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Gamma rhythms play a major role in many different processes in the brain, such

as attention, working memory, and sensory processing. While typically considered

detrimental, counterintuitively noise can sometimes have beneficial effects on

communication and information transfer. Recently, Meng and Riecke showed that

synchronization of interacting networks of inhibitory neurons in the gamma band

(i.e., gamma generated through an ING mechanism) increases while synchronization

within these networks decreases when neurons are subject to uncorrelated noise.

However, experimental and modeling studies point towardz an important role of the

pyramidal-interneuronal network gamma (PING) mechanism in the cortex. Therefore,

we investigated the effect of uncorrelated noise on the communication between

excitatory-inhibitory networks producing gamma oscillations via a PING mechanism. Our

results suggest that, at least in a certain range of noise strengths and natural frequency

differences between the regions, synaptic noise can have a supporting role in facilitating

inter-regional communication, similar to the ING case for a slightly larger parameter range.

Furthermore, the noise-induced synchronization between networks is generated via a

different mechanism than when synchronization is mediated by strong synaptic coupling.

Noise-induced synchronization is achieved by lowering synchronization within networks

which allows the respective other network to impose its own gamma rhythm resulting in

synchronization between networks.

Keywords: synchronization, gamma oscillations, PING, noise, communication through coherence

1. INTRODUCTION

Synchronous oscillatory activity in high and low frequency ranges has been proposed to
underlie coordinated communication between distributed neural systems (Singer, 1999; Buzsáki
and Draguhn, 2004; Buzsáki, 2006; Fries, 2009). Especially, gamma rhythms (high-frequency
oscillations in the 30–90 Hz range) have been studied extensively and have been related to
perception (Gray et al., 1989), attention (Fries et al., 2001), memory (Tallon-Baudry et al., 1998),
consciousness (Melloni et al., 2007), and synaptic plasticity (Wespatat et al., 2004). Furthermore,
pathological brain states in neurological and psychiatric disorders, such as Alzheimer’s, autism and
schizophrenia, have been linked to dysfunctional neural oscillations in the gamma band (Uhlhaas
and Singer, 2006, 2010).

Mechanistically, in vitro and in vivo gamma rhythms are mainly produced by two mechanisms
termed interneuron network gamma (ING) and pyramidal-interneuron network gamma (PING)
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(Whittington et al., 2000, 2011; Tiesinga and Sejnowski, 2009).
The ING mechanism is based on the mutual inhibition of
inhibitory neurons, which act as a gate that temporarily
suppresses firing until inhibition wears off and the neurons fire
in increased synchrony (Buzsáki and Wang, 2012). On the other
hand, the PING mechanism is based on the interplay between
excitation and inhibition (Buzsáki and Wang, 2012). Firing of
excitatory neurons prompts firing of inhibitory neurons which
in turn temporarily suppress further firing, ultimately leading to
coherent activity in both groups.

Gamma rhythms have been proposed to underlie efficient
communication between different brain regions (Engel et al.,
2001; Varela et al., 2001; Fries, 2015). For example, the
communication-through-coherence (CTC) hypothesis (Fries,
2005, 2015) posits that synchronization of two brain regions
or circuits in the gamma band allows for a more efficient
transfer of information between them. Over the last years,
this proposal has been supported by considerable experimental
evidence, such as gain modulation of both neural and
behavioral responses in the gamma band (Ni et al., 2016),
attentional enhancement of gamma-band synchrony between
neural populations (Bosman et al., 2012; Grothe et al., 2012),
and covariations in transfer entropy and gamma-band synchrony
(Womelsdorf et al., 2007; Besserve et al., 2015). Naturally,
neural regions and their communication are subject to various
sources of noise and naively one would assume that noise is
detrimental to the quality of the signal transfer between the
regions and their synchronization. Computational models have
for example confirmed that noise can reduce the synchronization
of excitatory-inhibitory (EI) networks (Börgers et al., 2005).
However, in non-linear biological systems one can also observe
a helpful role of noise under certain conditions (Hänggi, 2002;
McDonnell and Ward, 2011). For example stochastic resonance,
the noise-induced improved response to a weak signal, has
been well documented experimentally and theoretically in several
neural systems (Gluckman et al., 1996; Plesser and Tanaka, 1997;
Ward et al., 2010). Theoretical work has also demonstrated
that noise can restore synchrony in neural systems that have
been desynchronized by large heterogeneities in the inputs
for example McMillen and Kopell (2003) and that colored
noise can induce synchronization in neural populations that
show a diversity of intrinsic properties (Zhou et al., 2013).
Furthermore, noise-induced facilitation of synchrony is a also
well documented in theoretical studies of coupled oscillators
(see e.g., Zhou et al., 2002; Goldobin and Pikovsky, 2005). So
overall, while naively noise might be assumed detrimental to
coherent communication, there is a body of experimental and
theoretical work demonstrating its ability to facilitate synchrony
between populations.

In a recent computational study, Meng and Riecke (2018)
demonstrated that noise can synchronize population rhythms
generated by individual oscillator networks. They showed
that noise induced synchronization despite the noise input
between different oscillator networks being uncorrelated. This
between-network synchronization emerges as the uncorrelated
noise introduces heterogeneity within the networks, thereby
weakening intra-network synchronization, and thus allowing

for the second network to control a substantial fraction of
the network activity. While they demonstrate that this type
of synchronization emerges in different settings, their findings
remain restricted to networks coupled by inhibition, i.e., they do
not investigate the synchronization of PING networks.

Therefore, in this study, we model two interconnected
excitatory-inhibitory networks, producing gamma oscillations
through a PING mechanism, in different network settings and
analyze how synchronization within and across the networks
changes depending on the strength of uncorrelated noise
input to the networks. Our results extend the findings from
Meng and Riecke (2018) and suggest that uncorrelated noise
can also have a supporting role in facilitating inter-regional
communication in PING networks. Importantly, our models can
be used as a basis to investigate mechanistic explanations for
altered neuronal dynamics in psychiatric disorders, since for
example, disturbances in neuronal oscillations in the gamma
band, especially reduced synchronization, are a key finding in
schizophrenia (Uhlhaas and Singer, 2010).

2. METHODS

We first replicated the results of Meng and Riecke (2018) using
two interacting inhibitory networks producing gamma rhythms
via an ING mechanism where each neuron was subject to
independent noise. Once we were able to replicate their results
in our model implementation, we proceeded to the next step
and extended the model to two interacting excitatory-inhibitory
networks showing a PING mechanism. In this case, we looked
at two variants: the simpler case of all-to-all connectivity and the
biologically more plausible case of sparse random connectivity.
Conclusively, in the following we define the three scenarios that
we simulated, evaluated and compared:

• Scenario 1: In this scenario, we replicated the case of two
interacting inhibitory networks with all-to-all connectivity
investigated by Meng and Riecke (2018). Importantly, each
neuron was subject to uncorrelated noise and both networks
displayed rhythmic gamma band activity produced by the
ING mechanism.

• Scenario 2: This scenario extended scenario 1 to two all-to-
all coupled excitatory-inhibitory networks driven by the PING
mechanism. It also built the foundation for scenario 3 and
potentially more complex variants used in future work.

• Scenario 3: In the last scenario, we moved from all-to-
all connectivity to random sparse connectivity to assess to
which degree independent noise would also be able to have
a beneficial effect in networks with a biologically more
plausible connectivity.

2.1. Network Models
In scenario 1, we considered a model of two coupled
inhibitory networks analogous to Meng and Riecke (2018).
Both populations consisted of 1,000 inhibitory neurons and
received input in form of random uncorrelated spike trains of
800 excitatory neurons according to a Poisson schedule. Each
population had recurrent connections and both networks were
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FIGURE 1 | Network models (A) Scenario 1: Two all-to-all coupled networks, each consisting of an inhibitory population. In both populations all neurons receive

independent noise and synaptic coupling is stronger within networks than across networks. (B) Scenarios 2 and 3: Two coupled excitatory-inhibitory networks in

which each population is again subject to uncorrelated noise. In comparison to scenario 1, inter-network communication is mediated exclusively by excitatory

connections. The displayed connection probabilities are used in the sparse random network in scenario 3. In case of scenario 2, probability p is instead set to 1.0 for

all connection pairs.

bidirectionally coupled (see Figure 1A for a schematic of the ING
network setup). As connectivity in scenario 1 is all-to-all, the
connection probability p was 1.0 for all connection types.

In scenarios 2 and 3, each network consisted of a population
of 250 inhibitory neurons as well as a population of 1,000
excitatory neurons (see Figure 1B for a schematic of the
setup). The difference between the two scenarios lies in the
particular connectivity scheme (all-to-all vs. sparse random)
and the synaptic coupling strengths. Excitatory and inhibitory
populations within each network were recurrently connected.
However, inter-network communication was mediated solely
by excitatory synapses that target both the inhibitory and

excitatory populations in the respective other network. We
explicitly omitted long-range inhibitory connections because
connectivity between brain regions (such as V1 and V2
for example) is predominantly excitatory [e.g., in monkey
(Tomioka and Rockland, 2007) and other species (McDonald
and Burkhalter, 1993; Gonchar et al., 1995; Fabri and Manzoni,
1996, 2004)] and we did not model communication between two
populations within a region, where long-range inhibition might
be more prevalent.

The connection probabilities were configured according to
the specific scenario and are shown in Table 1. While all
populations were again subject to uncorrelated noise, the
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TABLE 1 | A list of all relevant model parameters, including parameters of AdEx

model, GABA-, and AMPA-mediated synapses, synaptic noise, and connection

probabilities.

Parameter Value Description

NE 1,000 Number of excitatory (E) cells

NI 250 Number of inhibitory (I) cells

C 200 pF Membrane capacitance

gL 10 nS Membrane leak conductance

EL −65.0 mV Membrane leak reversal potential

Ew −80.0 mV Adaptation reversal potential

VT −50.0 mV Membrane threshold

1T 1.5 mV Threshold slope factor

Vr −70.0 mV Reset voltage

τref 1.0 ms Length of refractory period

aexc 4.0 nS Subthreshold adaptation parameter of E cell

bexc 40.0 pA Spike-frequency adaptation parameter of E cell

ainh 0 nS Subthreshold adaptation parameter of I cell

binh 0 pA Spike-frequency adaptation parameter of I cell

τAMPA 3.0 ms AMPA decay time Constant

EAMPA 0.0 mV AMPA reversal potential

τGABA 6.0 ms GABA decay time Constant

EGABA -70.0 mV GABA reversal potential

Jetoe 0.01 nS Synaptic coupling strength - E → E within network

Jetoi 0.05 nS Synaptic coupling strength - E → I within network

Jitoi 0.7 nS Synaptic coupling strength - I → I within network

Jitoe 0.5 nS Synaptic coupling strength - I → E within network

Jppee 0.01 nS Synaptic coupling strength - E → E across networks

Jppei 0.03 nS Synaptic coupling strength - E → I across networks

Jppii 0.0 nS Synaptic coupling strength - I → I across networks

petoe 0.2 Connection probability from E to E

petoi 0.4 Connection probability from E to I

pitoe 0.4 Connection probability from I to E

pitoi 0.4 Connection probability from I to I

pppee 0.1 Inter-network connection probability from E to E

pppei 0.4 Inter-network connection probability from E to I

δnet 0.0 ms Inter-network communication delay

Np 800 Number of neurons in a Poisson group

µext 300 Hz Mean external noise input

σ 2 1.0 Hz Noise strength

p 0.75 Poisson rate ratio

Parameters such as coupling strengths and connection probabilities vary across

scenarios.

inhibitory populations received a lower proportion of noise to
avoid that the spiking of inhibitory neurons became dominated
by the noise input, since this would have caused the PING
rhythms to collapse (Börgers and Kopell, 2003).

2.2. Neuron Model
As a neuron model we used the adaptive exponential integrate-
and-fire (AdEx) model proposed by Brette and Gerstner
(2005) and its membrane potential time course is described
in Equation (1). To improve readability, we extracted the
internal membrane dynamics to the current Iion in Equation (2).

Adaptation is modeled by the parameter w as defined in
Equation (3).

C
dV

dt
= Iion + IAMPA + IGABA + Iext (1)

Iion(V) = −gL(V − EL)+ gL1T exp(
V − VT

1T
)− w (2)

τw
dw

dt
= a(V − Ew)− w (3)

where C is the membrane capacitance, EL the leak reversal
potential, Ew the adaptation reversal potential, V the membrane
voltage at time step t, VT the membrane threshold, Vreset the
reset potential, 1T the slope factor, a the adaptation coupling
parameter, τw the adaptation time constant, and gL the leak
conductance. When the membrane potential exceeds the spiking
threshold, the voltage is reset to Vr and clamped for a refractory
time Tref . Furthermore, the spike-triggered adaptation increment
b is added to the adaptation current. Each neuron received post-
synaptic currents IGABA and IAMPA which we further specify
below. Finally, the current Iext represents the external noise input
that we define below.

2.3. Synapse Model
Synaptic currents for GABAergic as well as glutamatergic
(AMPA) synapses are defined in Equations (4) and (6),
respectively. We used a conductance-based model and the
respective synaptic conductance is modeled as a dynamic variable
with an instantaneous rise on each pre-synaptic spike and an
exponential decay over time. The exponential decay is defined in
Equations (5) and (7) for AMPA and GABA, respectively.

IAMPA = gAMPA(EAMPA − V) (4)

dgAMPA

dt
= −

gAMPA

τAMPA
(5)

IGABA = gGABA(EGABA − V) (6)

dgGABA

dt
= −

gGABA

τGABA
(7)

where gGABA and gAMPA are the dynamic synaptic conductances,
EAMPA and EGABA the characteristic reversal potentials, V the
membrane potential of the post-synaptic neuron, and lastly
τAMPA and τGABA represent the time constants that define the
speed of the exponential decay.

The synaptic conductances gGABA and gAMPA is modeled for
each neuron and their instantaneous rise is described by the
following update rules executed on every pre-synaptic spike:

gAMPAI += Jetoi gAMPAE += Jetoe (8)

gAMPAPE += Jppee gAMPAPI += Jppei (9)

gGABAE += Jitoe gGABAI += Jitoi (10)

gGABAPI += Jppii (11)

where Jetoi, Jetoe, Jitoe, and Jitoi are the synaptic coupling strengths
between excitatory or inhibitory neurons within a network,
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whereas Jppee, Jppei, and Jppii are the coupling strengths across
networks. We deliberately left out the coupling strength Jppie of
synapses originating from inhibitory neurons in one network and
targeting excitatory neurons in another network, since this type
of connection is not present in any of our scenarios. Further, note
that Jppii was only present in the inhibitory networks of scenario 1
whereas Jppee, Jppei were only present in the excitatory-inhibitory
networks of scenarios 2 and 3.

2.4. Noise Model
We adopted the noise framework that Meng and Riecke (2018)
used to generate uncorrelated noise for each neuron. Each
population in every scenario was subject to substantial synaptic
noise in form of a group of Np = 800 Poisson neurons. We used
the mean input µv, the noise strength σ v

2 and the Poisson rate
ratio p as free parameters in our explorations. The mean inputµv

describes the mean effect on the membrane potential caused by
the noise and the noise strength is simply its variance.

For each Poisson neuron we generated spike trains according
to a Poisson process with a rate λ that was dependent on the
free parameters µv and σ v

2, as shown in Equation (12), where
Np (e.g., Np = 800) is the number of Poisson neurons.

λ =
µv

2

σ v
2 ∗ Np

(12)

Importantly, the rate differed between the two networks and
network 2 received a lower rate than network 1. This ultimately
determined the natural frequency of the network activity and
was performed to set the networks to a desynchronized state.
Therefore, the difference in the noise input between the two
networks lay only in the rate λ, the strength of a Poisson
generated spike stayed the same within and across networks. The
rate difference between network 1 and network 2 was controlled
by the Poisson rate ratio p with p ∈ [0, 1] as follows

λ2 = pλ1 (13)

Besides generating spike trains, we also needed to model the
impact of a generated pre-synaptic spike on a post-synaptic
neuron. This was modeled in form of an external current Iext with

Iext(t) = gP(VT − Vreset)1vP(t) (14)

The conductance gP was included to ensure correct physical
units and we set it to a constant value of 1 nS. P(t) is the
number of pre-synaptic Poisson spikes arriving at time step t
at the respective post-synaptic neuron. The difference between
the membrane threshold VT and the reset potential Vreset of
the respective post-synaptic neuron is precisely the amount of
voltage needed to produce a spike independent of its current
membrane potential. However, the extent of this driving force is
controlled by a dimensionless input strength 1v. Analog to the
rate λ, 1v is also dependent on the free parameters σ 2 and µ

according to

1v =
σ 2

µ
(15)

We can observe based on Equations (12) and (15) that an increase
in the noise strength σ 2 leads on one hand to an increase in the
spike strength 1vi and on the other hand to a decrease in the
rate λ.

Note that, as Meng and Riecke did in their original model,
we here also used mean input µ and noise strength σ 2

v as
free parameters instead of the Poisson spike rate λ and the
input strength 1v. This ensures that the noise strength, which
is characterized by σ 2, is the same for all neurons across all
networks. As shown in Meng and Riecke (2018), the mean input
can be recovered via the spiking rate and the input strength
through µv = λ · 1v and the noise strength through σ 2

v =

λ · (1v)2

2.5. Parameter Explorations
Two-dimensional explorations were visualized in form of heat
maps where the colors were mapped to the value of a specific
measure. We decided to use three different measures which are
presented in the following.

2.5.1. Phase Synchronization Between Two Networks
The synchronization between the networks is perfect if the phase
difference over time is constant as we might have considerable
delay regulated by parameter δnet . Thus, the synchronization
between networks was quantified by the mean phase coherence
of the networks’ activity. We used the average ni of the neurons’
voltage traces inside a network as a surrogate for the network level
activity [as for examplemeasured as an local field potential (LFP)]

ni =
1

N

N
∑

k=1

vk (16)

where the sum is over allN neurons inside network i and vk is the
recorded voltage trace of neuron k. While we acknowledge that
LFP proxies based synaptic currents of excitatory cells usually
more closely match experimentally recorded LFPs (Mazzoni
et al., 2008, 2015; Barbieri et al., 2014), we used the average
membrane potential in our work for two reasons: (1) Meng
and Riecke also used it in their work (Meng and Riecke, 2018)
and thus our work can be directly compared to theirs and (2)
defining a current-based measure for the inhibitory networks of
scenario 1 that closely matches experimentally measured LFPs
is not straightforward, and, therefore, our choice of LFP avoids
using different measures for the ING and PING networks and
makes the results for the different network settings comparable.
For scenario 3 (EI network), we repeated our analysis with an
LFP proxy based on the sum of the absolute values of AMPA
and GABA currents, which captures approximately 90% of the
variance of experimentally measured LFPs (Mazzoni et al., 2015),
and did not find any differences.

Before extracting the phase information, we bandpass
filtered the signal ni to ensure that the extracted phase
information is meaningful. As a filter we used a second-
order Butterworth filter with a lowcut frequency of 30 Hz
and a highcut frequency of 120 Hz implemented in the scipy1

1https://www.scipy.org/
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package scipy.signal.filter_design.butter. Next,
we extracted the phases ϕX from the filtered signal of population
X by applying the Hilbert transform implemented in the scipy
package under scipy.signal.hilbert. Finally, the mean
phase coherence between the two networks A and B was
calculated as

R =

∣

∣

∣

∣

∣

1

T

T
∑

t=1

ei(ϕA(t)−ϕB(t))

∣

∣

∣

∣

∣

(17)

where ϕX(t) is the phase of the signal of population X at time
t and T the total number of time steps. If the phase difference
between two signals is constant over time R = 1. In this case,
the signals are said to be phase locked. On the other hand, a
low R near 0 typically also means a low correlation between the
phases (although one can artificially create signals with non-zero
correlation that have an R = 0) and if the two signals have no
correlation then R = 0.

2.5.2. Phase Synchronization Within a Population
When determining the phase synchronization within a
population, we looked at the signals of all individual neurons in
one population and, accordingly, calculated the synchronization
of these signals. Further, the same preprocessing steps as
above were applied. However, instead of using the mean phase
coherence, we chose the Kuramoto order parameter because
perfect synchronization inside a homogeneous population is
expected to be equivalent to zero phase lag synchronization. The
Kuramoto order parameter was then calculated according to

K =

∣

∣

∣

∣

∣

∣

1

T

T
∑

t=1

1

N

N
∑

j=1

eiφj(t)

∣

∣

∣

∣

∣

∣

(18)

where φj(t) is now the phase of signal of an individual neuron j at
time t, T the total number of time steps and N the total number
of neurons in the population.

The reason for using two different synchronization measures
here, is that on the one hand we wanted to measure
synchronization within a network, where we assume the neurons
of the network to display zero phase lag activity if the network
is fully synchronized and on the other hand, we wanted
to explore the synchrony between two networks, where full
synchrony would also entail the scenario where the two networks
have a constant non-zero phase lag (e.g., introduced by the
axonal delay of the connection between them). Therefore, we
chose the Kuramoto order parameter for the within network
synchronization, because it is sensitive to the phase lag, and the
mean phase coherence for the between network synchronization,
because it ignores non-zero phase lags as long as they are onstant.

2.5.3. Frequency Locking of Two Networks
The difference in the frequencies of two oscillators is a measure
of frequency locking (also sometimes referred to as entrainment)
(Pikovsky et al., 2003). To quantify frequency locking between
two networks, we used the same measure as Meng and Riecke
(2018), namely the ratio between the dominant frequencies
of the networks. First, the network signals were transformed

to the frequency-domain by applying Welch’s method (Welch,
1967) offered by the Python package matplotlib2 in the module
matplotlib.mlab.psd. Next, the dominant frequency fi
of each of the two networks was determined by extracting the
frequency with the highest power. Finally, the ratio between the
two extracted frequencies was calculated as follows

r =
f2

f1
(19)

with f2 ≤ f1 and f1, f2 > 0. The larger dominant frequency
corresponds to f1 and the lower one to f2 to ensure that
r ∈ (0, 1]. A ratio of 1 indicates perfect frequency locking as
the two frequencies equal whereas values close to 0 indicate
maximal mismatch between the two frequencies. Noteworthy,
in our simulations, network 1 always had a greater or equal
dominant frequency than network 2 because it received stronger
noise input.

2.6. Code and Simulations
The source code is publicly accessible on GitHub3. All code was
written in Python 3.7. We used the spiking neural simulator
Brian 2 (Stimberg et al., 2019) (2.3.0.2) for model simulations. To
run large scale parameter explorations we used the exploration
library mopet (Cakan and Rebscher, 2020) (0.1.3). All plots
were created with the Python library matplotlib4 (3.1.2) and
signal processing steps were performed with the scipy (see text
footnote 1) (1.4.1) package.

To ensure that our simulation results were robust and
could be reproduced in a different simulation setting, we
evaluated our results with different step sizes (1.0ms, 0.5ms,
0.05ms), simulation durations (0.5 s, 1 s, 3 s, 5 s) and integration
methods. Regarding the integration methods, we used three
different methods implemented in Brian 25: heun (stochastic
Heun method), euler (forward Euler integration), and milstein
(derivative-free Milstein method). The results did not vary
noticeably in all cases. For our final simulations, we used a step
size of 0.05, a duration of 5s, and the heun integration method.

3. RESULTS

3.1. Uncorrelated Noise Can Synchronize
Networks of ING Populations
In scenario 1, we first investigated the effect of uncorrelated noise
input on the synchronization of two coupled inhibitory networks
that produce a gamma oscillation via an INGmechanism (similar
to Meng and Riecke, 2018).

In this scenario, both inhibitory networks were driven by
external, uncorrelated noise. Importantly, network 1 had a higher
natural frequency than network 2 as network 1 was subject to
stronger noise. This difference was controlled by the Poisson rate
ratio parameter p. We then explored whether, and if so to what
extent, certain noise strengths σ 2 might be able to enhance the

2https://matplotlib.org/
3https://github.com/ChristophMetzner/Synchronization-by-Uncorrelated-Noise
4https://pypi.org/project/matplotlib/
5https://brian2.readthedocs.io/en/stable/user/numerical_integration.html
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synchronization between the networks in relation to the Poisson
rate ratio p.

3.1.1. Exploration
For a fixed Poisson rate ratio p, e.g., p = 0.85, we observed
that the dominant frequency ratio and the phase synchronization
between networks improved if the noise strength σ 2 was
sufficiently increased (Figure 2A). At the same time, the within
phase synchronization of the respective inhibitory networks
decreased. For sufficiently large Poisson rate ratios p (typically
p > 0.75), an increase above a certain threshold in the
noise strength generally improved the synchronization between
the networks initially (Figure 2A). Additionally, higher noise
Poisson rate ratios seemed to lower the minimal noise strength
σ 2 required to transition the two networks to a frequency and
phase locked state.

Furthermore, the results of the one-dimensional exploration
(Figure 2B) highlighted the opposing relationship between
within and across network synchronization when noise strength
σ 2 was increased. In this case, the Poisson rate ratio was initially
set to p = 0.85.

Again, the dominant frequency ratio and the mean phase
coherence between the networks increased while synchronization
within the networks decreased. Interestingly, once σ 2 reached
1.4, the network abruptly transitioned to a frequency locked state
as the dominant frequency ratio jumped to and stayed at 1.0 while
phase locking was increased only slowly with further increase
in strength. Although an increase in noise could apparently
improve inter-network synchronization, the beneficial effect was
limited. In this case, the maximum was reached at σ 2 of 1.9
and a further increase worsened both within and across network
synchronization. Additionally, the dominant frequency ratio
began to fluctuate at a noise strength of 3.0.

3.1.2. Analysis of Three Distinct States
We then proceeded to compare three parameter configurations,
each of which showed a different state in the scenario of two
coupled inhibitory networks:

State 1: Unsynchronized activity across and synchronized

activity within networks—Weak noise and weak inter-
network coupling (Figure 3A)

State 2: Synchronized activity across and within

networks—Weak noise and strong inter-network
coupling (Figure 3B)

State 3: Synchronized activity across and unsynchronized

activity within networks—Strong noise and weak
inter-network coupling (Figure 3C). In contrast
to the second state, synchronization within the
networks was impaired, pointing towardz a different
synchronization mechanism.

Additionally to the case of weak inter-network coupling with
weak and strong noise (state 1 and 3, respectively), which was
already explored in Meng and Riecke (2018), we here also
included the case of strong inter-network coupling with weak
noise. As we will demonstrate later, state 2 and 3 both displayed
synchronization across networks, however, the underlying

synchronization mechanism was fundamentally different. Thus,
we here extend the findings of Meng and Riecke (2018) for
ING networks.

State 1 (Figure 3A) was characterized by a high within-
network synchronization and no synchronization across
networks. This was not surprising, since the coupling
strength between networks and the noise strength were
both comparatively weak so that the behavior of one network
was not considerably influenced by activity from the respective
other network. Specifically, there was a mismatch between the
dominant frequencies of the two networks (55 Hz for network 1
and 39 Hz for network 2), because network 2 received noisy spike
input with a lower rate determined by the Poisson rate ratio p, in
this case p = 0.85. Unsurprisingly, the temporal evolution of the
networks’ phases also did not display any coherence between the
two networks. Further, the coherent and rhythmic firing of the
inhibitory neurons confirmed the high phase synchronization
within each network.

For state 2 (Figure 3B), coupling strength between the
networks was increased until the two networks synchronized.
This state was characterized by a homogeneous behavior
within networks and across networks, demonstrated by the
overlapping power spectra and matching dominant frequencies,
confirming a 1:1 frequency locking. This was further confirmed
by the evolution of the phases of the networks. Interestingly,
while both networks again displayed rhythmic behavior, the
participation of neurons in network 2 was markedly reduced
compared to network 1 and only a small fraction of the
neurons participated in each cycle. The networks synchronized
through a winner-takes-all effect in favor of the faster network
1. By activating inhibitory neurons in network 2, network
1 suppressed all neurons in network 2 that did not spike
precisely in cycles of the inhibitory rhythm of network 1.
Over time, the population activity of network 2 synchronized
with the population activity of network 1. Again, the total
power in network 2 was lower compared to network 1,
since network 2 received a lower proportion of the noise
input and was subject to strong inhibition from the faster
network 1.

In state 3 (Figure 3C), when we increased noise strength
while keeping inter-network coupling weak, the networks also
transitioned to a 1:1 phase and frequency locked state. But
contrary to state 2, this was achieved through the increased
variability in the membrane potentials, which weakened the
synchronization within a network, while allowing a variable
fraction of neurons in the slower network 2 to participate in
cycles of network 1. The increase in noise strength increased spike
time variability inside a network, thereby weakening the gating
effect of inhibition, which led to an acceleration of population
rhythms and explained the higher dominant frequencies in
the power spectra of both networks compared to state 1 and
2. Similar to state 2, the dominant frequencies matched, but
the noise led to a spread in the power of both network
signals, especially in network 2. Furthermore, the networks
were in general 1:1 phase locked despite some occasional
irregularities caused by the higher variability of spiking in both
networks due to the strong noise. In state 2, strong inhibition
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FIGURE 2 | Scenario 1—Exploration of two interacting all-to-all connected inhibitory networks driven by the ING mechanism. (A) Heat maps visualizing

two-dimensional exploration over noise strength σ 2 and Poisson rate ratio p. The heat maps in the first row encode the phase synchronization within the respective

inhibitory network while the bottom row displays phase synchronization and dominant frequency ratio across the two networks. (B) Visualization of a one-dimensional

exploration over noise strength σ 2 values from 0.5 to 4.0 in 0.1 steps. The Poisson rate ratio of noise was set to p = 0.85.

from network 1 led to suppression of spikes in network 2 if
they did not fall into cycles of network 1, explaining their
synchronization over time. However, in state 3 synchronization

was induced by a different mechanism. Specifically, the strong
noise weakened the within-network synchronization (especially
in the inhibitory population) as inhibitory feedback was not
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FIGURE 3 | Three states of scenario 1. (A) Two coupled ING networks subject to weak independent noise and low inter-network coupling. With p = 0.85, σ 2
= 0.5,

and Jppii = 0.15. (B) ING networks subject to weak independent noise and strong inter-network coupling. With p = 0.85, σ 2
= 0.5, and Jppii = 0.3. (C) ING networks

subject to strong independent noise and weak inter-network coupling. With p = 0.85, σ 2
= 1.5, and Jppii = 0.15.

able to completely cancel out the noise-induced randomness
contrary to the weak noise in state 2. This reduced inhibition
inside a network enabled spikes of neurons in network 1

to have a bigger influence on the neurons in network 2,
explaining the sparse spike participation of network 2 in cycles
of network 1.
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3.2. Uncorrelated Noise Can Synchronize
Networks of PING Populations
Next, we explored the effects of uncorrelated noise in
interconnected networks of excitatory and inhibitory
populations. We investigated two types of EI networks, all-
to-all coupled (scenario 2) and random, sparsely coupled
networks (scenario 3). However, since the findings were
independent of the particular coupling type we only present the
results for the biologically more plausible scenario of sparse and
random connectivity between neurons in each population. The
results for the all-to-all coupled networks can be found in the
Supplementary Figure S1.

3.2.1. Exploration
In the case of two random sparsely connected excitatory-
inhibitory networks, increased noise strength could indeed
synchronize the two networks with respect to phase and
frequency locking (Figure 4A). Similar to scenario 1, for a fixed
Poisson rate ratio p, increased noise strength σ 2 eventually
pushed the unsynchronized networks to a synchronized state.
Furthermore, there was again an inverse relationship between the
Poisson rate ratio p between the networks and the noise strength
required for the networks to synchronize their rhythms.

Interestingly, the PING rhythms seemed to be more robust
against noise than the ING rhythms in scenario 1. It required
comparatively higher noise strengths to produce any noticeable
changes in the behavior of each network. However, as soon
as the noise strength was increased sufficiently, high values
of the mean phase coherence and the dominant frequency
ratio between the two networks could be observed. Again,
this beneficial effect was bounded from above and further
increases in noise strengths led to a deterioration of both within
and across network synchronization, suggesting that network
behavior was mainly determined by the external noise input in
this parameter regime.

The parameter space in which frequency and phase locking
could be observed was reduced and limited to input Poisson
rate ratios above 0.80 (Figure 4A). The sensitivity to noise
was also visible based on the fast decline of within phase
synchronization in both networks when noise strength was
increased independently of the Poisson rate ratio p. Again, the
beneficial effect of noise was bounded and noise strengths above
7 led to low synchrony within and across networks (Figure 4A).

Furthermore, the results of the one-dimensional exploration
of scenario 3 confirmed an inverse relationship between
inter-network synchronization measures and within-network
synchronization measures over a wide range of noise strengths
(Figure 4B), matching the results from scenario 1. Together with
the mean phase coherence the dominant frequency ratio reached
high values at a certain strength threshold (at approx. σ 2

=

3.7), while the Kuramoto order parameter of each population
decreased nearly monotonically with increasing noise strength.

Again, depending on the Poisson rate ratio, increasing the
noise beyond a certain threshold had a detrimental effect on
all synchronization measures and eventually led to fluctuating
dominant frequency ratios (Figure 4B).

3.2.2. Analysis of Three Distinct States
We again investigated the same three different states as for the
ING networks (see previous section):

State 1: Unsynchronized activity across and synchronized

activity within networks—Weak noise and weak inter-
network coupling (Figure 5A)

State 2: Synchronized activity across and within networks—
Weak noise and strong inter-network coupling
(Figure 5B)

State 3: Synchronized activity across and unsynchronized

activity within networks—Strong noise and weak inter-
network coupling (Figure 5C).

Overall, for all three states we saw clear PING rhythms in both
EI networks, where excitatory neurons fired first driving the
inhibitory population which subsequently silenced the excitatory
activity. After the decay of the inhibition the excitatory neurons
fired again and the gamma cycle started over. However, the
participation of neurons in each gamma cycle varied for the three
states. While it was high for states 1 and 2, it was lower for the
third state with strong noise and weak inter-network coupling.

In state 1 (Figure 5A), the low inter-network coupling
combined with the weak noise input was not sufficient
to synchronize the two networks. Therefore, the dominant
frequencies of both networks were solely determined by the
Poisson rate ratio p = 0.85, resulting in a faster rhythm at 68
Hz for network 1 (which received stronger noise) and a slower
rhythm at 58 Hz for network 2. As the rhythms between the
two networks were not synchronized, the phases of the networks
showed, unsurprisingly, no coherence.

Once we increased the inter-network coupling strength
sufficiently in state 2, the networks synchronized their rhythms
(Figure 5B).

This was expressed by a match of the dominant frequencies
at 60 Hz. Noteworthy, the increased coupling slowed down the
rhythm of network 1. The phase plot showed a phase locked
state where the phases display a constant difference with each
other. Both networks displayed a strong PING rhythm and the
increased coupling between the networks, compared to state 1,
reduced the variability in the spike times of the I populations.

In state 3 (Figure 5C), while an increase in the noise strength
σ 2 transitioned the networks to a state in which their oscillations
were frequency and phase locked, similar to an increase in the
inter-network coupling strengths, the synchronization within
these networks was considerably decreased which was shown by
the high spike variability in the spike raster plots.

Interestingly, in contrast to state 2 where the rhythm of
network 1 slowed down to the pace of network 2, we observed the
opposite behavior in state 3. The slower network 2 sped up and
both networks shared a peak activity at 68–70 Hz. Compared to
state 1, in state 3 phase synchronization was increased, although
it did not reach the nearly perfect synchronization achieved in
state 2.

Although the PING rhythmwas still present in both networks,
variability in the firing of inhibitory, as well as excitatory cells was
markedly increased by the strong uncorrelated noise. Especially,
the firing of the E cells was spread widely across the time interval
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FIGURE 4 | Scenario 3: Exploration of two random sparsely connected excitatory-inhibitory networks driven by the PING mechanism. (A) Exploring the within and

across network synchronization behavior over different noise strengths σ 2 and Poisson rate ratio p values. (B) One-dimensional explorations over noise strength σ 2.

Poisson rate ratio stayed constant with p = 0.85. Range of 0.5 to 9.0 in 0.1 steps with runtime of 3 s for each trial.
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FIGURE 5 | Three representative states of scenario 3. (A) Weak noise and weak inter-network coupling. With p = 0.85, σ 2
= 0.7, and Jppei = 0.03. (B) Coupling

strength was increased until we observed 1:1 frequency entrainment. With p = 0.85, σ 2
= 0.7, and Jppei = 0.07. (C) Strong noise and weak inter-network coupling.

With p = 0.85, σ 2
= 4.5, and Jppei = 0.03. Only 400 out of 1,000 excitatory (red) neurons are displayed in the spike raster plots to reduce plot size.
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between two consecutive inhibitory firing cycles. This explained
the distinct decrease of the power in the frequency spectra
compared to state 1 and 2.

Since LFP proxies based synaptic currents of excitatory
cells usually more closely match experimentally recorded LFPs
(Mazzoni et al., 2008, 2015; Barbieri et al., 2014), we repeated the
analysis of the three distinct states for a current-based LFP proxy.
Specifically, we used the sum of the absolute values of AMPA
and GABA currents, which captures approximately 90% of the
variance of experimentally measured LFPs (Mazzoni et al., 2015)
and did not find any differences. The results are summarized in
Supplementary Figure S2.

3.3. Details of the Synchronization
Mechanism
After demonstrating that strong, uncorrelated was also able
to synchronize interconnected EI networks, we looked at
the synchronization mechanism in more detail. Again, the
mechanism is general to the all-to-all (scenario 2) and sparse
random connectivity (scenario 3), so we limited our analysis
to the latter to minimize redundancy. Based on Meng and
Riecke (2018) and our previous analysis of two interacting
inhibitory networks (scenario 1), we expected that the increased
heterogeneity in the inhibitory membrane potentials caused by
sufficiently strong uncorrelated noise would also be a key factor
in the noise-induced synchronization between EI networks.

3.3.1. Heterogeneity in Inhibitory Membrane

Potentials
As is evident from the previous section, the synchronization
induced by strong inter-network coupling in state 2 was
fundamentally different from synchronization induced by an
increase in the noise strengths present in state 3. Specifically, in
state 3 the inhibitory cells of the second network can be divided
into two groups based on an arbitrary gamma cycle ci of the
inhibitory population in the first network (Figure 6A). The first
group fired in cycle ci in response to the firing of the excitatory
population in network 1. However, the neurons in the second
group stayed suppressed and skipped this cycle. However, they
were more likely to fire in the next cycle ci+1. Thus, there was
always a fraction of neurons that was likely to fire at a cycle ci in
response to excitation from network 1 and a remaining fraction
that already fired in one of the previous cycles ci−1, ci−2, . . .
and, therefore, skipped cycle ci, in order to fire with increased
probability in one of the upcoming cycles ci+1, ci+2, . . . .

Overall, the noise-induced variability of the membrane
potentials weakened the PING rhythm within the networks and
thereby enhanced the responsiveness of neurons to excitation
from the respective other network outside of the temporal
window of the neurons’ network rhythm. This caused the slower
network 2 to speed up to the pace of the faster network 1.

3.3.2. Inter-spike Interval Histograms
In order to quantify the observed spike variability, we next
took a look the inter-spike interval (ISI) histograms for each
population. To get insight into how stronger noise transitions
the weak synchrony of state 1 into the high synchrony state 3,

we examined the ISI histograms of the I and E cells of both
networks (Figures 6B,C). For state 1, we observed relatively low
variance in all four groups. Importantly, with strongly increased
noise the model transitioned from state 1 to state 3 and the
variance of the ISIs of both the E and, even more pronounced,
the I populations was noticeably increased in state 3 (Figure 6C).
Besides an increase in the variance, the mean ISIs µ increased in
both I populations as well. As the dominant frequency in network
1 did not change from state 1 to state 3 and as the dominant
frequency in network 2 even increased in state 3, the higher
mean ISI implied a decrease in the participation of I cells in their
respective population rhythm.

Interestingly, the ISIs of E cells did not change as much
as those of the I cells over the transition from state 1
to state 3, although the E populations received a higher
amount of noise as input (we increased σ 2 from 0.7 to 4.5).
Conclusively, the increase in the ISI variability and mean of
the I populations confirmed the current notion that the noise-
induced heterogeneity of the I cells is a key factor in enhancing
synchronization between EI networks.

4. DISCUSSION

We explored the role of uncorrelated noise in the
synchronization of interacting gamma rhythms. We confirmed
prior results from Meng and Riecke (2018) on ING rhythms and
extended their findings to gamma oscillations produced by the
PING mechanism. To this end, we modeled two interconnected
excitatory-inhibitory networks in various network settings and
analyzed how synchronization within and across the networks
changed depending on the noise strength.

4.1. Uncorrelated Noise Facilitates
Inter-network Synchronization in PING
Networks
We found an optimal range of noise strengths that enhanced
across network synchronization. However, the beneficial effect of
noise was limited and we detected an upper and lower bound
in all three scenarios. Noise strengths above the upper bound
eventually broke the network rhythms as spiking of neurons was
mainly determined by the uncorrelated input, indicated by a
worsening of within and across network phase synchronization.
On the other hand, noise strengths below the lower bound were
not able to dampen the within network coupling sufficiently
to enhance the responsiveness of neurons to input from the
respective other network.

4.2. Noise-Induced Synchronization
Mechanism
Further, we confirmed that the mechanism described by
Meng and Riecke (2018) that underlies the noise-induced
synchronization across networks in inhibitory networks was also
present in the PING networks considered here. Although the two
investigated variants of two interacting EI networks differed in
several points from inhibitory networks, the same fundamental
mechanism could be observed. Noise caused considerable voltage
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FIGURE 6 | Synchronization mechanism based on uncorrelated noise in scenario 3. (A) The first plot displays voltage traces of I neurons in network 1 while the

second and third plot display grouped voltage traces of I neurons in network 2. We selected an arbitrary I cycle ci of network 1 in state 3 marked by the time window

[tstart, tend ] (yellow lines). A fraction of neurons participated in the selected cycle (second plot) while the remaining neurons skipped the cycle and sparsely participated

in the previous and next cycle (third plot). The values on the x axis are relative. (B) ISI histogram of state 1 with weak coupling and weak noise. (C) ISI histogram of

state 3 with weak coupling and strong noise.
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fluctuations in all neurons, thereby weakening the PING rhythm
within a network. This led to an increased responsiveness of
neurons in one network to excitation from the respective other
network as a fraction of neurons was likely to be close to its
membrane threshold. This enabled a variable fraction of neurons
to spike in response to excitation from the other network, thereby
promoting the network rhythms to synchronize over time with
the activity of the faster network. Noteworthy, in the case of
inhibitory networks, it was not excitation of the faster network
that sped up the rhythm of the slower network. Instead, inhibition
of the faster network gated the slower network similar to the ING
mechanism itself (Meng and Riecke, 2018).

Importantly, the identified synchronization mechanism
is fundamentally different from stochastic synchronization
promoted by correlations in the external noise input (as already
discussed in Meng and Riecke, 2018). Further, it also differs
from stochastic resonance (Longtin et al., 1991; Douglass et al.,
1993) or the related phenomenon of enhanced responsiveness
(Destexhe and Rudolph-Lilith, 2012) where noise amplifies a
weak input stimulus so that it can be detected by the neuron.
While the identified mechanism enhanced the responsiveness
of neurons to excitation from the other network, it did not
amplify a weak signal but instead weakened the rhythm within a
network. This rendered neurons susceptible to spikes in response
to excitation or inhibition outside of the temporal window
defined by the networks own rhythm. We also showed that the
noise-induced synchronization is different from synchronization
introduced through strong coupling between the networks and
that they show different signatures. While coupling-induced
synchronization leads to a high within- and between-network
synchronization, noise-induced synchronization shows
weaker within-network synchronization together with high
between-network synchronization. Furthermore, noise-induced
synchronization led to a speed up of the slower network to
match the oscillation frequency of the faster network, whereas
synchronization through strong coupling resulted in a slowing
down of the fast network. We propose the following view:
the fundamental aspect of the noise-induced synchronization
mechanism is the desynchronization within a network that
enhances the responsiveness of neurons to any external
stimulation outside of the short temporal window defined by the
ING or PING mechanism, in this case a second network with a
faster rhythm.

As the spiking behavior of the E population did not
considerably vary across scenarios, we hypothesize that noise-
induced variability in the inhibitory population is central to
enhancing synchronization between networks and that the
desynchronization of the E population has a supporting role by
facilitating the heterogeneity of the inhibitory population.

4.3. Role of Uncorrelated Noise in Aberrant
Neuronal Communication
Importantly, the communication through coherence (CTC)
hypothesis suggests that neuronal communication among
neuronal groups is mediated by phase synchronization (Fries,
2005, 2015). Conclusively, our findings suggest that uncorrelated

noise, mimicking the strong synaptic noise observed in the
cerebral cortex (Destexhe et al., 2003), can have a supporting
role in facilitating neuronal communication among neuronal
networks displaying rhythmic gamma band activity. In specific,
there exists an optimal level of noise that allows the transition
of networks from a desynchronized state to a synchronized
state by enhancing the responsiveness of neurons inside a
network to inhibitory and excitatory input originating from
another network. This suggests that deficits in sensory or
cognitive abilities as seen in several neurological or psychiatric
disorders which have been hypothesized to be related to aberrant
synchronization in the gamma band, might be due to an
increase in the signal-to-noise ratio that is often seen in these
disorders. For example, patients with schizophrenia show deficits
in visual Gestalt perception (Spencer and Ghorashi, 2014)
and working memory performance (Chen et al., 2014), two
cognitive processes that have been linked to gamma oscillations.
Furthermore, it has been shown that the signal-to-noise ratio
in neural activity of patients with schizophrenia is significantly
decreased (Winterer et al., 2000, 2004, 2006; Rolls et al.,
2008). Therefore, some of these deficits might be attributable
to a decreased ability of inter-network synchronizability in
the gamma band due to the increased noise levels, which
push the network of the range of noise strengths to a point
where the noise is so strong that it hinders inter-regional
synchronization. Another situation might be that the increased
noise strength actually pushes the network further within
the parameter range that facilitates synchronization, resulting,
however, in enhanced synchronization between region which
should not be strongly synchronized, i.e., generating a hyper-
synchronized state. Both possibilities could be distinguished
by their differential effects on functional connectivity (FC) (if
measured via synchronization). The first possibility would lead
to an overall decrease in FC, whereas the second would lead to an
increase of FC.

4.4. Limitations
The model we employed in our explorations is of course
a highly simplified representation of neural populations in
vivo. For instance, our model currently represents a standard
EI model of one excitatory and one inhibitory population
and ignores the existence of multiple inhibitory populations
of different interneuron types. We only modeled fast-spiking
parvalbumin-expressing (PV+) interneurons since their somatic
inhibition of regulates the timing of action potentials and
imposes brief time windows in which PCs can spike, therefore,
promoting synchronization (Silberberg, 2008). Furthermore,
PV+ interneurons seem to be responsible for the generation
of gamma oscillations (Hájos et al., 2004; Bartos et al.,
2007; Cardin et al., 2009). However, somatostatin-expressing
(SST+) and vasoactive peptide-expressing (VIP+) interneurons
contribute substantially to regulating GABAergic inhibition in
the cortex (Rossignol, 2011; Pfeffer et al., 2013; Veit et al.,
2017) and dysfunction of these interneurons are associated
with psychiatric disorders (Rossignol, 2011; Fung et al., 2014).
Additionally, SST+ interneurons are presumed to play an
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important role in synchronization of visually induced, context-
dependent gamma rhythms in visual cortex (Veit et al.,
2017).

Additionally, our model does not represent the layered
structure of cortex and therefore cannot capture the intricate
differences in information processing between different layers of
cortical regions and their oscillatory signatures.

Furthermore, in our current model we simply feed
external, uncorrelated noise into the two networks and
do not model the origin of this noise. Further studies are
warranted to elucidate the effect of different sources of
uncorrelated noise in cortical networks, such as stochastic
synaptic transmission and ion-channel noise (Faisal et al.,
2008; Renart and Machens, 2014), on the synchronization
mechanism described here. We also did not study the
interaction this noise-induced synchronization mechanism
with other synchronization mechanisms due to correlated
noise, such as stochastic synchronization (Pikovskii,
1984; Mainen and Sejnowski, 1995; Shea-Brown et al.,
2008; Abouzeid and Ermentrout, 2011), that have been
described before.
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