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The majority of excitatory synapses in the brain uses glutamate as neurotransmitter,

and the synaptic transmission is primarily mediated by AMPA and NMDA receptors in

postsynaptic neurons. Here, we present data-driven models of the postsynaptic currents

of these receptors in excitatory synapses in mouse striatum. It is common to fit two decay

time constants to the decay phases of the current profiles but then compute a single

weighted mean time constant to describe them. We have shown that this approach

does not lead to an improvement in the fitting, and, hence, we present a new model

based on the use of both the fast and slow time constants and a numerical calculation

of the peak time using Newton’s method. Our framework allows for a more accurate

description of the current profiles without needing extra data and without overburdening

the comptuational costs. The user-friendliness of the method, here implemented in

Python, makes it easily applicable to other data sets.

Keywords: decay time constant, double exponential fitting, NMDA receptors, AMPA receptors, postsynaptic

current, conductance-based models

1. INTRODUCTION

Neurons communicate with each other via synapses which can be distinguished on the basis of
their mechanism of transmission in electrical and chemical synapses. The synaptic transmission is a
highly dynamic process. Because of the importance and abundance of synapses it is extremely useful
to have a computationally accurate and efficient framework to simulate them. In electrical synapses,
the signal in the form of current flows directly from one neuron to another through gap junctions.
In contrast, chemical synapses enable neurons communication through neurotransmitters which
are released from the presynaptic neuron and are received by neurotransmitter receptors on
the postsynaptic neuron. The main excitatory neurotransmitter in the brain is glutamate which
co-activates (among others) postsynaptic ionotropic NMDA and AMPA receptors.

Here, we focus on modeling the postsynaptic current (PSC) of these receptors using the
conductance-based models. In particular: AMPA synaptic currents are computed as IAMPA(t) =

g(t)(V(t) − Erev), where g is the conductance, V the membrane potential and Erev the reversal
potential; while NMDA synaptic currents depend also on theMg2+ block and hence are estimated
as INMDA(t) = g(t)Mg(V(t))(V(t)− Erev) (see Methods).

A common function used to describe synaptic conductance profiles g(t), following activation,
is a double exponential, where one exponential describes the rising phase and the other the decay
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phase of the PSC. Consequently two time constants are set
independently, τrise and τdecay. This formulation allows two
expressions with which the peak time and the normalization
factor for the amplitude are calculated. However, the decay phase
of the PSC is not always well described using a single exponential,
so in many cases a double exponential is used to fit the decay
phase. Nevertheless, often one weighted mean time constant (τw)
is extracted and hence a single exponential function, with such
time constant, is used to model the decay (Stocca and Vicini,
1998; Chapman et al., 2003).

Here, we show that there is not much improvement in using
the weighted mean time constant compared to the single decay
time constant, and for this reason we present a new approach
based on the use of both (the fast and slow) time constants (τf
and τs).

Hence, the synaptic conductance profiles are described using
three exponentials, one for the rising and two for the decay
phases. In this case no closed-form expression exists for the peak
time, and it is calculated numerically using Newton’s method.
Here, we apply this new approach to describe the postsynaptic
currents of NMDA and AMPA receptors expressed by different
types of striatal neurons in the mouse, and we show that this
model describes the synaptic responses of striatal neurons more
accurately than the standard methods. The implementation is
done in Python and the simulations in NEURON (Carnevale and
Hines, 2006). The framework is general and can be applicable to
other data sets, for example to describe the postsynaptic currents
in other brain regions.

The raw data underlying this model was acquired ex vivo
by obtaining whole-cell patch clamp recordings of striatal
neurons while activating different striatal inputs, namely primary
motor cortex (M1), primary somatosensory cortex (S1), and
parafascicular nucleus (PF), using optogenetic stimulation.

2. MATERIALS AND METHODS

2.1. Data Acquisition
All animal procedures were performed in accordance with the
national guidelines and approved by the local ethics committee of
Stockholm, Stockholms Norra djurförsöksetiska nämnd, under
an ethical permit to G. S. (N12/15). D1-Cre and D2-Cre (EY262
and ER44 line, GENSAT), SOM-Cre, PV-Cre, and ChAT-Cre
mice were crossed with tdTomato reporter mice (stock #018973,
#017320, #006410, and #007909, the Jackson laboratory). Viral
injections andwhole-cell patch clamp recordings were performed
as described previously (Johansson and Silberberg, 2020).

In brief, mice were injected with virus (AAV2-CamKIIa-
eYFP-ChR2, #26969, addgene) in M1, S1, or PF. Three to nine
weeks later, brain slices (250µm) were prepared in a cutting
buffer solution containing 205 mM sucrose, 10 mM glucose,
25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 0.5 mM
CaCl2, and 7.5 mM MgCl2 before being kept for 30–60 min at
35◦C in a submerged chamber filled with artificial cerebrospinal
fluid (ACSF) saturated with 95% oxygen and 5% carbon dioxide.
ACSF was composed of 125 mM NaCl, 25 mM glucose, 25
mM NaHCO3, 2.5 mM KCl, 2 mM CaCl2, 1.25 mM NaH2PO4,
and 1 mM MgCl2. Neurons were visualized using infrared

differential interference contrast microscopy or epifluorescence
(Zeiss FS Axioskop, Oberkochen, Germany; X-cite, 120Q,
Lumen Dynamics). Whole-cell patch clamp recordings were
acquired in oxygenated ACSF at 35◦C with borosilicate pipettes.
Voltage-clamp recordings were obtained with a caesium-based
intracellular composed of 100 mM CsMeSO3, 10 mM CsCl,
10 mM HEPES, 4 mM Mg-ATP, 0.3 mM Na-GTP, 10 mM
Na2-phosphocreatine, and 10 mM tetraethylammonium chloride
(TEA-Cl), and pipette resistances of 3 − 5 MOhm. Postsynaptic
currents were measured at a clamping potential of −70 and
+40 mV to estimate the NMDA to AMPA ratio. Current-
clamp recordings were acquired with an intracellular solution
consisting of 130 mM K-gluconate, 5 mM KCl, 10 mMHEPES, 4
mM Mg-ATP, 0.3 mM GTP, 10 mM Na2-phosphocreatine (pH
7.25, osmolarity 285 mOsm) and pipette resistances between
6–8 MOhm. Recordings were amplified using a MultiClamp
700B amplifier (Molecular Devices, CA, USA), filtered at 2
kHz, digitized at 10–20 kHz using ITC-18 (HEKA Elektronik,
Instrutech, NY, USA), and acquired using custom-made routines
running on Igor Pro (Wavemetrics, OR, USA). Throughout
all recordings pipette capacitance and access resistance were
compensated for and data were discarded when access resistance
increased beyond 30 MOhm. All recordings were acquired in
the presence of gabazine (GBZ) (10 µM) and in a subset of
experiments APV (50 µM) was additionally applied. Drugs were
bath-applied and washed in for at least 7.5 min before acquiring
data. Optogenetic stimulation (wavelength 465 nm)was delivered
through the 64x objective lens. 2 ms light pulses were used for
activating cortical or thalamic terminals in dorsal striatum. All
current- and voltage-clamp recordings obtained in GBZ alone
have been previously published (Johansson and Silberberg, 2020).

2.2. Data Analysis
M1, S1, and PF were optogenetically activated and whole-cell
patch clamp recordings of striatal projection neurons (dSPN
and iSPN), fast-spiking (FS), low-threshold spiking (LTS), and
cholinergic (ChIN) interneurons were acquired. In some FS cells,
the recorded NMDA current traces peaked before or at the same
time as the AMPA current traces. Since NMDA type receptors
typically possess slower kinetics than AMPA type receptors
(Myme et al., 2003, and since it has been shown that not all
FS express NMDA receptors (Nyiri et al., 2003; Matta et al.,
2013) those traces were excluded (see Supplementary Figure 1).
In Table 1 all the data used is collected and the average traces
are plotted in Supplementary Figure 2. The current peak at−70
mV was extracted as the AMPA component while the NMDA
current was quantified as the average current 50–60 ms after
the stimulation at +40 mV (see Supplementary Figure 3). The
ratio between these values was calculated recording by recording
(cell by cell), and then for each input region and cell type
the average of these values was estimated as the NMDA to
AMPA ratio. To fit the (rise and decay) time constants, synaptic
responses were recorded at two different voltages (−70 and
+40 mV) first in the presence of GBZ followed by APV bath
application. In particular, the AMPA component was subtracted
from the raw trace recorded at +40 mV in the presence of
GBZ (see Supplementary Figure 4). This allowed to achieve
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TABLE 1 | Input region and target cell.

Cell type

dSPN iSPN FS ChIN LTS

In
p
u
t
re
g
io
n M1-contra 12 11 0/8* - -

M1-ipsi 14 14 3/12* 4 5

S1 15 15, 1 2/5* 3 -

PF 8, 1 21, 2 0/7* 9, 1 -

For each input region and target cell type the number of traces used is reported. Some

fast-spiking cell (FS) traces were excluded because they showed no or negligible NMDA

currents. In particular no NMDA responses were observed in FS when activating PF or

contralateral M1. When recordings were not available the corresponding space is left

blank (-). Numbers in blue represent the additional traces for which the recordings in two

different bath applications (GBZ and APV) were available.

a pharmacological separation between the AMPA and NMDA
components. For the input regions and cell types where these
recordings (in two different bath applications) were not available,
simulations were used to estimate the NMDA currents (see
Supplementary Figure 5).

2.3. Model
Generally synaptic conductances are modeled with the following
double exponential kinetics for t ≥ t0:

gsyn(t) = ḡ · K ·

(

e−(t−t0)/τdecay − e−(t−t0)/τrise
)

, (1)

where ḡ is the peak synaptic conductance, K is the normalization
factor, t0 is the time of the presynaptic spike, and τrise and τdecay
are the PSC rise and decay time constant respectively. The peak
time, i.e., the time at which (1) reaches the maximum, is found
imposing the derivative of (1) equal to zero and corresponds to:

tpeak = t0 +
τdecay · τrise

τdecay − τrise
· ln

(

τdecay

τrise

)

. (2)

The normalization factor is a constant such that (1) evaluated at
tpeak equals ḡ and corresponds to:

K =
1

e−(tpeak−t0)/τdecay − e−(tpeak−t0)/τrise
. (3)

In order to obtain a better fit of PSC we propose to approximate
the decay phase using two exponentials. It is indeed a very
common practice in numerical simulations to use a double
exponential fitting for the decay

If e
−(t−t0)/τf + Ise

−(t−t0)/τs , (4)

but then compute a weighted mean time constant τw as follows
(Stocca and Vicini, 1998

τw =
If

If + Is
τf +

Is

If + Is
τs, (5)

and use it as τdecay in themodel. Although potentially numerically
more efficient (than using both τrise and τdecay), τw is generally not

even better than the τdecay obtained using the single exponential
(see Results and Discussion).

Here, we also use a double exponential function to fit the decay
but both time constants (τf and τs) and both coefficients (If and
Is) are used to describe it. In this case, the equation which models
the synaptic conductance can be written as:

gsyn(t) = ḡ ·K ·

(

If e
−(t−t0)/τf + Ise

−(t−t0)/τs − K̃e−(t−t0)/τr
)

, (6)

where K̃, corresponding to the sum of If and Is, is included to
ensure that Equation (6) evaluated at t0 gives zero. Hence, in
order to find the time of peak tpeak, the derivative of Equation
(6) has to be set equal to zero. Doing so, the following equation is
obtained

g′syn(t) = ḡ · K ·

(

−
If

τf
e
−(t−t0)/τf −

Is

τs
e−(t−t0)/τs +

K̃

τr
e−(t−t0)/τr

)

= 0 .

(7)
From Equation (7), we find the following equation to which tpeak
is solution:

If

τf
e−(t−t0)/τf +

Is

τs
e−(t−t0)/τs =

K̃

τr
e−(t−t0)/τr . (8)

It is possible to simplify this expression by taking the logarithm
of both sides:

log

(

If

τf
e−(t−t0)/τf +

Is

τs
e−(t−t0)/τs

)

= log
K̃

τr
−

t − t0

τr
. (9)

In the end, we arrive at the expression:

F(t) : = t −
τrτf

τr − τf
log

(

If

K̃

τr

τf
+

Is

K̃

τr

τs
e

(t−t0)(τs−τf )

τf τs

)

− t0 = 0 .

(10)
As we said, tpeak is solution to this equation, and to calculate it
numerically, we can use Newton’s method on the function F. In
order to use Newton’s method on F, we also need its derivative:

F′(t) = 1−
Isτrτf (τs − τf )

τs(τr − τf )

(

If τs + Isτf e

(t−t0)(τs−τf )

τf τs

)
−1

e

(t−t0)(τs−τf )

τf τs .

(11)
Newton’s method is very convenient for this setting because of
its properties: quadratic convergence which implies that very
few steps are necessary for a result accurate up to machine
precision (< 6); local convergence which means that if we give
a good starting guess, we will always find the result; ease of
implementation, given the simplicity of the method.

A Python version of the method is showed in Algorithm 1.
The normalization factor K, as before, is a constant such that

the equation describing the synaptic conductance evaluated in
tpeak equals ḡ. When the synaptic conductance is described using
Equation (1) it corresponds to Equation (3), while when the
synaptic conductance is Equation (6), the normalization factor
is:

K =
1

If e
−(tpeak−t0)/τf + Ise

−(tpeak−t0)/τs − K̃e−(tpeak−t0)/τrise
. (12)
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Algorithm 1: A Python version of Newton’s method for a
generic function f = F and its derivative fp = F′ to find
the point t∗such that f (t∗) = 0. In our case F and F′depend
on the fitted parameters τr , τf , τs, If , and Is.

def Newton(t_in,f,fp,TOL,MaxIter)
t = t_in;
d = 1;
niter = 1;
while abs(d)>TOL && niter<=MaxIter:
d = f(t)/fp(t)
t -= d
niter += 1

return t

AMPA synaptic currents are then computed as:

Isyn(t) = gsyn(t)(V(t)− Esyn). (13)

NMDA currents, depending also on the magnesium block:

Mgsyn(V) =
1

1+ e−aV ([Mg2+/b)]
, (14)

where [Mg2+] is the extracellular magnesium concentration and
a and b are constants (Jahr and Stevens, 1990), are computed as:

Isyn(t) = gsyn(t)Mgsyn(V(t))(V(t)− Esyn). (15)

The Python library SciPy is used to find the optimal set of
parameters that best fits the average traces. Python codes for the
fitting procedure and the Newton’s method implementation are
available at github.com/IlaCar/PSC_double_decay_fitting.

2.4. NMODL Implementation
In order to simulate in NEURON the postsynaptic conductance
and current of NMDA and AMPA receptors we updated
the mod file available here (tmglut.mod, ModelDB
https://senselab.med.yale.edu/ModelDB/, accession number
237653). The main changes we had to make are: the creation of
two new states C_ampa and C_nmda which account for the
second decay time constant, the modification of how tp_ampa,
tp_nmda, factor_ampa, and factor_nmda are computed,
where in particular the first two are the output of the Newton’s
method. We also apply a correction to the original (Jahr and
Stevens, 1990) constants a and b based on the observations
in Ecker et al. (2020). Also these files are available in the
same repository.

3. RESULTS

Postsynaptic currents were obtained in whole-cell recordings
from striatal neurons while activating corticostriatal or
thalamostriatal terminals with brief light pulses (see Materials
and Methods). The decay phase of synaptic responses was
fitted using single, weighted, or double exponential decay time
constants. An example of the different decay time constant

fitting procedures previously described is shown in Figure 1.
In particular, the NMDA current trace recorded in an SPN
when photostimulating thalamostriatal terminals is represented.
Figures 1A,B illustrate a mono exponential and a double
exponential fitting, respectively. To study the behavior of the
weighted mean time constant τw, it was extracted using (5). The
models resulting from these fittings are shown in Figure 1C.

The root-mean-square error (RMSE) was calculated to
compare these fitting procedures and the results are presented
in Figure 1D. Specifically, the RMSE of the different fitting
procedures are plotted for the NMDA currents recorded
in response to PF stimulation. The corresponding example
regarding AMPA currents is shown in Supplementary Figure 6.
The double exponential fitting procedure performs up to several
times better that the others, especially when describing the slower
kinetics of the NMDA currents.

Moreover, we implemented the different postsynaptic current
models for each input region and neuron type (see Materials
and Methods) and used them to describe the dynamics of
the corticostriatal and thalamostriatal glutamatergic synapses
following the same procedure as in (Hjorth et al., 2020). An
example of the results, including two different experimental
traces and their in silico simulations using NEURON+Python,
is shown in Figure 2. In Figure 2A, the glutamatergic synapse
model is based on the NMDA and AMPA currents which
were pharmacologically separated, while in Figure 2B the
NMDA current was estimated with the procedure described
in Supplementary Figure 5. In both scenarios, the excitatory
postsynaptic potentials (EPSPs) obtained in response to 20 Hz
stimulation (red lines) are better described when using the double
exponential decay for AMPA and NMDA currents models (blue
lines).

One possible disadvantage of our method could have been
the increase of computational time necessary to simulate the
synapses. We timed the performance of the models when
simultaneously stimulating up to three thousand glutamatergic
synapses described using the Tsodyks-Markram model (Uziel
et al., 2000) and distributed on a multicompartmental cell. The
simulations done using glutamatergic synapse models based
on the AMPA and NMDA models of postsynaptic current
presented here were in the heaviest scenario (three thousand
simultaneously active synapses on a single cell) only around
10% slower than the ones using glutamatergic synapse models
obtained using the weighted time constant (or the mono
exponential time constant). Hence, our method presents a good
balance between computational efficacy and accuracy.

4. DISCUSSION

We focused on modeling the postsynaptic current (PSC) of
NMDA and AMPA receptors using conductance-based models.
The decay phase is usually modeled using a single exponential
function, but sometimes the decay time constant can result from
a double exponential fitting procedure, which parameters are
combined (in a sort of weighted mean) to obtain one decay
time constant. In contrast, our method uses all the parameters
that result from the double exponential fitting and improves
considerably the description of the PSC (up to 10 times). The
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FIGURE 1 | Decay fitting procedures and resulting models. (A) Mono exponential decay time fitting. (B) Double exponential decay time fitting and estimated weighted

time constant. (C) Comparison between models obtained using the different fitting procedures and parameters. Original data is shown in orange. (D) RMSE of three

different fitting methods describing postsynaptic currents in striatal neurons when stimulating PF. Data was acquired in voltage-clamp at +40 mV and in the presence

of GBZ and APV.

FIGURE 2 | Experimental and in-silico excitatory postsynaptic potentials of SPNs evoked by optogenetic activation of PF. Protocol includes 8 pulses at 20 Hz followed

by a recovery pulse (light blue bars). Two different experimental EPSP are shown. In (A) the glutamatergic synapse models used for the simulation (in

NEURON+Python) are based on the NMDA and AMPA currents which were pharmacologically separated, while the glutamatergic synapses models used in (B) are

based on the estimated NMDA currents.
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absence of a formula to calculate the peak time (available for the
classical approaches) is easily and efficiently bypassed by using
Newton’s method. Our method allows for a more effective use
of the available data, especially to model the slower kinetics of
the NMDA currents, and this can be crucial when describing
dendritic nonlinearities (Plotkin et al., 2011; Du et al., 2017;
Lindroos and Hellgren Kotaleski, 2021).

The drawback is a slowdown of the performance (up to
10% when simulating three thousand simultaneously active
synapses on a single neuron), but considering the improvement
of description of the currents and the increasing availability
of high performance computers, we believe it is an acceptable
drawback.

Simulations of large-scale detailed data-driven neural
networks are a powerful approach to understand brain
functionalities and, as a consequence, different microcircuits
have been reconstructed in silico (Markram et al., 2015; Billeh
et al., 2020; Hjorth et al., 2020). We are currently working on the
integration of the NMDA and AMPA models, presented here,
into the striatal large scale network. Our workflow is general and
applicable to potentially describe all types of synaptic currents in
any region of the brain.
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