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Connectomics is a developing field aiming at reconstructing the connection of the neural

system at the nanometer scale. Computer vision technology, especially deep learning

methods used in image processing, has promoted connectomic data analysis to a new

era. However, the performance of the state-of-the-art (SOTA) methods still falls behind

the demand of scientific research. Inspired by the success of ImageNet, we present an

annotated ultra-high resolution image segmentation dataset for cell membrane (U-RISC),

which is the largest cell membrane-annotated electron microscopy (EM) dataset with

a resolution of 2.18 nm/pixel. Multiple iterative annotations ensured the quality of the

dataset. Through an open competition, we reveal that the performance of current deep

learning methods still has a considerable gap from the human level, different from ISBI

2012, on which the performance of deep learning is closer to the human level. To explore

the causes of this discrepancy, we analyze the neural networks with a visualization

method, which is an attribution analysis. We find that the U-RISC requires a larger area

around a pixel to predict whether the pixel belongs to the cell membrane or not. Finally,

we integrate the currently available methods to provide a new benchmark (0.67, 10%

higher than the leader of the competition, 0.61) for cell membrane segmentation on the

U-RISC and propose some suggestions in developing deep learning algorithms. The

U-RISC dataset and the deep learning codes used in this study are publicly available.

Keywords: connectomics, EM dataset, deep learning, automatic cell segmentation, transfer learning

INTRODUCTION

Accurate descriptions of neurons and their connections are fundamental to modern neuroscience.
By depicting neurons with the help of the Golgi-staining method (Golgi, 1885), Cajal proposed the
classic “Neuron Doctrine” more than a century ago (y Cajal, 1888), which opened a new era in
modern neuroscience. Nowadays, the development of electron microscopy (EM) has enabled us to
further explore the structural details of the neural system at nanometer (nm) scales (Shawn, 2016;
Kornfeld and Denk, 2018), opening up a new field called, “Connectomics” that aims to reconstruct
every single connection in the neural system. One milestone of Connectomics is the Caenorhabditis
elegans project (White et al., 1986) which maps all 302 neurons and 7,000 connections in a
worm. Recently, a small piece of the human cortex was imaged with a high-speed scanning EM,
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which maps ∼50,000 neurons and 110,000,000 synaptic
connections (Shapson-Coe et al., 2021). Connectomic data
increase exponentially with a higher resolution of EM and a
larger neural tissue volume, even reaching the petabyte (PB)
scale (Shapson-Coe et al., 2021). Just as it took almost 15
years to complete the connectome of C.elegans, the structural
reconstruction for higher-level creatures is becoming more and
more daunting with the explosion of connectomic data. Among
many bottlenecks, accurate annotation from large amounts of
EM images is the first one that has to be solved.

Manual annotation of all the connectomic data is infeasible
because of the high annotation cost. To reduce the burden of
manual annotation for humans, one would hope to enable a
machine to annotate the connectomic data with near-human
performance automatically. Hopes are higher today because of
the rapid development of deep learning methods. However,
even with deep learning, it still requires tremendous efforts to
achieve human-level performance on this challenging task. There
were a few successful experiences to learn from the computer
science community to make the deep learning method fully
comparable to humans in Connectomics. The success of deep
learning methods highly depends on the amount of training
data and the quality of annotation. For example, in the task
of image classification, ImageNet (Russakovsky et al., 2015) has
set up a research paradigm in applying deep learning methods
for vision tasks. In 2009, by releasing a large-scale accurately
annotated dataset, ImageNet provided a benchmark (72%) for
image classification. From 2010 to 2017, a challenge called, “The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)”
was organized every year. This challenge significantly boosted
the development of deep learning algorithms. Many champions
of this challenge have become the milestones for deep learning
methods, such as AlexNet (Krizhevsky et al., 2012), VGG
(Simonyan and Zisserman, 2014), GoogleNet (Szegedy et al.,

FIGURE 1 | The history of ImageNet. The blue and red dot-dash lines represent the human performance of ImageNet classification and U-RISC segmentation,

respectively. The red circle shows the current benchmark performance of U-RISC segmentation, and the red dot line shows the expected improvement of deep

learning methods.

2015), and ResNet (He et al., 2016). As shown in Figure 1, deep
learning performance on image classification finally exceeded the
human level (95%) after 8 years of development. To summarize,
there is a roadmap for the success of ImageNet, which includes
three key steps: the first step is to establish a large-scale dataset
with high-quality annotation, which is very important for deep
learning. Based on the dataset, the second step organizes a
challenge that can evaluate algorithms at a large scale and allow
researchers to estimate the progress of their algorithms, taking
advantage of the expensive annotation effort. The third step is the
design of new algorithms based on the previous two steps. Each
of the three stages is indispensable.

Following the success of ImageNet, significant progress in the
automatic segmentation of EM was achieved by the 2012 IEEE
International Symposium on Biomedical Imaging (ISBI 2012),
which was the first challenge on the automatic segmentation of
EM in releasing a publicly available dataset (Arganda-Carreras
et al., 2015). The state-of-the-art (SOTA) methods exhibited an
unprecedented accuracy in EM cellular segmentation on the
dataset of ISBI 2012. In particular, the deep learning method, “U-
Net,” (Ronneberger et al., 2015) which was first proposed during
the challenge, becomes the backbone of many SOTA methods
in the field. However, today many deep learning methods have
become “exceedingly accurate,” and are likely to be saturated
at the ISBI 2012 (Arganda-Carreras et al., 2015). In addition,
ISBI 2012 images are 512 × 512 pixels with a resolution of 4
× 4 nm/pixels, while there are many EM images with higher
resolution in connectomics because enough high resolution
is essential to unravel the neural structures unambiguously.
For instance, 2 nm has been suggested as the historical “gold
standard” to identify synapses (DeBello et al., 2014), in particular,
to identify gap junctions (Leitch, 1992), which are common in the
neural tissues (Anderson et al., 2009). It is not clear if previous
classic deep learning methods developed on the EM images with
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relatively lower resolution can still work well on datasets with
higher resolutions.

Here, to promote the deep learning algorithms in EM datasets,
we initiated a new roadmap: We first annotated the retinal
connectomic data, RC1, from rabbit (Anderson et al., 2011)
and presented a brand new annotated EM dataset named, ultra-
high resolution image segmentation dataset for cell membrane
(U-RISC). Compared to ISBI 2012, the U-RISC has a higher
resolution of 2.18 nm/pixel and a larger size of 9,958 × 9,959
pixels. The precision of the annotation was ensured by multi-
steps of iterative verification, costing over 10,000 labor hours
in total. Next, based on the U-RISC, a competition of cellular
membrane prediction was also organized. Surprisingly, from
448 domestic participants/teams, it was observed that the top
performance of deep learning methods on the U-RISC (∼0.6, F1-
score) was far below the human-level accuracy (>0.9), in contrast
to the near-human performance of deep learning methods in
ISBI 2012. We then made fair comparisons between ISBI 2012
and U-RISC with the same segmentation methods, including
U-Net. The comparison results confirmed that U-RISC indeed
provides new challenges to the existing deep learning methods.
The U-Net, for example, dropped from 0.97 in ISBI 2012 to
0.57 in the U-RISC. To further explore how these methods
work on segmentation tasks, we introduced a gradient-based
attribution method, an integrated gradient (IG; Sundararajan
et al., 2017), to analyze ISBI 2012 and the U-RISC. The result
showed that when deciding on whether a pixel belonged to a
cell membrane or not, deep learning methods represented by
the U-Net would refer to a larger attribution region on the U-
RISC (about four times on average) than that on ISBI 2012.
This suggests that the deep learning methods might require
more background information to decide the segmentation of the
U-RISC dataset. Finally, we integrated the currently available
advanced methods, combining the U-Net and transferring the
learning recently introduced (Conrad and Narayan, 2021), and
provided a benchmark (0.6659), which is about 10% higher than
the leader board (0.6070), for the U-RISC.

Overall, our contribution in this study lies mainly in the
following three parts: (1) we provided the community with a
brand new publicly available annotated mammalian EM dataset
with the highest known resolution (∼2.18 nm/pixel) and the
largest image size (9,958 × 9,959 pixels); (2) we organized a
competition and made a comprehensive analysis to reveal the
challenges of U-RISC in the deep learning methods; (3) we
improved the benchmark with 10% to the F1-score of 0.6659. In
the Discussion, we proposed further suggestions for improving
the segmentationmethods from the perspectives ofmodel design,
loss function design, data processing, etc. We hope our dataset
and analysis can help researchers gain insights into designing
more robust methods, which can finally accelerate the speed of
untangling brain connectivity.

MATERIALS AND METHODS

Datasets
The U-RISC dataset was annotated upon RC1, a large-scale
retinal serial section transmission electron microscopic (ssTEM)

dataset, publicly available upon request and described in detail
in the study of Anderson et al. (2011). The RC1 came from the
retina of a light-adapted female Dutch Belted rabbit after in vivo
excitation mapping. The imaged volume represents the retinal
tissue with a diameter of 0.25mm, spanning the inner nuclear,
inner plexiform, and ganglion cell layers. Serial EM sections were
cut at 70–90 nm with a Leica UC6 ultramicrotome and captured
at the resolution of 2.18 nm/pixel across both axes using SerialEM
(Mastronarde, 2005). In RC1, there are in total 341 EM mosaics
generated by the NCR Toolset (Anderson et al., 2009), and we
clipped out 120 images in the size of 9,958 × 9,959 pixels from
the randomly chosen sections.

To annotate cell membrane with high quality on the 120
images, we launched an iterative annotation project that lasted
for 3 months. All the annotators were trained to recognize
and annotate cellular membrane in EM images, but only two-
thirds of all, 53 annotators, were finally qualified to participate
in the project according to their annotation results. In the
iterative annotation procedure, each EM image had undergone
three continuous rounds of annotation with the guidance of
blind review. The final round of annotation was regarded as
the “ground truth.” While the first two rounds are valuable
for analyzing the human learning process, we also reserved
the intermediate results for public release. All of the U-RISC
datasets are released at https://github.com/EmmaSRH/U-RISC-
Data-Code.

Competition
The goal of the competition was to predict cell membranes in
the EM images of U-RISC. Participants were required to return
images depicting the boundary of all neurons. F1-score was
selected as the evaluation criterion for the accuracy of the results
(Formula 1) (Sasaki and Fellow, 2007). During the evaluation
processing, according to the classes of prediction and ground
truth, the predicted pixels of images were first divided into
four types: true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). Then, two metrics, precision and
recall, were calculated from the number of these types of pixels.
The F1-score was defined as the harmonic mean of precision
and recall.

F1− score =
2× Precision× Recall

Precision+ Recall
. (1)

Precision =
TP

TP+ FP
, Recall =

TP

TP+ FN
. (2)

There were two tracks in the competition; images in Track 1 were
kept in their original size (9,958× 9,959 pixels), images in Track
2 were downsampled to the size of 1,024 × 1,024 pixels. Fifty
images, 30 as the training dataset and 20 as the test dataset, were
released in Track 1. Additionally, Track 2 contained 70 images in
total, amounting to 40 training images and 30 testing images. The
training dataset included EM images with their corresponding
ground truth, while the ground truth of the test dataset was kept
private. In both the tracks, ten images from the training dataset
served as the validation dataset for the participants to monitor
and develop their models. No statistical methods were used to
determine the assignment of images in the whole arrangement.
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Segmentation Networks
We conducted experiments to compare the performance of the
same methods on U-RISC (Track 2) and ISBI 2012. Three
representative deep learning networks such as (Table 2), U-Net
(Ronneberger et al., 2015), LinkNet (Chaurasia and Culurciello,
2017), and CASENet (Yu et al., 2017) were considered. The three
networks are all pixel-based segmentation networks. Specifically,
given the input image x, the goal of the networks is to classify
the corresponding semantic cell membrane pixel by pixel.
For the input image x and the classification function F(x),
Y

{

p
∣

∣X,2
}

,2 ∈ [0, 1] is taken as the output of the network,
which represents the edge probability of the semantic category
of the pixel p. 2 are the parameters in the network and are
optimized in the training process. Architectures of the three
networks are described as follows.

U-Net
The U-Net (Ronneberger et al., 2015) is a classical fully
convolutional network (i.e., there is no fully connected operation
in the network). Themodel is composed of two parts: contracting
path and expansive path. The contracting path follows the typical
architecture of a convolutional network. At each downsampling
step, the U-Net doubles the number of feature channels to gain
a concatenation with the correspondingly cropped feature map
from the contracting path. At the final layer, a 1×1 convolution
is used to map each 64-component feature vector to the desired
number of classes. In total, the network has 23 convolutional
layers. We use ResNet50 as its encoder.

LinkNet
The model structure of LinkNet (Chaurasia and Culurciello,
2017) is almost similar to the U-Net, which is a typical encoder–
decoder structure. The encoder starts with an initial block which
performs convolution on the input image with a kernel of size
7×7 and a stride of 2. This block also performs spatial max-
pooling in an area of 3×3 with a stride of 2. The later portion of
the encoder consists of residual blocks and is represented as the
encoder-block. To reduce parameters, the LinkNet uses ResNet18
as its encoder.

CASENet
The CASENet (Yu et al., 2017) is an end-to-end deep semantic
edge learning architecture adopting ResNet-152 as its backbone.
The classification module here consists of a 1×1 convolution and

TABLE 1 | Implementation details.

Implementation U-Net-* CASENet-* LinkNet-* U-Net-transfer

Data augmentation
√ √ √ √

Pre-training – – –
√

Learning rate 1e-3 1e-7 5e-4 2e-5

Batch size 4 2 1 4

GPUs 4 4 4 8

Epoch 100 100 300 50

Worker 16 16 8 32

a bilinear interpolation upsampling layer to generate M active
images; each image size is the same as the original image. Each
residual block is followed by a classification module to obtain
five classification activation graphs. Then, a sliced concatenation
layer is used to fuse the M classification activation graphs, and
finally, a 5M-channel activation graph is obtained. The activation
graphs are used as the input for the fused classification layer to
obtain an M-channel activation graph. The fusion classification
layer is the convolution of the M group, 1×1.

Transfer Learning
The pretrained model from Conrad and Narayan (2021) was
used in our method, specifically, MoCoV2 (Arar et al., 2020)
and CEM500K (Conrad and Narayan, 2021) were respectively
selected as the pretraining method and dataset.

Training Settings
For each dataset, the same training and testing data distribution
was utilized for the three methods. For U-RISC, during the
training, the original images were cut into 1,024 × 1,024 patches
with overlaps. Additionally, the patches were randomly assigned
to the training set and validation set according to the ratio of
50,000/20,000. For ISBI 2012, 20 images were used for training,
and 10 images were used for testing.

Loss Function and Optimization
The U-RISC image membrane segmentation task can be defined
as the pixel-level classification task. The ground truth of each
pixel is a binary value y ∈ {0, 1}, and y′ is the predicted value by
the prediction model. Y is the set of all pixels of one image. For
each algorithm, we used the same loss function and optimization
method. Specifically, focal loss and dice loss were chosen. Focal
loss and dice loss are defined as:

LFocal =
∑

Y

−
(

1− y′
)γ

log
(

y′
)

. (3)

LDice =
∑

Y

2y′y+ 1

y′ + y+ 1
. (4)

The final loss function is the summation of the two losses with
the proportion of 1: λ. That is L = LFocal + λLDice. We set
λ = 1 and γ = 2 in our experiments. When optimizing the
parameters in the network, we chose Adam (Kingma and Ba,
2014) as the optimizer.

Implementation Details
Data augmentation (random horizontal/vertical flip, random
rotation, random zoom, random cropping, random cropping,
random translation, random contrast, and random color jitter)
was used. Four Nvidia V100 GPUs were used for training. In
the testing stage, the original images were cut into the same
size as the training images, and the patches were tested. These
patches were eventually mosaiced back to the original size for
evaluation. The parameter settings are shown in Table 1. Mean
value and standard error are computed by testing the images of
each dataset. The methods with “-∗” in the table represent that
they are implemented by us.
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Image Definition Criteria
As the competition includes two tracks and the participants
have obvious different performances on them, we introduced the
four representative image definition criteria, Brenner (Subbarao
and Tyan, 1998), SMD2 (Thakkinstian et al., 2005), Variance
(Saltelli et al., 2010), and Vollath (2008) to analyze the
effects of downsampling on EM images (in discussion and
Appendix Figure). The former two consider the difference and
variance of gray values between adjacent pixels, while the latter
two consider the whole image.

Brenner gradient function simply calculates the square of the
gray difference between two adjacent pixels.

D(f ) =
∑

y

∑

x

∣

∣f (x+ 2, y)− f (x, y)
∣

∣

2
. (5)

where, f (x, y) represents the gray value of pixel (x, y)
corresponding to image f , and D(f ) is the result of image
definition calculation (the same below).

The SMD2multiplies two gray variances in each pixel field and
then accumulates them one by one.

D(f ) =
∑

y

∑

x

∣

∣f (x, y)− f (x+ 1, y)
∣

∣

∣

∣f (x, y)− f (x, y+ 1)
∣

∣. (6)

The variance function is defined as

D(f ) =
∑

y

∑

x

∣

∣f (x, y)− µ)
∣

∣

2
. (7)

where µ is the average gray value of the whole image, which
is sensitive to noise. The purer the image, the smaller is the
function value.

The Vollrath function is defined as follows:

D(f ) =
∑

y

∑

x

f (x, y)f (x+ 1, y)−MNµ2. (8)

where µ is the average gray value of the whole image, M and N
are the width and height of the image, respectively.

Attribution Analysis
We also noticed the different performance of U-Net when applied
on ISBI 2012 and U-RISC. To explore the deeper reason, we
carry out an attribution analysis on the U-Net by using the IG
(Sundararajan et al., 2017) method to quantify the contribution
maps (in section Attribution Analysis of the Deep Learning
Method on U-RISC and ISBI 2012). For a given input image x
andmodel F(x), the goal of the network is to find out which pixels
or features in x have an important influence on the decision-
making of the model or sort the importance of each pixel or
feature in x. Such a process is defined as attribution. The IG uses
the integrated value along the whole gradient line from the input
to the output. In the cell membrane segmentation task, from the
decision of a pixel of y (predicted as the cell membrane or not),
we can obtain the contribution of each pixel of the input image.
Putting the contribution of each pixel together, we record it as an

attribution field A, whose size is the same as the original image.
The value xi denotes the ith pixel in image x, and wi denotes the
attribution value of xi, representing the contribution decision of
pixel xi to y. The value of wi is normalized to [−1,1].

In the binary segmentation task, for the current input image
x, if we know that the output y is a specific value, such as y = 0,
and the corresponding reference image is x′, then we can take a
linear interpolation, i.e.,

x′ + α(x− x′). (9)

If the constant α = 0, then the input image is the base image as
that of x′. If α = 1, then the input image is the current image,
which is x. When 0 < α < 1, it can be other images.

For the output of the neural network F(x), the attribution
value of xi, wi is computed as follows.

wi = (xi − xi
′)×

∫ 1

α=0

∂F(x′ + α(x− x′))

∂xi
dα. (10)

Here, ∂F(x)
∂xi

is the gradient of F(x) with respect to xi.
As the resolution and image size of U-RISC and ISBI 2012

are different, for a fair comparison, we define the size of the
pixel attribution field as Sk, which represents the physical size
corresponding to the pixel area with the fixed contribution value
threshold, k. If the attribution value wi is greater than k, the pixel
is the one with a higher contribution in decision-making. The
area of the attribution field Sk is obtained by multiplying the
number of pixels with the attribution value, wi which is larger
than k and the corresponding physical size of the pixel (square of
resolution h).

Sk = |Awi>k| × h2, wi ∈ A (11)

Data Analysis
All statistical tests used, including statistic values and sample
sizes, are provided in the figure captions, including the mean
and standard. All analyses were performed using custom software
developed using the following tools and software: MATLAB
(R2018a), Python (3.6), PyTorch (1.6.0), NumPy (1.19.0), SciPy
(1.5.1), and matplotlib (2.2.3).

RESULTS

The Largest Ultra-High-Resolution EM Cell
Membrane Segmentation Dataset
Along with this article, we proposed a new EM dataset with cell
membrane annotated the U-RISC. To our best knowledge, U-
RISC has the highest resolution among the publicly available
annotated EM datasets (refer to Figure 2A as an example). It
was annotated upon the rabbit retinal connectomic dataset RC1
(Anderson et al., 2011) with a 2.18 nm/pixel resolution at both
the x and y axes. Taking ISBI 2012 as an example (Figure 2B)
(120 pairs of 9,958 × 9,959 pixel images in the U-RISC and
30 pairs of 512 × 512 pixel images in ISBI 2012) (Figure 2C).
One characteristic of U-RISC is that cell membranes only cover
a small area of the images, making it an imbalanced dataset for
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FIGURE 2 | Comparison between U-RISC and ISBI 2012. (A,B) An example of U-RISC and ISBI 2012 data includes the raw EM image (top) and the corresponding

annotation result (bottom). Black pixels in annotation results represent cellular membranes. (C) (Top) Both the number and size of images in U-RISC surpass those in

ISBI 2012. (Bottom) The proportion of annotated pixels, 21.65 ± 2% in ISBI 2012 and 5.10 ± 2% in U-RISC, making the latter a more imbalanced dataset.

deep learning (an average of 5.10%± 2% in U-RISC compared to
21.65%± 2% in ISBI 2012).

We employed an iterative manual annotation procedure to
ensure the quality of annotation. Because of the difficulty in
distinguishing the cell membrane from the organelle membrane,
special attention was paid to exclude the organelle membrane
from annotation (Figure 3A). In practical connectomic research,
the image quality can be affected by many reasons, such as
insufficient staining and thick section. Considering this, we
retained several images with low quality in the U-RISC to make
the dataset closer to the actual situation. Annotation on these
images costs more time and caution (Figure 3B). Labeling errors
could be detected and then corrected in each round of iteration
(Figure 4). For scientific research reasons, the human labeling
process is very valuable for uncovering the human learning
process. Therefore, the intermediate annotated results were also
reserved for public release (https://github.com/EmmaSRH/U-
RISC-Data-Code).

Ultra-High Resolution EM Images
Segmentation Competition
To investigate the performance of the deep learning methods
on the U-RISC and to propose a benchmark, a competition on
cellular membrane segmentation was organized by the Beijing
Academy of Artificial Intelligence Institution, Beijing, China

(BAAI) and the Peking University, Beijing, China (PKU)1. In
total, 448 participants took part in the competition, mainly from
domestic competitive universities, research organizations, and
top IT institutions.

There were two tracks in the competition (Table 2): Track 1
used the original images with the size of 9,958 × 9,959 pixels
as training and testing datasets, respectively. In Track 2, the
images were downsampled to the size of 1,024 × 1,024 pixels.
The purpose of Track 2 was to allow researchers with limited
computational resources to participate in the competition. The
final round of human annotation was used as the ground
truth to evaluate the algorithms, and an F1-score was applied
as the evaluation metric (for details, please refer to Methods
and Materials).

Surprisingly, from the competition, the top 6 teams in each
track gained F1-scores around 0.6 on U-RISC, which were far
below the human levels (0.92 and 0.99, the first and second
rounds of annotation). However, a previous study has shown
that the performance of the top teams in ISBI 2012 had already
been reasonably closer to the human level (Arganda-Carreras
et al., 2015). To investigate the causes of the performance gap
between the methods and humans on the U-RISC, we first
surveyed the top 6 teams in our competition. It indicated that
a variety of current popular approaches to segmentation were

1https://www.biendata.xyz/competition/urisc/
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FIGURE 3 | Examples of images with their annotations. (A) Organelle membranes were cautiously avoided to be annotated. (B) More time and patience were needed

to annotate the image with low contrast.

FIGURE 4 | Example of iterative human annotation. (A) Original image to be annotated. (B) Many errors were found in the first round of annotation. (C) After

correction, much fewer errors were detected in the second round of annotation, and the correction results were served as the final annotation. Red small triangles and

boxes indicate false-positive errors (enlargement in the bottom left), blue for false-negative errors (enlargement in the bottom right).

utilized (Figure 5). From the choice of models (Figure 5A),
the participants used the current popular image segmentation
networks, such as U-Net (Ronneberger et al., 2015), Efficientnet
(Tan and Le, 2019), and CASENet (Yu et al., 2017). For backbone
selection, the ResNet (He et al., 2016) and their variants were the
most chosen architectures. Data augmentation was ubiquitously
applied to improve the generalization of the models. About
13% of the participants used Hypercolumns (Hariharan et al.,
2015) to improve the expressiveness of the model. From the
design of the loss function, functions that can adjust penalty
ratios according to sample distributions were applied to reduce
the effect of sample imbalance, such as dice loss (Dice, 1945),

focal loss (Lin et al., 2017), and BCE loss (Cui et al., 2019).
Additionally, Adam (Kingma and Ba, 2014) was shown to be the
most chosen optimization method.

The analysis suggested that even though participants had
considered many popular methods, their performance was still
not satisfactory and varied only slightly between each other.
To identify whether this was because of the challenges of U-
RISC or the methods themselves, we picked out the three
widely used methods, the U-Net (Ronneberger et al., 2015),
LinkNet (Chaurasia and Culurciello, 2017), and CASENet (Yu
et al., 2017). We conducted a fair comparison between the
performance of each method on U-RISC (Track 1) and ISBI

Frontiers in Computational Neuroscience | www.frontiersin.org 7 April 2022 | Volume 16 | Article 842760

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Shi et al. U-RISC Challenges Deep Learning

TABLE 2 | Leaderboard of track 1 and track 2.

Track 1 (original) Track 2 (downsample)

Team name Institution F1-score Team name Institution F1-score

Human 1st – 0.92128 ± 0.012 Human 1st – 0.96915 ± 0.014

Human 2nd – 0.92128 ± 0.012 Human 2nd – 0.99891 ± 0.003

SCP173 Tencenta 0.60704 ± 0.043 Horch UCASb 0.56932 ± 0.053

yangsenwxy SCUc 0.60701 ± 0.042 Deadline NJUd 0.56213 ± 0.055

SpongeBobbb HDUe 0.60480 ± 0.042 SpongeBobbb HDUe 0.56136 ± 0.049

VIDAR USTCf 0.60303 ± 0.041 VIDAR USTCf 0.55170 ± 0.046

Deadline NJUd5 0.60066 ± 0.045 Archer THUg 0.55107 ± 0.047

Chasingstar JLUh 0.59647 ± 0.044 scu_ws SCUc 0.54847 ± 0.053

aTencent Holdings Ltd (China).
bUniversity of Chinese Academy of Sciences (China).
cSichuan University (China).
dNanjing University (China).
eHangzhou Dianzi University (China) .
fUniversity of Science and Technology of China.
gTsinghua University (China).
hJilin University (China).

FIGURE 5 | Mean F1-scores of teams with different methods used. (A,B) The statistics of Track 1 and Track 2, respectively. The x-axis represents the proportion of

the team with the method, the y-axis represents the average of F1-scores.

2012. Results showed that these methods could reach over 0.97
(F1-score) in ISBI 2012, but only between 0.57 and 0.61 in the
U-RISC (Table 3), which confirmed that the performance gap in
competition comes from the challenges of U-RISC.

What are the unique challenges brought by U-
RISC to deep learning algorithms? Two types of errors
were analyzed first: false-positive errors, which led to
incorrect membrane predictions, and false-negative

errors, which caused incontinuity in the cell membrane.
According to our analysis, both false-positive errors (pink
boxes) and false-negative errors (orange boxes) were
common in the U-RISC, which were rare in ISBI 2012
(Figures 6B,C). More examples can be found in Figure 6 and
Supplementary Figures 1–3. Further investigations for the
networks are required to explore the reason and find ways to
reduce the errors.
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Attribution Analysis of the Deep Learning
Method on U-RISC and ISBI 2012
To acquire a deeper understanding of the different performances
in U-RISC and ISBI 2012, we performed an attribution analysis
(Ancona et al., 2019) on the trained U-Net. We selected
the gradient-based attribution method, the IG (Sundararajan
et al., 2017), which is widely applied to explainable artificial

TABLE 3 | F1-scores in U-RISC and ISBI 2012.

Method U-RISC ISBI 2012

LinkNet-* 0.60701 ± 0.063 0.97246 ± 0.08

CASENet-* 0.60065 ± 0.053 0.97132 ± 0.08

U-Net-* 0.57123 ± 0.049 0.97010 ± 0.09

intelligence, such as understanding feature importance (Adadi
and Berrada, 2018), identifying data skew (Clark et al., 2019),
and debugging model performance (Guidotti et al., 2018). In
brief, IG aims to explain the relationship between predictions and
input features based on gradients (Figure 7A). The IG output is
plotted in Attribution Fields to reflect their contribution to the
final prediction. In the heatmap, each pixel was assigned with
a normalized value between [−1, 1]. With IG, we analyzed the
attribution field of each predicted pixel of U-Net in U-RISC
and ISBI 2012. Color and shade were used to represent the
normalized contribution values in attribution fields (Figure 7B).
For a fair comparison between U-RISC and ISBI 2012, areas
of pixel attribution fields, Sk were converted to physical size
according to their respective resolutions.

Figure 8 shows the examples of attribution fields, where
bounding boxes with different colors represented different pixel

FIGURE 6 | Errors in segmentation predictions of U-RISC and ISBI 2012. (A) The examples of false-positive and false-negative errors. (B,C) The examples of two

errors in the segmentations of U-RISC and ISBI 2012. Pink arrows and lines represent false-negative errors, and orange represents false-positive errors.
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FIGURE 7 | Attribution analysis. (A) Integrated gradients (IG) attribution method. (B) Statistics of attribution filed for U-RISC and ISBI 2012.

classifications, green for a correct predicted pixel, orange for a
false-positive error, and pink for a false-negative error. More
examples can be found in Supplementary Figures 4–6. We
noticed that the areas of attribution fields Sk of two datasets
were both relatively minor to the whole images (Figure 7B). For
example, at the threshold of k > 0.01, the Sk of the correct cases
accounted for only 5.1 and 0.8% relative to the whole image (the
green bounding boxes in Figure 8). This suggested that the U-
Net would focus on local characteristics within small areas of the
images when making predictions. In addition, we found that the
averaged Sk of each predicted pixel in U-RISC was significantly
larger than that in ISBI 2012, specifically 46,000 nm2 in U-RISC
and 10,300 nm2 in ISBI 2012. Taken together, the U-Net would
predict cell membrane according to local information around the
pixel, and the average attribution field was larger in U-RISC than
that in ISBI 2012. All of these indicate that more information is
required for the segmentation in U-RISC.

U-Net-Transfer Model Achieves the SOTA
Result on the U-RISC Benchmark
Considering both the comprehensive analyses of competition
and attribution analysis, we integrated outstanding methods
to develop our method (Figure 9A). For basic segmentation
architecture, we chose the U-Net due to its better characteristic
extraction ability. Many valuable techniques were also
considered, including a cross-crop strategy for saving
computational resources and data augmentation to increase data
diversity. We chose both focal loss and dice loss to deal with
the imbalance of samples for the loss function design. Some
parameters used for training were also optimized, such as batch-
size/GPU (4) and the number of GPUs (8). For more details,
please refer to Segmentation networks in Methods and materials.
Especially, a recent study has shown that transfer learning with
domain-specific annotated datasets could be effective in elevating
deep learning models’ performance (Conrad and Narayan, 2021).
Therefore, we introduced a pretrained model, trained with

MoCoV2 (Arar et al., 2020) on CEM500K (Conrad and Narayan,
2021). The segmentation result showed that the F1-scores of
our method were 10% higher than the leader of the competition
(0.66 vs. 0.61 in Table 2 and Figure 9B). Thus, we provide
a new benchmark on the cellular membrane segmentation
of U-RISC.

DISCUSSION

This article first proposed the U-RISC, a cell membrane EM
dataset created through intensive and elaborate annotation.
The dataset is characterized by the highest resolution and
the largest single image size compared to the other current
publicly available annotated EM datasets. Next, we organized
a segmentation competition on U-RISC and proposed the
benchmark. During the competition, we noticed that the
performances of popular deep learning methods were far
below that of humans, which motivated us to explore the
causes. Thus, we carried out a comprehensive survey of the
participants in the deep learning methods applied in the
competition. To our surprise, methods, such as U-Net, LinkNet,
and CASENet exhibited a significant drop of F1-score on
the U-RISC compared to ISBI 2012, from 0.9 to 0.6. To
explore the mechanisms underlying this discrepant performance,
we introduced a gradient-based attribution method, the IG.
Through attribution analysis of U-Net, we found that the
average pixel attribution field of U-RISC is larger than that
of ISBI, corresponding to the size of cellular structure, and
both of them are relatively small to the whole image size.
By integrating currently available methods, we improve the
benchmark to 0.67, about 10% higher than the top leader
from the competition. Based on the analyses in this article,
here, we raise some considerations in the challenges for
deep learning-based segmentation algorithms brought by U-
RISC and propose several suggestions for improving the EM
segmentation methods.
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FIGURE 8 | Attribution analysis. (A,B) Attribution fields of ISBI 2012 and U-RISC dataset. The first line represents the original image, network prediction result, and

annotation respectively. The pixels pointed by green (correct cell membrane pixel), orange (false-positive predicted pixel), and pink (false-negative predicted pixel)

arrows are the prediction points used in the attribution method. Images in the three-color boxes with the same size in the second line represent the attribution field

corresponding to the above three pixels. Blue indicates that the network is likely to predict the pixels as the cell membrane, while the opposite is indicated by red.
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FIGURE 9 | The U-Net-transfer method achieves the best performance on U-RISC. (A) The pretraining, training, and testing processing for U-Net. (B) The

comparison of the F1-scores. “SCP-173” represents the top performance in the competition. U-Net-* represents the performance in Table 2. This section represents

the performance of the U-Net-transfer method.

Challenges for Deep Learning-Based
Segmentation
Benchmark showed that the segmentation performance of deep
learning algorithms on U-RISC was still far behind the human
level. The U-RISC poses challenges for deep learning-based
segmentation in the following aspects: (1) high computational
costs needed to deal with large images, (2) the extreme sample
imbalance caused by the low ratio of cellular membrane
pixels in the whole image, and (3) side effects of typical data
processing methods.

Deep learning itself is already a computationally intensive
method. It would require more computational resources to
process the images with a much larger size in the U-RISC. In
practical terms, taking U-Net as an example, processing a 1,024
× 1,024 pixel image requires a GPU with 12GB memory. This
memory is enough to deal with the images in ISBI 2012, of which
the size is 512× 512 pixels. But the size of a single image in the U-
RISC is 9,958 × 9,959 pixels, which is far beyond the processing
ability of the commonly used 12GBmemory GPU. Therefore, the

additional computational burden brought by the U-RISC raises
the first challenge for deep learning-based segmentation.

The problem of imbalanced samples widely exists in
computational vision tasks (Li et al., 2010; Alejo et al.,
2016; Zhang et al., 2020), which should be considered when
designing algorithms. Cellular membrane segmentation is a
typical situation of sample imbalance because the cellular
membrane only occupies a small proportion of the whole
cell structure. According to statistics, the pixels belonging
to the cellular membrane account for 21.65% of the entire
pixels of ISBI 2012. While the proportion in U-RISC is
much smaller, 5.10%, making the U-RISC an extremely
imbalanced dataset. Preexisting solutions were mainly proposed
from several aspects: loss function design (Lin et al., 2017;
Cui et al., 2019), data augmentation (Yoo et al., 2020),
under/over-sampling (Fernández et al., 2018), and semantically
multi-modal approaches (Zhu et al., 2020). However, even
though the participants in the competition already used these
approaches, the final results showed a limited improvement in
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segmentation. So, the imbalanced problem of U-RISC is yet to
be solved and becomes another challenge for deep learning-
based segmentation.

Proper data processing is essential and helpful for deep-
learning algorithms. For example, a downsampling process on
raw images with an enormous size is commonly adopted in
the segmentation tasks (Thakkinstian et al., 2005; Chen et al.,
2014). In Track 2 of our competition, we used the downsampled
dataset to reduce the computational consumption, as usual.
Surprisingly, we found that the F1-score of the same method
dropped and the overall performance was also decreased in Track
2 compared to Track 1. We speculated that the key reason might
be the degradation of image quality from Track 1 to Track 2.
We confirmed the quality reduction through four representative
indices, including Brenner (Subbarao and Tyan, 1998), SMD2
(Thakkinstian et al., 2005), Variance (Saltelli et al., 2010), and
Vollath (2008) (shown in Appendix Figure). More cautions
should be paid when using traditional data processing methods,
and more advanced data processing theories are expected from
this point of view.

Suggestions for the Improvement of
Segmentation Methods
To some degree, increasing computational resources are possible
ways to cope with the challenges mentioned above. However,
it might not be easy for all the community researchers to
access sufficient computational power; therefore, innovations
in algorithms are still crucial for our future success. To
improve the performance of deep learning in EM segmentation,
we provide several suggestions for developing deep-learning
algorithms from the following perspectives: model design,
training techniques, data processing, loss function design, and
visualization tools.

Model Design
As shown in the attribution analysis, the current models
for segmentation, such as U-Net (Ronneberger et al., 2015),
Efficientnet (Tan and Le, 2019), and CASENet (Yu et al.,
2017), are designed to focus on the local information to
make predictions. However, in a high-resolution image, other
structures, like organelle membrane and synaptic vesicles, might
share similar features with the cellular membrane on a local scale,
which leads to false-positive results. Additionally, this constitutes
one of the major error types in the competition. Therefore, it
might not be enough for the classifiers of a model to make
correct decisions with only local features. Multi-scale features can
increase the learning ability of the neural network, and studies
have shown that models using global information could improve
the performance greatly (Liu et al., 2018, 2020; Chen et al., 2019).
Therefore, more global information could also be considered in
the future design of the segmentation network.

Training Techniques
Skillful training techniques can also be helpful in improving
segmentation performance. According to our survey, a two-
stage training strategy could be much better than a single-stage
training strategy. A recent study also suggests that pretraining
with domain-specific datasets can help network learning domain

features (Conrad and Narayan, 2021). Besides that, much
experience can be learned from the existing training methods.
The Hypercolumns module (Hariharan et al., 2015) is used to
accelerate the convergence of training by combining features at
different scales, and the combination of features from different
scales can help bring in global information. The ScSE (Roy
et al., 2018) module introduces an attention mechanism into
the network, thus, bringing in global information. Hybrid
architectures can also be considered because of their ability
to expand the receptive field (Goceri, 2019). In a word,
improvement can bemade at the phase of the training by utilizing
advanced training techniques.

Data Processing
Data processing is commonly used in deep learning, while
traditional downsampling methods were shown to have side
effects in the competition. To alleviate the side effects, some
quality enhancing methods for downsampled images could be
expected, such as edge and region-based image interpolation
algorithms (Hwang and Lee, 2004; Asuni and Giachetti, 2008),
low bit rate-based approaches (Lin and Dong, 2006; Wu et al.,
2019), and quality assessment research (Wang et al., 2003;
Wang and Bovik, 2006; Vu et al., 2018). Meanwhile, other
data processing methods can also be taken into account. For
example, in data augmentation, by augmenting the training data
randomly (such as multi-scale and multi-angle), the dependence
of the model on specific attributes can be reduced, which can be
beneficial in EM segmentation with many imbalanced samples.

Loss Function Design
Loss function design is another important part of deep learning.
But many current loss functions have their own disadvantages
in our competition. For example, dice loss (Dice, 1945) was
designed to optimize F1-score directly, without consideration of
data imbalance. Focal loss (Lin et al., 2017) and BCE loss (Cui
et al., 2019) were used in the competition to care more about
data imbalance by giving different penalties according to sample
difficulty, but the improvement was limited as shown by the
results. A better design of loss function should take an overall
consideration of both the sample imbalance and evaluation
criteria. Most of the common evaluation criteria, such as the F1-
score, a pixel-based statistic, are inconsistent with the human
subjective feeling to some extent. It might be a major cause of
the performance gap between humans and algorithms. Some
other structure-based criteria have appeared, such as V-Rand and
V-info (Arganda-Carreras et al., 2015) that integrate skeleton
information of cell membrane and ASSD (Heimann et al., 2009),
considering the distance of point sets.

Visualization Tools
Visualization tools can help us have a better understanding
of the network. In this article, from IG, we could learn the
attribution fields of U-Net from the view of gradient, which
inspires us to improve deep learning methods by paying more
attention to global information. In comparison, many other
visualization tools start from other characteristics of the network.
Layer-wise relevance propagation (LRP) (Bach et al., 2015) and
deep Taylor decomposition (DTD) (Montavon et al., 2017) get
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attribution distribution by modifying the propagation rules.
The information-based method, the IBA (Schulz et al., 2020)
restricts the flow of information to accomplish attribution fields.
Combining different visualization tools can help promote much
more insightful inspiration in improving deep learning methods.

Overall, we provide an annotated EM cellular membrane
dataset, U-RISC, and its benchmark. This indeed brings many
challenges in deep learning and promotes the development of
deep learning methods for segmentation.
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