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Two-dimensional cursor control is an important and challenging problem in the field

of electroencephalography (EEG)-based brain computer interfaces (BCIs) applications.

However, most BCIs based on categorical outputs are incapable of generating accurate

and smooth control trajectories. In this article, a novel EEG decoding framework based

on a spectral-temporal long short-term memory (stLSTM) network is proposed to

generate control signals in the horizontal and vertical directions for accurate cursor

control. Precisely, the spectral information is used to decode the subject’s motor imagery

intention, and the error-related P300 information is used to detect a deviation in the

movement trajectory. The concatenated spectral and temporal features are fed into the

stLSTM network and mapped to the velocities in vertical and horizontal directions of

the 2D cursor under the velocity-constrained (VC) strategy, which enables the decoding

network to fit the velocity in the imaginary direction and simultaneously suppress the

velocity in the non-imaginary direction. This proposed framework was validated on a

public real BCI control dataset. Results show that compared with the state-of-the-art

method, the RMSE of the proposedmethod in the non-imaginary directions on the testing

sets of 2D control tasks is reduced by an average of 63.45%. Besides, the visualization

of the actual trajectories distribution of the cursor also demonstrates that the decoupling

of velocity is capable of yielding accurate cursor control in complex path tracking tasks

and significantly improves the control accuracy.

Keywords: two-dimensional cursor control, brain-computer interface, electroencephalography, spectral-temporal

LSTM network, velocity-constrained loss

1. INTRODUCTION

For a long time, humans have dreamed of controlling external devices through brain activity. The
development of brain computer interfaces (BCIs) which aim to directly connect the brain and the
external world realized this dream (He et al., 2020). One of the ultimate goals is to decipher the brain
activity of patients in real time so that highly dexterous prostheses or exoskeletons can perform
anthropomorphic movements. The core task of noninvasive BCIs is to decode real-time (online)
brain signals from electroencephalography (EEG) recordings.

Cursor control, designed to map brain signals to the movement of a cursor on a computer
screen, is one of the most commonly studied BCI tasks. Cursor control tasks can be used for
severely disabled people to engage in brain activity associated with motor imagery and to ultimately
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control external devices. Due to its ease of implementation,
cursor control has certain significance for further improving the
quality of life of the disabled.

Electroencephalography-based 1D cursor control has
been well studied, where the changes of mu (8–13 Hz) or
beta (13–28 Hz) rhythm during different motor imagery
tasks were detected and classified based on event-related
desynchronization/synchronization (ERD/ERS) (Blanchard
and Blankertz, 2004; Cheng et al., 2004; Fabiani et al., 2004;
McFarland and Wolpaw, 2005). Compared with user-machine
interaction with limited 1D control, 2D cursor control which
decodes the EEG into motions in two directions has a much
wider range of applications. Recent study on BCI systems for
2D cursor control can be implemented based on either mu/beta
rhythm (Li et al., 2008, 2010a,b; Long et al., 2011) or SSVEP
(Beverina et al., 2003; Trejo et al., 2006; Martinez et al., 2007).
Study by Edelman et al. (2019), Suma et al. (2020) also have
shown that continuous and asynchronous 2D cursor (and
robotic arm) control can be achieved with high accuracy using an
EEG-source imaging-based approach to decoding motor imagery
tasks. Open-loop systems with fixed predefined velocities have
also been studied, where different signals such as mu/beta
rhythm and P300 are used to control the horizontal and vertical
position of the cursor (Wolpaw and McFarland, 2004). These
methods can achieve accurate and complex control movements
to a certain extent. Furthermore, Wolpaw and McFarland (2004)
mapped EEG features to the continuous velocities of the cursor
by using a linear regression method, but this decoding model is
too simplistic.

The difficulty in 2D cursor control lies in how to correctly
decode the motor intention of the operator and control the
cursor to move along an expected direction. Movement in an
arbitrary direction can be achieved by combining velocities in
mutually perpendicular horizontal and vertical directions on a
2D plane. However, the cursor may deviate from the target
direction when the directions of decoding velocities are coupled
with each other. The deviation from the designed direction can
result in serious safety issues and additional power consumption
in practical external device control. Therefore, decoding the
independent velocity of the two directions is the core of the 2D
cursor control.

Two types of signals, namely, active and passive signals are
generated during the cursor control tasks. The active signal
generated when the user wants to move the cursor to the target
is actively generated by the user. The effectiveness of the active
signal-based methods often depends on intensive user training
(Li et al., 2010a). Passive signal refers to the error signal passively
generated in the user’s brain when the cursor deviates from
the target position but the user does not issue the control
intention (Krol et al., 2018). The introduction of the passive
signal can alleviate the intensive training of users and form a
self-adaptive BCI system to achieve more accurate and complex
movements (Krol et al., 2018). The active signal is oftenmeasured
in the frequency domain as Power Spectral Density (PSD) (Meng
et al., 2016), Adaptive Auto Regressive (AAR) model parameters,
and wavelet band energy. The corresponding methods include
Fast Fourier Transformation (FFT) (Gao et al., 2003), AAR

(Schlögl et al., 2005) model, and Wavelet Transform (WT)
(Wu and Yao, 2007).

Error-related time domain dynamics which was generated in
EEG when an external device does not act as expected are often
used passive signal. Many BCI systems operating in an open
loop ignore this error signal (Meng et al., 2016; Gao et al., 2017;
Chen et al., 2018; Xu et al., 2019). The open-loop BCI control
system adjusts the control trajectory by generating extra control
signals. This may greatly increase the user’s cognitive burden.
Even worse, the transient error signal can infiltrate useful signals
and disturb the decoding of task related spectrum. Extracting
the temporal error information and adaptively correcting the
erroneous movements can benefit the BCI control (Rakshit
et al., 2020). Commonly used error signals include error-related
potentials (ErrP) and P300 (Chavarriaga and Millán, 2010;
Chavarriaga et al., 2014). Error-related potentials is a negative
deflection of about 250 ms from the medial frontal area after
the subject observes a machine (or human) error. P300 is an
event-related potential (ERP) when the subjects focus on some
important but rare stimulus and the EEG show a positive
deflection in about 300 ms. In general, ErrP is a reliable feedback
signal. However, ErrP amplitude and latency are also prone to
inter-subject and inter-trial variability (Pailing and Segalowitz,
2004; Colino et al., 2017). Additionally, ErrP is best elicited by
discrete events (Kumar et al., 2019). For subjects with spinal
cord injury and schizophrenia, its magnitude can diminish (Alain
et al., 2002; Kerns et al., 2005). Since the movement of the cursor
is continuous, ErrP is less suitably used as the feedback marker
(Rakshit et al., 2020). In this study, P300 of operators were used
as the passive temporal signal to improve cursor movement.

Electroencephalography decoding is to convert brain signals
into control signals of the cursor. The output of classifiers such as
KNN, LDA (Xu et al., 2019), and SVM (Rakshit et al., 2020) are
often used as the control signals. However, classification-based
methods generate stepwise cursor movement and are not suitable
for continuous complicated operations. Studies have shown that
corticospinal excitability during motor imagery is proportional
to the motor imaginary intensity (Williams et al., 2012), which
makes possible continuous cursor control using the intensity
information. Recent study (Meng et al., 2016) mapped the EEG
features to the velocity of cursors or robotic arms by using a linear
regression method to produce imaginary intensity dependent
velocity, which can achieve a certain extent accurate, complicated
movements. However, the parameters in the linear model were
set subjectively instead of being trained through a supervised
learning manner, and the EEG activity from the controlling
channels was spatially averaged by a small Laplacian filter.

In this article, a novel EEG decoding framework combining
both active and passive EEG signals will be proposed to
generate continuously changing velocities. Through decoupling
the velocities, the control accuracy of the 2D cursor is able
to be significantly improved. Specifically, the proposed method
adopts the long short-term memory network (LSTM) backbone
(Hochreiter and Schmidhuber, 1997), which is a special recurrent
neural network for processing sequence data (Greff et al.,
2016). The new framework, called the spectral-temporal LSTM
(stLSTM) model, is employed as the EEG decoding model in this
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article, with the input as the spectral and temporal features and
the output as the cursor velocity. The stLSTM enables the model
to automatically combine spectral and temporal features rather
than average features artificially. In addition, the introduction of
the regularization term of velocity-constrained (VC) loss enables
themodel to fit the velocity in one direction while suppressing the
velocity in the other direction when training the control signals
in the horizontal and vertical directions at the same time, so as to
obtain decoupled control signals.

The main contributions of this study can be summarized
as follows: (1) Error-related temporal features P300 are utilized
to detect a deviation in the movement trajectory; (2) The
spectral and temporal features are used as the input of the
decoding model, which can describe the EEG signal more
comprehensively; (3) The LSTM network is used as the decoding
model to generate control velocities due to its good ability to
extract the contextual relationship of the time series; (4) A VC
loss is introduced to fit the velocity in the imaginary direction and
suppress the velocity in the non-imaginary direction to further
optimize the trajectory control of the 2D cursor.

2. REAL BCI CONTROL EEG DATASET
ACQUISITION

2.1. BCI Control Dataset and
Preprocessing
The evaluation of the performance of our study is based
on the public EEG dataset (which is available online at
https://doi.org/10.5061/dryad.nh109). The experiments were
conducted at the University of Minnesota, and the EEG data were
recorded using a 64-channel Neuroscan cap with SynAmps RT
headbox and SynAmps RT amplifier (Neuroscan Inc, Charlotte,
NC). The EEG signals were sampled at a rate of 1,000 Hz and
bandpass-filtered in the range of 0.5–200 Hz. A notch filter of
60 Hz was applied to the raw EEG signals to remove the power
line interference. Refer to Meng et al. (2016) for the detailed
experimental settings.

Motor imagery tasks were used to control and drive a 2D
virtual cursor or a robotic arm to move. Left, right, two-handed
and relaxed motor imagery corresponds to the left, right, up,
and down movement of the 2D virtual cursor or the robotic
arm, respectively. The dataset contains data for five tasks: the
virtual-cursor-only task, which is a unidirectional motor imagery
task without visual feedback, including experiments named
1DPreRun and 2DPreRun; the other four are reach-and-grasp
tasks with visual feedback.

Data from a total number of 10 EEG channels around C3
and C4 in the left and right motor cortex were utilized for the
control of cursor movement as in Meng et al. (2016), including
channels in the fronto-central areas that contribute most to the
error-related signal (Chavarriaga and Millán, 2010). The specific
channels were: C1 C2 C3 C4 C5 C6 FC3 FC4 CP3 CP4 as in
the standard 10–20 system. In order to increase the calculation
speed and hardly affect model performance, the signals were
down-sampled to 100 Hz. Then a 0.1–30 Hz band-pass filter was
used to remove extraneous information in the signals.

2.2. EEG Dataset Settings
The proposed stLSTM model is trained in a supervised learning
manner. In this study, BCI control EEG data in the 2DPreRun
task from 13 subjects are used to train the model, and data
from other tasks are used to evaluate the model. The data of
each subject in the 2DPreRun task is divided into a training
set (TRAIN) and a testing set (TEST) by the proportion of 7:3,
respectively, where the number of samples of the four categories
is balanced. Furthermore, the testing set TEST is divided into the
TESTUD set (only UD samples are included) and the TESTLR set
(only LR samples are included). The velocity labels for supervised
training are defined as follows:

• horizontal velocity: for xi ∈ {U,D}, the velocity label is set
to 0; for xi ∈ {L,R}, the velocity label is set to the value in
the dataset.

• vertical velocity: for xi ∈ {L,R}, the velocity label is set to 0; for
xi ∈ {U,D}, the velocity label is set to the value in the dataset.

3. METHODOLOGY

In this section, the notations used in this article are first
defined. The framework of the proposed method is then
presented, and themodules in stLSTM including spectral features
extraction, error-related temporal features extraction, and LSTM
with VC loss are discussed in detail. Finally, the pseudo code
of the new EEG decoding framework for 2D cursor control
is presented.

3.1. Definitions and Notations
Assume that the preprocessed EEG signal in each trial is XEEG ∈

R
n×m

with m channels and n sampling points at a sampling
rate of fo Hz. After extracting features from the EEG signal
XEEG, segment the feature signal to yield the dataset D =

{(x1, y1), (x2, y2), . . . , (xN , yN)}, where N is the total number of

samples. Each sample xi ∈ R
E×T

is a segment of length T along
the time dimension, with the E is the feature dimension, i.e., the
spatial dimension related to the number of channels; yi ∈ R

1×2

represents the velocities in the horizontal and vertical directions
of the cursor.

3.2. The Framework of stLSTM
The stLSTM framework proposed in this article is shown in
Figure 1. Specifically, the spectrum analysis in Figure 1A extracts
the spectral features of the EEG signal, and the time process
analysis in (B) extracts the error-related temporal features. The
LSTM network with VC loss shown in (C) maps the concatenated
spectral and temporal features to the velocity of the cursor in
the horizontal and vertical directions. Finally, the velocities in
the two directions are, respectively, integrated to obtain the
movement trajectory of the cursor, as shown in (D). Therein,
in the spectrum analysis and the time process analysis, sliding
windows with lengths of 400 ms and 300 ms, and steps of 10
ms are used, respectively. The specific computation details will
be discussed in subsequent subsections.
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FIGURE 1 | The framework of the proposed spectral-temporal LSTM (stLSTM) method. (A) spectrum analysis for spectral features extraction; (B) time process

analysis for error-related temporal features extraction; (C) Long short-term memory (LSTM) network with the velocity-constrained (VC) loss for mapping the input

features to the velocities in horizontal and vertical direction; (D) integrating the velocities to obtain the movement trajectory of the cursor.

3.3. Spectral Feature Extraction
The active signal is often measured in the frequency domain.
Commonly used power spectrum estimation methods include
parametric and nonparametric methods. The autoregressive
(AR) method which models the observation generative process
with a small number of parameters, can effectively identify the
frequency peaks in the spectrum. In this article, the AR method
is adopted to estimate the principal component power spectrum.

An AR model which estimates the amplitudes of XEEG can be
described as:

XEEGj (t) =

p
∑

i=1

wj(t − i)XEEGj (t − i)+ ǫ (1)

whereXEEGj (t) is the estimated signal of the j-th channel at time t,
p is the order,wj(t) is the coefficient, and ǫ is the white noise in the
AR model. The coefficients are estimated by the Burg algorithm.
In the current study, we applied the 16th order AR model with
a window length of 400 ms and a step length of 10 ms as in
Meng et al. (2016).

According to the relationship between the power spectrum
and the frequency response function, the power spectrum density
P can then be calculated as follows:

Pj(e
iw) =

σ 2

|1+
∑p

k=1
wj(k)e−iwk|2

(2)

where σ 2 is the variance of the white noise sequence. Previous
studies (Meng et al., 2016; Paek et al., 2019; Rakshit et al.,
2020) have shown that in the motor imagery paradigm, subjects
experience significant ERD/ERS phenomena, which often appear
in the mu (8–13 Hz) frequency band. Therefore, the energy in
mu rhythm which is the sum of the area under the PSD in the mu
band will be used as the spectral feature.

XSj (t) =
∑

f∈8−13Hz

Pj(f )1f (3)

where f is the frequency and 1f is the interval between two

adjacent frequencies. Hence, the spectral feature XS ∈ R
(n−39)×m

is obtained as shown in Figure 1A.
Moving the window yields the sequences of the mu

band energy of each principle component. These spectral
features represent uncorrelated decoupled mu band energy
corresponding to each of the eigen-brains.
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3.4. Error-Related Temporal Feature
Extraction
For an open-loop BCI control system, the real trajectory may
not agree well with the expected movement. When the trajectory
deviates from the ideal trajectory, the model proposed in
this article will utilize the error-related P300 signals to detect
this deviation and make the current trajectory tend to the
ideal trajectory. Therefore, error-related temporal signals can
alleviate safety problems caused by unexpected movement of
the cursor, thus, equipping the BCI systems with a better
control performance.

In addition to the frequency domain features, error-related
temporal information is also taken into account to form a more
adaptive BCI system. When the subjects notice that the cursor
does not reach the expected control position, a positive potential,
known as P300, is generated in the brain at about 300ms after
the stimulation (Rakshit et al., 2020). The time domain features
should capture the time-varying characteristics of the amplitude
of the ERP, such as P300. In this study, the time domain features
are defined as follows (Yeom et al., 2013):

XTj (t) =
1

l

i=l−1
∑

i=0

ϕ(l− i)XEEGj (t − i) (4)

where XTj (t) is the dynamic feature of the j-th channel at time t,
ϕ(·) is the first-order derivative of the Gaussian wavelet function
(Guo et al., 2016), l is the scale of ϕ(·). In the current study, l is
30, i.e., the window length is 300 ms to obtain dynamic features
with a step length of 10 ms. Therefore, the dynamic feature at
time t is the result of the convolution of the wavelet function with
the signal in the past 300 ms window, and error-related temporal

feature XT ∈ R
(n−l+1)×m

was obtained as in Figure 1B.
Before being fed into the stLSTM network, the XS and XT

feature vectors are first right-aligned along the time dimension,
and the features of the first 10 redundant time steps of XT are
removed. Then concatenate the feature vectors XS and XT to
obtain the final spectral-temporal feature vector:

X = [XS,XT] (5)

where X ∈ R
(n−39)×2m

is the final feature vector for a trial.
Then segmenting this feature signal yields the dataset D =

{(x1, y1), (x2, y2), . . . , (xN , yN)}, where xi ∈ R
E×T

is a sample
with E = 2m and sequence length T, N is the total number of
samples in a trial. In this study, we take T = 30, so there is
N = (n− 39)

/

30 for each trial.

3.5. stLSTM With VC Loss
Electroencephalography decoding can be considered as a time
series recognition task. LSTM can effectively capture the
contextual dependency of time series, which is very suitable for
this task. A new stLSTMwith spectral and error-related temporal
features will be used for the EEG decoding in the 2D cursor
control tasks.

The stLSTM maps the concatenated feature vector X to the
velocities in the horizontal and vertical direction. In order to

improve the control accuracy in the two decoupled directions,
a new velocity-constrained (VC) is introduced to fit the velocity
in one direction and suppress the velocity in the orthogonal
direction. The basic mean squared error (MSE) loss function of
LSTM is defined as follows:

LMSE(yi, ŷi) =
∥

∥yi − ŷi
∥

∥

2
(6)

where yi denotes the velocities and ŷi denotes the
model prediction.

Introducing the repellent constraints, the proposed VC loss is
defined as follows:

LVC(yi, ŷi) =
∥

∥ ˆyi⊥
∥

∥

2
−

∥

∥ŷi‖
∥

∥

2
Xi ∈ {L,R}

LVC(yi, ŷi) =
∥

∥ŷi‖
∥

∥

2
−

∥

∥ ˆyi⊥
∥

∥

2
Xi ∈ {U,D}

(7)

where ˆyi⊥ denotes velocity in the vertical direction and ŷi‖
denotes velocity in the horizontal direction, {L,R} and {U,D} are
the datasets of horizontal and vertical motion, respectively.

Spectral-temporal LSTM imposes control of output velocities
on this basis and punishes wrong movements, with the final loss
function as follows:

LstLSTM(yi, ŷi) = LMSE(yi, ŷi)+ λLVC(yi, ŷi) (8)

where λ is the regularization parameter, which affects the velocity
control. For xi ∈ {L,R}, stLSTMwill suppress the vertical velocity
and fit horizontal velocity; for xi ∈ {U,D}, stLSTM will suppress
the horizontal velocity and fit vertical velocity.

Shown as Figure 1C, the net model is designed with four
layers: input layer, LSTM layer, Fully Connected (FC) layer, and
output layer. Specifically, the size of each input sample is 30×2m,
where 30 is the sequence length and 2m is the number of features
at each time step. In this study, the number of hidden neural
units in the LSTM layer is 100, and the output of the stLSTM is
the horizontal and vertical velocity of the cursor. The input data
is passed through two LSTM layers and an FC layer to predict
the velocity in the corresponding direction separately, and the
output data is concatenated together in the output layer as the
final velocity.

3.6. stLSTM Algorithm
The pseudo code of the stLSTM pipeline is described in
Algorithm 1 where the input terms include EEG signal (XEEG),
number of training epochs (T), and the candidates for
regularization parameter (λlist). Precisely, 0.01:0.01:0.1 indicates
λ varies from 0.01 to 0.1 in step of 0.01. For each λ, it starts with
initializing stLSTMλ; the optimizer is adam, and batch gradient
descent (GD) is used to train the model until the number of
epochs is reached. Finally, the best model stLSTMbest is selected
according to theMSEbest .

4. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed
stLSTMmethod on the publicly available real BCI control dataset
mentioned in Section 2. The performance of the proposed
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Algorithm 1: Spectral-temporal LSTM with a
velocity-constrained loss

Input: EEG signal XEEG, training epochs T, the
candidates for regularization parameter λlist =

[0.0001, 0.001 : 0.001 : 0.09, 0.01 : 0.01 : 0.1];
Output: The best stLSTMmodel stLSTMbest

1: Extracting XS based Equation 1∼ Eq.3;
2: Extracting XT based Equation 4;
3: Generating training dataset D and testing dataset P based on

Eq.5;
4: λbest = 0.0001
5: MSEbest = inf
6: stLSTMbest = stLSTM(init)
7: if λ = λlist then

8: Initializing parameters in the stLSTMλ as 2(0);
9: t = 0;
10: while t < T do

11: Calculating feedforward output Ŷ(t) =

stLSTMλ(D,2
(t));

12: Calculating loss(t) based on Eq.8;
13: Calculating gradient d2(t);
14: Updating parameter 2(t+1) = adam(2(t), d2(t));
15: ++t;
16: end while

17: Calculating MSEλ based on stLSTMλ and testing dataset
P;

18: ifMSEbest > MSEλ then

19: λbest = λ

20: MSEbest = MSEλ

21: stLSTMbest = stLSTMλ

22: end if

23: end if

method is compared with the method in Meng et al. (2016),
which is obtained by the Linear Regression method using only
spectral features (sLR).

Since the nature of the 2D cursor control task is to regress,
the root mean square error (RMSE) of the model’s predicted
velocities is used as the metric to evaluate the performance of the
stLSTM and sLR on the testing sets mentioned in Section 2. In
order to further illustrate the effectiveness of the spectral features
and temporal features, ablation experiments are implemented, in
which models using only spectral features (sLSTM) and models
using only error-related temporal features (tLSTM) are evaluated.

Notably, the velocities produced by the sLR model in the
imaginary direction are used as the target values for the outputs
of the model, as defined in Section 2. Hence, the prediction error
of the sLR model in the imaginary direction is zero.

4.1. The Overall Performance
This section gives the average RMSE results across all 13 subjects
of sLR and stLSTM under the LMSE loss function and LstLSTM
loss function on the TESTUD, TESTLR, and TEST sets, aiming
at trying to compare and quantitatively analyze the decoding
performance of the proposed method with the sLR method in

the imaginary and non-imaginary direction. The average RMSE
results of stLSTM and sLR are shown in Tables 1, 2. First, it
should be pointed out that, in view of the particularity of the
definition of the velocity labels mentioned above, we pay more
attention to the predicted velocity on the TESTUD and TESTLR
datasets in the non-imaginary direction, such as the horizontal
velocity on TESTUD and the vertical velocity on TESTLR.

Table 1 shows the RMSE of the horizontal velocity for the two
models on the TESTUD, TESTLR, and TEST sets. The optimal λ
values of stLSTM under the LstLSTM loss function are 0.007, 0.01,
0.01, respectively on TESTUD, TESTLR, and TEST set. Therein,
it appears that the RMSE of sLR on the TEST dataset is smaller
than that of stLSTM, however, the main reason here is the special
definition that sLR has vertical RMSE of 0 on TESTUD, which
is not our main concern. On the TESTUD dataset, since the ideal
horizontal velocity is 0, the RMSE of the horizontal velocity of the
proposed method is much smaller than sLR, which indicates that
stLSTM effectively suppresses the velocity in the non-imaginary
direction. In addition, the RMSE of the horizontal velocity on
the TESTLR dataset quantifies the fitting performance of the
model’s velocity in the imaginary direction. Although the main
concern is whether the velocity in the non-imaginary direction is
suppressed, it is still expected that the moving direction is able to
follow the operator’s intention well.

Table 2 shows the RMSE of the vertical velocity for the two
models on the TESTUD, TESTLR, and TEST sets. The optimal λ
values of stLSTM under the LstLSTM loss function are 0.08, 0.002,
0.005, respectively on TESTUD, TESTLR, and TEST set. Therein,
the RMSE of stLSTM is significantly smaller than that of sLR
on the TEST dataset. Similarly, on the TESTLR dataset, since
the ideal vertical velocity is 0, the RMSE of the velocity in the
vertical direction of the proposed method is significantly smaller
than that of sLR, which can indicate that stLSTM effectively
suppresses the velocity in the non-imaginary direction. Likewise,
the RMSE results on the TESTUD dataset can demonstrate how
well the model output can follow the operator’s intention in the
desired direction.

In order to test the significance of the mean difference in
RMSE generated by the sLR and the stLSTM on the testing sets of
13 subjects, a one-way Analysis of Variance (one-way ANOVA) is
implemented. Under the condition that the model loss function
is LMSE, the one-way ANOVA results showed a significant effect
based on the choice of methods (sLR and stLSTM) on the
horizontal RMSE on the TEST set (the F value of the sum of
squares between groups = 7.899; p = 0.010), on the horizontal
RMSE on TESTUD set (F = 206.874; p < 0.001), on the vertical
RMSE on TESTLR set (F = 312.964; p < 0.001). While the one-
way ANOVA results showed no significant effect on the vertical
RMSE on the TEST set (F = 0.423; p = 0.522) based on the
choice of sLR and stLSTM, this makes sense because of the
particularity of the definition of the velocity labels mentioned
in Section 2.

In general, the RMSE of the proposed method in the non-
imaginary directions on the testing sets of the 2D control task
is reduced by an average of 63.45%. To sum up, the stLSTM
model combining frequency and temporal features can better
describe EEG signals and automatically combine spectral and
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TABLE 1 | The average root mean square error (RMSE) comparison across 13 subjects for horizontal velocity on testing datasets.

Method
TESTUD TESTLR TEST

LMSE LstLSTM LMSE LstLSTM LMSE LstLSTM

sLR 23.56 ± 3.71 – 0.0 – 16.86 ± 3.10 –

stLSTM 7.28 ± 1.70 7.19±1.66 27.64 ± 3.82 27.65 ± 3.73 20.10 ± 2.76 20.07 ± 2.72

On the TESTUD dataset, the smaller the RMSE in the horizontal direction, the better the ability of the model to suppress the velocity in a non-imaginary (i.e., vertical) direction. On the

TESTLR dataset, the relatively small horizontal RMSE of the stLSTM indicates the ability of the model to fit the velocity in imaginary (i.e., horizontal) direction. The overall horizontal RMSE

on the TEST dataset measures the overall suppression and fitting ability of the models.

TABLE 2 | The average RMSE across 13 subjects comparison for vertical velocity on testing datasets.

Method
TESTUD TESTLR TEST

LMSE LstLSTM LMSE LstLSTM LMSE LstLSTM

sLR 0.0 – 23.46 ± 2.74 – 16.44 ± 2.25 –

stLSTM 20.71 ± 1.83 20.69 ± 1.86 8.49 ± 1.35 8.63 ± 1.23 15.97 ± 1.29 16.00 ± 2.25

On the TESTUD dataset, the smaller the RMSE in the vertical direction, the better the ability of the model to suppress the velocity in a non-imaginary (i.e., horizontal) direction. On the

TESTLR dataset, the relatively small vertical RMSE of the spectral-temporal long short-term memory (stLSTM) indicates the ability of the model to fit the velocity in imaginary (i.e., vertical)

direction. The overall velocity RMSE on the TEST dataset measures the overall suppression and fitting ability of the models.

temporal features in an optimal way, hence it has better decoding
performance than linear regression models.

In theory, for the loss LstLSTM , the optimization goal of the
model is to minimize the summation of the MSE loss and VC
Loss, which is a relatively difficult optimization goal. However,
according to the results in Tables 1, 2, it can be found that
the model with LstLSTM loss demonstrates a smaller RMSE
than that with LMSE loss. This shows that the introduced VC
loss function is able to obtain decoupled and more accurate
control signals, therefore, the decoding model unfolds better
control performance.

4.2. The Performance of Ablation
Experiments
In addition to the model structure (LSTM vs. Linear Regression),
another significant difference between the method proposed in
this article and the method in Meng et al. (2016) is that the
stLSTM uses both the spectral and temporal features of the EEG
signals to perform motor imagery decoding and output control
signals. In order to further analyze and compare the impact of
these two types of features and their combination on the model
performance, some ablation experiments are necessary to be
conducted. This section lists the RMSE results of the model that
only uses temporal features (sLSTM), the model that only uses
spectral features (tLSTM), and the model that uses both types of
features (tLSTM) in imaginary and non-imaginary directions.

The RMSE results of ablation experiments on integrated all
subject’s data are shown in Table 3. The optimal λ values of
sLSTM under the LstLSTM loss function are 0.001, 0.06, 0.01,
and 0.006 respectively on horizontal TESTUD, vertical TESTUD,
horizontal TESTLR, and vertical TESTLR set. The optimal λ

values of tLSTM are 0.08, 0.0001, 0.07, and 0.0001. The optimal
λ values of stLSTM are 0.007, 0.08, 0.01, and 0.002. In Table 3,
when the method used is changed from sLSTM to tLSTM,

TABLE 3 | The RMSE comparison of different features for vertical and horizontal

velocities on integrated subjects data.

Method
TESTUD TESTLR

Horizontal Vertical Horizontal Vertical

sLSTM 7.65 16.71 17.92 7.97

tLSTM 5.60 23.93 24.99 3.98

stLSTM 7.54 16.37 17.42 5.09

On the TESTUD dataset, the smaller the horizontal RMSE, the better the model’s ability

to suppress the vertical velocity; the smaller the vertical RMSE, the better the ability to fit

the vertical velocity. The same is true for the TESTLR dataset.

the RMSE in the imaginary direction increases, and the RMSE
in the non-imaginary direction decreases. Spectral features are
extracted from active signals generated when the user intends
to move the cursor to the target position, thus, helping to fit
the velocity in the imaginary direction. Passive error signals
are generated when the controlled cursor deviates from the
target position without the user’s intention, and temporal features
extracted from these signals help to suppress velocity in non-
imaginary directions. From Table 3, stLSTM demonstrates the
smallest RMSE in the imaginary direction; tLSTM demonstrates
the smallest RMSE in the non-imaginary direction, and stLSTM
also performs very small RMSE in the non-imaginary direction.
Therefore, it can be shown that the proposed method is able to
best fit the velocity in the motion direction while suppressing the
velocity in the non-imaginary direction to a certain extent.

4.3. The Performance on 2DPreRun
The previous two sections present the average RMSE results
across 13 subjects of the stLSTM on the TESTUD, TESTLR,
and TEST sets, which numerically characterize the control
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FIGURE 2 | Part of the trajectories. (A) up. (B) down. (C) left. (D) right. The black line represents the ideal trajectory of the 2D cursor, the red shadow represents the

actual trajectories distribution of the cursor based on stLSTM method, and the blue shadow represents the actual trajectories distribution of the cursor based on sLR

method. The magenta lines at the midpoint of the ideal trajectories represent the 400-pixel wide gate mentioned in the Table 5.

performance of the model output in the imaginary and non-
imaginary directions from the perspective of overall testing.
Another more intuitive way for analysis is to plot the actual
trajectories generated by the stLSTM and the sLR. This section
demonstrates the trajectories plots of stLSTM and sLR on the
2DPreRun test set. In addition, this section also introduces a
new metric called ACC for measuring the control efficiency and
a metric called MAR that considers both ACC and velocity in
a non-imaginary direction, and the relevant definitions will be
elaborated below.

The task of 2DPreRun is to control the 2D cursor to reach
the target position through motor imagery. The stLSTM is able
to output the velocity in the vertical and horizontal direction,
and position information can be obtained by integrating the
velocities. Part of the trajectories generated by stLSTM and sLR
in the 2DPreRun task are shown in Figure 2.

In Figure 2A, the ideal movement trajectory of the 2D cursor
is vertically upward. In the process of controlling the upward

movement of the cursor, the actual movement direction of the
cursor at each moment can be determined and the description
of the actual movement direction can be qualitatively measured,
which can reflect the control efficiency of the model to a certain
extent. One way to define the actual direction at the current
moment is the corresponding direction with the highest velocity.
The metric ACC is defined as the ratio of the actual number of
correct directions to the total number of expected directions. For
example, if the ideal direction is upward, the total number of
movements is 100, and only 90 of the direction is upward, then
the ACC is 90%. Furthermore, when considering the ACC for the
expectedmovement direction, the velocity of the 2D cursor in the
non-imaginary direction must also be considered. Therefore, a
new metric called root-mean-square-error accuracy ratio (MAR)
is introduced here, and the formula is defined as follows:

MAR =
RMSE

ǫ + ACC
(9)
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TABLE 4 | The MAR comparison for velocity in non-imaginary direction on testing datasets.

Method
TESTUD TESTLR

ACC(%) RMSE MAR ACC(%) RMSE MAR

sLR 59.60 17.62 0.84 58.10 22.06 1.02

stLSTM 61.40 5.62 0.09 60.20 8.90 0.11

The larger the ACC ∈ [0− 100%], the larger the MAR ∈ [0− 1], and the smaller the RMSE, indicate that the better the ability of the model to suppress the velocity in a non-imaginary

direction.

TABLE 5 | The comparison for control accuracy.

Method
The imaginary direction

Up Down Left Right

sLR 87.50% 62.50% 75.00% 56.25%

stLSTM 93.75% 93.75% 100.00% 81.25%

For each trial, set a 400-pixel wide gate at the midpoint of the line from the starting point

of the movement to the target point, and define that when the actual trajectory of the

controlled cursor falls on the outside of the gate then this trial fails, otherwise, it succeeds.

FIGURE 3 | A complex trajectories {up, right, down, right, up}.The black line

represents the ideal trajectory of the cursor, the red line represents the

trajectory of the cursor based on the stLSTM method, and the blue line

represents the trajectory of the cursor based on the sLR method.

where RMSE refers to the RMSE of the velocity in the non-
imaginary direction; ACC is the accuracy; ǫ is the smoothing
factor to avoid division of zero, set to the same empirical value
of 10e− 8 as adam (Kingma and Ba, 2014). The smaller the value
of MAR, the better the performance the model exhibits. From
Equation 9, MAR considers both the actual movement direction
and the velocity in the non-imaginary direction; since the range
of ACC is 0 1, the interval of MAR is larger than that of RMSE,
which will produce more precise errors. Therefore, the definition
of the metric MAR is persuasive.

The MAR results on TESTUD and TESTLR datasets are
shown in Table 4. It can be observed that stLSTM exhibits a
smaller MAR compared to sLR, which further illustrates the
excellent performance of the proposed method.

To further quantitatively compare the differences in control
accuracy between the sLR and the stLSTM, we design the
following experiments: for each trial, set a 400-pixel wide gate at
the midpoint of the line from the starting point of the movement
to the target point, and define that when the actual trajectory
of the controlled cursor falls on the outside of the gate then
this trial fails, otherwise, it succeeds. We conducted experimental
statistics on the imaginary directions of up, down, left, and right
on the 2DPreRun dataset. The success rates of all trials of sLR and
stLSTM are shown in Table 5. The statistical results show that the
control accuracy of the proposed method is higher than that of
sLR in all four motor imaginary directions, i.e., more trials can
pass through the gate with a width of 400 pixels.

Figure 3 presents complex trajectories, which is to control
the 2D cursor to move along the directions of {up, right, down,
right, up}. The 2D cursor is able to complete complex motion
operations more accurately to a certain extent based on the
proposed method.

4.4. The Performance on Other Tasks
The proposed model was also evaluated on datasets of the four-
target grasp task and five-target grasp task. The four-target grasp
task refers to that there are four targets in a square area in the real
world, which are located up, down, left, and right, respectively,
and the subjects performed robotic arm control while a cursor
was simultaneously controlled to move on a computer monitor.
The five-target grasp task is based on the four-target grasp task
with an additional target placed in the center of the square area,
and the fifth target is surrounded by the other four targets.
Besides, the four-target and five-target grasp tasks differ from the
experimental paradigm of the 2DPreRun task mentioned above.
In the 2DPreRun task, the motor imaginary signals generated
by the subjects to control the movement of the cursor remain
consistent throughout the entire trial. For example, if the target is
on the right side, the subjects have to implement the imagination
of the right hand all the time. In the four-target and five-target
grasp tasks, the subjects can choose to generate motor imaginary
signals in any direction. For example, when the target is on the
right, if the trajectory of the cursor movement starts to shift
upward, subjects can implement the imagination of relaxation to
control the cursor to move downward. This section presents the
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FIGURE 4 | Part of the trajectories distribution of the four-target grasp task. (A) up. (B) down. (C) left. (D) right. The black line represents the ideal trajectory of the 2D

cursor, the red shadow represents the trajectories distribution of the 2D cursor based on the stLSTM method, and the blue shadow represents the trajectories

distribution of the 2D cursor based on the sLR method.

trajectory plots of stLSTM and sLR on the four-target grasp and
five-target grasp test sets, respectively.

Figure 4 presents the actual trajectories plots of the four-
target grasp task. In Figures 4B,D, although the cursor maymove
in the wrong direction at the beginning, it can be corrected
quickly, indicating that stLSTM possesses the ability to effectively
correct the trajectory bias. The boundary of the actual trajectories
distribution produced by stLSTM is narrower than that of sLR,
indicating that the proposed method is equipped with higher
control accuracy.

Figure 5 presents the experimental results of the five-target
grasp task. In Figures 5A–C, the boundary of the trajectories
distribution of the stLSTM is smaller than that of sLR, which
indicates the effectiveness of the proposed method in terms of
the accuracy of the control. In Figure 5D, although the error
in the positive y-axis of the trajectory set generated by stLSTM
is large, its boundary is still smaller than that of sLR, and the
error range of the actual cursor movement is stable. In Figure 6,
the trajectories generated by stLSTM are basically near to the

origin and are not significantly worse than sLR. The dotted line
in Figure 6 indicates the special case of divergent trajectories.
It is worth pointing out that the stLSTM model trained on
2DPreRun datasets was used to directly evaluate prediction
performance on other tasks, which suggests that the proposed
method is knowledge-transferable and is able to automatically
learn brain pattern-related and underlying features for different
downstream tasks.

5. DISCUSSIONS

5.1. The Role of stLSTM
The stLSTM possesses the ability to automatically combine
spectral and temporal features by optimizing the LstLSTM loss
function rather than average features of the selected channels
by a small Laplacian filter. The parameters of the model
are updated based on the GD method, and the optimal
parameters are learned from the distribution of data, rather
than being artificially subjective set. The LstLSTM loss function
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FIGURE 5 | Part of the trajectories of the five-target grasp task. (A) up. (B) down. (C) left. (D) right. The black line represents the ideal trajectory of the 2D cursor, the

red shadow represents the trajectories distribution of the 2D cursor generated by stLSTM method, and the blue shadow represents the trajectories distribution of the

2D cursor generated by sLR method.

is able to train the model to output control signals in both
horizontal and vertical directions at the same time to obtain
decoupled velocities.

In Figure 7, we adopt the t-distributed stochastic neighbor
embedding (t-SNE) (Van der Maaten and Hinton, 2008)
algorithm for dimensionality reduction and visualization of the
features extracted by sLR and stLSTM. The t-SNE technique
visualizes high-dimensional data by giving each datapoint a
location in a two or three-dimensional map. From the results
in Figure 7, it is noticeable that the features extracted by
the LSTM layer in the stLSTM model are visualized as four
categories with significantly good distribution discrimination,
however, the optimization task of stLSTM is not classification,
but regression. As can be seen from Figure 7, compared with the
sLR method, stLSTM can still distinguish samples with different
target directions, which indicates that stLSTM is able to extract
information related to the imaginary direction in brain patterns.
These well-discriminating features, rather than the spectral and
temporal features initially fed into themodel, are linearlymapped

to the final 2D cursor velocities through the FC layer, which can
effectively improve model performance.

5.2. The Role of Error-Related Temporal
Features
A hypothesis used in this study is that when the subject
notices a large movement velocity of the cursor in the direction
perpendicular to the imaginary direction, error-related signals
will be generated in the EEG signals of the subject’s brain and
these signals will be available to correct 2D cursor’s movement
deviation. To test this hypothesis, the output of the tLSTM
model using only error-related temporal features on the TESTUD
dataset is shown in Figure 8.

The ideal velocity (blue) of samples in the horizontal direction
of the TESTUD dataset is 0. The velocities generated by sLR
in the horizontal direction (green) exhibit significantly larger
deviations, while the velocities generated in the horizontal
direction by tLSTM (orange) exhibit a smaller deviation than that
of sLR, indicating that the tLSTM model is able to decode the
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velocity deviations from the EEG and correct them. When the
actual velocity deviates from the ideal velocity, tLSTM utilizes the
error related signals to suppress the deviation, hence, the actual
velocity gradually tends to the ideal velocity. Therefore, the error-
related temporal features can suppress the motion deviation in
the non-imaginary direction.

The effect of temporal features on the results generated by
the model was discussed above. Let us explore why temporal
features are useful. Figure 9A shows the actual cursor trajectory
in one trial, and the corresponding ideal trajectory is horizontal

FIGURE 6 | Part of the trajectories of the five-target grasp task. The black dot

at the origin represents the ideal trajectory of the cursor hovering over the

target, the red line represents the trajectories of the cursor generated by the

stLSTM method, and the blue line represents the trajectories of the cursor

generated by sLR method.

to the left. Figure 8 shows the EEG signal recorded in the FC4
channel in this trial and the 3–7 Hz WT of the EEG signal at
FC4, respectively.

In Figure 9, at about 3s, the cursor exhibits a large movement
deviation in the vertical direction, corresponding to a large peak
in the EEG signal at this time. This phenomenon indicates
that the original EEG signal contains observed error-related
information. On account of that error related signals usually
show increased theta activity after the stimulus (Chavarriaga
et al., 2014), we plot the 3–7 Hz time series extracted by WT of
the EEG signal at FC4, which shows a large deflection at about 3s.
This indicates that error-related temporal information is indeed
recorded in the EEG signal when the subject observes the error,

FIGURE 8 | Velocity in the horizontal direction generated by tLSTM on the

TESTUD dataset.

FIGURE 7 | The t-SNE visualization of the features in right, left, up, and down directions. (A) sLR. (B) stLSTM.
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FIGURE 9 | The visualization of temporal features. (A) The actual trajectory of the 2D cursor in one trial. (B) The EEG signal in the FC4 channel(blue) and the 3-7Hz

wavelet transform (WT) of the EEG signal in the FC4 channel(red).

and this information could be used to effectively improve the
control accuracy of the model.

5.3. Further Analysis for sLR and stLSTM
The sLR method (Meng et al., 2016) utilizes the EEG spectral
features and combines the linear regression method to obtain
the moving velocity of the cursor, and the stLSTM method
utilizes the EEG spectral features + error-related temporal
features and combines the LSTMnetwork to obtain the velocities.
These two methods can be understood as essentially performing
spatial filtering on multi-channel EEG signals and obtaining
desired filtering information. In general, there are several ways
to learn such a spatial filter: (a) No Learning: using fixed
ad hoc filters instead, such as Common Average Reference,
Bipolar Derivations, and Surface Laplacian Derivations. The
performance of the spatial filters obtained by this method is
often not abysmal but far from optimal, there is still room for
improvement. (b) Top-down: using neural-network like back-
propagation/GD. This is supervised learning, with input X,
desired outputs y and spectral mapping in between are all known.
(c) Bottom-up: directly learning a good spatial filter for the data
without the labels y. This is unsupervised learning, such methods
contain Independent Component Analysis, Dictionary Learning,
and Principal Component Analysis. (d) Performing a mixture
of unsupervised and supervised learning, such as Supervised
ICA, combining unsupervised pre-training with supervised fine-
tuning. (e) Using direct observations: observing the spatial
filter directly from data. If given a magnetic resonance scan,
methods like Beamforming can be utilized. (f) Using additional
assumptions: some powerful assumptions, such as the source
activation in the time window of interest is jointly Gaussian-
distributed, can make the problem solvable. The sLR model can
be understood as a spatial filter obtained by the No Learning
method. Methods in Edelman et al. (2019) and Suma et al. (2020)
can be categorized into the Using direct observations method,

with the prerequisite that the volume conduction model of the
brain is known. The stLSTM method proposed in this article can
be regarded as the Top-down method to learn a spatial filter,
with the collected labeled training data to train the model in a
supervised learning manner.

5.4. Limitations
Although it is can be seen from the previous sections that our
method exhibits some performance advantages over sLR, it still
has many limitations. First, our experiments were carried out
offline based on a public EEG dataset mentioned in Section
2, lacking online inference results. Due to the need for the
determination of parameters of stLSTM through supervised
learning, the online experiment consists of two parts: the training
phase and the testing phase, in the context of a certain pre-
designed experimental paradigm. Therein, in the training phase,
the moving direction and the moving velocity of the cursor can
be predefined artificially in each trial, and the subject executes
corresponding motor imagery according to some visual prompt
of this trial. In themeanwhile, some trials are randomly chosen by
a prefixed probability, and the moving direction or velocity of the
cursor in these trials is set to be different from the visual prompt
to the subject, so as to stimulate the error-related signals. The
recorded EEG signals and the corresponding labels in all trials in
the training phase can be utilized to train the model. In the real-
time testing phase, the trained stLSTM model is able to decode
the subject’s EEG signal by combining the spectral and temporal
features and converting it into the control velocity of the cursor.

Second, the tasks of the EEG dataset used in this article are
limited to simple tasks in which the trajectories are composed
of movements in horizontal and vertical directions. Some more
complex experimental paradigms can be devised in subsequent
studies. Finally, different from traditional machine learning
methods, the proposed decoding model adopts a deep neural
network backbone model based on LSTM, which shows the

Frontiers in Computational Neuroscience | www.frontiersin.org 13 March 2022 | Volume 16 | Article 799019

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Pan et al. BCI for 2D Cursor Control

inherent disadvantage of poor interpretability, i.e., it is difficult
to determine the physical significance of each parameter in the
model. Therefore, we will explore these limitations and conduct
more experiments in the future.

6. CONCLUSION

This article proposes a novel EEG decoding framework to
control 2D cursor movement. Both spectral and temporal
features are used to improve the robustness and accuracy of
the cursor control. Specifically, spectral features are extracted
by an AR model; error-related temporal features are extracted
by convolving the original EEG signals with a wavelet
function, aiming to correct movement biases that do not
conform to the user’s intention. Finally, the concatenated
feature vectors are used as the input to be fed into the
stLSTM, and LstLSTM is used as the optimization function of
the model to generate the vertical and horizontal velocity.
The movement trajectory of the 2D cursor can be obtained
by integrating the velocities separately. The performance of
the proposed method has been evaluated on a public EEG
dataset. The proposed method exhibits promising results in
terms of metric RMSE, ACC, MAR. Series of experimental
results confirm that our proposed method can be regarded as
a control system of the 2D cursor based on a noninvasive

electroencephalogram, suppressing the velocity in the non-
imaginary direction and improving the accuracy of the
cursor’s movement.
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