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Attention deficit hyperactivity disorder (ADHD) is the most common

neurodevelopmental disorder in children. Although the involvement of

dopamine in this disorder seems to be established, the nature of dopaminergic

dysfunction remains controversial. The purpose of this study was to test

whether the key response characteristics of ADHD could be simulated by a

mechanistic model that combines a decrease in tonic dopaminergic activity

with an increase in phasic responses in cortical-striatal loops during learning

reinforcement. To this end, we combined a dynamic model of dopamine

with a neurocomputational model of the basal ganglia with multiple action

channels. We also included a dynamic model of tonic and phasic dopamine

release and control, and a learning procedure driven by tonic and phasic

dopamine levels. In the model, the dopamine imbalance is the result of

impaired presynaptic regulation of dopamine at the terminal level. Using this

model, virtual individuals from a dopamine imbalance group and a control

group were trained to associate four stimuli with four actions with fully

informative reinforcement feedback. In a second phase, they were tested

without feedback. Subjects in the dopamine imbalance group showed poorer

performance with more variable reaction times due to the presence of fast

and very slow responses, di�culty in choosing between stimuli evenwhen they

were of high intensity, and greater sensitivity to noise. Learning history was also

significantlymore variable in the dopamine imbalance group, explaining 75% of

the variability in reaction time using quadratic regression. The response profile

of the virtual subjects varied as a function of the learning history variability

index to produce increasingly severe impairment, beginningwith an increase in

response variability alone, then accumulating a decrease in performance and

finally a learning deficit. Although ADHD is certainly a heterogeneous disorder,

these results suggest that typical features of ADHD can be explained by a

phasic/tonic imbalance in dopaminergic activity alone.
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1. Introduction

Attention Deficit Hyperactivity Disorder (ADHD) is

a complex neurodevelopmental disorder characterized by

pervasive inattention, impulsivity, and restlessness that is

inconsistent with the patient’s age (American Psychiatric

Association, 2013). The origin of ADHD is largely genetic,

and for a smaller part environmental, mostly specific to

each individual (Burt, 2009; Wood et al., 2010). The first

genome-genome wide meta-analysis identified twelve loci in

regions containing enhancers and promoters of expression in

central nervous system tissues (Demontis et al., 2019). None

of these loci were linked to the dopamine system, despite the

fact that dopamine genes have been associated with ADHD

in candidate gene approaches (Li et al., 2006; Faraone and

Larsson, 2019). Other converging evidence supports a role

for dopaminergic dysfunction in ADHD. To briefly list them,

most animal models used in ADHD research show some

type of dopamine dysfunction (van der Kooij and Glennon,

2007). Stimulants such as methylphenidate, which are the

first line of treatment, block more than 50% of dopamine

transporters (DAT) in the striatum when given in therapeutic

doses (Volkow et al., 1998). ADHD patients are vulnerable to

drug dependence, which may be explained by an overlap of

ADHD with the dopamine deficiency syndrome (Blum et al.,

2008). In functional brain imaging, the most consistent findings

are deficits in activity in fronto-striatal circuits where dopamine

supports reinforcement learning (Dickstein et al., 2006; Norman

et al., 2016). The clearest and most reproducible structural

abnormalities in ADHD are located in the basal ganglia and

can be normalized by the use of stimulant medications (Nakao

et al., 2011). There appears to be a 5- to 10-year lag in the

pruning of fronto-striatal circuits in ADHD patients compared

to their typically developing peers (Dickstein, 2018). Functional

magnetic resonance and diffusion tensor imaging modalities

consistently indicate disrupted connectivity in regions and

tracts involving fronto-striatal-thalamic loops in ADHD (Saad

et al., 2020).

Different models have been proposed to account for a

dopaminergic dysfunction. In the basal ganglia, dopamine

release may be sustained (tonic) and regulated by prefrontal

cortical afferents, or transient (phasic), caused by bursts of

firing of dopaminergic neurons (Grace, 1991). The dynamic

developmental theory (DDT) of ADHD proposed a hypo-

dopaminergic cause. Blunted phasic dopamine bursts impair

reinforcement learning (Sagvolden et al., 2005; Volkow et al.,

2005), while a hypoactive tonic firing rate results in impaired

extinction of previously reinforced behaviors (Sagvolden et al.,

2005). A neural network developed by Frank et al. (Frank, 2005;

Frank and Claus, 2006) instantiated key properties of cortico-

striatal-thalamocortical loops, including direct and indirect

basal ganglia pathways. These authors used this basal ganglia

model to test the plausibility of the DDT of ADHDwith reduced

tonic and phasic dopamine levels in the striatum (Frank et al.,

2007). While they showed that dopamine modulates the Go

and NoGo pathways in the striatum, as well as average reaction

time, they were unable to reproduce the increased variability in

reaction time, a key feature of ADHD (Kofler et al., 2013), with

this hypodopaminergic model alone.

As an alternative we here tested the plausibility of a model

that combines a decrease in tonic dopamine activity with an

increase in phasic responses (Grace, 2001). In Grace’s model,

this imbalance is the result of impaired presynaptic regulation

of dopamine at the terminal level, and not a central decrease

in DA tonic activity that is associated with other conditions,

such as chronic stress (Belujon and Grace, 2015; Douma and

de Kloet, 2020). This imbalance produces abnormally large

reward reinforcements, which explains impulsivity, as well as the

preference for smaller immediate rewards over larger delayed

rewards (Jackson and MacKillop, 2016; Patros et al., 2016). This

model received some support in a PET study showing reduced

tonic release and increased phasic release of dopamine in the

right caudate in adults with ADHD (Badgaiyan et al., 2015).

In the present study, we used a mechanistic model of the

basal ganglia dopaminergic system that we previously developed

to help rationally improve pharmacological interventions in

Parkinson’s disease (Véronneau-Veilleux et al., 2020). The

model is a combination of a neurocomputational model of

the basal ganglia (Baston and Ursino, 2015; Baston et al.,

2016) and a model of dopamine dynamics (Dreyer, 2014) that

includes dopamine release and reuptake by DAT. In addition,

we included the tonic and phasic release of dopamine as well

as the negative regulation of dopaminergic neuron activity by

autoreceptors. We used phasic dopamine release as a reward

prediction error signal (RPE) for a correct response and a

phasic decrease in tonic dopamine activity as a punishment

prediction error signal for a false response (Schultz, 2002).

Considering that ADHD results from transactions between at-

risk individuals and their specific environment (Burt, 2010;

Burt et al., 2012), we used this computational model to test

the hypothesis that the phasic/tonic imbalance of DA release

would lead, during reinforcement learning, to the development

in some individuals of ADHD characteristics, in particular

response variability.

As dopamine in basal ganglia is primarily involved in

learning reinforcement, we considered dopamine phasic vs.

tonic release imbalance as a risk factor, and created two

groups of virtual participants: one with a phasic/tonic imbalance

and the other with the normal balance. We trained all of

them to learn responses to 4 stimuli presented in a random

sequence, using a forced-choice probabilistic task with a

fixed reinforcement learning schedule and fully informative

reinforcement feedback. Next, we assessed the outcome of

learning reinforcement process in a test phase to determine

whether or not ADHD characteristics would be present more

frequently in the dopamine imbalance group than in the control
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group. Finally, we identified the characteristics of the learning

phase that were associated with the development of these ADHD

features in the dopamine imbalance group.

2. Methods

The mechanistic model herein developed can be divided

into two parts: the dopamine dynamics model and the

neurocomputational model of basal ganglia. Synaptic learning

in the basal ganglia is modeled with the Hebb’s rule. This rule

allows the value of synaptic weights to be modified according

to tonic and phasic dopamine concentrations. The simulations

comprise a learning and a test phase.

2.1. Dopamine dynamics model

The dopamine dynamics model describes the temporal

dopamine concentration, both tonic and phasic, autoreceptors

occupancy and dopaminergic receptors occupancy. It was

adapted from previously published models (Dreyer et al., 2010;

Dreyer and Hounsgaard, 2013; Dreyer, 2014; Fuller et al., 2019).

The main mechanisms of dopamine regulation are outlined

in the equations of the model and are represented in Figure 1.

Dopamine is synthesized in the dopaminergic neurons and then

released in the synaptic cleft. Sustained dopamine release refers

to tonic dopamine, while transient dopamine release generated

by bursts refers to phasic dopamine. The release of phasic

dopamine is a reward prediction error signal (RPE) (Waelti

et al., 2001; Marinelli and McCutcheon, 2014), whereas a drop

FIGURE 1

Schematic representation of dopamine release, recapture,

removal and binding to receptors in the synaptic cleft.

in dopamine levels is a punishment prediction error signal. In

the synaptic cleft, dopamine can be recaptured by DATs into

the presynaptic neuron or be removed from the synaptic cleft

by different mechanisms such as diffusion or inactivation by the

Catechol-O-methyltransferase.

The remaining dopamine molecules can bind to

dopaminergic autoreceptors located on the presynaptic neurons

or to receptors on the postsynaptic neurons. In the present

work, only dopaminergic receptors D1 and D2 are considered.

All the above mentioned mechanisms are accounted for by the

dopamine dynamics model, formulated in Equations (1) and

(2), where CDA(t) is the dopamine concentration (µM/L) in the

synaptic cleft and AR(t) the autoreceptors occupancy.

dCDA(t)

dt
︸ ︷︷ ︸

Dopamine concentration

= (ItonicDA + I
phasic
DA (t))

︸ ︷︷ ︸

Dopamine Release

−
VmaxCDA(t)

(km + CDA(t))
︸ ︷︷ ︸

Recapture by DATs

− kremCDA(t)
︸ ︷︷ ︸

Removal

, (1)

dAR(t)

dt
︸ ︷︷ ︸

Autoreceptor occupancy

= CDA(t)kon(1− AR(t))
︸ ︷︷ ︸

Binding to autoreceptors

− koffAR(t)
︸ ︷︷ ︸

Unbinding to autoreceptors

. (2)

As indicated in Equation (1), the release of dopamine is

divided into two terms to account for both tonic and phasic

release. The recapture by DATs is a saturable process described

by a Michaelis-Menten equation. All other mechanisms

contributing to dopamine removal are assumed to be linear

(Budygin et al., 2002; Dreyer, 2014) and are schematized

through the last term in the right-hand member of Equation

(1). The binding to autoreceptors is proportional to dopamine

concentration and free autoreceptors, while unbinding is

proportional only to bound autoreceptors.

Autoreceptors have a regulatory effect on dopamine

concentration. Indeed, they provide a negative feedback to

adjust dopamine concentration through firing rate, synthesis,

and release (Benoit-Marand et al., 2001; Beaulieu and

Gainetdinov, 2011). Prolonged dopamine agonist exposure

desensitizes autoreceptors in dopamine neurons (Robinson

et al., 2017). Loss of inhibition influence facilitates further

dopamine release and has been linked to drug abuse.

Desensitization was not included in the model which is

focused on the short-term effect of dopamine on autoreceptors.

If tonic dopamine level decreases (in our ADHDmodel through

increased dopamine reuptake), the temporary decrease in

autoreceptor-mediated inhibition would mainly increase phasic

dopamine release following the model developed by Grace

(Grace, 1991, 2016). Autoinhibition of the presynaptic neurons
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is included in the model through the phasic release term only

which is associated with the reward prediction error, while the

tonic term is not here modified by autoreceptors occupancy

(Grace, 1991).

The tonic dopamine release term is given by:

ItonicDA = ρ
Ptonicr n0

αvfNA
υtonic, (3)

where ρ is the terminal density, Ptonicr the tonic release

probability, n0 the number of molecules released per vesicles

fusion, αvf the extracellular volume fraction, NA the Avogadros

constant and υtonic the tonic firing rate. The tonic release is

independent of autoreceptors occupancy, as explained above.

The phasic release term at time t is given by:

• when there is no response yet, and no prediction

error signal:

I
phasic
DA (t) = 0, (4)

• when there is a reward prediction error signal at

time treward:

I
phasic
DA (t) = ρ

(

P
phasic
r ·

0.334

AR(t)

)

n0|RPE|

αvfNA

(

υphasic ·
0.334

AR(t)

)

,

(5)

for treward + 0.1 ≤ t ≤ treward + 0.1+ 0.05, (6)

• when there is a punishment prediction error at

time tpunishment :

CDA(t) = 0, (7)

for tpunishment + 0.1 ≤ t ≤ tpunishment + 0.1+ 0.05.

(8)

The terminal density (ρ), the number of molecules released

per vesicles fusion (n0), the extracellular volume fraction

(αvf ) and the Avogadros constant (NA) parameters are not

modified by autoreceptors occupancy. Since vesicular release

probability (P
phasic
r ) and phasic firing rate (υphasic) are decreased

by autoreceptors (Grace, 1991), they are assumed to be

inversely proportional to autoreceptors occupancy (Beaulieu

and Gainetdinov, 2011; Dreyer and Hounsgaard, 2013). The

exact relationship is not known but assumed here as inversely

proportional for simplicity. The value 0.334, used to normalize

the equation for the control case, corresponds to autoreceptors

occupancy. Therefore, Equation (5) indicates that the activation

of autoreceptors reduces phasic dopamine release. The values

0.1s (Bamford et al., 2018) and 0.05s represent the latency and

duration of the reward or punishment error prediction signal,

respectively. Phasic dopamine release is also proportional to the

reward prediction signal (RPE). This issue will be discussed in

more details in Section 2.3.

In the occurrence of a punishment, the activity of the

dopamine neuron is temporarily suppressed (both tonic and

phasic firing rate fall to zero). According to Equations (1) and

(3), this can be simulated in the model assuming υtonic = 0

which corresponds to the following differential equation:

dCDA(t)

dt
= −

VmaxCDA(t)

km + CDA(t)
− kremCDA(t). (9)

With the parameters we used, this equation requires about 500

ms to reach the new equilibrium with CDA = 0, which is

close to the duration of dopamine neuron activity suppression

after the absence of an expected reward (Schultz et al., 1997).

However, the time to reach this equilibrium may vary as a

function of the previous discharge rate, tonic dopamine level, or

reuptake. To simplify the model, the value CDA = 0 was directly

applied at the same time as for the phasic dopamine discharge

associated with a reward, as shown in Equations (7) and (8).

Setting the dopamine concentration at zero instantaneously

when a punishment occurs is a simplification of the physiologic

mechanisms and the pause in the firing rate was defined as

in Dreyer et al. (2010). This simplification was used since the

purpose of this work was to study the behaviors in a qualitative

manner. In future work, we will implement more physiologic

parameters with their variability.

In the model, autoreceptors occupancy depends on the

overall dopamine concentration (tonic and phasic). It could be

argued that, due to diffusion, only a fraction of phasic dopamine

reaches autoreceptors and thus alters the release. Simulations

were performed to integrate this concentration gradient on

phasic dopamine reaching autoreceptors, but the results were

not significantly different (not shown here), therefore the

version presented here was chosen for simplicity.

Finally, dopamine molecules can bind to dopaminergic

receptors, corresponding to D1 and D2 receptors in the current

work. The occupancy of receptors of type i ∈ {1, 2} in time is

given by the following equation:

Di(t) =
B
Di
maxCDA(t)

k
Di
D + CDA(t)

(10)

where B
Di
max and k

Di
D are the maximal concentration and

dissociation constant of type i receptors, respectively. Receptors

occupancy will be used in the neurocomputational model

of basal ganglia as the postsynaptic effect of dopamine on

the neurons in the different neurotransmission pathways

(Hille, 1992).

The parameter values for the dopamine dynamics model are

given in Table 1. As mentioned in this Table, the dopaminergic

terminal density was adapted. As this density is inhomogeneous

(Dreyer, 2014; Fuller et al., 2019), its value was set to obtain

a tonic dopamine concentration in the control group of 0.02
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TABLE 1 Parameters value in the dopamine dynamic model.

Parameters Description Value Literature value Reference

Vmax Maximal reuptake rate by DATs Control : 1.2 µM/Ls

Dopamine imbalance : 1.8

µM/Ls

[0.2 4.3] May et al., 1988; Nicholson,

1995; Schönfuss et al., 2001;

Fuller et al., 2019

km apparent Michaelis-Menten constant 0.15 µM/L [0.1, 0.2] May et al., 1988; Horn, 1990;

John et al., 2006; Fuller et al.,

2019

krem Removal rate 0.04 s−1 0.04 Dreyer and Hounsgaard, 2013

kon On-rate for DA binding to presynaptic autoreceptors 10 µM−1s−1 10 Dreyer and Hounsgaard, 2013

koff Off-rate for DA binding to presynaptic autoreceptors 0.4 s−1 0.4 Dreyer and Hounsgaard, 2013

ρ Density of dopamine terminals in striatum 0.025 · 1015 terminals/L adapted

αvf Volume fraction of extracellular space 0.21 [0.19, 0.22] Syková and Nicholson, 2008

n0 Number of dopamine molecules released during

vesicle fusion

3,000 molecules/terminal 3,000 Pothos et al., 1998; Dreyer,

2014

NA Avogadros constant 6.02214076 · 1023 M−1 6.02214076 · 1023

P
phasic
r Vesicle release probability 0.06 [0.025, 0.15] Dreyer and Hounsgaard, 2013

Ptonicr Vesicle release probability 0.06 [0.025, 0.15] Dreyer and Hounsgaard, 2013

υtonic Average tonic firing rate 4 s−1 [4,5] Fennell et al., 2020

υphasic Average phasic firing rate 40 s−1 [20,100] Fennell et al., 2020

BD1
max D1 receptor maximal density 1.6 µM/L 1.6 Hunger et al., 2020

kD1D D1 receptor dissociation constant 1 µM/L 1 Rice and Cragg, 2008

BD2
max D2 receptor maximal density 0.08 µM/L 0.08 Hunger et al., 2020

kD2D D2 receptor dissociation constant 0.01 µM/L 0.01 Rice and Cragg, 2008

µM/L as reported in the literature (Wanat et al., 2009; Hunger

et al., 2020).

Using the developedmodel, two groups of virtual individuals

were created: control and dopamine imbalance individuals. The

difference between the two groups lies in the modification of

the Vmax parameter of Equation (1). From a mathematical

standpoint, the parameter km could also have been decreased to

obtain similar results.

2.2. Neurocomputational model of basal
ganglia

Tonic and phasic dopamine are coding prediction error

signals in the basal ganglia (Schultz, 2017). ADHD is associated

with dopamine dysfunctions in the cortex and the basal ganglia

(Giedd et al., 2001; Seidman et al., 2005; Nakao et al., 2011;

Cubillo et al., 2012; Frodl and Skokauskas, 2012; Oldehinkel

et al., 2016). Hence, a neurocomputational model of basal

ganglia with a learning procedure was added to the dopamine

dynamics model.

The neurocomputational model presented here is an

adaptation from the model developed in Baston et al. (2016).

It involves the temporal neural activity in the cortex, the

thalamus and the different regions of the basal ganglia (striatum,

globus pallidus pars interna and pars externa, and subthalamic

nucleus), with a representation of the external stimulus S. The

neuronal activities are normalized to obtain a value between

0 and 1. The connection between each region follows three

neurotransmission pathways: direct, indirect and hyperdirect.

The direct pathway promotes movement, the indirect inhibits it,

and the hyperdirect pathway suppresses erroneous movements.

D1 and D2 receptors occupancy have an excitatory effect

in the direct pathway and an inhibitory effect in the

indirect pathway, respectively. Both pathways are potentiated

by the effect of cholinergic interneurons, also included in

the model.

A representation of the neurocomputational model of basal

ganglia is given in Figure 2. Each region of the model is divided

into four action channels, representing different alternative

choices. This division allow investigating the response of basal

ganglia to various target stimuli. Neural activity in each action

channel is computed through an ordinary differential equation,

simulating neural dynamics, and a sigmoidal relationship, which

mimics the typical non-linear phenomena of the neurons (lower

threshold and upper saturation). The input to each differential

equation is calculated by summing all the upstream activities

converging to that neuron, weighted by the synaptic strength.

The synaptic weight matrices correspond to the weight of

connections between the regions for all four action channels.
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FIGURE 2

Schematic representation of the neurocomputational model of basal and its four action channels ganglia.

Equations and parameter values of the model can be found in

the Supplementary Material.

2.3. Learning in the basal ganglia

Impairments in reinforcement learning are thought to

be involved in ADHD (Sagvolden et al., 2005; Tripp and

Wickens, 2008; Alexander and Farrelly, 2018). Therefore, we

included a reinforcement learning process with reward and

punishment prediction error signals in the model. The strength

of connections between each region of basal ganglia is given

by synaptic weight matrices noted wij, where i and j are the

postsynaptic and presynaptic regions, respectively. The values

of these weights can be modified by the learning process.

For simplicity, only matrices related to striatum, wGS, wNS,

wGC , wNC , were considered to be plastic; these connections are

represented by dashed lines in Figure 2. The matrices wGC and

wNC are diagonal while wGS and wNS are full matrices. At the

beginning of the learning process, these weight matrices are in a

naive state, with no differentiation between the actions channels.

Here are the initial value of the matrices:

wGC = wNC =








0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0.5







, (11)

wGS = wNS =








0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5







. (12)

We here give the details of a typical trial of the learning

process. A stimulus representation S is sent for 800 ms to each

action channel. One channel will receive a strong stimulus of

value 1, another one receives a weaker stimulus of value 0.2,

while the two others receive even weaker stimuli with a value of

0.1 each. In the present work, we used an input vector with the

same dimension as the number of possible actions, with a higher

value (close to 1) at the same position of the rewarded action,

and a smaller value at the positions of the punished actions, just

to simplify the final analysis of the synapses. An input vector

with different dimensions and with different values could be

used as well, resulting in a more complex pattern of synapses.

The idea here is to simply associate an input vector to a "winner

takes all" output vector, considered as the selected response. The

possible considered vectors for S are S =
[

1 0.2 0.1 0.1
]

, S =
[

0.2 1 0.1 0.1
]

, S =
[

0.1 0.1 0.2 1
]

and S =
[

0.1 0.1 1 0.2
]

.

Neuronal activity in all regions of basal ganglia are computed

for 800 ms. An action is considered to have been performed or

chosen if the activity in its related action channel in the cortex is

above 0.9, while the activity in all other channels is close to zero,

using the winner-takes-all dynamics implemented in the cortex.
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We used a fixed scale of prediction error values throughout

learning. The prediction error is the discrepancy between

observed and expected outcome, and a naive subject cannot

predict whether the response would be correct or not. If the

chosen action is in the action channel with the highest value of

S, a reward prediction error of 1 is attributed. If however the

second highest value (0.2) is chosen, a smaller reward prediction

error of 0.1 is attributed. A punishment prediction error is given

when the lowest value (0.1) is chosen. Rewards prediction errors

are signaled by phasic dopamine peaks governed by Equation

(6). When a punishment prediction error occurs, dopamine

concentration drops to zero. This is equivalent to providing the

virtual subjects with rewards and punishments, but we delivered

directly the reward/punishment prediction error dopamine

signals. These prediction errors are the differences between

received and predicted rewards (Schultz, 2016), where here

the virtual patient always predicts a reward when an action is

chosen. This process is repeated over 1,000 trials (epochs). Once

the learning procedure is complete, the model is expected to

effectively differentiate between weak and strong stimuli, so that

responses occur only when strong stimuli are applied.

The resulting rewards/punishments prediction error signal

will lead to a modification of the synaptic weights contained in

the matrices. These weights modifications during the learning

process are dictated by the Hebb Rule, which states two neurons

having both high activity will strengthen their connection,

whereas connectionwill weaken in case of neurons with opposite

activity. The Hebb rule describes how much the weights are

increased or decreased at each step of the training procedure.

In particular, the following equation holds at each step to assign

a new synaptic value, Baston and Ursino (2015):

wAB ← wAB +1wAB, (13)

where wAB represents the matrix containing the weights from

the presynaptic region B to the postsynaptic region A, with

A being either S or C in Figure 2 and B being either G (Go)

or N (NoGo) in the same figure, and 1wAB is the synaptic

change computed at that step. Each row in these matrices

represent the synapses entering the postsynaptic neuron, and

each column those emerging from the presynaptic one. Hence,

all matrices have 4 × 4 dimensions in the work presented here.

This modification of the synaptic weights happens once every

epoch between a latency period of 0.1s and for a duration of 0.05s

once an action is chosen. The latency and duration are the same

as the ones for the reward/punishment error prediction signal.

The individual elements at position ij in the array 1wAB are

computed through the following equation (Hebb rule):

1wAB
ij = φ · (yBj − ϑpresynaptic)

+(yAi − ϑpostsynaptic), (14)

where yBj is the activity of the presynaptic neuron in the

action channel j of the region B, yAi is the activity of the

postsynaptic neuron in the action channel i of the region A and

ϑpresynaptic, ϑpostsynaptic the pre- and postsynaptic thresholds.

The positive part function ([]+) ensures that learning occurs

only if the presynaptic neurons are excited and their activity is

above the threshold. Dopamine is thought to have the ability

to modulate synaptic plasticity, although the exact relationship

does not seem to be established (Reynolds and Wickens, 2002;

Frémaux and Gerstner, 2015; Madadi Asl et al., 2019). From

previous work, it seemed reasonable to assume a proportional

relationship with dopamine ratio and RPE. Of course, in case

of diagonal matrices (wGC and wNC), only the elements with

i = j are trained, compared to non-diagonal matrices wGS and

wNS where all elements are trained. The gain parameter φ is

proportional to the reward prediction error since, for example,

a large reward prediction error will lead to a larger variation

in the synaptic value than a small reward prediction error. The

gain parameter is also proportional to the ratio of phasic peak

and tonic dopamine. This ratio is calculated beforehand and

considered as a constant. The equation is the following:

φ = 0.0013· | RPE | ·DA ratio, (15)

DA ratio =




C
phasic
DA − CtonicDA

CtonicDA



 . (16)

The dopamine ratio is higher in the dopamine imbalance

group (with a value of∼ 8.3) compared to the control one (with

a value of∼ 3), so the gain parameter φ is higher.

2.4. Simulation of virtual patients groups

The control and dopamine imbalance groups, with 10 virtual

subjects each, were created with the model. The only difference

between the two groups is in the value of Vmax. A higher rate

of dopamine recapture is expected to lower the dopamine tonic

concentration which in turn is expected to increase the phasic

dopamine concentration, and thus in the tonic phasic dopamine

ratio, through a lower occupancy of autoreceptor. The steps of

the learning procedure of a subject are summarized below.

1. The synaptic weight matrices wGS, wNS, wGC , wNC start in a

naive state.

2. Out of the four choices (S =

[

1 0.2 0.1 0.1
]

,

S =

[

0.2 1 0.1 0.1
]

, S =

[

0.1 0.1 0.2 1
]

and

S =
[

0.1 0.1 1 0.2
]

), a stimulus S in sent to the cortex

for 800 ms. The process will be repeated for the other 3

stimuli in a random order. Noise was added in the cortex,

derived from a uniform distribution and ranging from 0 to

0.2. The seed of the noise differentiates between individuals
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within a group but not between groups, while the Vmax

value differentiates between the two groups. For example, the

control individual #1 has the same noise’s seed as dopamine

imbalance individual #1, but a different value of Vmax. At

the end of the 800 ms, the subject receives either a large or a

small reward prediction error signal according to his choice

of the action that corresponds to the highest or the second

strongest stimulus, respectively. Otherwise, the patient

receives a punishment prediction error signal. Transient

peaks of phasic dopamine are given accordingly and the

Hebb rule is applied to modify the value of synapses. This

process is repeated with the three other choices of S.

3. Step 2 is repeated 250 times for a total of 250 × 4 =

1, 000 epochs.

4. Once the training phase is over, the performance of the

virtual subjects in each group was assessed in a testing phase.

For each individual, the weight matrices were fixed to the

values found at the end of the training process to assess

their performance.

During the test phase, we also used a four-choice reaction time

task. A series of stimuli are presented to the virtual individuals

in the different action channels through a signal S of the

neurocomputational model of BG to the cortex. The stimulus

in the targeted action channel has a value of 1 with the addition

of noise. Noise is also added in the other action channels directly

in the cortex. Each stimulus is presented for 1, 800ms with a 500

ms pause in between each stimulus. The criterion for a response

is an activity in one of the four action channels in the cortex

C, which constitute the output of the model, greater than 0.9.

Due to the winner-takes-all dynamics, the other three channels

will then have activity close to zero. For simplicity purposes, a

response in the same action channel as the target stimulus is

considered as a success. Otherwise it constitutes a failure. Or

course successes and failures could have been defined in different

ways. The idea here is simply to associate to an input vector, an

output vector considered as the correct responses.

During the test phase, there is always a response after a

stimulus, being a success or a failure. The number of correct

answers or successes represents the performance of the virtual

individuals. Each individual is presented 100 stimuli. The mean

and standard deviation of the percentage of successes and of the

reaction times are computed in each simulated group. Stimulus

of different amplitudes were also sent in the first action channel

and the responses were recorded to study the differentiation

between weak and strong signals. In order to compare the ability

of differentiating between weak and strong signals, we repeated

the task and computed the cortex activity for different values of

noise added to the input signal (S).

During the test phase, reaction times were also computed.

The reaction time is here defined by the difference between the

time at which the neuronal activity in one of the action channels

FIGURE 3

Tonic and phasic dopamine concentrations in time simulated

with the model for the dopamine imbalance and the control

group. In the dopamine imbalance group, tonic dopamine levels

are lower due to increased recapture, which leads to decreased

autoreceptor occupancy. Reduced autoreceptor occupancy

causes higher peak of phasic dopamine because of

autoregulation.

reaches a value of 0.9 and the time at which the stimulus was sent

in the sensory representation S.

3. Results

3.1. Tonic and phasic dopamine release

Using the model, dopamine concentrations were simulated

for the two groups as shown in Figure 3. Phasic peaks were

created by a burst lasting 0.05 s.

As seen in Figure 3, dopamine imbalance individuals have

lower tonic dopamine concentration due to higher dopamine

recapture. In turn, autoreceptors regulation causes higher phasic

dopamine concentration. This dopamine imbalance will have

different impact on the learning process in the basal ganglia.

3.2. Performance during the training
phase

During the training phase, we computed the number of trials

to obtain 5 successful responses over 10 successive trials. All

participants in the normal group reached the learning criterion,

but 2 participants in the dopamine imbalance group failed to do

so even after 1,000 trials. The number of trials to reach criterion

was on average 65.1 (SD = 52.6) in the control group, but 20%

higher in the dopamine imbalance group, with an average of 85.5

(SD = 67.8), excluding those who never reached the criterion.
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FIGURE 4

Mean and standard deviation of reaction time and percentage of

success of choices in a series of 100 stimulus in each group.

3.3. Performance during the test phase

In the first task, the mean and standard deviation of the

percentage of successes to a series of 100 stimuli and of reaction

times are computed in each simulated group and shown in

Figure 4.

The mean reaction time in the control group is 148 ms

and the standard deviation is 5 ms. The mean percentage

of successes is 100 with a standard deviation of 0. In the

dopamine imbalance group, the mean reaction time is 166

ms with a standard deviation of 57 ms. The mean percentage

of successes is 78 with a standard deviation of 19. As

shown in Figure 4, the rate of successes was lower and more

variable in the dopamine imbalance group, as compared to

the control group. Moreover, the simulated mean reaction

times was slower in the dopamine imbalance group than in

the control group. In our simulations, the mean and standard

deviation of reaction times are respectively, 1.12 and 11.4 times

larger in the dopamine imbalance group than in the control

group. The significance of the reaction time difference was

not evaluated because only 10 patients were simulated in this

study to present the model. Also, as described further, the

patients in the dopamine imbalance group are heterogeneous

and can be divided into three subgroups with different mean

reaction times.

We used the ex-Gaussian distribution to estimate the

reaction time distribution by combining a normal and an

exponential distribution. Three parameters characterized

the ex-Gaussian distribution: the mean µ and standard

deviation σ of the normal distribution, and τ representing

the mean and standard deviation of the exponential part.

An ex-Gaussian distribution was fitted to the simulated

reaction times of the virtual individuals as seen in

Figure 5.

FIGURE 5

Histogram (colored boxes) and fitted density function (black

line) of simulated reaction times of the virtual individuals in the

control and dopamine imbalance groups.

The τ parameter was 12 times larger in the dopamine

imbalance group than in the control group (47 vs. 3.8) while the

µ parameter was 0.82 times smaller (118 vs. 144).

3.4. Performance with increasing noise

We assessed the performance of the individuals in each

group described in the above section by increasing the standard

deviation of the noise added to the input signal S. A series

of 100 stimuli was again presented with noise directly added

to the stimulus representation in the cortex S, with a mean

of 1 and a standard deviation ranging from 0 to 1. As the

standard deviation of the noise increases, the probability of

having high intensity noise increases which further complicates

decision making for the virtual patients and therefore affects the

percentage of successes. Figure 6 shows that in the dopamine

imbalance group the mean percentage of successes (orange solid

line) quickly dropped while the variability (orange shaded area)

increased with increasing noise variability. By contrast, in the

control group, the performance remained optimal, with no

variability, until the noise variability was greater than 0.6.

3.5. Input and output of basal ganglia

During the test phase, we also computed the output activity

in the cortex related to the response as a function of the input

value of the stimulus. A stimulus of different amplitudes, ranging

from 0.1 to 1, is sent in the first action channel while all three

other channels receive noise of small amplitude. The mean, the

5th and the 95th output curves of the cortex neuronal activity in

the first action channel as a function of the input signal value for

each group are shown in Figure 7.

By comparing neural activity at basal ganglia input and

output, it is clear that in control subjects, the basal ganglia

have a high neural gain. Response-related activity is suppressed

until stimulus-related cortical activity reaches 0.5 in the control
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FIGURE 6

Percentage of success as a function of noise standard deviation

for each individual in the dopamine imbalance group. The curve

of each individual are contained in the shaded area.

FIGURE 7

Output neuronal activity in the cortex as a function of di�erent

input stimuli. Solid line: mean neuronal activity of the individuals

in each group, shaded area: 5th and 95th percentiles of

neuronal activity of the individuals in the group.

group. Output activity then increases rapidly for an input

between 0.5 and 0.7 at which point it remains maximal.

In contrast, in the dopamine imbalance group, activity is

suppressed up to an input of 0.4, after which the gain increases

rapidly but only for stimulus-related activity between 0.4 and

0.5. For stimulus-related activity values between 0.5 and 1, the

gain is strongly attenuated as response-related activity increases

from 4.5 to 7. However, the most striking aspect of the gain is

the extreme variability of the output in the dopamine imbalance

group, which ranges from 0 to 1 in response to stimulus-related

activity values between 0.7 and 1. In this group, some individuals

respond correctly and others have wrong responses which will

lead to an output activity close to zero due to the winner-

takes-all dynamic, thus inducing high variability. In contrast,

in the controls, the variability is almost zero, except for the

amplification phase, especially around the inflection point.

3.6. Evolution of synaptic weights

Four synaptic weights matrices were modified during

training:wGS,wNS (stimulus-related synaptic weights) andwGC ,

wNC (response-related synaptic weights). These matrices start in

a naive configuration, with no differentiation between the four

action channels. They are modified during the training by using

the Hebb Rule, with a gain parameter that is proportional to the

phasic vs. tonic dopamine ratio.

Over the course of the 1,000 trials in the training phase,

the matrix weights changed differently between the two groups,

and between individual subjects within each group. Indeed,

the trends of synaptic weight evolution were the same for the

control and dopamine imbalance groups, but inter-individual

differences in synaptic weights and their evolution during

learning were much larger in the dopamine imbalance group.

Hence, inter-individual differences were much larger at the end

of the learning phase in the dopamine imbalance than in the

control group. More details on the evolution of the synaptic

weight matrices are given in the Supplementary Material.

3.7. History of rewards and punishments
prediction errors during training

In the present section, a metric is developed to differentiate

the performance in the test phase of the dopamine imbalance

group from the control one based on their history during

the training phase. During the training process, the history of

rewards and punishments is stored in a vector with value 1 for

a large reward, 0.1 for a small reward, −1 for a punishment and

0 for no response. It is therefore possible to study the history

of each individual and to relate it to his performance in the

test phase.

Figure 8 shows the cumulative sum of the history vector for

each action channel of the first 5 individuals in each group.

A negative cumulative sum results from a series of failures

overcoming successes, while a positive cumulative sum would

indicate the opposite.

There seems to be an initial phase in which there is an

excess of errors. The virtual individuals start in a naive state,

meaning no differentiation between the action channels. Hence,

the initial responses have a random success rate of 25% and can

lead to an excess of errors. In the second phase (> 500 epoch),

rewards prediction errors dominate over punishments for

all actions.

Individuals from the control group seem to learn each action

in a proportional way for all action channels. The individuals in

the dopamine imbalance group had a higher number of rewards

for some action channels at the expense of the others. In order to

quantify the inter-individual differences in learning, a weighted

standard deviation (weighted std) for the cumulative sum of
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FIGURE 8

Cumulative sum of history vector at each epoch for the first five individuals in each group.

history was computed for each individual, and expressed by the

following equations:

ratio =
1

1, 000

∑1,000
i=1

∑4
j=1 #negative cumsumactionj (i)

∑1,000
i=1

∑4
j=1 #positive cumsumactionj (i)

,

(17)

stdhistory =
1

1, 000

√
√
√
√
√

1,000
∑

i=1





4
∑

j=1

(cumsumactionj (i)−mean(i))2



,

(18)

weighted stdhistory = ratio · stdhistory (19)

where i is the epoch number, j the action number,

cumsumactionj (i) the cumulative sum of history vector for

action j at epoch i andmean(i) is the mean of cumulative history

at epoch i for all action channels. The standard deviation of the

history (stdhistory) is weighted by a ratio to take into account

the fact that the cumulative sum of history is either positive or

negative. The ratio is the sum of negative cumulative sum of

history divided by the sum of positive cumulative sum of history,

leading to a larger ratio when the negative cumulative sum

exceeds the positive one. Division by 1,000 is for scaling. The

weighted stdhistory was larger in the dopamine imbalance group

than the control one. In order to assess the relationship between

the training and test phase, a plot of the standard deviation

of the reaction times as a function of the weighted stdhistory
value is depicted in Figure 9. A linear regression (dashed

line) and a quadratic function (dashed curve) between the

weighted stdhistory and the standard deviation of reaction times

were applied to the control group and the imbalance group,

respectively. The individuals in the dopamine imbalance group

could be divided into three subgroups (a, b, and c) along the

quadratic regression as seen in Figure 9. Group a contained

the individuals with a perfect performance, low µ, low σ and

low τ , which explains their proximity to the individuals in the

control group. The individuals less than perfect performance

were divided into groups b (75% of successes) and c (60% of

successes). The distribution of reaction times in the group b

is closer to an exponential distribution than to a normal one

with low µ and σ but very high τ . These individuals have both

fast and very slow reaction times, driving thus the mean to a

high value. As the weighted stdhistory increases for individuals in

group c, the performance further decreased with fewer correct

responses, the µ parameters increased, and the σ and τ had

intermediate values and were quite similar.

4. Discussion

In the current work, we investigated the effect of phasic vs.

tonic dopamine imbalance during reinforcement learning on

overt responses and on synaptic weights in the basal ganglia.

We altered the phasic vs. tonic ratio by increasing the rate of

maximal dopamine reuptake by DATs. As the rate of dopamine

reuptake increases, the tonic level of dopamine decreases, which

results in a decrease in autoreceptor binding, and in turn in an
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FIGURE 9

Standard deviation (std) of reaction times for each individual in

each group as a function of the weighted stdhistory. Equation of the

linear regression and quadratic regression performed,

respectively in the control group and dopamine imbalance

group are shown. Individuals in the dopamine imbalance group

are divided into three sub-groups, a, b, and c.

increase in the phasic response (Ford, 2014). This modification

increased the phasic response by about 40%. The values of

simulated dopamine concentrations that we found are consistent

with those reported in the literature, with a tonic concentration

between 0.005 and 0.02µM/L (Wanat et al., 2009; Hunger

et al., 2020), and a phasic concentration ranges between 0.01

and 1 µM/L (Wickham et al., 2013). More precisely, phasic

dopamine concentrations were estimated to be ∼ 0.1 µM/L in

Bamford et al. (2018).

Clinically, subjects with ADHD consistently show a typical

response pattern on a variety of tasks. They generally make more

errors than controls and their reaction times are paradoxically

both faster and slower, and more variable overall, as compared

with healthy controls (Hervey et al., 2006; Huang-Pollock et al.,

2012). This variability is primarily due to an excess of slow

responses that can be detected by the τ component of an ex-

Gaussian distribution (Kofler et al., 2013). This τ parameter

best discriminates ADHD subjects (Leth-Steensen et al., 2000)

from controls and appears to be a reliable endophenotype, as

unaffected siblings showed intermediate values between ADHD

subjects and healthy controls (Lin et al., 2015). In the present

simulations, the group with dopamine imbalance also showed

more variable reaction times, including an excess of very slow

responses, as compared with the control group. Specifically, the

µ parameter was smaller, reflecting impulsive responses, but the

τ was much larger, due to a greater proportion of very slow

responses, with a decrease of the σ parameter overall, which

reflects the Gaussian variance. Thus, shifting the phasic/tonic

dopamine ratio reproduced a response pattern typically seen

in ADHD subjects, whereas a model incorporating only a

decrease in both phasic and tonic dopamine release did not

(Frank et al., 2007). We observed this response pattern in a

simple reinforcement learning task while it has been observed

in a wide variety of experimental tasks with ADHD subjects.

Future studies will need to test whether this response pattern

generalizes to other tasks, but it is a possibility insofar as any

experimental task has a learning component. Indeed, data are

typically collected after participants have reached a performance

threshold during a training phase.

The change in reaction time distribution, although most

typical of ADHD, is not the only difference we observed.

The subjects with a dopamine imbalance also showed a lower

and more variable success rate on average. Within the signal

detection theory (Stanislaw and Todorov, 1999), the sensory

discrimination ability is termed d’. In our simulation, the test

phase used a force choice task in which d’ is the percentage

of successes (Stanislaw and Todorov, 1999). The control group

obtained perfect results, but the success rate was decreased by

22% in the dopamine imbalance group. Subjects with ADHD

also showed decreased d’ in a meta-analysis of continuous

performance test (CPT) performance (Huang-Pollock et al.,

2012). Furthermore, we tested the effect of noise, matching each

individual in the dopamine imbalance group with one individual

in the control group for the seed of noise. In both groups, the

success rate degraded and became more variable with increasing

noise, but the dopamine imbalance group was more sensitive

and showed a drop in success and a large variability for low noise

levels that did not affect the performance of control subjects.

Similarly, children with ADHD have been shown to have lower

auditory discrimination ability than controls in the presence of

background noise (Tien et al., 2019).

In order to further characterize the response pattern to

stimuli of varying intensity we computed the neural gain

between the input and the output of the system. A strong gain

is associated with a stable attractor (Hauser et al., 2016) in which

the system quickly converges to a stable activity pattern. In

contrast, a weak gain is characterized by variable attractors that

can lead to different unstable and shallow activity patterns. In

the present simulation, for stimulus-related input values that

always produced a stable response in controls (≥ 0.7), response-

related output activity was much more variable in the group

with dopamine imbalance. In this group, the more random

responses reflected a more exploratory approach where different

responses could be produced even for high stimulus-related

inputs in the cortex. In experimental situations, subjects with

ADHD demonstrated the same type of exploratory approach. In

a probabilistic reversal learning task (Hauser et al., 2014), ADHD

subjects did not choose their response strictly on the basis of

their belief in the value of the stimulus, but more often took an

exploratory approach. When the neural gain was estimated by a

sigmoidal function, this exploratory approach also resulted in a

less steep decision function. The phasic response may reinforce

the response to low-intensity sensory events, which could lead to
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a more prolonged phase of discovery of new actions in a learning

situation (Redgrave et al., 2008).

But the most significant result of the simulation, consistent

with our original hypothesis, is that while all at-risk subjects

had the same dopamine release imbalance, the ADHD

response pattern developed to different degrees depending on

the individual learning experience. On average, during this

probabilistic learning task with 100% valid feedback, subjects

in the dopaminergic imbalance group required more learning

trials than controls to reach a success criterion. Again, this

replicates a result obtained with ADHD children (Luman et al.,

2020). However, the sequence of stimuli was random with a

unique seed of noise for each individual within a group, which

ultimately resulted in a unique learning environment for each

individual within each group. This unique environment was

shared with the matched individual in the other group. When

we examined separately for each individual the cumulative

changes in synaptic weights between cortex and basal ganglia

over the course of learning, we found that individuals in the

control group showed a similar history regardless of response. In

contrast, in the dopamine imbalance group, individuals showed

a larger increase in synaptic weight for one or more actions, with

onset at different times in the first half of the training phase. As a

consequence, the intraindividual differences were much larger

in the dopamine imbalance group than in the control group.

We computed the weighted standard deviation of the cumulative

sum of history to estimate the intraindividual differences during

learning. In the control group, using a linear model, we could

explain 67% of the variability of individual reaction times during

the test phase with the weighted cumulative sum of history.

In the control group, however, we had to use a quadratic

model to explain the variability between these two measures.

Three subgroups of individuals could be distinguished in the

dopamine imbalance group (Figure 9). Within a similar range

of weighted history variability as the controls, individuals in

this subgroup a showed the same perfect performance as the

controls. However, the initial slope of the parabola was much

steeper than in controls, reflecting the excessive reinforcement

for some responses, and the variability of their reaction time

was much higher than in controls, but still lower than in the

rest of the dopamine imbalance group. This combination of

perfect accuracy but high variability in response could define

a subthreshold ADHD subgroup, where features of ADHD are

already present but do not affect overt accuracy. Closer to

the vertex of the parabola, we distinguish a second subgroup

b of individuals with weighted history variability larger than

the controls (with some negative cumulative weights), and

whose accuracy was impaired though not dramatically. The

distribution of reaction times contained both fast and very

slow responses. Their performance most closely resembled that

observed in most of the subjects diagnosed with ADHD as

their functioning is clearly impaired. Individuals with extreme

weighted history variability (with mostly negative cumulative

weights) were hardly learned the stimulus-response association

and their performance was even poorer. Their reaction time

distribution looked more gaussian with a large variability and

very slow mean reaction time. Individuals in this subgroup c

could be compared to subjects with a severe ADHD leading to

a learning disability.

In conclusion, variability in response history is much

greater in subjects with dopamine imbalance, although they

were exposed on average to the same learning environment

as controls. Intraindividual variability in response times is

related to intraindividual variability in experience with the

learning environment. It increases when certain responses are

reinforced at the expense of other responses during learning,

making response selection more difficult in a test phase. But this

variability in experience, and therefore also in response times,

is much more pronounced in subjects with an imbalance in

dopamine release. For subjects in subgroups a and b, the increase

in response time variability as a function of weighted learning

history variability is approximately linear, but the slope is much

steeper than for controls. In these subjects, the increase in phasic

dopamine release at the expense of tonic release can excessively

strengthen or weaken cortico-striatal synapses associated with

different responses and strengthen some responses at the

expense of others. These imbalances lead first to an increase

in response time variability with a mixture of fast and slow

responses, and as these imbalances increase during learning

to a decrease in performance in the test phase. In contrast,

healthy controls show little variation in the history vector

during learning. Consequently, they exhibited a small normal

variation in reaction time that was also predicted by the weighted

variability of the history with a linear function, but with a smaller

slope that reflects a more balanced reinforcement of responses.

To the extent that functional connectivity between the striatum

and cortex reflects changes in their synaptic connections, our

model is consistent with the observed correlation between

inattention and hyperactivity/impulsivity scores in networks

involving the striatum (Oldehinkel et al., 2016). As these changes

are marked by the strengthening of some connections at the

expense of others, this also explains the contradictory results

in studies comparing an ADHD group with a control group

that report either hypoconnectivity (Cao et al., 2009; Posner

et al., 2013) or hyperconnectivity (Tian et al., 2006; Costa Dias

et al., 2013) within the cortico-striato-thalamo-cortical loops

in ADHD.

This qualitative agreement we observed between simulations

and experimental findings is remarkable because it is achieved

by altering a single parameter of dopaminergic terminal

functioning, which results in phasic-tonic imbalance in

dopamine release. Frank’s model (Frank et al., 2007), which

implemented a reduction in both phasic and tonic dopamine

levels, needed to incorporate a noradrenergic component with

an increased tonic vs. phasic ratio in order to mimic the increase

in reaction time variability observed in ADHD subjects. These
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authors did not further analyze the distribution of reaction time

as a function of noradrenaline release imbalance, so we do not

know whether this model reproduces the typical ex-gaussian

distribution that we found. Obviously, our results do not

rule out noradrenergic dysfunction in ADHD. There is strong

evidence of it. Drugs modulating norepinephrine transmission

by blocking the NET such as atomoxetine (Schwartz and Correll,

2014) or the alpha2-adrenergic agonists such as clonidine

or guanfacine (Arnsten et al., 2007) are effective treatments

for ADHD. Methylphenidate significantly occupies NET at

clinically relevant doses in humans (Hannestad et al., 2010) and

atomoxetine showed a dose-dependent occupancy of NET in

monkeys (Ding et al., 2014). NET availability was decreased in

a group of adult ADHD subjects in attention-relevant regions

(frontal, parietal, thalamic, cerebellar), especially in the right

hemisphere (Ulke et al., 2019). The shift from exploitation

to exploration behavior has been proposed to be mediated

by the firing mode of norepinephrine neurons in the locus

coeruleus (Aston-Jones and Cohen, 2005). However, the results

of our model suggest that norepinephrine is not necessary

to reproduce the typical ADHD response pattern observed in

experimental reaction time tasks, which may be accounted for

by a phasic/tonic imbalance in dopaminergic activity alone. This

reinforces the concept of ADHD as a heterogeneous disorder, in

which the same response patterns may be produced by different

dysfunctions, whether or not interacting.

Grace’s model locates the mechanism of phasic/tonic

imbalance of dopamine release at the level of presynaptic

regulation, and not at the level of neuron activity itself

(Grace, 2001). In our modeling, this presynaptic imbalance

may be caused by changes in DAT reuptake (Equation 1), DA

removal (Equation 1), autoreceptor occupancy (Equation 2), or

a combination of these factors. We chose to increase Vmax.

Yet, it is known that the binding potential of DAT, like that of

D2/3 receptors, decreased in adults with ADHD (Volkow et al.,

2009), and increased with long-term stimulant treatment (Fusar-

Poli et al., 2012; Wang et al., 2013). DAT binding potential

may reflect the density of dopamine terminals, but it is also

regulated over the long term by dopamine tone, decreasing

when extracellular dopamine is decreased and increasing when

extracellular dopamine is increased (Zahniser and Doolen,

2001). The decrease in DAT density in ADHD adults could thus

be the consequence of a long-term adaptation to a chronic low

tonic dopamine level, and its increase during chronic treatment

related to the restoration of a higher level. Our model does not

consider these long-term changes, but only evaluates the short-

term effects of the dopamine release imbalance on learning.

Changes in DAT binding potential in these studies (Volkow

et al., 2009; Fusar-Poli et al., 2012; Wang et al., 2013) are thus

not incompatible with our choice of increasing Vmax. Moreover,

in Equation (1), Vmax or Km could have been modified

to obtain similar results. Beyond its density, the functional

dynamics of DAT (characterized by its Km) may be altered

by other changes (such as ion dependence, or conformational

balance) that may themselves be related to genetic mutations.

For example, a variable number tandem repeat (VNTR) in

the 3’ regulatory region of the DAT gene results in two main

forms (long 10R and short 9R). The10R form has been found

to be associated with ADHD, at least in children and youth

(Grünblatt et al., 2019), and can combine with another VNTR

to produce haplotypes (Gizer et al., 2009; Franke et al., 2010),

susceptible to be modulated by epigenetic factors (Xu et al.,

2015; Lambacher et al., 2020; Tonelli et al., 2020). Genetic

and epigenetic changes may ultimately affect DAT dynamics.

Instead of increasingVmax, we could have also increasedKrem in

the removal part of Equation (1). Catechol-O-methyltransferase

(COMT) regulates dopamine level by degrading it, mainly in

the prefrontal cortex (PFC). COMT haplotypes showed different

level of activity (Diatchenko et al., 2005; Nackley et al., 2006)

and it has been proposed that a decrease in COMT activity

in the PFC could increase firing of pyramidal neurons and

glutamate transmission in basal ganglia, leading to an increase

in tonic dopamine, which in turn results in a decrease in phasic

dopamine (Bilder et al., 2004). However, this model has yet

to be convincingly proven (Nolan et al., 2004; Rosa et al.,

2010), as the association of genetic variants of COMT with

ADHD (Kang et al., 2020). In our model, dopamine phasic

release decreases with autoreceptor occupancy (Benoit-Marand

et al., 2001). However, the interactome governing dopamine

release is much more complex and includes transporters, G-

protein-coupled receptors, ion channels, intracellular signaling

modulators, and protein kinases. The phasic/tonic ratio of

dopamine release is thus a complex trait that varies along a

continuum whose regulation is still poorly understood, but

where DAT plays a key role. Increasing Vmax was not proposed

as a unique cause for a complex trait such as ADHD, but rather

as a means to shift the dopamine release to a more unbalanced

phasic/tonic ratio that can lead to an ADHD-like phenotype

through interactions with specific learning experiences. In this

perspective, we believe that our model has sound biological and

clinical plausibility.

The present model has limitations. Some parameters in

the model might not be identifiable and the exact value of

some others is not known. The values assigned to parameters

is the same for all the subjects within each group and does

not reflect the interindividual variability found in control and

clinical groups, but support the proof-of-concept approach.

The task we used does not require inhibitory processes, which

will have to be tested in further studies. Also, in further

studies the dysfunctions in the noradrenergic system should

also be included to better simulate the pathophysiology of

ADHD. Nevertheless, our model is a first step to investigate

the implication of the dopaminergic system in ADHD with a

mechanistic approach.

To conclude, our model opens perspectives to be used

as a platform to generate and test hypothesis regarding the
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dopaminergic system in ADHD. The effect of medication

on performance, the impact of different patterns of noise,

the difference in commission and omission errors and the

continuum in the severity of ADHD symptoms could be

explored with this model. The effect of gradual changes

in the tonic and phasic dopamine ratio will be simulated

in further studies to see if the effects on the associated

behavior are continuous or discontinuous with a threshold.

The model could also be used to simulate a no-response task

where the patient is asked to withhold the response when a

certain stimulus is sent like in the go/no-go task performed

in clinical practice. This modeling approach is a promising

step toward the development of an integrative model of the

dopaminergic system in basal ganglia for the elucidation of its

associated pathologies.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further inquiries

can be directed to the corresponding author.

Author contributions

This work makes up a portion of the doctoral thesis

of FV-V. FV-V, PR, MU, and FN: construction of the

model and writing of the paper. FV-V: numerical simulations.

All authors contributed to the article and approved the

submitted version.

Funding

FV-V received a scholarship from the Natural Sciences

and Engineering Research Council (NSERC), Canada through

the PGS-D program. Support was also provided by NSERC-

Industrial Chair in Pharmacometrics funded by Novartis, Pfizer

and Syneos, as well as FRQNT Projet d’équipe (FN).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fncom.

2022.849323/full#supplementary-material

References

Alexander, L., and Farrelly, N. (2018). Attending to adult adhd: a review
of the neurobiology behind adult adhd. Ir. J. Psychol. Med. 35, 237–244.
doi: 10.1017/ipm.2017.78

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of
Mental Disorders. Paris: Elsevier Masson.

Arnsten, A. F., Scahill, L., and Findling, R. L. (2007). alpha2-adrenergic
receptor agonists for the treatment of attention-deficit/hyperactivity disorder:
emerging concepts from new data. J. Child Adolesc. Psychopharmacol. 17, 393–406.
doi: 10.1089/cap.2006.0098

Aston-Jones, G., and Cohen, J. D. (2005). Adaptive gain and the role of the locus
coeruleus-norepinephrine system in optimal performance. J. Comp. Neurol. 493,
99–110. doi: 10.1002/cne.20723

Badgaiyan, R. D., Sinha, S., Sajjad, M., and Wack, D. S. (2015). Attenuated
tonic and enhanced phasic release of dopamine in attention deficit hyperactivity
disorder. PLoS ONE 10, e0137326. doi: 10.1371/journal.pone.0137326

Bamford, N. S., Wightman, R. M., and Sulzer, D. (2018). Dopamine’s effects
on corticostriatal synapses during reward-based behaviors. Neuron 97, 494–510.
doi: 10.1016/j.neuron.2018.01.006

Baston, C., Contin, M., Calandra Buonaura, G., Cortelli, P., and Ursino, M.
(2016). A mathematical model of levodopa medication effect on basal ganglia in
parkinson’s disease: an application to the alternate finger tapping task. Front. Hum.
Neurosci. 10, 280. doi: 10.3389/fnhum.2016.00280

Baston, C., and Ursino, M. (2015). A biologically inspired computational
model of basal ganglia in action selection. Comput. Intell. Neurosci. 2015, 187417.
doi: 10.1155/2015/187417

Beaulieu, J.-M., and Gainetdinov, R. R. (2011). The physiology, signaling,
and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217.
doi: 10.1124/pr.110.002642

Belujon, P., and Grace, A. A. (2015). Regulation of dopamine system
responsivity and its adaptive and pathological response to stress. Proc. Biol. Sci.
282, 2516. doi: 10.1098/rspb.2014.2516

Benoit-Marand, M., Borrelli, E., and Gonon, F. (2001). Inhibition of dopamine
release via presynaptic d2 receptors: time course and functional characteristics in
vivo. J. Neurosci. 21, 9134–9141. doi: 10.1523/JNEUROSCI.21-23-09134.2001

Bilder, R.M., Volavka, J., Lachman, H.M., andGrace, A. A. (2004). The catechol-
o-methyltransferase polymorphism: relations to the tonic-phasic dopamine
hypothesis and neuropsychiatric phenotypes.Neuropsychopharmacology 29, 1943–
1961. doi: 10.1038/sj.npp.1300542

Blum, K., Chen, A. L.-C., Braverman, E. R., Comings, D. E., Chen,
T. J. H., Arcuri, V., et al. (2008). Attention-deficit-hyperactivity disorder
and reward deficiency syndrome. Neuropsychiatr. Dis. Treat. 4, 893–918.
doi: 10.2147/NDT.S2627

Budygin, E. A., John, C. E., Mateo, Y., and Jones, S. R. (2002). Lack of
cocaine effect on dopamine clearance in the core and shell of the nucleus

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2022.849323
https://www.frontiersin.org/articles/10.3389/fncom.2022.849323/full#supplementary-material
https://doi.org/10.1017/ipm.2017.78
https://doi.org/10.1089/cap.2006.0098
https://doi.org/10.1002/cne.20723
https://doi.org/10.1371/journal.pone.0137326
https://doi.org/10.1016/j.neuron.2018.01.006
https://doi.org/10.3389/fnhum.2016.00280
https://doi.org/10.1155/2015/187417
https://doi.org/10.1124/pr.110.002642
https://doi.org/10.1098/rspb.2014.2516
https://doi.org/10.1523/JNEUROSCI.21-23-09134.2001
https://doi.org/10.1038/sj.npp.1300542
https://doi.org/10.2147/NDT.S2627
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Véronneau-Veilleux et al. 10.3389/fncom.2022.849323

accumbens of dopamine transporter knock-out mice. J. Neuroscie. 22, RC222.
doi: 10.1523/JNEUROSCI.22-10-j0002.2002

Burt, S. A. (2009). Rethinking environmental contributions to child and
adolescent psychopathology: a meta-analysis of shared environmental influences.
Psychol. Bull. 135, 608–637. doi: 10.1037/a0015702

Burt, S. A. (2010). Are there shared environmental influences on attention-
deficit/hyperactivity disorder? reply to wood, buitelaar, rijsdijk, asherson, and
kuntsi [corrected] (2010). Psychol. Bull. 136, 341–343. doi: 10.1037/a0019116

Burt, S. A., Larsson, H., Lichtenstein, P., and Klump, K. L. (2012).
Additional evidence against shared environmental contributions to
attention-deficit/hyperactivity problems. Behav. Genet. 42, 711–721.
doi: 10.1007/s10519-012-9545-y

Cao, X., Cao, Q., Long, X., Sun, L., Sui, M., Zhu, C., et al. (2009). Abnormal
resting-state functional connectivity patterns of the putamen in medication-naïve
children with attention deficit hyperactivity disorder. Brain Res. 1303, 195–206.
doi: 10.1016/j.brainres.2009.08.029

Costa Dias, T. G., Wilson, V. B., Bathula, D. R., Iyer, S. P., Mills, K. L., Thurlow,
B. L., et al. (2013). Reward circuit connectivity relates to delay discounting in
children with attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol.
23, 33–45. doi: 10.1016/j.euroneuro.2012.10.015

Cubillo, A., Halari, R., Smith, A., Taylor, E., and Rubia, K. (2012). A review of
fronto-striatal and fronto-cortical brain abnormalities in children and adults with
attention deficit hyperactivity disorder (adhd) and new evidence for dysfunction
in adults with adhd during motivation and attention. Cortex 48, 194–215.
doi: 10.1016/j.cortex.2011.04.007

Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D.,
Agerbo, E., et al. (2019). Discovery of the first genome-wide significant
risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75.
doi: 10.1038/s41588-018-0269-7

Diatchenko, L., Slade, G. D., Nackley, A. G., Bhalang, K., Sigurdsson, A., Belfer,
I., et al. (2005). Genetic basis for individual variations in pain perception and
the development of a chronic pain condition. Human Mol. Genet. 14, 135–143.
doi: 10.1093/hmg/ddi013

Dickstein, D. P. (2018). Paying attention to attention-deficit/hyperactivity
disorder. JAMA Netw. Open 1, e181504. doi: 10.1001/jamanetworkopen.2018.1504

Dickstein, S. G., Bannon, K., Castellanos, F. X., and Milham, M. P. (2006). The
neural correlates of attention deficit hyperactivity disorder: an ale meta-analysis. J.
Child Psychol. Psychiatry 47, 1051–1062. doi: 10.1111/j.1469-7610.2006.01671.x

Ding, Y.-S., Naganawa, M., Gallezot, J.-D., Nabulsi, N., Lin, S.-F., Ropchan,
J., et al. (2014). Clinical doses of atomoxetine significantly occupy both
norepinephrine and serotonin transports: Implications on treatment of depression
and adhd. Neuroimage 86, 164–171. doi: 10.1016/j.neuroimage.2013.08.001

Douma, E. H., and de Kloet, E. R. (2020). Stress-induced plasticity and
functioning of ventral tegmental dopamine neurons. Neurosci. Biobehav. Rev. 108,
48–77. doi: 10.1016/j.neubiorev.2019.10.015

Dreyer, J. K. (2014). Three mechanisms by which striatal denervation
causes breakdown of dopamine signaling. J. Neurosci. 34, 12444–12456.
doi: 10.1523/JNEUROSCI.1458-14.2014

Dreyer, J. K., Herrik, K. F., Berg, R. W., and Hounsgaard, J. D. (2010). Influence
of phasic and tonic dopamine release on receptor activation. J. Neurosci. 30,
14273–14283. doi: 10.1523/JNEUROSCI.1894-10.2010

Dreyer, J. K., and Hounsgaard, J. (2013). Mathematical model of dopamine
autoreceptors and uptake inhibitors and their influence on tonic and phasic
dopamine signaling. J. Neurophysiol. 109, 171–182. doi: 10.1152/jn.00502.2012

Faraone, S. V., and Larsson, H. (2019). Genetics of attention deficit hyperactivity
disorder.Mol. Psychiatry 24, 562–575. doi: 10.1038/s41380-018-0070-0

Fennell, A. M., Pitts, E. G., Sexton, L. L., and Ferris, M. J. (2020). Phasic
dopamine release magnitude tracks individual differences in sensitization of
locomotor response following a history of nicotine exposure. Sci. Rep. 10, 173.
doi: 10.1038/s41598-019-56884-z

Ford, C. P. (2014). The role of d2-autoreceptors in regulating
dopamine neuron activity and transmission. Neuroscience 282, 13–22.
doi: 10.1016/j.neuroscience.2014.01.025

Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: a
neurocomputational account of cognitive deficits in medicated and nonmedicated
parkinsonism. J. Cogn. Neurosci. 17, 51–72. doi: 10.1162/0898929052880093

Frank, M. J., and Claus, E. D. (2006). Anatomy of a decision: striato-
orbitofrontal interactions in reinforcement learning, decisionmaking, and reversal.
Psychol. Rev. 113, 300–326. doi: 10.1037/0033-295X.113.2.300

Frank, M. J., Santamaria, A., O’Reilly, R. C., and Willcutt, E. (2007).
Testing computational models of dopamine and noradrenaline dysfunction in

attention deficit/hyperactivity disorder. Neuropsychopharmacology 32, 1583–1599.
doi: 10.1038/sj.npp.1301278

Franke, B., Vasquez, A. A., Johansson, S., Hoogman, M., Romanos, J.,
Boreatti-Hümmer, A., et al. (2010). Multicenter analysis of the slc6a3/dat1
vntr haplotype in persistent adhd suggests differential involvement of the
gene in childhood and persistent adhd. Neuropsychopharmacology 35, 656–664.
doi: 10.1038/npp.2009.170

Frémaux, N., and Gerstner, W. (2015). Neuromodulated spike-timing-
dependent plasticity, and theory of three factor learning rules. Front. Neural Circ.
9, 85. doi: 10.3389/fncir.2015.00085

Frodl, T., and Skokauskas, N. (2012). Meta-analysis of structural mri studies in
children and adults with attention deficit hyperactivity disorder indicates treatment
effects. Acta Psychiatr. Scand. 125, 114–126. doi: 10.1111/j.1600-0447.2011.01786.x

Fuller, J. A., Burrell, M. H., Yee, A. G., Liyanagama, K., Lipski, J., Wickens,
J. R., et al. (2019). Role of homeostatic feedback mechanisms in modulating
methylphenidate actions on phasic dopamine signaling in the striatum of awake
behaving rats. Progr. Neurobiol. 182, 101681. doi: 10.1016/j.pneurobio.2019.1
01681

Fusar-Poli, P., Rubia, K., Rossi, G., Sartori, G., and Balottin, U. (2012).
Striatal dopamine transporter alterations in adhd: pathophysiology or
adaptation to psychostimulants? a meta-analysis. Am. J. Psychiatry 169, 264–272.
doi: 10.1176/appi.ajp.2011.11060940

Giedd, J. N., Blumenthal, J., Molloy, E., and Castellanos, F. X. (2001). Brain
imaging of attention deficit/hyperactivity disorder. Ann. N. Y. Acad. Sci. 931,
33–49. doi: 10.1111/j.1749-6632.2001.tb05772.x

Gizer, I. R., Ficks, C., andWaldman, I. D. (2009). Candidate gene studies of adhd:
a meta-analytic review. Hum. Genet. 126, 51–90. doi: 10.1007/s00439-009-0694-x

Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation
of dopamine system responsivity: a hypothesis for the etiology of schizophrenia.
Neuroscience 41, 1–24. doi: 10.1016/0306-4522(91)90196-U

Grace, A. A. (2001). “Psychostimulant actions on dopamine and limbic system
function: Relevance to the pathophysiology and treatment of adhd,” in Stimulant
Drugs and ADHD: Basic and Clinical Neuroscience (Oxford: Oxford University
Press), 134–157.

Grace, A. A. (2016). Dysregulation of the dopamine system in the
pathophysiology of schizophrenia and depression.Nat. Rev. Neurosci. 17, 524–532.
doi: 10.1038/nrn.2016.57

Grünblatt, E., Werling, A. M., Roth, A., Romanos, M., and Walitza, S. (2019).
Association study and a systematic meta-analysis of the vntr polymorphism in the
3’-utr of dopamine transporter gene and attention-deficit hyperactivity disorder. J.
Neural Trans. 126, 517–529. doi: 10.1007/s00702-019-01998-x

Hannestad, J., Gallezot, J.-D., Planeta-Wilson, B., Lin, S.-F., Williams,W. A., van
Dyck, C. H., et al. (2010). Clinically relevant doses of methylphenidate significantly
occupy norepinephrine transporters in humans in vivo. Biol. Psychiatry 68,
854–860. doi: 10.1016/j.biopsych.2010.06.017

Hauser, T. U., Fiore, V. G., Moutoussis, M., and Dolan, R. J. (2016).
Computational psychiatry of adhd: neural gain impairments across marrian levels
of analysis. Trends Neurosci. 39, 63–73. doi: 10.1016/j.tins.2015.12.009

Hauser, T. U., Iannaccone, R., Ball, J., Mathys, C., Brandeis, D., Walitza, S.,
et al. (2014). Role of the medial prefrontal cortex in impaired decision making in
juvenile attention-deficit/hyperactivity disorder. JAMA Psychiatry 71, 1165–1173.
doi: 10.1001/jamapsychiatry.2014.1093

Hervey, A. S., Epstein, J. N., Curry, J. F., Tonev, S., Eugene Arnold,
L., Keith Conners, C., et al. (2006). Reaction time distribution analysis of
neuropsychological performance in an adhd sample. Child Neuropsychol. 12,
125–140. doi: 10.1080/09297040500499081

Hille, B. (1992). G protein-coupled mechanisms and nervous signaling. Neuron
9, 187–195. doi: 10.1016/0896-6273(92)90158-A

Horn, A. S. (1990). Dopamine uptake: a review of progress in the last decade.
Progr. Neurobiol. 34, 387–400. doi: 10.1016/0301-0082(90)90033-D

Huang-Pollock, C. L., Karalunas, S. L., Tam, H., and Moore, A. N. (2012).
Evaluating vigilance deficits in adhd: ameta-analysis of cpt performance. J. Abnorm
Psychol. 121, 360–371. doi: 10.1037/a0027205

Hunger, L., Kumar, A., and Schmidt, R. (2020). Abundance compensates
kinetics: similar effect of dopamine signals on d1 and d2 receptor populations. J.
Neurosci. 40, 2868–2881. doi: 10.1523/JNEUROSCI.1951-19.2019

Jackson, J. N. S., and MacKillop, J. (2016). Attention-deficit/hyperactivity
disorder and monetary delay discounting: A meta-analysis of case-control studies.
Biol. Psychiatry 1, 316–325. doi: 10.1016/j.bpsc.2016.01.007

John, C. E., Budygin, E. A., Mateo, Y., and Jones, S. R. (2006). Neurochemical
characterization of the release and uptake of dopamine in ventral tegmental

Frontiers inComputationalNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2022.849323
https://doi.org/10.1523/JNEUROSCI.22-10-j0002.2002
https://doi.org/10.1037/a0015702
https://doi.org/10.1037/a0019116
https://doi.org/10.1007/s10519-012-9545-y
https://doi.org/10.1016/j.brainres.2009.08.029
https://doi.org/10.1016/j.euroneuro.2012.10.015
https://doi.org/10.1016/j.cortex.2011.04.007
https://doi.org/10.1038/s41588-018-0269-7
https://doi.org/10.1093/hmg/ddi013
https://doi.org/10.1001/jamanetworkopen.2018.1504
https://doi.org/10.1111/j.1469-7610.2006.01671.x
https://doi.org/10.1016/j.neuroimage.2013.08.001
https://doi.org/10.1016/j.neubiorev.2019.10.015
https://doi.org/10.1523/JNEUROSCI.1458-14.2014
https://doi.org/10.1523/JNEUROSCI.1894-10.2010
https://doi.org/10.1152/jn.00502.2012
https://doi.org/10.1038/s41380-018-0070-0
https://doi.org/10.1038/s41598-019-56884-z
https://doi.org/10.1016/j.neuroscience.2014.01.025
https://doi.org/10.1162/0898929052880093
https://doi.org/10.1037/0033-295X.113.2.300
https://doi.org/10.1038/sj.npp.1301278
https://doi.org/10.1038/npp.2009.170
https://doi.org/10.3389/fncir.2015.00085
https://doi.org/10.1111/j.1600-0447.2011.01786.x
https://doi.org/10.1016/j.pneurobio.2019.101681
https://doi.org/10.1176/appi.ajp.2011.11060940
https://doi.org/10.1111/j.1749-6632.2001.tb05772.x
https://doi.org/10.1007/s00439-009-0694-x
https://doi.org/10.1016/0306-4522(91)90196-U
https://doi.org/10.1038/nrn.2016.57
https://doi.org/10.1007/s00702-019-01998-x
https://doi.org/10.1016/j.biopsych.2010.06.017
https://doi.org/10.1016/j.tins.2015.12.009
https://doi.org/10.1001/jamapsychiatry.2014.1093
https://doi.org/10.1080/09297040500499081
https://doi.org/10.1016/0896-6273(92)90158-A
https://doi.org/10.1016/0301-0082(90)90033-D
https://doi.org/10.1037/a0027205
https://doi.org/10.1523/JNEUROSCI.1951-19.2019
https://doi.org/10.1016/j.bpsc.2016.01.007
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Véronneau-Veilleux et al. 10.3389/fncom.2022.849323

area and serotonin in substantia nigra of the mouse. J. Neurochem. 96, 267–282.
doi: 10.1111/j.1471-4159.2005.03557.x

Kang, P., Luo, L., Peng, X., and Wang Y. (2020). Association of val158met
polymorphism in comt gene with attention-deficit hyperactive disorder: an
updated meta-analysis. Medicine 99, e23400. doi: 10.1097/MD.00000000000
23400

Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A.,
Friedman, L. M., et al. (2013). Reaction time variability in adhd: a meta-analytic
review of 319 studies. Clin. Psychol. Rev. 33, 795–811. doi: 10.1016/j.cpr.2013.
06.001

Lambacher, G., Pascale, E., Pucci, M., Mangiapelo, S., D’Addario, C., and
Adriani, W. (2020). Search for an epigenetic biomarker in adhd diagnosis, based
on the dat1 gene 5’-utr methylation: a new possible approach. Psychiatry Res. 291,
113154. doi: 10.1016/j.psychres.2020.113154

Leth-Steensen, C., Elbaz, Z. K., and Douglas, V. I. (2000). Mean
response times, variability, and skew in the responding of adhd children:
a response time distributional approach. Acta Psychol. 104, 167–190.
doi: 10.1016/S0001-6918(00)00019-6

Li, D., Sham, P. C., Owen, M. J., and He, L. (2006). Meta-analysis
shows significant association between dopamine system genes and attention
deficit hyperactivity disorder (adhd). Hum. Mol. Genet. 15, 2276–2284.
doi: 10.1093/hmg/ddl152

Lin, H.-Y., Hwang-Gu, S.-L., and Gau, S. S.-F. (2015). Intra-individual reaction
time variability based on ex-gaussian distribution as a potential endophenotype
for attention-deficit/hyperactivity disorder. Acta Psychiatr. Scand. 132, 39–50.
doi: 10.1111/acps.12393

Luman, M., Janssen, T. W. P., Bink, M., van Mourik, R., Maras,
A., and Oosterlaan, J. (2020). Probabilistic learning in children with
attention-deficit/hyperactivity disorder. J. Attent. Disord. 25, 1407–1416.
doi: 10.1177/1087054720905094

Madadi Asl, M., Vahabie, A. H., and Valizadeh, A. (2019). Dopaminergic
modulation of synaptic plasticity, its role in neuropsychiatric disorders, and its
computational modeling. Basic Clin. Neurosci. 10, 1–12. doi: 10.32598/bcn.9.10.125

Marinelli, M., and McCutcheon, J. E. (2014). Heterogeneity of dopamine
neuron activity across traits and states. Neuroscience 282, 176–197.
doi: 10.1016/j.neuroscience.2014.07.034

May, L. J., Kuhr, W. G., and Wightman, R. M. (1988). Differentiation of
dopamine overflow and uptake processes in the extracellular fluid of the rat
caudate nucleus with fast-scan in vivo voltammetry. J. Neurochem. 51, 1060–1069.
doi: 10.1111/j.1471-4159.1988.tb03069.x

Nackley, A. G., Shabalina, S. A., Tchivileva, I. E., Satterfield, K., Korchynskyi,
O., Makarov, S. S., et al. (2006). Human catechol-o-methyltransferase haplotypes
modulate protein expression by altering mrna secondary structure. Science 314,
1930–1933. doi: 10.1126/science.1131262

Nakao, T., Radua, J., Rubia, K., and Mataix-Cols, D. (2011). Gray
matter volume abnormalities in adhd: voxel-based meta-analysis exploring the
effects of age and stimulant medication. Am. J. Psychiatry 168, 1154–1163.
doi: 10.1176/appi.ajp.2011.11020281

Nicholson, C. (1995). Interaction between diffusion and michaelis-menten
uptake of dopamine after iontophoresis in striatum. Biophys. J. 68, 1699–1715.
doi: 10.1016/S0006-3495(95)80348-6

Nolan, K. A., Bilder, R. M., Lachman, H. M., and Volavka, J. (2004). Catechol
o-methyltransferase val158met polymorphism in schizophrenia: differential effects
of val and met alleles on cognitive stability and flexibility. Am. J. Psychiatry 161,
359–361. doi: 10.1176/appi.ajp.161.2.359

Norman, L. J., Carlisi, C., Lukito, S., Hart, H., Mataix-Cols, D.,
Radua, J., et al. (2016). Structural and functional brain abnormalities
in attention-deficit/hyperactivity disorder and obsessive-compulsive
disorder: a comparative meta-analysis. JAMA Psychiatry 73, 815–825.
doi: 10.1001/jamapsychiatry.2016.0700

Oldehinkel, M., Beckmann, C. F., Pruim, R. H. R., van Oort, E. S. B.,
Franke, B., Hartman, C. A., et al. (2016). Attention-deficit/hyperactivity disorder
symptoms coincide with altered striatal connectivity. Biol. Psychiatry 1, 353–363.
doi: 10.1016/j.bpsc.2016.03.008

Patros, C. H. G., Alderson, R. M., Kasper, L. J., Tarle, S. J., Lea, S. E., and Hudec,
K. L. (2016). Choice-impulsivity in children and adolescents with attention-
deficit/hyperactivity disorder (adhd): a meta-analytic review. Clin. Psychol. Rev. 43,
162–174. doi: 10.1016/j.cpr.2015.11.001

Posner, J., Rauh, V., Gruber, A., Gat, I., Wang, Z., and Peterson, B.
S. (2013). Dissociable attentional and affective circuits in medication-naïve
children with attention-deficit/hyperactivity disorder. Psychiatry Res. 213, 24–30.
doi: 10.1016/j.pscychresns.2013.01.004

Pothos, E. N., Davila, V., and Sulzer, D. (1998). Presynaptic recording of quanta
from midbrain dopamine neurons and modulation of the quantal size. J. Neurosci.
18, 4106–4118. doi: 10.1523/JNEUROSCI.18-11-04106.1998

Redgrave, P., Gurney, K., and Reynolds, J. (2008). What is
reinforced by phasic dopamine signals? Brain Res. Rev. 58, 322–339.
doi: 10.1016/j.brainresrev.2007.10.007

Reynolds, J. N. J., and Wickens, J. R. (2002). Dopamine-dependent
plasticity of corticostriatal synapses. Neural Netw. 15, 507–521.
doi: 10.1016/s0893-6080(02)00045-x

Rice, M. E., and Cragg, S. J. (2008). Dopamine spillover after quantal release:
rethinking dopamine transmission in the nigrostriatal pathway. Brain Res. Rev. 58,
303–313. doi: 10.1016/j.brainresrev.2008.02.004

Robinson, B. G., Bunzow, J. R., Grimm, J. B., Lavis, L. D., Dudman, J. T., Brown,
J., et al. (2017). Desensitized d2 autoreceptors are resistant to trafficking. Sci. Rep.
7, 4379. doi: 10.1038/s41598-017-04728-z

Rosa, E. C., Dickinson, D., Apud, J., Weinberger, D. R., and Elvevåg, B. (2010).
Comt val158met polymorphism, cognitive stability and cognitive flexibility: an
experimental examination. Behav. Brain Funct. 6, 53. doi: 10.1186/1744-9081-6-53

Saad, J. F., Griffiths, K. R., and Korgaonkar, M. S. (2020). A systematic
review of imaging studies in the combined and inattentive subtypes of
attention deficit hyperactivity disorder. Front. Integr. Neurosci. 14, 31.
doi: 10.3389/fnint.2020.00031

Sagvolden, T., Johansen, E. B., Aase, H., and Russell, V. A. (2005). A
dynamic developmental theory of attention-deficit/hyperactivity disorder (adhd)
predominantly hyperactive/impulsive and combined subtypes. Behav. Brain Sci. 28,
397–419; discussion 419-68. doi: 10.1017/S0140525X05000075

Schönfuss, D., Reum, T., Olshausen, P., Fischer, T., and Morgenstern,
R. (2001). Modelling constant potential amperometry for investigations of
dopaminergic neurotransmission kinetics in vivo. J. Neurosci. Methods 112,
163–172. doi: 10.1016/S0165-0270(01)00465-4

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron 36,
241–263. doi: 10.1016/S0896-6273(02)00967-4

Schultz, W. (2016). Dopamine reward prediction error coding. Dial. Clin.
Neurosci. 18, 23–32. doi: 10.31887/DCNS.2016.18.1/wschultz

Schultz, W. (2017). Reward prediction error. Curr. Biol. 27, 369-R371.
doi: 10.1016/j.cub.2017.02.064

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of
prediction and reward. Science 275, 1593–1599. doi: 10.1126/science.275.5306.1593

Schwartz, S., and Correll, C. U. (2014). Efficacy and safety of atomoxetine in
children and adolescents with attention-deficit/hyperactivity disorder: results from
a comprehensive meta-analysis and metaregression. J. Am. Acad. Child Adolesc.
Psychiatry 53, 174–187. doi: 10.1016/j.jaac.2013.11.005

Seidman, L. J., Valera, E. M., and Makris, N. (2005). Structural brain
imaging of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1263–1272.
doi: 10.1016/j.biopsych.2004.11.019

Stanislaw, H., and Todorov, N. (1999). Calculation of signal detection
theory measures. Behav. Res. Methods Instrument. Comput. 31, 137–149.
doi: 10.3758/BF03207704

Syková, E., and Nicholson, C. (2008). Diffusion in brain extracellular space.
Physiol. Rev. 88, 1277–1340. doi: 10.1152/physrev.00027.2007

Tian, L., Jiang, T., Wang, Y., Zang, Y., He, Y., Liang, M., et al. (2006).
Altered resting-state functional connectivity patterns of anterior cingulate cortex in
adolescents with attention deficit hyperactivity disorder.Neurosci. Lett. 400, 39–43.
doi: 10.1016/j.neulet.2006.02.022

Tien, Y.-M., Chen, V. C.-H., Lo, T.-S., Hsu, C.-F., Gossop, M., and Huang, K.-Y.
(2019). Deficits in auditory sensory discrimination among children with attention-
deficit/hyperactivity disorder. Eur. Child Adolescent Psychiatry 28, 645–653.
doi: 10.1007/s00787-018-1228-7

Tonelli, E., Pascale, E., Troianiello, M., D’Addario, C., and Adriani, W. (2020).
Dat1 gene methylation as an epigenetic biomarker in attention deficit hyperactivity
disorder: a commentary. Front. Genet. 11, 444. doi: 10.3389/fgene.2020.00444

Tripp, G., andWickens, J. R. (2008). Research review: dopamine transfer deficit:
a neurobiological theory of altered reinforcement mechanisms in adhd. J. Child
Psychol. Psychiatry 49, 691–704. doi: 10.1111/j.1469-7610.2007.01851.x

Ulke, C., Rullmann, M., Huang, J., Luthardt, J., Becker, G.-A., Patt, M.,
et al. (2019). Adult attention-deficit/hyperactivity disorder is associated with
reduced norepinephrine transporter availability in right attention networks:
a (s,s)-o-[, javax.xml.bind.jaxbelement@32a363f0, c]methylreboxetine positron
emission tomography study. Transl. Psychiatry 9, 301. doi: 10.1038/s41398-019-0
619-y

Frontiers inComputationalNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2022.849323
https://doi.org/10.1111/j.1471-4159.2005.03557.x
https://doi.org/10.1097/MD.0000000000023400
https://doi.org/10.1016/j.cpr.2013.06.001
https://doi.org/10.1016/j.psychres.2020.113154
https://doi.org/10.1016/S0001-6918(00)00019-6
https://doi.org/10.1093/hmg/ddl152
https://doi.org/10.1111/acps.12393
https://doi.org/10.1177/1087054720905094
https://doi.org/10.32598/bcn.9.10.125
https://doi.org/10.1016/j.neuroscience.2014.07.034
https://doi.org/10.1111/j.1471-4159.1988.tb03069.x
https://doi.org/10.1126/science.1131262
https://doi.org/10.1176/appi.ajp.2011.11020281
https://doi.org/10.1016/S0006-3495(95)80348-6
https://doi.org/10.1176/appi.ajp.161.2.359
https://doi.org/10.1001/jamapsychiatry.2016.0700
https://doi.org/10.1016/j.bpsc.2016.03.008
https://doi.org/10.1016/j.cpr.2015.11.001
https://doi.org/10.1016/j.pscychresns.2013.01.004
https://doi.org/10.1523/JNEUROSCI.18-11-04106.1998
https://doi.org/10.1016/j.brainresrev.2007.10.007
https://doi.org/10.1016/s0893-6080(02)00045-x
https://doi.org/10.1016/j.brainresrev.2008.02.004
https://doi.org/10.1038/s41598-017-04728-z
https://doi.org/10.1186/1744-9081-6-53
https://doi.org/10.3389/fnint.2020.00031
https://doi.org/10.1017/S0140525X05000075
https://doi.org/10.1016/S0165-0270(01)00465-4
https://doi.org/10.1016/S0896-6273(02)00967-4
https://doi.org/10.31887/DCNS.2016.18.1/wschultz
https://doi.org/10.1016/j.cub.2017.02.064
https://doi.org/10.1126/science.275.5306.1593
https://doi.org/10.1016/j.jaac.2013.11.005
https://doi.org/10.1016/j.biopsych.2004.11.019
https://doi.org/10.3758/BF03207704
https://doi.org/10.1152/physrev.00027.2007
https://doi.org/10.1016/j.neulet.2006.02.022
https://doi.org/10.1007/s00787-018-1228-7
https://doi.org/10.3389/fgene.2020.00444
https://doi.org/10.1111/j.1469-7610.2007.01851.x
https://doi.org/10.1038/s41398-019-0619-y
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Véronneau-Veilleux et al. 10.3389/fncom.2022.849323

van der Kooij, M. A., and Glennon, J. C. (2007). Animal models concerning the
role of dopamine in attention-deficit hyperactivity disorder. Neurosci. Biobehav.
Rev. 31, 597–618. doi: 10.1016/j.neubiorev.2006.12.002

Véronneau-Veilleux, F., Robaey, P., Ursino, M., and Nekka, F. (2020).
An integrative model of parkinson’s disease treatment including levodopa
pharmacokinetics, dopamine kinetics, basal ganglia neurotransmission and motor
action throughout disease progression. J. Pharmacokinet. Pharmacodyn. 48,
133–148. doi: 10.1007/s10928-020-09723-y

Volkow, N. D., Wang, G.-J., Fowler, J. S., and Ding, Y.-S. (2005). Imaging
the effects of methylphenidate on brain dopamine: new model on its therapeutic
actions for attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1410–1415.
doi: 10.1016/j.biopsych.2004.11.006

Volkow, N. D., Wang, G. J., Fowler, J. S., Gatley, S. J., Logan, J., Ding, Y.
S., et al. (1998). Dopamine transporter occupancies in the human brain induced
by therapeutic doses of oral methylphenidate. Am. J. Psychiatry 155, 1325–1331.
doi: 10.1176/ajp.155.10.1325

Volkow, N. D.,Wang, G. J., Kollins, S. H.,Wigal, T. L., Newcorn, J. H., Telang, F.,
et al. (2009). Evaluating dopamine reward pathway in adhd: clinical implications.
JAMA 302, 1084–1091. doi: 10.1001/jama.2009.1308

Waelti, P., Dickinson, A., and Schultz, W. (2001). Dopamine responses
comply with basic assumptions of formal learning theory. Nature 412, 43–48.
doi: 10.1038/35083500

Wanat, M. J., Willuhn, I., Clark, J. J., and Phillips, P. E. M. (2009). Phasic
dopamine release in appetitive behaviors and drug addiction. Curr. Drug Abuse
Rev. 2, 195–213. doi: 10.2174/1874473710902020195

Wang, G.-J., Volkow, N. D., Wigal, T., Kollins, S. H., Newcorn, J. H., Telang,
F., et al. (2013). Long-term stimulant treatment affects brain dopamine transporter
level in patients with attention deficit hyperactive disorder. PLoS ONE 8, e63023.
doi: 10.1371/journal.pone.0063023

Wickham, R. J., Solecki, W., Rathbun, L. R., Neugebauer, N. M., Wightman, R.
M., and Addy, N. A. (2013). Advances in studying phasic dopamine signaling in
brain reward mechanisms. Front. Biosci. 5, 678. doi: 10.2741/E678

Wood, A. C., Buitelaar, J., Rijsdijk, F., Asherson, P., and Kuntsi, J. (2010).
Rethinking shared environment as a source of variance underlying attention-
deficit/hyperactivity disorder symptoms: comment on burt (2009). Psychol. Bull.
136, 331–340. doi: 10.1037/a0019048

Xu, Y., Chen, X.-T., Luo, M., Tang, Y., Zhang, G., Wu, D., et al.
(2015). Multiple epigenetic factors predict the attention deficit/hyperactivity
disorder among the chinese han children. J. Psychiatr. Res. 64, 40–50.
doi: 10.1016/j.jpsychires.2015.03.006

Zahniser, N. R., and Doolen, S. (2001). Chronic and acute regulation
of na+/cl−-dependent neurotransmitter transporters: drugs, substrates,
presynaptic receptors, and signaling systems. Pharmacol. Therapeut. 92, 21–55.
doi: 10.1016/s0163-7258(01)00158-9

Frontiers inComputationalNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fncom.2022.849323
https://doi.org/10.1016/j.neubiorev.2006.12.002
https://doi.org/10.1007/s10928-020-09723-y
https://doi.org/10.1016/j.biopsych.2004.11.006
https://doi.org/10.1176/ajp.155.10.1325
https://doi.org/10.1001/jama.2009.1308
https://doi.org/10.1038/35083500
https://doi.org/10.2174/1874473710902020195
https://doi.org/10.1371/journal.pone.0063023
https://doi.org/10.2741/E678
https://doi.org/10.1037/a0019048
https://doi.org/10.1016/j.jpsychires.2015.03.006
https://doi.org/10.1016/s0163-7258(01)00158-9
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	A mechanistic model of ADHD as resulting from dopamine phasic/tonic imbalance during reinforcement learning
	1. Introduction
	2. Methods
	2.1. Dopamine dynamics model
	2.2. Neurocomputational model of basal ganglia
	2.3. Learning in the basal ganglia
	2.4. Simulation of virtual patients groups

	3. Results
	3.1. Tonic and phasic dopamine release
	3.2. Performance during the training phase
	3.3. Performance during the test phase
	3.4. Performance with increasing noise
	3.5. Input and output of basal ganglia
	3.6. Evolution of synaptic weights
	3.7. History of rewards and punishments prediction errors during training

	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


