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It is generally appreciated that storing memories of specific events in the mammalian

brain, and associating features of the environment with behavioral outcomes requires

fine-tuning of the strengths of connections between neurons through synaptic plasticity.

It is less understood whether the organization of neuronal circuits comprised of multiple

distinct neuronal cell types provides an architectural prior that facilitates learning and

memory by generating unique patterns of neuronal activity in response to different

stimuli in the environment, even before plasticity and learning occur. Here we simulated

a neuronal network responding to sensory stimuli, and systematically determined the

effects of specific neuronal cell types and connections on three key metrics of neuronal

sensory representations: sparsity, selectivity, and discriminability. We found that when

the total amount of input varied considerably across stimuli, standard feedforward

and feedback inhibitory circuit motifs failed to discriminate all stimuli without sacrificing

sparsity or selectivity. Interestingly, networks that included dedicated excitatory feedback

interneurons based on the mossy cells of the hippocampal dentate gyrus exhibited

improved pattern separation, a result that depended on the indirect recruitment of

feedback inhibition. These results elucidate the roles of cellular diversity and neural circuit

architecture on generating neuronal representations with properties advantageous for

memory storage and recall.

Keywords: neuronal circuits, computational modeling, dentate gyrus, pattern separation, sparse coding, mossy

cells, interneurons, cellular diversity

1. INTRODUCTION

A prerequisite for highly similar experiences to be stored in the brain as distinct memories that
can be independently recalled is for different combinations of sensory inputs to produce distinct
patterns of neuronal activity. This important function of neuronal circuits is termed “pattern
separation,” and it is thought that a brain region inmammals called the hippocampus subserves this
function as part of a larger role in the storage and recall of spatial and episodic memories (Burgess
et al., 2002; Leutgeb et al., 2007; Yassa and Stark, 2011). The input layer to the hippocampus is
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called the dentate gyrus, and it is characterized by extremely
sparse and selective neuronal activity patterns during active
spatial exploration in rodents. There are greater than 10-
fold more primary output neurons in the dentate gyrus (the
granule cells) than projection neurons in the entorhinal cortex
that provide the major excitatory input to the dentate. Recent
work has shown that during spatial exploration of a given
environment,∼70% of cortical inputs are active, often at multiple
locations within the environment, while only ∼2–5% of dentate
granule cells are active, typically at a single location (Jung
and McNaughton, 1993; Senzai and Buzsáki, 2017; Hainmueller
and Bartos, 2018; Cholvin et al., 2021). In this study we
use computational modeling to investigate the neural circuit
mechanisms that support this transformation from dense and
overlapping combinatorial patterns of activity in cortex into
ultrasparse, unique patterns of activity in the hippocampus.

In addition to primary excitatory output neurons, neuronal
circuits in the hippocampus and cortex typically include
numerous classes of local inhibitory interneurons (Tremblay
et al., 2016; Pelkey et al., 2017). Inhibition from interneurons
that receive the same incoming afferent inputs as the output
neurons is termed “feedforward inhibition," and inhibition from
cells that receive input from the output neurons themselves is
called “feedback inhibition.” These classes of interneurons have
been implicated in specific computational functions in neural
circuits. One important function proposed for feedforward
inhibition is “background subtraction,” whereby inhibition grows
in proportion to and cancels the average level of input to the
circuit, enabling only large fluctuations in inputs above the
average level to drive circuit output (Grienberger et al., 2017;
Rennó-Costa et al., 2019). Here we ask whether this background
subtraction mechanism can support a constant level of output
given a wide range in the total number of active inputs.

Feedback inhibition has been proposed to regulate the
maximum number of output neurons that respond to the same
pattern of input (de Almeida et al., 2009; Stefanelli et al.,
2016; Rennó-Costa et al., 2019). This circuit function has been
termed “winner-take-all,” or “lateral” inhibition, whereby the
neurons receiving the highest level of excitatory input recruit
feedback inhibition that suppresses neighboring neurons which
are receiving less excitation. However, previous modeling work
has shown that feedback inhibition alone is not able to prevent
the number of active output neurons from increasing as the
total amount of afferent input grows (Rennó-Costa et al., 2019).
Furthermore, it is not clear if the extremely low fraction of
active output neurons in circuits with ultrasparse representations
like the hippocampal dentate gyrus is sufficient to activate the
level of feedback inhibition necessary to support “winner-take-
all” competition.

Another neuronal cell type that is present in the dentate gyrus
may provide a solution to this conundrum—themossy cell. These
somewhat atypical neurons are excitatory interneurons—they
form recurrent synapses within the dentate gyrus that contact
inhibitory interneurons, the excitatory granule neurons, and
other mossy cells, but do not send projections downstream to
other circuit layers. Mossy cells receive their primary excitatory
input from granule cells, categorizing them as “feedback

excitatory” (FB Exc) neurons (Scharfman and Myers, 2013;
Scharfman, 2016, 2018; Sun et al., 2017; Li et al., 2021; Ma
et al., 2021). In contrast to dentate granule cells, mossy cell
activity is less sparse and less selective, with most mossy cells
active at multiple positions in space and in multiple distinct
environments (Danielson et al., 2017; GoodSmith et al., 2017;
Senzai and Buzsáki, 2017). This could be in part due to the
recurrent connectivity between mossy cells which could serve to
amplify and self-sustain a high degree of activity (Ma et al., 2021).

Since mossy cells both directly excite granule cells,
and indirectly inhibit them by recruiting feedback
inhibition (Scharfman, 1995), it has not been clear whether
the net impact of mossy cells on granule cells is excitatory or
inhibitory. However, recent work has shown that optogenetic
activation of mossy cells dampens hippocampal excitability in
epileptic mice (Bui et al., 2018), supporting an important role
for mossy cells in recruiting inhibition. In this study, we tested
the hypothesis that mossy cells provide the excitatory drive
to feedback inhibitory cells necessary to support competition
between granule cells under conditions when too few granule
cells are active to recruit feedback inhibition on their own. We
constructed a simple network model comprised of threshold
linear rate neuronal units with conductance-based synapses, and
simulated neuronal responses to a combinatorial set of stimuli
with a wide range in the number of active inputs. To investigate
the impact of specific cell types and connections on sparsity,
selectivity, and discriminability of neuronal output activity
patterns, we systematically compared network configurations
comprised of different combinations of feedforward and
feedback inhibitory and excitatory cells. We found that, even
when synaptic connection strengths are initialized randomly
without learning, incorporation of biologically realistic neuronal
cellular diversity and connectivity enabled highly divergent
activity patterns to be generated from largely overlapping
patterns of input.

2. RESULTS

2.1. Separating Patterns With a Wide
Range of Input Activity Levels
To explore the impact of specific neural circuit elements on
pattern separation, we constructed a series of network models
each incorporating different combinations of distinct neuronal
cell types. For this purpose, cell types were differentiated by
intrinsic properties (cellular time constants), circuit connectivity,
neurotransmitter identity (excitatory or inhibitory), and
their roles in circuit computation (feedforward or feedback).
We first constructed a simple network with a single cell
population of excitatory output neurons receiving feedforward
excitation from a small number of afferent inputs (Figure 1A;
see Methods). Given seven input units with binary activity
(either 0 or 1), a combinatorial set of 27 = 128 distinct
input patterns was generated (Figure 1B). For each input
pattern, the selected binary input units were activated
continuously for a simulated duration of 350 ms, during
which conductance, voltage, and activity dynamics were
computed for all other cells. Thus, input patterns were
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FIGURE 1 | Sparsity and selectivity in a simple neuronal network model. (A) Diagram illustrating the connectivity of a simple model network containing only excitatory

neurons. (B) Patterns of activity consisting of all possible combinations of 7 binary input units. (C) Idealized pattern of output where each input pattern is represented

uniquely by a single output unit. (D) Synaptic weights from input to output units sampled from uniform (gray) and log-normal (black) distributions. (E) Activity of output

units in the network with uniform synaptic weights in response to all input patterns. (F) Same as (E) for the network with log-normal synaptic weights. (G) For each

input pattern, the fraction of the population with nonzero activity is shown for input units (red), and output units in the network with uniform (gray) or log-normal (black)

synaptic weights. Ideal fraction active output (purple) is shown for reference. (H) Population sparsity across all input patterns is shown as cumulative probability

distributions (Uniform vs. Input: p < 0.001; Log-normal vs. Input: p < 0.001; Log-normal vs. Uniform: p < 0.001). Ideal sparsity (purple) is shown for reference. (I) For

each unit in a population, the fraction of patterns with nonzero activity is shown. Units are sorted by their responsiveness. For comparison, dashed lines indicate the

fraction of active units for input units (red) and idealized output. Data shown in (D–G,I) are from single representative instances of the network. (J) Pattern selectivity

across all units is shown as cumulative probability distributions (Uniform vs. Input p < 0.001; Log-normal vs. Input: p < 0.001; Log-normal vs. Uniform: p < 0.001).

Ideal sparse output (purple) is shown for reference. In (H,J), solid lines and shading indicate mean and standard deviation across five network instances. Statistical

comparisons reflect two-sample two-tailed Kolmogorov-Smirnov tests with p-values adjusted by Bonferroni correction for multiple comparisons.

distinguished only by the number and identity of active
input units rather than by any differences in firing rate or
temporal dynamics.

Mimicking the large expansion of neuronal units from cortex
to the hippocampal dentate gyrus, we included a total of
128 output units, one for each distinct input pattern. In the
ideal case, each input pattern would activate only one single
output neuron (Figure 1C), as this representation would be
maximally sparse (for each pattern, a minimum fraction of the
population would have nonzero activity), selective (each unit
would have nonzero activity for a minimum fraction of the
presented patterns), and discriminable (output activity would
have minimal overlap across different patterns). Note that we do
not expect this ideal output representation to emerge without
fine-tuning of the synaptic weights, which would require a
learning process or network training procedure. Rather, here we
sought to determine how closely the network output activities
can approach this idealized target when initialized with random
connection strengths, before learning. This will then establish a
baseline for comparison to understand the impact of including
additional neuronal cell types in the network.

First we sampled synaptic weights from a uniform distribution
(Figure 1D) that ranged from zero to a maximum weight
value obtained by an optimization procedure that aimed to
maximize metrics of sparsity, selectivity, and discriminability
of the output activity patterns. These metrics were based on
quantifications used in previous studies of pattern separation and
population coding (Willmore and Tolhurst, 2001; Berkes et al.,

2009; Myers and Scharfman, 2009; Braganza et al., 2020) and
are described in more detail in the Methods section. Neuronal
units were implemented as single-compartment leaky integrators
of synaptic currents generated by saturable conductance-based
synapses. The activity of each output unit was either zero if the
weighted sum of its inputs was below an activation threshold, or
varied up to a saturating maximum value of one (see Methods).
Since excitatory synaptic weights were all positive, as the number
of active inputs grew across different patterns, the number of
active output units also increased (Figures 1E,G). Compared
to the input units, which were each active for exactly 50% of
the patterns, the majority of the output units in this network
with uniform synaptic weights exhibited nonzero activity for the
majority of presented patterns (Figure 1I), which was far from
the target ideal output.

We next considered a network with synaptic weights
sampled instead from a log-normal distribution (Figure 1D).
Experimental evidence indicates that many hippocampal and
cortical neurons contain such skewed distributions of synaptic
weights such that the average synaptic strength is weak, but
a minority of synapses have strengths much greater than
the average (Buzsáki and Mizuseki, 2014). This could enable
neurons to exhibit a high degree of selectivity for a minority of
stimuli (de Almeida et al., 2009; Grienberger et al., 2017; Rubin
et al., 2017). Indeed, tuning the mean synaptic strength in this
network resulted in output activities with fewer active units per
pattern (Figures 1F,G), and with a higher proportion of output
units responding to a minority of patterns compared to either the
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FIGURE 2 | Pattern discrimination. (A–C) For each pair of input patterns, the similarity of the activities of each population is computed using the cosine similarity

metric. Representational similarity matrices are shown for input units (A), and output units in the network with uniform (B) or log-normal weights (C). (D) Cosine

similarity across all pairs of input patterns is shown as histograms for input units (red), and output units in the network with uniform (gray) or log-normal (black) synaptic

weights. Ideal output similarity (purple) is shown for reference. Data shown in (A–D) are from single representative network instances of the network. (E) Across all

pairs of patterns, discriminability is shown as cumulative probability distributions. Solid lines and shading indicate mean and standard deviation across five network

instances (Uniform vs. Input: p < 0.001; Log-normal vs. Input: p = 0.0166; Log-normal vs. Uniform: p < 0.001). Ideal discriminability (purple) is shown for reference.

Statistical comparisons reflect two-sample two-tailed Kolmogorov-Smirnov tests with p-values adjusted by Bonferroni correction for multiple comparisons.

inputs, or the network with uniform weights (Figures 1F,I). For
each of these network configurations, simulations were repeated
for five instances of each network where synaptic weights were
independently sampled from the same random distributions (see
Methods). For each input pattern, we computed a sparsity metric
as the complement of the fraction of active units (Figure 1H), and
for each unit, we computed a selectivitymetric as the complement
of the fraction of active patterns (Figure 1J). As exceptions,
patterns with zero active units were considered to have a sparsity
value of zero rather than one, and units with zero active patterns
were considered to have a selectivity value of zero instead
of one (Supplementary Figure S1; see Methods). Comparing
the distributions of sparsity values across patterns, and the
distributions of selectivity values across units, the network with
log-normal weights exhibited increased sparsity and selectivity
relative to both the inputs and the network with uniform weights
(Figures 1H,J).

In order to quantify how discriminable patterns of neuronal
activity were from each other, we considered the activity of a
population to be a vector with each element corresponding to
one unit in the population. We computed the angle between
each pair of activity vectors using a metric called cosine
similarity (see Methods). The input patterns themselves ranged
in similarity, with patterns consisting of only a single active unit
being dissimilar from most other patterns, and with patterns
consisting of a high number of active units being highly
similar to many other patterns (Figures 2A,D). In contrast,
the patterns of activity produced by the output population in
the network with uniform weights were even more similar to
each other, as the activity of most units correlated with the
number, rather than the identity of active inputs (Figures 2B,D).
The output activities of the network with log-normal weights
were less similar across patterns compared to the network
with uniform weights, and were comparable to the inputs
themselves (Figures 2C,D). For each pair of patterns, we also
computed a discriminability metric as the complement of cosine
similarity, with an exception that patterns with zero active
units were considered to have a discriminability of zero rather
than one (Figure 2E, Supplementary Figure S1; see Methods).

When averaged across network instances, the distribution of
discriminability values was higher for the network with log-
normal weights compared to the network with uniform weights,
but both were reduced compared to the discriminability of the
inputs (Figure 2E).

In summary, skewed initial distributions of excitatory synaptic
weights help to promote and enhance the sparsity, selectivity,
and discriminability of highly similar patterns of inputs. We
next tested whether the addition of specific classes of inhibitory
interneurons to the network can further improve these metrics of
pattern separation.

2.2. Feedforward Inhibition
In accordance with hippocampal and cortical circuits in which
excitatory neurons far outnumber inhibitory neurons (Tremblay
et al., 2016; Pelkey et al., 2017), we introduced a small
population (7 units) of feedforward inhibitory neurons into
the network (Figure 3A) to examine the impact of this circuit
element on the generation of unique patterns of output
given highly similar patterns of input (Figure 1A). We again
sampled excitatory input weights onto output cells from a log-
normal distribution (Figure 1D), and now sampled excitatory
input weights onto feedforward interneurons and inhibitory
weights from interneurons onto output cells from uniform
distributions. This is consistent with experimental observations
that hippocampal inhibitory neurons have reduced stimulus
selectivity compared to excitatory neurons, and inhibitory
conductances onto hippocampal excitatory neurons exhibit
less heterogeneity than excitatory conductances (Grienberger
et al., 2017). The mean weight of each projection between
cell types was optimized to maximize sparsity, selectivity,
and discriminability (see Methods). This resulted in an
increased proportion of output activity patterns with high
sparsity, and an increased proportion of output units with
high selectivity compared to the network with no inhibitory
elements (Figures 3B,F,G; “No inhibition” condition duplicated
from “Log-normal weights” condition in Figure 1). These
results are consistent with the above-mentioned “background
subtraction” function of feedforward inhibition, which enables
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FIGURE 3 | Network models with feedforward inhibition. (A) Diagram illustrating the connectivity of a simple model network containing populations of excitatory and

feedforward inhibitory neurons. (B) Activity of output units in the network with feedforward inhibition in response to all input patterns. (C) Representational similarity

matrix is shown for output units in the network with feedforward inhibition. (D,E) Same as (B,C) for a variant of the network with feedforward inhibition optimized

without a constraint on the pattern selectivity of output units. Data shown in (B–E) are from single representative network instances of the network. (F) Population

sparsity across all input patterns is shown as cumulative probability distributions (FF Inhibition vs. No inhibition: p < 0.001; No selectivity constraint vs. No inhibition:

p < 0.001; FF Inhibition vs. No selectivity constraint: p < 0.001). (G) Pattern selectivity across all output units is shown as cumulative probability distributions (FF

Inhibition vs. No inhibition: p < 0.001; No selectivity constraint vs. No inhibition: p < 0.001; FF Inhibition vs. No selectivity constraint: p < 0.001). (H) Output pattern

discriminability is shown as cumulative probability distributions (FF Inhibition vs. No inhibition: p = 0.292; No selectivity constraint vs. No inhibition: p < 0.001; FF

Inhibition vs. No selectivity constraint: p < 0.001). In (F–H), solid lines and shading indicate mean and standard deviation across five network instances. Statistical

comparisons reflect two-sample two-tailed Kolmogorov-Smirnov tests with p-values adjusted by Bonferroni correction for multiple comparisons.

the total output activity to be less sensitive to the total
input activity.

However, the addition of feedforward inhibitory interneurons
did not result in any improvement in pattern discriminability
(Figures 3C,H). This suggested that this network configuration
resulted in many of the same units participating in representing
the same patterns. We wondered if the relative strength of
inhibition was increased, if the number of active units per pattern
could be further decreased and pattern discriminability could
be increased. However, we found that models with increased
ratios of inhibition to excitation often completely suppressed
the activity of some units such that they did not respond
to any input patterns, and thus exhibited zero selectivity. To
demonstrate this, we removed the selectively criterion during
optimization entirely and analyzed the resulting patterns of
output activity (Figure 3D). Indeed, this network configuration
demonstrated the capability of feedforward inhibition to greatly
increase sparsity (Figure 3F) and improve discriminability
(Figures 3E,H), but it came at the extreme cost of decreasing the
selectivity of individual output units (Figure 3G), the majority of
which became silenced and did not participate in representing
any of the patterns (Figure 3D). These results show that, under
conditions of large variance in the number of active inputs,
feedforward inhibition is able to normalize the number of active
outputs, but is unable to improve overall pattern discriminability
without decreasing the participation and selectivity of excitatory
output neurons.

2.3. Feedback Inhibition
The above results suggest that additional mechanisms besides
feedforward inhibition may be required to ensure that different

output units are activated by different patterns of inputs.
Previously, it has been shown that feedback inhibition can
support pattern separation by implementing a “winner-take-all”
competition between output units. Within this framework, those
output units that receive the most excitation recruit feedback
inhibition, which then prevents the majority of other units
from crossing threshold for activation. However, in previous
models of feedback inhibition, the number of active output
neurons typically scales with the amount of excitation from
afferent inputs, so it is not clear whether this mechanism
alone can support ultrasparse representations across a range
of input activity levels (de Almeida et al., 2009; Rennó-
Costa et al., 2019). Thus, we tested the effects of including
a small population (7 units) of feedback inhibitory neurons,
either alone or in combination with a separate population
of feedforward inhibitory neurons (Figures 4A,D), on output
sparsity, selectivity, and discriminability.

In the network with feedback inhibition alone, the average
number of active units per pattern was slightly reduced
compared to the network with no inhibition (Figures 4B,G),
but total output activity was not prevented from increasing
in proportion to the number of active inputs. This reflects
a tension between maximizing sparsity at the highest input
level while maintaining a minimum nonzero number of active
units for the lowest input level. Without silencing the entire
output population for any patterns or silencing any units
across all patterns, feedback inhibition was unable to increase
either the selectivity of output units or the discriminability
of output patterns (Figures 4B,C,H,I). This limitation also
constrained the performance of a network with both feedforward
and feedback inhibitory populations such that the network
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FIGURE 4 | Network models with feedback inhibition. (A) Diagram illustrating the network configuration with only feedback inhibition. (B) Activity of output units in the

network with only feedback inhibition in response to all input patterns. (C) Representational similarity matrix is shown for output units in the network with only

feedback inhibition. (D) Diagram illustrating the network configuration with both feedforward and feedback inhibition. (E,F) Same as (B,C) for the network with both

feedforward and feedback inhibition. Data shown in (B,C,E,F) are from single representative network instances of the network. (G) Population sparsity across all input

patterns is shown as cumulative probability distributions (FF Inhibition vs. No inhibition: p < 0.001; FB Inhibition vs. No inhibition: p < 0.001; FF + FB Inhibition vs. No

inhibition: p < 0.001; FB Inhibition vs. FF Inhibition: p < 0.001; FF + FB Inhibition vs. FF Inhibition: p < 0.001; FF + FB Inhibition vs. FB Inhibition: p = 1.00).

(H) Pattern selectivity across all output units is shown as cumulative probability distributions (FF Inhibition vs. No inhibition: p < 0.001; FB Inhibition vs. No inhibition:

p = 0.509; FF + FB Inhibition vs. No inhibition: p = 0.666; FB Inhibition vs. FF Inhibition: p < 0.001; FF + FB Inhibition vs. FF Inhibition: p < 0.001; FF + FB Inhibition

vs. FB Inhibition: p = 1.00). (I) Output pattern discriminability is shown as cumulative probability distributions (FF Inhibition vs. No inhibition: p = 0.292; FB Inhibition

vs. No inhibition: p = 1.00; FF + FB Inhibition vs. No inhibition: p = 1.00; FB Inhibition vs. FF Inhibition: p = 0.198; FF + FB Inhibition vs. FF Inhibition: p = 0.226;

FF + FB Inhibition vs. FB Inhibition: p = 1.00). In (G–I), solid lines and shading indicate mean and standard deviation across five network instances. Statistical

comparisons reflect two-sample two-tailed Kolmogorov-Smirnov tests with p-values adjusted by Bonferroni correction for multiple comparisons.

exhibited lower degrees of sparsity and selectivity than the
network with only feedforward inhibition (Figures 4D–H).
Note that during optimization of networks with multiple cell
populations, we imposed additional constraints on the activity
of interneurons to ensure that the activity of each interneuron
population was nonzero for the majority of input patterns
(Methods). This prevented the network with both feedforward
and feedback inhibitory interneurons from simply silencing
the feedback interneurons to achieve the performance of the
network with only feedforward inhibition. In summary, when
simple networks are challenged to represent inputs across a
wide range of activity levels with a consistently low number
of active output units, canonical feedforward and feedback
inhibitory neuronal populations have limited ability to improve
pattern separation without silencing units or suppressing the
activity of the entire output population when total input activity
is low.

2.4. Dedicated Recurrent Excitatory
Feedback Interneurons (Mossy Cells)
The above results suggest that standard feedforward and feedback
inhibitory neuronal circuit motifs may be insufficient to support
a maximally sparse stimulus representation. Feedforward
inhibition that is too strong silences output units at the lowest
input levels, and ultrasparse activity in an excitatory output
population may be too low to provide enough excitation to
drive feedback inhibitory cells beyond their activation threshold.
Within the hippocampus, this problem may be unique to the

dentate gyrus, as the fraction of output neurons that are active
in a given spatial context in the CA3 and CA1 areas of the
hippocampus are reported to be closer to 20–30%, compared to
2–5% for dentate granule cells (Hainmueller and Bartos, 2018).
Interestingly, the dentate gyrus circuit includes an additional
cell population not present in the other hippocampal regions,
the mossy cells, which has features that could be beneficial for
pattern separation (Myers and Scharfman, 2009). These cells
are recurrently connected feedback excitatory interneurons,
which could potentially increase the activity of granule cells via
a direct excitatory connection (Ratzliff et al., 2004), or decrease
their activity indirectly by activating local feedback inhibitory
neurons (Scharfman, 1995; Bui et al., 2018). First, we tested
whether this latter indirect feedback inhibitory function of
mossy cells could improve pattern discrimination.

While the previous network model with both feedforward
and feedback inhibition contained a direct recurrent connection
from excitatory output neurons to feedback inhibitory cells,
here we removed that direct connection and replaced it with
an indirect inhibitory pathway – output neurons provided
input to a population (7) of mossy cell-like excitatory feedback
interneurons, which then excited the feedback inhibitory
cells (Figure 5A). Importantly, feedback excitatory cells were
recurrently connected to each other, enabling small amounts
of excitation from the output neurons to be amplified by this
positive feedback loop. This network configuration exhibited
marked improvements in all three metrics of pattern separation
– sparsity, selectivity, and discriminability (Figures 5B,C,J,K,L).
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FIGURE 5 | Network models with an excitatory feedback population. (A) Diagram illustrating the network configuration with indirect feedback inhibition, acting

through an excitatory feedback interneuron population. (B) Activity of output units in the network with feedforward and indirect feedback inhibition in response to all

input patterns. (C) Representational similarity matrix is shown for output units in the network with feedforward and indirect feedback inhibition. (D) Diagram illustrating

a variant of the network configuration shown in (A) without recurrent connections between excitatory feedback interneurons. (E,F) Same as (B,C) for the network

without recurrent connections between excitatory feedback interneurons. (G) Diagram illustrating a variant of the network configuration shown in (A) with an additional

connection from feedback excitatory interneurons to the output population. (H,I) Same as (B,C) for the network with an additional connection from feedback

excitatory interneurons to the output population. Data shown in (B,C,E,F,H,I) are from single representative network instances of the network. (J) Population sparsity

across all input patterns is shown as cumulative probability distributions (FF + indirect FB vs. FF + direct FB: p < 0.001; No recurrent vs. FF + direct FB: p = 0.413;

FB Excitation vs. FF + direct FB: p < 0.001; No recurrent vs. FF + indirect FB: p < 0.001; FB Excitation vs. FF + indirect FB: p < 0.001). (K) Pattern selectivity across

all output units is shown as cumulative probability distributions (FF + indirect FB vs. FF + direct FB: p < 0.001; No recurrent vs. FF + direct FB: p = 0.996;

FB Excitation vs. FF + direct FB: p < 0.001; No recurrent vs. FF + indirect FB: p < 0.001; FB Excitation vs. FF + indirect FB: p < 0.001). (L) Output pattern

discriminability is shown as cumulative probability distributions (FF + indirect FB vs. FF + direct FB: p < 0.001; No recurrent vs. FF + direct FB: p = 1.00; FB Excitation

vs. FF + direct FB: p < 0.001; No recurrent vs. FF + indirect FB: p < 0.001; FB Excitation vs. FF + indirect FB: p < 0.001). In (J–L), solid lines and shading indicate

mean and standard deviation across five network instances. Statistical comparisons reflect two-sample two-tailed Kolmogorov-Smirnov tests with p-values adjusted

by Bonferroni correction for multiple comparisons.

To test the hypothesis that this improvement depended on self-
amplification by the recurrent connections between excitatory
interneurons, we also tested a network configuration with this
positive feedback connection removed (Figure 5D). Indeed, in
the absence of this amplification mechanism, all metrics of
pattern separation were decreased (Figures 5E,F,J,K,L). In fact,
performance of this network was comparable to the network
without excitatory feedback interneurons (Figures 5J–L; “FF
+ direct FB Inhibition” condition duplicated from “FF + FB
Inhibition” condition in Figure 4). This indicated that simply
adding an additional filter between excitatory output and
inhibitory feedback is insufficient to reduce the fraction of active
output neurons. Rather, the feedback excitatory interneurons
helped by separating the dual roles of reporting sparse output
to downstream areas, and providing dense excitation to local
inhibitory neurons. Thus, ultrasparse activity of output neurons
could be maintained by “offloading” the role of recruiting

feedback inhibition to a dedicated excitatory interneuron
population whose activity is not required to be sparse (Danielson
et al., 2017; GoodSmith et al., 2017; Senzai and Buzsáki, 2017).

Finally, we sought to test if this function of excitatory
interneurons could be reconciled with the additional role of
dentate mossy cells in directly exciting the output granule
neurons. By providing an additional source of dense excitation
to the output cells that is less selective across patterns, this circuit
element could potentially counteract the benefits of the indirect
feedback inhibitory motif and actually reduce output sparsity
and pattern separation. Importantly, we found that a network
that incorporated all known output connections of dentate mossy
cells, including the direct feedback excitatory connection to the
output population (Figure 5G), was able to maintain a high
degree of sparsity and selectivity (Figures 5H,J,K), and actually
resulted in improved pattern discriminability relative to the
network without this additional excitatory feedback connection
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(Figures 5I,L). These results indicate that the incorporation of a
specialized excitatory feedback interneuron in the dentate gyrus
supports the pattern separation function of the hippocampus
by enabling overlapping patterns of input to activate maximally
sparse and minimally overlapping patterns of output across a
broad range of input activity levels.

3. DISCUSSION

In this study we simulated and analyzed a series of simple
neuronal network models incorporating different combinations
of inhibitory and excitatory interneuron populations based
on the neural circuit architecture of the rodent hippocampal
dentate gyrus. We challenged these networks with a set of
highly overlapping patterns of afferent input that spanned
a wide range of total activity levels, and compared their
abilities to produce unique patterns of output in response to
each presented pattern. We found that standard feedforward
and feedback inhibitory circuit motifs were insufficient to
enable the excitatory output population in these networks to
represent each stimulus with a minimal but nonzero number
of active output units with minimal overlap across patterns.
Interestingly, we found that incorporating into the network a
dedicated recurrent excitatory interneuron modeled after the
mossy cells of the dentate gyrus resulted in output patterns
that were highly sparse and discriminable from each other.
These specialized excitatory feedback interneurons received a
copy of the sparse output of the circuit, increased their own
activity via recurrent excitatory connections with each other,
and then provided dense excitation to feedback inhibitory
interneurons that in turn enforced a low fraction of active
output neurons.

Our modeling results demonstrated that pattern separation
was robust to inclusion of the direct excitatory feedback
connection from mossy cells to granule cells, but that it was
not required (but see Myers and Scharfman, 2009). While
here we aimed to identify architectural priors that may enable
biological neural circuits to initially perform pattern separation
on sensory stimuli prior to learning, in future work it will be
important to determine how the presence of excitatory feedback
from mossy cells influences experience-dependent synaptic
plasticity and pattern storage, which is expected to fine-tune
synaptic strengths to improve output pattern discriminability
even further. Interestingly, recent work showed that silencing of
mossy cells during memory encoding degraded future recall (Bui
et al., 2018). However, the activity of mossy cells was not
required to recall a spatial memory that had previously been
successfully encoded. This suggests that another function of
mossy cells may be to promote, or “gate” synaptic plasticity in
dentate granule cells, but that once the appropriate modifications
in synaptic strength have been made to the cortical inputs
to the granule cells, the mossy cells are not required for
the appropriate sparse pattern to be recalled. Supporting this
possibility, mossy cells preferentially synapse onto the proximal
portion of granule cell dendrites (Buckmaster et al., 1996),
making them well positioned to influence dendritic events.
In particular, dendritic depolarization by mossy cell input

could promote the generation of dendritic spikes, which have
been shown to drive synaptic plasticity in granule cells (Kim
et al., 2018). Compartmentalization and nonlinear integration
of synaptic input in granule cell dendrites may also directly
contribute to representational sparsity (Chavlis et al., 2017).
Finally, in this study we did not explore the roles of temporal
dynamics such as synaptic adaptation and population oscillations
in pattern separation. Both synapses from granule cells onto
mossy cells and from mossy cells onto granule cells exhibit low
basal release probabilities that facilitate during bouts of high
firing rate (Lysetskiy et al., 2005; Hashimotodani et al., 2017),
and the firing rates of both granule cells and mossy cells have
been shown to be modulated and entrained by hippocampal
population oscillations in the theta (∼4–10 Hz) and gamma
(∼30–80 Hz) frequency bands (Senzai and Buzsáki, 2017).
These features may enable the dentate gyrus to additionally
discriminate inputs at distinct frequencies (Braganza et al., 2020),
meriting further investigation.

Overall, the simulation results presented here provide insight
into how biological diversity of neuronal cell types expand the
computational capabilities of neuronal circuits in themammalian
brain. In the case of the dentate gyrus, the pattern separation
function of the circuit requires extremely sparse population
activity, which limits the efficacy of standard winner-take-all
competition enforced by the direct recruitment of feedback
inhibition. This problem appears to have been resolved by
inclusion of an additional neuronal cell type, the mossy cells.
While analogous dedicated excitatory interneurons have not been
found in other hippocampal or cortical circuit layers, other
neuronal circuits do exhibit sparse sensory representations and
feature prominent recurrent excitatory connections (Douglas
et al., 1995; Olshausen and Field, 2004). It is possible that
in other neuronal circuits, while most excitatory neurons do
project outside the local circuit, local recurrent excitation that is
appropriately balanced by strong local inhibition could perform
a similar function as mossy cells to increase the discriminability
of sensory stimuli (Rubin et al., 2017; Sadeh and Clopath, 2021).

4. METHODS

4.1. Network Model Simulation
Computational models of neuronal circuits with a variety
of cell populations based on the hippocampal dentate gyrus
were implemented and simulated using custom code written
in python 3.8. Input to each network model variant was
provided by a population of 7 input units that could take
on binary (0 or 1) activity values. All network models
included a population of 128 output neurons, and some
models included additional neuronal cell populations of 7
units from the following categories: feedforward inhibitory
interneuron, feedback inhibitory interneuron, and feedback
excitatory neuron (Table 1). All neuronal cell models were
implemented as single-compartment leaky integrators with
membrane voltage dynamics that evolved over time as follows:

τcell
dV

dt
= −V + IR (1)
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TABLE 1 | Cell parameters used across all models.

Parameter Input Output FF Inh FB Inh FB Exc

No. of units 7 128 7 7 7

τcell N/A 0.05 0.02 0.02 0.05

Synapse τrise 0.001 0.001 0.001 0.001 0.001

Synapse τdecay 0.01 0.01 0.02 0.02 0.01

Synapse Erev +60 +60 –10 –10 +60

Synapse parameters apply to all connections from the specified population onto all other

connected populations.

where τcell is the membrane time constant, R is the neuron’s
input resistance, and I is the total synaptic current received by
each cell. For simplicity, all cells had a resting membrane voltage
of 0 mV. Synaptic currents were generated through saturable
conductance-based synapses described as:

Ii =

n
∑

j=1

wijgij(E− Vi) (2)

where gij represents the normalized synaptic conductance from
neuron j to neuron i, the synaptic weight wij is a synapse-specific
scaling factor that determines the relative strength of each input,
and Vi is the membrane potential of neuron i. The reversal
potential E was set to +60 mV for excitatory synapses, and
–10 mV for inhibitory synapses.When activity aj in a presynaptic
neuron j was nonzero, the synaptic conductance gij in neuron
i increased with kinetics determined by exponential rise time
constant τrise and saturated at the value of aj. Once activated,
synaptic conductances decreased with kinetics determined by
exponential decay time constant τdecay:

dgij

dt
=

−gij

τdecay
+

max(aj − gij, 0)

τrise
(3)

Neuronal output activities were determined by a piecewise linear
function of membrane voltage, such that output was zero for
voltages less than an activation threshold of +10 mV, and
increased linearly to a value of one at the reversal potential of
excitatory synapses (+60 mV).

Patterns of input were drawn from the combinatorial set
of 128 permutations of the activities of the 7 binary input
units (Figure 1A). One pattern of input activities was presented
at a time for a simulation duration of 350 ms. The synaptic
conductances, synaptic currents, intracellular voltages, and
output activities of all neurons in the network model comprised a
large system of coupled differential equations, which were solved
by numerical approximation using an initial value problem solver
implemented in the python package SciPy 1.5.2. Following an
initial onset transient, the activities of the neurons in the network
relaxed toward an equilibrium (Supplementary Figure S4). All
analyses were performed using neuronal activity values for each
unit that were averaged across time during the final 200 ms of
each simulation.

4.2. Analysis of Pattern Separation
In previous studies of neuronal stimulus representations, a
variety of metrics have been used to quantify pattern separation.
Here we adopted three simple and easily interpretable metrics:
population sparsity, unit selectivity, and pairwise pattern
discriminability (Supplementary Figure S1), which were defined
as follows. For each input pattern k, sparsityk was defined as:

sparsityk =

{

1− Funits,k Funits,k > 0

0 Funits,k = 0
(4)

where Funits,k is the fraction of units that had nonzero activity in
response to the input pattern k. For each unit i, selectivityi was
defined as:

selectivityi =

{

1− Fpatterns,i Fpatterns,i > 0

0 Fpatterns,i = 0
(5)

where Fpatterns,i is the fraction of patterns that the input i
responded to with nonzero activity. For each pair of patterns k
and l, discriminabilityk,l was defined as:

discriminabilityk,l =

{

1− Ck,l Funits,k > 0 & Funits,l > 0

0 otherwise
(6)

where Ck,l is the cosine similarity between the two vectors of
population activity generated in response to patterns k and l.

4.3. Optimization
For each pair of cell populations with synaptic connections,
synaptic weights were sampled randomly from either a uniform
distribution for inhibitory synapses and excitatory synapses onto
inhibitory neurons, or a log-normal distribution for excitatory
synapses onto excitatory neurons. For simplicity during model
optimization, weight distributions were parameterized by their
mean weight, with uniform distributions ranging from zero to
twice the mean weight. Log-normal distributions were initially
generated as the natural log of a random normal variable with
zero mean and unit standard deviation, and then all sampled
values were rescaled such that themean of the sampled values was
equal to the desired value. During optimization, the mean weight
values for each projection were varied within bounds from 0.01
to 1 (Table 2).

Optimization was performed using an iterative population-
based multi-objective algorithm based on simulated
annealing (Wales and Scheraga, 1999). For each model tested
with different mean weight parameters, objective costs were
computed based on the above-described metrics of population
sparsity, unit selectivity, and pattern discriminability. These
objective error values were expressed as a sum of squared
residuals after comparison to target values for maximum
sparsity, selectivity, and discriminability. Each model was
evaluated by presenting all 128 input patterns to each of 5
independent instances of the network, where in each instance
synaptic weights were independently sampled from the same
random weight distribution. Objective errors were then averaged
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TABLE 2 | Model weights.

Parameter

(mean weight)

Bounds No Inh

(uniform)

No Inh

(log-normal)

FF Inh FF Inh (no

selectivity

constraint)

Input→Output 0.01–1 0.1135 0.0681 0.1905 0.1026

Input→FF Inh 0.01–1 0.1336 0.2319

FF Inh→Output 0.01–1 0.9996 0.7684

Parameter

(mean weight)

Bounds FB Inh FF +

direct

FB Inh

FF +

indirect

FB Inh

(-) FB Exc

→FB Exc

(+) FB Exc

→ Output

Input→Output 0.01–1 0.0702 0.0775 0.3891 0.0763 0.2090

Input→ FF Inh 0.01–1 0.9183 0.1640 0.9754 0.4825

FF Inh→ Output 0.01–1 0.0125 0.3011 0.0109 0.0110

Output→FB Inh 0.01–1 0.9963 0.9920

FB Inh→Output 0.01–1 0.0100 0.0100 0.9994 0.0111 0.9983

Output→FB Exc 0.01–1 0.0167 0.9216 0.0158

FB Exc→FB Exc 0.01–1 0.7891 0.9333

FB Exc→FB Inh 0.01–1 0.8583 0.9366 0.7726

FB Exc→Output 0.01–1 0.0423

across the 5 network instances. During each of 50 iterations, a
population of 600 models with distinct parameters was simulated
and evaluated. Within each iteration, the performance of models
within a population were compared to each other and ranked
with a non-dominated sorting procedure (Deb, 2011). Then, a
new population of models was generated by randomly varying
the parameter values of the most highly ranked models from the
previous iteration. Models were not selected for further search
if they did not meet the following additional inclusion criterion:
for the output population, 90% of units must be active for at least
one pattern, and 90% of patterns must have at least one active
unit; for all interneuron populations, 80% of units must be active
for at least one pattern, and 60% of patterns must have at least
one active unit (see Supplementary Figures S2, S3). The final
optimized parameter values for each tested model configuration
are presented in Table 2.
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