we have
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FIGURE 2 | Top: mother wavelet ψ . Center: dual wavelet γ . Bottom, left: Calderón’s function. Bottom, right: inverse of the Calderón’s function in log10 scale,

bandlimited with R = 252.
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FIGURE 3 | Reproducing kernel for the wavelet of Figure 2. Top: real part for the 12 angles. Bottom: imaginary part for the 12 angles.

considered the following rescaling of the Euclidean norm, at each
step n ∈ {1, . . . , ν}:

1n = 100 ∗


 1

N2

∑

x∈ZN×ZN

|fi(x)−W∗
γHn[fi](x)|2




1
2

/255

= 100 ∗
‖fi −W∗

γHn[fi]‖
255 ∗ N

. (22)

This adimensional quantity measures a % error obtained as the
average square difference by pixel of an image fi in the dataset
from its n-steps reconstruction W∗

γHn[fi], divided by the size of
the admissible pixel range for 8 bit images, which is {0, . . . , 255}.

4.1. First Feature Map: Purely Random
Selection of Angles
The first map that we have considered is a 2 :ZN × ZN → ZM

that, for each x ∈ ZN × ZN , simply chooses one value in ZM
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FIGURE 4 | Left column: maps 2 for the simulations in Figures 5–8. Right column: enlargements of the same maps. First line: purely random 2. Second, third,

and fourth line: maps 2ρ generated according to Equation (23) with ρ respectively given by ρ = 0.8, ρ = 0.4, and ρ = 0.06.
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as a uniformly distributed random variable. This map is shown
in the first line of Figure 4, left, and in the first line of Figure 4,
right, we have shown an enlargement to the same crop at which
the wavelets in Figure 2 and the reproducing kernel in Figure 3

are shown. In Figure 5, we have shown the images resulting from
W∗
γH1 and W∗

γH1000, and the evolution of the error (Equation
22) in log10 scale, respectively in the left, center, and right column,
for the first four images of Figure 1. In this case, we can see that
the error1n goes beyond 1%, indicated by 0 on the y-axis, in just
about 500 iterations. As a remark, feature maps that are similar to
such configurations are commonly encountered in rodents (refer
to e.g., Ho et al., 2021 and references therein).

4.2. Pinwheel-Shaped Feature Maps
Next, we present the results for three selection maps 2 that are
pinwheel-shaped, as it is commonly observed for orientation and
direction preference maps of V1 in primates and other mammals.
These maps can be constructed as follows Petitot (2017): for
ρ ∈ R+, let φρ :ZN × ZN → C be given by

φρ(x) =
∫ 2π

0
ei
(
ρ(x1 cos(α)+x2 sin(α))+Ŵ(α)

)
dα

where Ŵ is a purely random process with values in [0, 2π). The
maps2ρ :ZN ×ZN → ZM that we have considered are obtained
by

2ρ(x) =
⌊
M

2π
angle(φρ(x))

⌋
(23)

where angle(z) is the phase of a complex number z ∈ C, and
⌊t⌋ is the integer part of a real number t. The resulting maps
are quasiperiodic, with a characteristic correlation length that
corresponds to the fact that the spectrum of φρ is concentrated
on a ring of radius ρ

2π . The main feature of those maps 2ρ
is that they possess points, called pinwheel points, around
which all angles are mapped, and these points are spaced, on
average, by a distance of 2π/ρ (refer to e.g., Petitot, 2017 and
references therein).

In the second, third, and fourth line of Figure 4, left, we
have shown the resulting maps 2ρ with ρ, respectively, given by
ρ = 0.8, ρ = 0.4, and ρ = 0.06. On the right column, we have
shown an enlargement to the same crop used before.

The results of the iteration are presented, as described above,
in Figures 6–8, whose structure is the same as in Figure 5 with
the exception of the number of iterations, which is now larger.

In order to discuss these results, we first recall that the
correlation length of orientation preference maps has been often
related to the size of receptive fields, as a “coverage” constraint
to obtain a faithful representation of the visual stimulus (refer
to Swindale, 1991; Swindale et al., 2000; Bosking et al., 2002;
Keil and Wolf, 2011; Barbieri et al., 2014 and references therein).
However, neither mathematical proof of this principle in terms
of image reconstruction has been given so far, nor has the word
size received a more quantitative meaning within the models of
type (Equation 1), and we have not tried to give any more specific
meaning either. However, for the three cases that we present, by
comparing the crops of the maps2ρ in Figure 4with the wavelet
ψ in Figure 2, we can see that for ρ = 0.8, the correlation length

of the map 2ρ is approximately similar to what we could call
effective support of the receptive field, while for ρ = 0.4, we have
that the area of influence of the receptive field does not include
two different pinwheel points, and for ρ = 0.06, the two scales
are very different. Heuristically, one could then be led to think
that the reconstruction properties in the three cases may present
qualitative differences. For example, that condition (Equation
14), or its discrete counterpart (Equation 20), may hold in the
first case and may not hold in the third case.

As can be seen from the numerical results of the proposed
algorithm, there is actually a difference in the behavior of the
decay. For larger values of the parameter ρ, when the map 2ρ is
more similar to the purely random selection described above, the
decay of the error is faster, while for smaller values of ρ the decay
is slower, but nevertheless, the error appears to be monotonically
decreasing. In the presented cases, for ρ = 0.8, we can see in the
right column of Figure 6 that in about 2,000 iterations the error
decay appears to enter an exponential regime, which is rectilinear
in the log10 scale. We see in Figure 7 that it takes roughly twice
as many iterations for ρ = 0.4 to enter the same regime. On
the other hand, for ρ = 0.06, we can see in Figure 8 that
after a relatively small number of iterations the decay becomes
very small and does not seem to become exponential even after
10,000 iterations. However, visual inspection of the results (which
“measures” the error in a different way than the Euclidean norm)
in this last case, show that the starting image appears to be
qualitatively highly corrupted, while the image obtained after the
iteration was stopped is remarkably true to the original one and
does not display evident artifacts away from the boundaries.

4.3. Selection of a Single Orientation:
Deconvolution
The surprisingly good performance in the reconstruction
problem for the last map 20.06 has motivated a performance
test for an additional feature selection map, given by a function
2 that is independent of x, hence selecting just one angle in
the SE(2) transform. In the same fashion as seeing the purely
random distribution as a limiting case for large ρ of the pinwheel-
shaped maps, this can be considered as a limiting case for
small ρ. However, keeping only the values of Wψ f for a single
angle θ concretely corresponds to performing a convolution
with one function ψθ , and aiming to reconstruct f is actually
a deconvolution problem. In this case, the frequency behavior
of the convolution filter is that of a Gaussian centered away
from the origin, and its shape can be observed in the Calderón’s
function of Figure 2, which clearly shows the sum of 12 such
Gaussians. We have shown the reconstruction results for this
problem, using now 15,000 iterations, in Figure 9. The error
decay seems to share, qualitatively, much of the same properties
of the case ρ = 0.06.

5. CONCLUSIONS

In this article, we have proposed an elementary iterative
technique to address the problem of the reconstruction of
images from a fixed reduced set of values of its SE(2) group
wavelet transform. We have formally defined these restrictions
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FIGURE 5 | Iteration on the images 1–4 of Figure 1 for the purely random 2 shown in the first line of Figure 4. Left: The first step of the iteration. Center: after 1,000

iterations. Right: log10(1n), for the error (Equation 22).
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FIGURE 6 | Iteration on the images 5–8 of Figure 1 for 20.8 shown in the second line of Figure 4. Left: The first step of the iteration. Center: after 5,000 iterations.

Right: log10(1n), for the error (Equation 22).
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FIGURE 7 | Iteration on the images 1–4 of Figure 1 for 20.4 shown in the third line of Figure 4. Left: The first step of the iteration. Center: after 10,000 iterations.

Right: log10(1n), for the error (Equation 22).

Frontiers in Computational Neuroscience | www.frontiersin.org 14 March 2022 | Volume 16 | Article 775241

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Barbieri Reconstructing Group Wavelet Transform

FIGURE 8 | Iteration on the images 5–8 of Figure 1 for 20.06, shown in the fourth line of Figure 4. Left: The first step of the iteration. Center: after 10,000 iterations.

Right: log10(1n), for the error (Equation 22).
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FIGURE 9 | Iteration for the SE(2) deconvolution by ψ on images of Figure 1. Left: The first step of the iteration. Center: after 15,000 iterations. Right: log10(1n), for

the error (Equation 22).
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in terms of cortical maps, as this problem is inspired by visual
perception, since the SE(2) symmetry and the associated integral
transform have proved to be relevant for mathematical modeling
of V1, refer to e.g., (Petitot and Tondut, 1999; Paul C. Bressloff,
2002; John Zweck, 2004; Citti and Sarti, 2006, 2015). Moreover,
the presented numerical simulations directly compare with the
studies on the relationship between cortical maps and the
efficiency of single cell encoding of information in terms of
coverage (Swindale, 1991; Swindale et al., 2000; Bosking et al.,
2002; Keil andWolf, 2011; Barbieri et al., 2014). Indeed, as a result
of the main theorem, and for cortical maps as formally defined in
this article, we can see from the proposed implementation that,
when a pinwheel structure is chosen, the relationship between
the average distance between pinwheel centers and the size
of receptive fields influences the invertibility of the restricted
SE(2) transform.

A possible interpretation of the proposed iteration with a
kernel defined by the SE(2) group as a neural computation in V1
comes from the modeling of the neural connectivity as a kernel
operation (Wilson and Cowan, 1972; Ermentrout and Cowan,
1980; Citti and Sarti, 2015; Montobbio et al., 2018), especially if
considered in the framework of a neural system that aims to learn
group invariant representations of visual stimuli (Anselmi and
Poggio, 2014; Anselmi et al., 2020). A direct comparison of the
proposed technique with kernel techniques recently introduced
with radically different purposes in Montobbio et al. (2018) and
Montobbio et al. (2019) shows, however, two main differences at
the level of the kernel that is used: here, we need the dual wavelet
to build the projection kernel, and the iteration kernel effectively
contains the feature maps. On the other hand, a possible
application is the inclusion of a solvability condition such as
Equation (14) as iterative steps within learning frameworks such
as those of Anselmi et al. (2019) and Anselmi et al. (2020).
From the point of view of actual neural implementation, even
if it was possible to see a formal analogy between the proposed
algorithm and a neural field equation, we believe that more has
to be done concerning the performances and that the proposed
mechanism has to be considered as a much more elementary
procedure than the ones that could take place in a real visual
cortex. For example, while the proposed iteration is faster than
typical convex optimization implementations used for other
completion problems, it still requires a large number of iterations
even in the exponential regime. Improvements could be searched
in several directions, e.g., by including non-classical behaviors in
neural modeling.

We would like to observe also that, since the proof of
convergence of this technique is general, it could be applied
to other problems with a similar structure. The computational
cost essentially relies on the availability of efficient methods to
implement the two projections that define the problem in the

discrete setting, as it happens to be the case for the setting
studied in this article. In particular, similar arguments could be
applied to other wavelet transforms based on semidirect product
groups Rd ⋊ G, with G a subgroup of GLd(R) that defines
what is sometimes referred to as local features, and to sampling
projections obtained for example, but not only, from other types
of feature maps 2 :Rd → G. From the dimensional point of
view, in the discrete setting the selection of local features with
a feature map can be seen as downsampling that allows one to
maintain in the transformed space the same dimension of the
input vector. This is often a desirable property and it is already
commonly realized e.g., by the MRA decomposition algorithm of
classical wavelets or by the pooling operation in neural networks.
Moreover, its apparent stability of convergence seems to suggest
that this operation can be performed a priori, without the need
for a previous study of the solvability of the problem.

Several questions remain open after this study. Probably
the most fundamental one is the characterization of those
maps 2 that, for a given mother wavelet ψ , satisfy the
solvability condition (Equation 14). In terms of the study
of the convergence of the project and replace iteration, it
is plausible that one could obtain convergence under weaker
conditions than Equation (20), even if maybe to a different
solution, as it appears to happen in some of the numerical
simulations presented.
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APPENDIX: PROOFS OF THE MAIN
STATEMENTS

This section contains the proofs of the formal statements
introduced in the text.

SKETCH OF THE PROOF OF THEOREM 2. By Fourier
Convolution Theorem, Plancherel’s theorem, and the definition
ofHR, we have

∫

S1

∫

R2
|W9 f (x, θ)|2dxdθ =

∫

S1

∫

R2
|ψ̂θ (ξ )|2 |̂f (ξ )|2dξdθ

=
∫

BR

(∫

S1
|ψ̂θ (ξ )|2dθ

)
|̂f (ξ )|2dξ .

Thus, (9) is equivalent to the so-called frame condition

A‖f ‖2
L2(R2)

≤ ‖Wψ f ‖2L2(R2×S1)
≤ B‖f ‖2

L2(R2)
(A1)

for all f ∈ HR, which is equivalent [refer to e.g., Ali et al. (1993)]
toW9 being bounded and invertible onHR.

SKETCH OF THE PROOF OF THEOREM 3. Observe first that

γ̂
†
θ = γ̂θ =

χBR (ξ )

Cψ (ξ )
ψ̂θ (ξ ). Thus, recalling (7) and using Fourier

Convolution Theorem, we can compute

Ŵ∗
γWψ f (ξ ) =

∫

S1
f̂ (ξ )

χBR (ξ )

Cψ (ξ )
|ψ̂θ (ξ )|2dθ = Ŵ∗

ψWγ f (ξ )

= f̂ (ξ )χBR (ξ )

which proves (i). To prove (ii), one needs to show that the
elements of Wψ (HR) are continuous functions, that Wψ (HR)
WψW

∗
γ is self adjoint and idempotent, and that (12) holds. The

continuity can be obtained as a consequence of the continuity
of the unitary representation (6) and, by the same arguments
used to prove (i) we can easily see that WγW

∗
ψ = WψW

∗
γ .

On the other hand, (i) implies that WψW
∗
γWψ f = Wψ f for

all f ∈ HR, hence WψW
∗
γ F = F for all F ∈ Wψ (HR).

Equation (12) can be obtained directly by (7) and the definition
ofWψ .

PROOF OF LEMMA 4. The system (19) is of course solved by
F = F̃, so we only need to prove that, for all F̃ ∈ Ran(P), this
solution is unique if and only if (20) holds. In order to see this,
let S ∈ V be a solution to (19), and denote by E = F̃ − S. Then
E ∈ Ran(P) ∩ Ker(Q). Hence, (20) holds if and only if E = 0, i.e.,
the only solution to (19) is F = F̃.

PROOF OF THEOREM 5. Denoting by H1 = PF0, we can rewrite
the iteration (21) as two separate iterations, generating the two
sequences {Fn}n∈N, {Hn}n∈N as follows:





Hn+1 = PQ⊥Hn +H1 = . . . =
n∑

k=0

(PQ⊥)kH1

Fn = Q⊥PFn−1 + F0 = . . . =
n∑

k=0

(Q⊥P)kF0.

(A2)

If (20) holds, then ‖PQ⊥‖ < 1 and ‖Q⊥P‖ < 1, because
Ran(P) ∩ Ran(O2

⊥) = Ran(P) ∩ Ker(O2) = {0}. Hence, the
existence of the limits H = limn→∞Hn and F = limn→∞ Fn is
due to the convergence of the Neumann series [refer to e.g., Riesz
and Sz.-Nagy (1990)]. Thus, getting rid of the notations F0 = QF̃
and H1 = PF0, we have that the limits H and F are the solutions
to the equations

{
(1− PQ⊥)H = PQF̃

(1− Q⊥P)F = QF̃.

We can now see that F = F̃, because this equation reads

(1− Q⊥P)−1QF̃ = F̃

and, using that F̃ ∈ Ran(P), we can rewrite it as

QF̃ = (1− Q⊥P)̃F = F̃ − Q⊥F̃

which is true by definition of Q⊥ = 1 − Q. Moreover, by taking
the limit in the first equation of (21), and using again that F̃ ∈
Ran(P), we obtain

H = PF = PF̃ = F̃.

Finally, the convergence of (18) is exponential because, using
the series expression (A2) for F̃ = F,

‖̃F − Fn‖ = ‖
∞∑

k=0

(Q⊥P)kF0 −
n∑

k=0

(Q⊥P)kF0‖

= ‖
∞∑

k=n+1

(Q⊥P)kF0‖ = ‖(Q⊥P)n+1
∞∑

k=0

(Q⊥P)kF0‖

= ‖(Q⊥P)n+1F‖ ≤ ‖Q⊥P‖n+1‖F‖

A similar argument applies to ‖̃F −Hn‖.
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