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Affective empathy is an indispensable ability for humans and other species’ harmonious

social lives, motivating altruistic behavior, such as consolation and aid-giving. How to

build an affective empathy computational model has attracted extensive attention in

recent years. Most affective empathy models focus on the recognition and simulation

of facial expressions or emotional speech of humans, namely Affective Computing.

However, these studies lack the guidance of neural mechanisms of affective empathy.

From a neuroscience perspective, affective empathy is formed gradually during the

individual development process: experiencing own emotion—forming the corresponding

Mirror Neuron System (MNS)—understanding the emotions of others through the mirror

mechanism. Inspired by this neural mechanism, we constructed a brain-inspired affective

empathy computational model, this model contains two submodels: (1) We designed

an Artificial Pain Model inspired by the Free Energy Principle (FEP) to the simulate pain

generation process in living organisms. (2) We build an affective empathy spiking neural

network (AE-SNN) that simulates the mirror mechanism of MNS and has self-other

differentiation ability. We apply the brain-inspired affective empathy computational model

to the pain empathy and altruistic rescue task to achieve the rescue of companions by

intelligent agents. To the best of our knowledge, our study is the first one to reproduce

the emergence process of mirror neurons and anti-mirror neurons in the SNN field.

Compared with traditional affective empathy computational models, our model is more

biologically plausible, and it provides a new perspective for achieving artificial affective

empathy, which has special potential for the social robots field in the future.

Keywords: affective empathy, mirror neuron system, spiking neural network, Artificial Pain, altruistic behavior,

self-awareness

1. INTRODUCTION

Empathy is the ability to understand the state of others through observation, imagination, and
inference, which is the motivation for altruistic behaviors such as consolation and aid-giving (Waal
and Preston, 2017). Empathy plays a vital role in human society as it is the biological basis of social
morality (Lou, 2011). In addition, empathy is cross-species (Malin et al., 2011), which maintains
communication not only within the same species but also between different species. In general,
empathy is fundamental to the harmonious coexistence of social groups.
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Empathy is divided into cognitive empathy and affective
empathy (Asada, 2015). Cognitive empathy refers to the ability
that observers to imagine and infer the target’s feeling or state.
Affective empathy refers to the ability that observers are directly
affected by the emotional state of another by matching it (Waal
and Preston, 2017). Affective empathy is more fundamental
and more common, and it appears in the early stage of life
development and also exists in most non-human species such
as rodents and birds (Shamay-Tsoory et al., 2009). Affective
empathy also has essential research value in the field of social
robotics as it is conducive to the communication and cooperation
between robots and between humans and robots. Our work
mainly focuses on the affective empathy computational model
and its applications.

Emotion is an embodied internal state of the organism’s brain
that is formed through interaction with the environment (Lerner
et al., 2015). Emotion not only represents the organism’s state but
also generates emotional overt actions such as facial expressions
to communicate with peers and achieve affective empathy. From
the psychology perspective, the observer can use the Perception-
ActionMechanism (PAM) to empathize with others (Preston and
de Waal, 2017). Perceiving other people’s emotions will activate
the same emotion representation in the observer’s brain, which is
equivalent to the observer experiencing that emotion. Recently,
much neuroscience literature has shown that the Mirror Neuron
System (MNS) supports the PAM (Rizzolatti and Sinigaglia,
2016). The MNS consists of a group of neurons with sensory-
motor properties, and they are activated both during action
execution and action observation (Erhan et al., 2006; Khalil
et al., 2018b). The MNS a collection of Motor brain regions
in the parietal and frontal lobes. In the process of affective
empathy, when we perceive others’ emotions, such as seeing their
facial expressions or hearing them cry, we first achieve motor-
level understanding through the MNS and then further achieve
emotion-level understanding (Carr et al., 2003). It is worth noting
that the activation patterns of the brain during experiencing own
emotion and empathizing with others are different because of the
presence of anti-mirror neurons (Christian and Valeria, 2010).
Thus, the brain can distinguish who is the producer of emotion,
which is called primary self-awareness (Lamm et al., 2011).

We argue that computational modeling of affective empathy
should follow its neural mechanisms: First, the model should
have an internal state similar to human emotion. Second, the
model should develop its own mirror mechanism similar to the
human MNS function, so as to understand others’ emotions
with its own experience. Third, the model should have the
ability to distinguish self from others and adopt adaptive
responding behaviors.

Most of the existing affective empathy computational models
mainly belong to the Affective Computing field, which uses
machine learning algorithms to recognize and simulate human
emotion overt signals, such as facial expressions, speeches, and
body movements (Claret et al., 2017; Soujanya et al., 2017;
Huang et al., 2020; Lee and Kang, 2020). (Leite et al., 2014)
designed an iCat robot to play chess with children. It can analyze
the state of the chess game and the child’s facial expressions
to make a corresponding response such as encouragement.

Zheng et al. (2019) proposed a children’s companion robot
called BabeBay, which has affective computing ability for multi-
modal information such as expression, body gesture, and text,
to maintain companionship with different children. These
traditional approaches are only computational processing of the
emotion overt signals, but the emotion overt signals are not
equal to the emotion. Emotion is a complex embodied internal
state. It is obvious that these approaches do not define this
internal state; they treat emotion as a mere label. Therefore, we
believe that these approaches are far from enough to achieve real
artificial affective empathy. In addition to that, these approaches
also do not follow the guidance of any neural mechanism of
affective empathy. Woo et al. (2017) implemented the affective
empathy process using the spiking neural network, However,
this study only used brain-like modeling tools and did not
involve a mirror mechanism. Watanabe et al. (2007) modeled
a communication model for the virtual robot similar to the
’intuitive parenting’ process between babies and their caregivers.
The robot can establish the relationship between the emotions
and the caregiver’s facial expressions by mirror mechanism, then
they can respond to the other’s emotion by observing human
facial expressions. But again, this study did not define emotion as
an internal state of the robot, and this model cannot distinguish
the producer of emotion between self and others.

In this article, we construct a more sophisticated brain-
inspired affective empathy computational model. First, we
constructed a computational model of emotion as an internal
state: the neural mechanisms by which emotions emerge have
not been well studied. The Free Energy Principle (FEP) has
been proposed as a unified Bayesian interpretation of perception,
learning, and action, describing the relationship between the
internal model of the brain and the relevant sensations from
the environment (Joffily and Coricelli, 2013). Coincidentally,
emotion is a neural activity formed through the interaction of
brain expectations with the real situation of the environment
(Brown and Brune, 2012). Therefore, in this article, we use FEP as
a theoretical basis to model a specific emotion–pain. Second, we
modeled the mirror mechanism of empathy: we used a spiking
neural network to reproduce the emergence process of mirror
neurons and anti-mirror neurons, the process of empathizing
with others through mirror mechanism, and the ability of self-
other differentiation.

The contributions of our study can be summarized as follows:
(1) Inspired by FEP, we modeled the Artificial Pain as an internal
state. (2) We constructed an affective empathy spiking neural
network (AE-SNN), which can simulate themirrormechanism of
MNS to empathize with others and have the ability of self-others
differentiation. (3) We also explored the intrinsic motivations of
altruistic behavior, together with the above parts, to complete the
pain empathy and altruistic rescue task in the grid world.

2. MATERIALS AND METHODS

2.1. The Neural Mechanism
The whole process of affective empathy is shown in Figure 1.
It involves the following brain areas: On the far left is the
Emotion Cortex. Different emotional trigger signals can result
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FIGURE 1 | The neural mechanism of affective empathy. The brain areas contain: Emotion Cortex, Motor Cortex, and Perception Cortex. All the blue arrows represent

the process of experiencing own emotions, and all the orange arrows represent the process of empathizing with others. The blue dashed arrow represents the

process of action execution and action re-afference, and the orange dashed arrow represents perceiving other’s overt action. There are mirror neurons (MN) in the

Motor Cortex.

in different firing patterns in this cortex, producing different
emotional states. The Emotion Cortex contains many sub-
regions, such as the Anterior Cingulate Cortex (ACC) and
Amygdala (AMYG), which are essential components of the
Limbic System (Reep et al., 2007). The ACC is often thought
to be associated with pain (Corradi-Dell’Acqua et al., 2016).
The AMYG is often thought to be associated with fear (Davis,
1992). In the middle is the Motor Cortex. In the affective
empathy process, the Motor Cortex is mainly responsible for
producing emotional overt actions (Mukamel et al., 2010), such
as painful facial expressions, shouting, and crying. The Motor
Cortex contains many sub-regions. Our study considers only
three representative sub-regions: Inferior Frontal Gyrus (IFG),
Supplementary Motor Cortex (SMA), and PrimaryMotor Cortex
(M1). IFG is responsible for encoding the intention of actions
(Jabbi, 2008). SMA is responsible for the initialization of the
action sequence (Rizzolatti and Luppino, 2001). M1 guides the
muscles to perform specific actions (Gazzola and Keysers, 2008).
There are mirror neurons (MN) in the Motor Cortex (Erhan
et al., 2013), as shown in Figure 1. On the far right is the
Perception Cortex, which is used to perceive the emotional
overt actions of oneself or others, such as seeing the painful
facial expressions and hearing the cry. We also listed three of
the most representative sub-regions in the Perception Cortex:
Primary Auditory Cortex (A1) and Primary Visual Cortex (V1)
perform primary processing of visual and auditory information
(Zipser et al., 1996; Morosan et al., 2001). The Superior Temporal
Sulcus (STS) is a high-order perception area that integrates visual
and auditory information about the body and facial actions
(Keysers and Gazzola, 2014). The connection between the Motor
Cortex and the Emotion Cortex is bidirectional (Jabbi, 2008). The
connection between the Perception Cortex and theMotor Cortex
is also bidirectional (Kilner and Frith, 2007), but for the affective
empathy process in our study, we only considered the connection
from the Perception Cortex to the Motor Cortex.

Different emotional trigger signals will lead to the production
of corresponding emotions. In this article, we explore a
particular emotion–pain. External noxious stimuli specifically

activate the Nociceptors in the skin of organisms, then
the noxious information will be transmitted to the cerebral
cortex through the Anterolateral System (Asada, 2019). In the
cerebral cortex, the pain will be evoked from two aspects:
the sensory discrimination component will be formed in
the Somatosensory Cortex (S1, S2), and the affective and
motivational component will be formed in the Anterior
Cingulate Cortex (ACC) (Donald, 2000). However, this pathway
is specific and formed in thousands of years of evolution
(Walters and Williams, 2019). We argue that the Artificial
Pain Model should not follow the physiological mechanism
completely, because many intelligent agents, such as robots, do
not have a physiological structure similar to organisms. We
should explore the essence and significance of pain for the
survival of organisms.

Broom et al. proposed that the emergence of pain was first
related to physical injury in the evolutionary process (Broom,
2001). Pain is a kind of neural activity that occurs with physical
injury and is preserved and internalized in the brain because of
its survival benefits. In further learning, the experience of pain
can also be associated with injury-related cues, such as scenes
or voices of injury. When a similar cue occurs again, the brain
will produce the same pain experience and avoid potential injury
(Wiech and Tracey, 2013).

Certain emotions will trigger the Motor Cortex to perform
corresponding emotional overt action, as shown by the blue
dashed arrow in Figure 1. After experiencing own emotions, the
observer can use the mirror mechanism of the Mirror Neuron
System (MNS) to empathize with others. Mirror neurons are
widely present in the Motor Cortex, and both the previously
mentioned IFG and SMA sub-regions contain mirror neurons
(Rizzolatti and Sinigaglia, 2016). MNS is formed gradually
during individual development. Keysers et al. proposed that
the emergence of mirror neurons is due to synchronous action
execution and action re-afference. You can see or hear your
emotional overt action when you execute it. This kind of
perceptual input resulting from your action is called action re-
afference (Keysers and Gazzola, 2014), as shown by the blue
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dashed arrow in Figure 1. The existence of the time overlap
between action execution and action re-afference strengthens the
synapse weights between the neurons in the Motor Cortex and
the Perception Cortex representing the same action, and weakens
the synapse weights representing different actions, resulting in
some neurons of the Motor Cortex having mirror properties,
namely mirror neurons. In the process of affective empathy,
perceiving the emotional overt action of others will first activate
the corresponding neurons in the Perception Cortex, as shown
by the orange dashed arrow in Figure 1. Subsequently, the
mirror neurons of the Motor Cortex that perform the same
emotional overt action will fire, forming the internal motor
level representation of other’s emotion. The Motor Cortex is
connected to the Emotion Cortex, which further activates the
corresponding emotional neurons, forming an internal emotion-
level representation of others’ emotions, as shown by the orange
solid arrow in Figure 1. For example, when a baby is experiencing
emotions, it will instinctively activate the Motor Cortex to
produce emotional overt actions (Yamada, 1993), such as crying
or facial expressions. Babies can also perceive these emotional
overt actions by their Auditory Cortex or Visual Cortex. When
a baby performs a happy facial expression, their caregiver will
imitate their expression so that they will also see the caregiver’s
expression, called Intuitive Parenting (Watanabe et al., 2007).
Due to the similar activation time, the synaptic weights from
the neurons in the Perception Cortex to the neurons in the
Motor Cortex that represent the same emotional overt action will
be strengthened, forming mirror neurons. When seeing others’
facial expressions or hearing others’ cries, they can understand
others’ emotions through the mirror mechanism.

In addition, the affective empathy network of the brain can
distinguish the self from others. The reason is that the anti-mirror
neurons in Motor Cortex are activated during action execution
and deactivated during action observation (Christian andValeria,
2010), leading to different firing patterns when executing own
actions or only observing others’ actions. The existence of
anti-mirror neurons can distinguish who is the producer of
the emotional overt action, which is also the embodiment of
preliminary self-awareness. Anti-mirror neurons were found in
the M1 region in Motor Cortex, the emergence of which is
due to the gating mechanism of SMA neurons (Gazzola and
Keysers, 2008). SMA neurons directly project to M1 neurons; the
firing state of M1 neurons is totally decided by SMA neurons.
SMA neurons will produce different firing patterns during action
observation and action execution, which can control M1 neurons
to activate during action execution and deactivate during action
observation. This process is considered to be the basis for self-
other differentiation (Mukamel et al., 2010).

2.2. The Architecture of the Computational
Model
This subsection describes the overall architecture of the brain-
inspired affective empathy computational model. As shown in
Figure 2, the model is divided into two submodels: the Artificial
Pain Model and the affective empathy spiking neural network
(AE-SNN).

The Artificial Pain Model defines Artificial Pain from the Free
Energy perspective, and it can receive different external stimuli
and produce the corresponding pain state, the output of this
model will be used as the input of the AE-SNN.

The AE-SNN simulates the function and connection of the
brain regions mentioned in Section 2.1, which contains the
Emotion Module, Motor Module, and Perception Module. Each
module is a neuron population. The different emotional states
are represented by population coding in the Emotion Module
(Fang et al., 2021). The Motor Module represents the different
emotional overt actions. The mirror neurons and anti-mirror
neurons will emerge in Motor Module. Because anti-mirror
neurons are formed due to the SMA neurons and M1 neurons,
we set a certain number of neurons in this population to simulate
the properties of M1 and SMA neurons. M1 neurons are only
activated by SMA neurons, as shown by the orange curved arrow
in Figure 2. The Perception Module represents the perception
information of the different emotional overt actions, which are
also encoded by population coding. The Motor Module and
the Emotion Module are connected in a bidirectional way, all
of which are excitatory connections. The connection from the
Perception Module to the Motor Module contains inhibitory
connections to SMA neurons and excitatory connections to
other neurons. In Figure 2, the orange arrows indicate excitatory
connections, and the blue arrow indicates inhibitory connections.

2.3. Model Implementation
2.3.1. Artificial Pain as an Internal State
We propose that the traditional approaches followed by previous
studies in the Affective Computing field are far from enough
to achieve real artificial affective empathy. Emotion should be
modeled as the bottom-up internal state of the agent so that it can
process environmental information more adaptively and carry
out affective empathy more reasonably. This subsection discusses
the modeling of a particular emotion–pain.

As mentioned in Subsection 2.1, the first step of the Artificial
Pain Model is to quantify the actual damage of intelligent
agents. From the perspective of Free Energy, body damage is
an unexpected state, called the entropy increasing state (Friston,
2010). However, the entropy of organisms cannot be directly
quantified; the Free Energy is the upper bound of entropy,
and minimizing Free Energy approximates minimizing the
entropy (Ramstead et al., 2018). Thus, FEP is a way to quantify
the damage.

Bogacz demonstrated the relationship between Free Energy
and entropy (Bogacz, 2017), providing the definition and
expression of Free Energy in detail: the brain could not directly
know the actual state of the external world φ; it can only
constantly estimate the state of the external world φ̂; the sensory
information s received by the sense organs is used to verify the
estimation. The Free Energy is finally simplified and expressed
as the negative logarithm of the joint probability distribution of
the state estimation φ̂ and the sensory information s. According
to the definition, the larger the joint probability distribution, the
smaller the Free Energy, and the more accurate the estimation.
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FIGURE 2 | The architecture of the brain-inspired affective empathy computational model. The two dotted boxes represent two submodels: The Artificial Pain Model

and the affective empathy spiking neural network (AE-SNN). Each circle represents a neuron population. The orange arrows indicate excitatory connections, and the

blue arrow indicates inhibitory connections.

Expanded by the Bayesian formula p(s, φ̂) = p(s|φ̂)p(φ̂):

FE = − ln p(s, φ̂)

= − ln p(s|φ̂)− ln p(φ̂)
(1)

We replace the probability distribution with a Gaussian
distribution f (s; g(.), σ ) with mean g(.) and variance σ ,
supposing σ = 1:

FE = − ln f1(s; gs(φ̂), σs)− ln f2(φ̂;µφ , σφ)

= [s− gs(φ̂)]
2

2σs
+ [φ̂ − µφ]

2

2σφ

− 1

2
ln σs −

1

2
ln σφ

= 1

2
[s− gs(φ̂)]

2 + 1

2
[φ̂ − µφ]

2

(2)

The first item in Equation 2 is the sensory dynamic (McGregor
et al., 2015). gs() is the sensory generating function, mapping the
relationship between the world state and the sensory information
learned by experience in advance. The brain actively estimates
the world state φ̂, then predicts sensory information through
the generating function gs(φ̂). The actual sensory information s
received through the sense organs is used to calculate prediction
errors. The second term in Equation 2 is the environmental
dynamic (McGregor et al., 2015). The estimation of the brain
depends on prior knowledgeµφ of the environment and this item
is similar to the prior error of Bayes theorem. Environmental
dynamic and sensory dynamic jointly determine the value of
Free Energy.

For robotic systems, the world state mentioned above is the
body state of the robot and the sensory information for robots
are vision sv and proprioception sp (Lanillos and Cheng, 2018),
as shown in Equation 3. The robot continuously estimates its
body state φ̂, and predicts the vision gsv(φ̂) and proprioception
gsp(φ̂), respectively. The generating functions gsv() and gsp() can
be learned by motor babbling in advance (Lanillos and Cheng,

2018), which is the mapping relationship between the body
state and the vision information or proprioception information.
Therefore, the sensory dynamic of the robotic system includes
visual prediction error and proprioception prediction error. For
the environmental dynamic, the body state φ of the robot at the
current moment is determined by the state φ and the action a′ at
the last moment. gφ() represents themapping relationship.When
the robot’s body structure is deformed, or the sensor is damaged,
the sensory dynamic will be affected. When the robot motor
structure is damaged, the environmental dynamic will be affected.
In these cases, the value of Free Energy will change. So the value
of Free Energy is taken to evaluate the robot’s body damage.

FE = 1

2
[sv− gsv(φ̂)]

2+ 1

2
[sp− gsp(φ̂)]

2+ 1

2
[φ̂− gφ(φ

′, a′)]2 (3)

In living organisms, physical damage can result in a pain state,
and physical damage can be quantified by the value of Free
Energy. Thus, in a robotic or virtual agent system, Artificial
Pain can be considered relative to the value of Free Energy that
represents their body damage. When the Free Energy is greater
than 0, the body is in an injured state and then causes a pain state;
When the Free Energy equals 0, the body is in a normal state.

In some potential dangerous scenarios, substantial injury has
not occurred, but the organisms can also feel pain. This is because
the brain can associate the experience of pain with injury-related
cues so that it can quickly avoid similar cues. In the actual
application of the robot, after the robot suffered substantial
body damage, the robot’s vision system should capture the
corresponding dangerous scenarios. The robot will then associate
it with the internal pain state and avoid potential damage. The
significance of pain is that it is a warning signal for the actual
and potential body damage of the living organisms to protect
themselves (Melzack, 2001). The Artificial Pain created with the
proposed model can not only generate a pain warning signal
when the body damage actually occurs, but also avoid potential
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damage in the future, achieving the same significance as the living
organisms’ pain.

2.3.2. The Affective Empathy Spiking Neural Network
When different internal emotional states are generated through
the Artificial Pain Model, the AE-SNN simulating mirror
mechanism will be trained. This subsection describes the
concrete design and implementation of the AE-SNN.

1. LIF neuron model and STDP learning rule. Compared to
conventional artificial neural networks, spiking neural network
(SNN) captures more essential characteristics of the biological
brain (Ghosh-Dastidar and Adeli, 2009; Khalil et al., 2017, 2018a;
Zhao et al., 2018). In recent years, SNN has been successfully
applied in many aspects of cognitive function modeling, such as
decisionmaking and creative processes (Héricé et al., 2016; Khalil
and Moustafa, 2022). The Leaky Integrate-and-fire (LIF) neuron
is a well accepted computational model for SNN neurons (Tal and
Schwartz, 1997), and we use it as the basic unit of our model. The
LIF neuron dynamics are described by the following Equation 4
and Equation 5:

τm
du

dt
= −[ut − urest]+ RI(t) (4)

lim
δ→0

u(tf + δ) = ureset (5)

ut is the membrane potential of the neuron at time t, urest is the
membrane potential at steady-state, R is the resistance, I(t) is the
input current, and τm is the time constant. When the membrane
potential ut exceeds a certain threshold uth, the neuron fires and
tf is the firing time. Once the neuron has fired, the membrane
potential returns to its reset state ureset (Fang et al., 2021). In this
article, the parameters of the LIF neuron are: urest = ureset =
0mV , τm = 30ms, uth = 60mV .

We use Spike Timing Dependent Plasticity (STDP) as a
synapse learning rule to update synaptic weights. STDP is the
most basic learning method in the brain, which relies on the time
difference between the firing of pre-synaptic neurons and post-
synaptic neurons to train the synaptic weight (Caporale and Dan,
2008). The weight update can be written as Equation 6:

1ω =
{

A+exp(1t
τ+ ), 1t < 0

−A−exp(−1t
τ− ), 1t > 0

(6)

Here, 1t = ti − tj, ti and tj are the time of the firing of the
pre-synaptic neuron and the post-synaptic neuron, respectively
(Zhao et al., 2018). A+ and A− are the learning rates. τ+ and τ−
are the time constants. According to this rule, the connections
will be strengthened when pre-synaptic neurons fire before
post-synaptic neurons and will be weakened when pre-synaptic
neurons fire after post-synaptic neurons. Here, τ+ = τ− = 10ms,
A+ = 0.25, A− = 0.01.

2. The training process. We describe the training process of
AE-SNN from two aspects: First, set the value of fixed weights
in the three modules. In the Motor Module, the excitatory
synaptic weights between SMA neurons and M1 neurons are set

so that once the SMA neurons are activated, the connected M1
neurons are activated immediately. In addition, The Emotion
Module connects all neurons in the Motor Module except M1
neurons. We set these fixed synapse weights because the different
emotion overt actions are determined by hereditary genetic
factors (Darwin, 2015). Different emotion neurons’ firing will
lead to different motor neurons’ firing. Since the connection
between the two modules is bidirectional, these synapse weights
can also be used in reverse when known the activation of the
Motor Module to infer the activation of the Emotion Module.

Second, train the synapse weights between the Perception
Module and the Motor Module. For the emergence of mirror
neurons, we simulated the process of action execution and action
re-afference and used the STDP learning rule to adjust the
synapse weights. It takes 100 ms from the firing of the motor
neurons to action execution, 100ms from the hearing/watching
of that action to trigger the firing of the perception neurons,
and the total time delay is 200 ms (Keysers and Gazzola, 2014).
In the training process, the emotion neurons fire at first, the
corresponding motor neurons will fire and execute the emotional
overt action, and after 200 ms, the corresponding perception
neurons will fire. Because action execution is a continuous
process, the firing of the motor neurons is still going on, as shown
in Figure 3. Due to this temporal correlation, the excitatory
connections between the motor neurons executing the action
and the perception neurons representing the same action will be
strengthened by STDP, forming the mirror neurons in the Motor
Module. In the emergence process of anti-mirror neurons, due
to the connections between the SMA neurons and the perception
neurons being inhibitory, the inhibitory connections between the
SMA neurons and the perception neurons representing the same
action will be strengthened by STDP. However, M1 neurons are
only activated by SMA neurons, so M1 neurons are deactivated
after the SMA neurons are inhibited, and the connection
between the M1 neurons and the perception neurons will not
be established. The M1 neurons are only activated during action
execution, reproducing the property of anti-mirror neurons.

In the training stage, the connections among the three
modules are established, and the mirror neurons and anti-mirror
neurons emerge. When perceiving the emotional overt action of
others, the perception information of overt action will be encoded
in the Perception Module as input. Then it will activate the
mirror neurons in the Motor Module, and further activate the
corresponding emotion neurons to empathize with others.

2.4. Intrinsic Motivation for Altruistic
Behavior
Waal and Preston proposed that altruistic behavior derives
from intrinsic motivation, and affective empathy is a major
factor to generate this motivation (Waal and Preston, 2017).
Many psychologists argued that emotion is the motivation for
most decisions, guiding individuals to avoid negative emotions
(such as pain and sadness), which is an intrinsic motivation
for survival, such as eating (Lerner et al., 2015). When people
have negative emotions, they will adopt adaptive behaviors
to eliminate negative emotions, as the blue arrow shown in

Frontiers in Computational Neuroscience | www.frontiersin.org 6 July 2022 | Volume 16 | Article 784967

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Feng et al. Brain-Inspired Affective Empathy Computational Model

FIGURE 3 | The spike sequence of the three module neurons and the STDP training process between the Motor neuron and the Perception neuron. The firing of the

Emotion neuron triggers the firing of the corresponding Motor neuron. As a result of action re-afference, the Perception neuron subsequently fires. There is a 200 ms

delay from the firing of the Motor neuron to the firing of the Perception neuron. The blue curved arrows indicate the causality of the three modules, and the blue

straight arrows represent the STDP training process.

FIGURE 4 | The intrinsic motivation of altruistic behavior. (A) Self-pain relief. (B) Altruistic behaviors that relieve others’ pain.

Figure 4A. When observing others’ negative emotions, the
ability of affective empathy can transfer the others’ negative
emotions to the observer, as the orange arrows shown in
Figure 4B. This shared negative emotion provides intrinsic
motivation for the observer’s altruistic behavior, In order to
eliminate shared negative emotion, the observer will try to adopt
altruistic behavior actively, such as help, and consolation, as
the blue arrow shown in Figure 4B. When the others’ negative
emotion is eliminated, the observer’s shared negative emotion is

indirectly eliminated by affective empathy. Therefore, Altruistic
behavior originates from spontaneous intrinsic motivation.
Affective empathy can provide this motivation by realizing
emotion transfer.

After exploring the intrinsic motivation of the altruistic
behavior, we combine the brain-inspired affective empathy
computational model proposed above to complete an altruistic
rescue task and achieve the rescue of companions by an
intelligent agent in the grid world. In our model, the AE-SNN
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FIGURE 5 | The setups of the grid world. The green pentagon represents the agent. The direction pointed by the tip of the pentagon is the direction of the agent’s

next action. The gray area is walls, the danger zone is on the (A), and the safety zone is on the (B). The yellow circle is the switch. The black circle in the danger zone

is a dangerous object.

has self-other differentiation ability. When the intelligent agent
has negative emotion, if the negative emotion comes from itself,
it will act on itself; if the negative emotion comes from others, it
will act to help the others and, thus, indirectly help itself.

3. EXPERIMENT

This subsection introduces the applications of the brain-inspired
affective empathy computational model on intelligent agents in
the grid world environment. Bartal et al. studied that rats learned
to open doors to rescue their companions trapped in containers
through trial and error (Bartal et al., 2011). We designed the
experiment inspired by this behavior paradigm. The experiment
process is divided into two phases: (1) The development of
pain empathy ability. We designed an agentA to explore the
grid world and experience pain state through the Artificial Pain
Model. Then train its AE-SNN to develop its pain empathy
ability. (2) The altruistic rescue task. We design a two-agent
task, in which agentA uses the trained AE-SNN to empathize
with agentB and implements rescue behavior driven by intrinsic
altruistic motivation.

3.1. Environment Settings
The setups of the grid world are shown in Figure 5A. The green
pentagon represents the agent. The direction pointed by the
tip of the pentagon is the direction of the agent’s next action,
and the green dotted line represents the next position. The gray
area in the middle is walls, splitting the danger zone on the left
and the safety zone on the right. The black circle in the danger
zone is a dangerous object, which can lead to damage when the
agent crashes into it. The yellow circle is the switch. When the
switch is turned on, a passage from the danger zone to the safety
zone can be established as shown in Figure 5B, then the agent
can enter the safety zone spontaneously and immediately, and
the damaged agent will recover to the normal state (just like
when the container is opened the trapped rat will quickly leave
the container, as mentioned in the Bartal et al., 2011). In the
action execution process, the agent can detect its internal state
through the Artificial Pain Model. For the AE-SNN of the agent,

the number of neurons in the Emotion Module, Motor Module,
and Perception Module are 40, 50, and 40, respectively. When
different internal states arise, the corresponding neurons of the
Emotion Module of AE-SNN will fire, activating the neurons of
the Motor Module to produce corresponding emotional overt
actions. In our experiments, we designed the color change of the
agent to be equivalent to emotional overt actions (e.g., human
facial expressions or crying). The agent shows red in a pain state
and green in a normal state. Agents can use their own Perception
Module to perceive their own and others’ emotional overt actions,
just as people can hear their own and others’ cries. The trained
AE-SNN makes the agent have empathy ability.

3.2. The Developing of Pain Empathy Ability
3.2.1. Experimental Procedure
We place dangerous objects, a switch, walls, and an agentA in the
grid world. The agentA explores the environment and uses the
Artificial Pain Model to detect its own internal state, completing
the training of the AE-SNN.

We set the damage rule of agent: when an agent collides with a
dangerous object, its ability to act will be impaired. For example,
if a command is given to the right, the agent actually moves a
unit to the left. For the Artificial Pain Model, the ’environmental
dynamic’ of the Free Energy will result in errors, as the third item
in Equation 3. We first set the mapping relationship gφ(φ

′, a′) of
the Artificial Pain Model, which is the moving rule of the agent:
When the agent performs an action, its horizontal and vertical
coordinates will change accordingly. For example, if an upward
action is performed, its vertical-coordinate’s value reduces, and
if a rightward action is performed, its horizontal-coordinate’s
value adds. The agent knows its moving rule in advance and uses
this rule to continuously and actively predict its next position.
When the prediction is wrong, the Free Energy is greater than
0, indicating that damage occurs and the agent will be in the
pain state.

Figure 6A shows that agentA is colliding with the dangerous
object. Figure 6B shows that the next motion command of
agentA is toward the right, the prediction is the position of
the green dotted line. But Figure 6C shows that the actual
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FIGURE 6 | The random exploration process of agentA. The agentA explores the environment and uses the Artificial Pain Model to detect its own internal state,

completing the training of the AE-SNN. (A,B) Show that agentA collides with the dangerous object during the exploration. (C,D) Show that agentA generates a motor

damage and is detected by the Artificial Pain Model; agentA is in the pain state and turnsred. (E,F) Show that the switch being touched, establishing a pathway from

the danger zone to the safety zone; agentA then enters the safety zone and returns to the normal state.

action of the agentA is toward the left. At the same time,
the motor damage will be detected by the Artificial Pain
Model, and the agentA will be in the pain state. After the
pain state generates, the first 20 neurons in the Emotion
Module that represent pain will fire and activate the neurons
in the Motor Module to produce painful overt action. In this
experiment, the color of the agentA turns red, as shown in
Figure 6D. After that, the agentA’s Perception Module will
perceive its own color information. The first 20 neurons of
the Perception Module that represent perceiving red will be
activated, completing a training epoch of AE-SNN in the pain
state by STDP. After 100 training epochs, the AE-SNN finishes
training, and the agent has pain empathy ability. Figures 6E,F
show that agentA touches the switch during exploration and

establishes the passage from the danger zone to the safety
zone. Then it enters the safety zone and recovers to its
normal state. These two figures aim to illustrate the role of
the switch.

3.2.2. Results Analysis
Figure 7 represents the value of Free Energy during exploration.
The X-axis represents the number of steps. The Y-axis represents
the value of Free Energy. The value of Free Energy is the sum
of the square of the difference between the predicted agentA’s
coordinates and the actual agentA’s coordinates. We designed the
agent as a pentagon, each vertex has a 2D coordinate (X,Y),
so the agent has five sets of 2D coordinates at each position,
i.e., (X1,Y1), (X2,Y2)...(X5,Y5). The Free Energy is equal to the

Frontiers in Computational Neuroscience | www.frontiersin.org 9 July 2022 | Volume 16 | Article 784967

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Feng et al. Brain-Inspired Affective Empathy Computational Model

FIGURE 7 | The value of Free Energy. The X-axis represents the number of steps and Y-axis represents the value of Free Energy. Point (A) indicates that the agentA

collides with a dangerous object at 19 steps, and the damage generates; Point (B) indicates that the agent enters the safe zone at 82 steps and recovers to its normal

state.

sum of the squares of the differences in the corresponding
coordinates, as described in Equation 7. The unit grid length
is 25, resulting in the Free Energy range of [3125,12500].
Since our model is only related to whether the Free Energy
is greater than 0, we put all values that are greater than 3125
equal to 3125. PointA indicates that the agentA collides with
a dangerous object at 19 steps, and the damage generates.
The Free Energy is greater than 0, causing the agentA to be
in the pain state. PointB indicates that the agentA enters the
safe zone at 82 steps, and recovers its normal state. The Free
Energy is equal to 0, causing the agentA’s pain state to be
alleviated.

FE =
5

∑

x=1

(Xpre − Xactual)
2 +

5
∑

y=1

(Ypre − Yactual)
2 (7)

Figures 8A–C is the spike diagrams of the three modules of AE-
SNN in the pain state. The X-axis represents the firing time, and
each unit represents 100 ms. The Y-axis represents the index
of the neurons. Figure 8A represents the firing of neurons that
represent the pain state in the EmotionModule. Figure 8B shows
the firing of neurons that represent the painful overt action in
the Motor Module as the agentA’s color turns red. Figure 8C
shows the firing of neurons in the Perception Module, which
corresponds to agentA perceiving its color information. The
firing of the Emotion Module will then trigger the firing of
the Motor Module by setting weights in advance, and then the
Perception Module will fire after a 200ms delay, indicating the
time interval for action execution and action re-afference. With
the time correlation, the connections between the Perception
Module and the Motor Module can be established by STDP.

Figure 9A shows the synaptic weights training process from
the Perception Module to the Motor Module. The X-axis
represents the training epochs. The Y-axis represents the value
of weights. The purple line indicates the change of inhibitory
weights between the Perception neurons and the SMA neurons.

The green line indicates a change of weights between the
Perception neurons and the M1 neurons, and due to the gate
mechanism of the SMA neurons, the weight is maintained near
0, which is equivalent to not establishing synaptic connections.
The yellow line indicates the change of excitatory weights
between the Perception neurons and other neurons in the
Motor Module, and the value of the weight gradually increases,
indicating that these neurons are mirror neurons. Figure 9B
shows the trained synaptic weights between the Perception
Module and the Motor Module. The X-axis represents the index
of Perception neurons. The Y-axis represents the index of Motor
neurons. The color represents the value of the weight. The
purple areas represent inhibitory synaptic weights between the
Perception neurons and the SMA neurons. The yellow areas
represent excitatory synaptic weights between the Perception
neurons and the mirror neurons that represent the same
emotional overt action. The green areas represent unestablished
synaptic connections, which contain the connections between
M1 neurons and Perception neurons.

3.3. The Altruistic Rescue Task
3.3.1. Experimental Procedure
Using the AE-SNN trained in Section 3.2, we designed an
altruistic rescue task. Figure 10A shows that two agents, a
dangerous object, a switch, and walls are placed in the grid world.
In the previous task, the agentA with affective empathy ability
is placed in the right safety zone, and agentB (green pentagon
with black border) is placed in the danger zone for exploration.
We place the yellow switch on the side of the safety zone, so
agentB has no self-rescue ability and could only be rescued
through agentA.

When agentB explores the environment, it will inevitably
encounter a dangerous object, resulting in pain and turning into
red color, as shown in Figure 10B. AgentA will perceive the color
information of agentB, then generate empathy pain through AE-
SNN. The intrinsic altruistic motivation will drive agentA to take
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FIGURE 8 | The spikes of the neurons in the Emotion Module (A), Motor Module (B), and Perception Module (C) in the training phase of AE-SNN. The X-axis

represents the firing time, and each unit represents 100 ms. Y-axis represents the index of the neurons.

FIGURE 9 | The synaptic weights from the Perception neurons to the Motor neurons. (A) The change of synaptic weights. The X-axis represents the training epochs

and Y-axis represents the value of weights. (B) The trained value of synaptic weights. The X-axis represents the index of Perception neurons and Y-axis represents the

index of Motor neurons.

action to rescue agentB and find the optimal strategy by the
reinforcement learning method. Eventually, agentA learned to go
to the switch as soon as possible and establish the passage from
the danger zone to the safety zone, as shown in Figure 10C. After
the switch is turned on, agentB will enter the safety zone and relief
the pain state, then agentA’s empathy pain will also be relieved
through AE-SNN as shown in Figure 10D, completing the rescue
of the companion.

3.3.2. Results Analysis
Figures 11A–C shows the spike diagrams of the three modules
of the agentA during the altruistic rescue process. Figure 11A
shows the firing of the neurons in the Perception Module,
representing agentB’s color information. Figure 11B shows the
firing of the mirror neurons in the Motor Module, which realizes
the understanding of the pain state at the motor level. Figure 11C
shows the firing of the neurons in the Emotion Module, which
realizes the understanding of the pain state at the emotional level.

Moreover, in this process, compared with Figure 8B mentioned
in Section 3.2.2, not all neurons in the motor area are activated
(in fact only mirror neurons are activated), so the conditions for
executing painful overt actions do not arrive. Therefore, although
the agentA feels pain, it does not turn red.

4. DISCUSSION

This article focuses on the brain-inspired affective empathy
computational model and its application. Inspired by the neural
mechanism of affective empathy, we simulated the generation
process of pain, trained the emergence of mirror neurons and
anti-mirror neurons, and completed the altruistic rescue task. In
this section, we will discuss the strengths and limitations of our
computational model and its application prospects.

In the AE-SNN, we reproduced the emergence process of
mirror neurons and anti-mirror neurons. Inspired by the gating
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FIGURE 10 | The altruistic rescue process. The agentA through AE-SNN empathizes with agentB and carries out rescue behavior. (A) Shows that agentA with

affective empathy ability is placed in the safe zone and agentB (green pentagon with black border) is placed in the danger zone for exploration. (B) Shows that agentB

inevitably collides with a dangerous object, causing the pain state and turning red; agentA generates pain empathy through AE-SNN. (C) Shows that agentA learns to

find the switch. (D) Shows that the switch is touched, agentB enters the safe zone and relieves the pain state.

FIGURE 11 | The spikes of the neurons in the Perception Module (A), Motor Module (B), and Emotion Module (C) in the altruistic rescue task phase. The X-axis

represents the firing time and each unit represents 100 ms. Y-axis represents the index of the neurons.

mechanism from SMA to M1 proposed in the neuroscience
literature (Christian and Valeria, 2010), we also set up neurons
with similar functions in the Motor Module of AE-SNN. This
eventually led to eight main types of neurons in the Motor
Module, as shown in Table 1. If a neuron is activated when
executing action1 and observing action1, it is the mirror neuron
of action1, which is used to understand emotional overt action1.
If a neuron is activated when executing action2 and observing
action2, it is the mirror neuron of action2, which is used to
understand emotional overt action2. If a neuron is activated

during the execution of both action1 and action2 and is
deactivated during the observation of both action1 and action2,
it is the anti-mirror neuron, which is used to distinguish between
self and others and avoid unnecessary emotional overt actions in
the affective empathy process.

Gazzola and Keysers studied the fMRI data of human subjects
and concluded that mirror neurons were reliably observed in
the premotor cortex (PM), the supplementary motor cortex
(SMA), and other brain regions, and anti-mirror neurons were
observed in the M1. They also discussed the gating mechanism
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TABLE 1 | The analysis of the eight main neuron types in the Motor Module.

Action1 Action2 Perception1 Perception2 Type

1
√

2
√ √

MN(1)

3
√

4
√ √

MN(2)

5
√ √ √

MN(1)

6
√ √ √

MN(2)

7
√ √ √ √

MN(1,2)

8
√ √

ANTI-MN

The MN refers to mirror neuron and the ANTI-MN refers to anti-mirror neuron.
√
indicates

whether the neuron is activated under these four conditions (Action 1, Action 2, Perception

1, Perception 2).

of the SMA neurons (Gazzola and Keysers, 2008). Mukamel
et al. also illustrated a similar conclusion, and further discussed
that anti-mirror neurons can maintain self-other differentiation
(Mukamel et al., 2010). The results in Table 1 show that the AE-
SNN produces neuron types consistent with these two references.

In the altruistic rescue task, agentA’s rescue path optimization
used reinforcement learning. Unlike traditional reinforcement
learning, the reward function in this task is not an extrinsic
reward set by the human in advance, but an intrinsic reward
obtained through the agent’s internal model. First, agentB
generates pain states through the Artificial Pain Model, and
agentA generates empathy pain through its AE-SNN. When
agentA touches the yellow switch accidentally, the passage from
the danger zone to the safety zone will be established, then agentB
will enter the safe zone, the pain will be relieved, and then the pain
empathized by agentA will be relieved. For the brain, the relief
of negative emotions can be seen as an intrinsic reward (Porreca
and Navratilova, 2017). Thus, agentA marks the yellow switch as
a positive reward. Then it can continuously optimize its Q-table
to learn the optimal rescue path based on this reward.

There are some limitations to our study. First, there is a
simplification in the design of anti-mirror neurons. In fact,
the gate mechanism of SMA neurons is complex (Gazzola and
Keysers, 2008), which is not easy to realize for computational
modeling. Our study could be seen as the first step toward
a more biologically realistic computational model of anti-
mirror neurons from a functional perspective. In addition,
there is some simplification in the process of artificial emotion
generation. Emotion is a very complex cognitive function of
organisms involving the regulation of a variety of hormones
and neural circuits (Lövheim, 2012). The Artificial Pain Model
proposed in this article is just a prototype. In the future,
we will study more about the nature of emotion and the
relationship between emotion and emotional overt actions
(Mirabella, 2018; Mancini et al., 2020, 2022; Mirabella et al.,
2022).

Currently, our study is only to realize the application of the
mirror mechanism in a virtual environment. In the social robots
field, the mirror mechanism is also necessary (Asada, 2015). If
the robot associates its emotion with the perception information

of the corresponding emotion overt action, it will understand
its companion’s emotion when perceiving similar emotion overt
information from the companion. This mirror mechanism can
help robots to empathize with their companions. We will explore
the application of these mechanisms in robots in the future.

The prediction process in the Artificial Pain Model simulates
the evolution of pain. Organisms evolved pain by experiencing
physical damage (Walters and Williams, 2019). We use the
Free Energy Principle (FEP) to model this detection process of
physical damage: The brain detects abnormal sensations through
continuous prediction of multiple physical sensations. That is a
prediction at the physical sensation level. It is worth noting that
the brain also has predictions at the event level, such as predicting
that the organism will be injured. This is essentially a prediction
of whether an injury event will occur, which is different from
the prediction at the physical sensation level in the Artificial
Pain Model.

In summary, we proposed a brain-inspired affective empathy
computational model, which involves the generation process of
Artificial Pain and the reproduction of the mirror mechanism of
MNS, along with the self-other differentiation ability. We apply
this model to achieve pain empathy and altruistic behavior in
the virtual grid world environment. We hope that our study will
contribute to the harmonious coexistence among robot groups
and between humans and robots.
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