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Sensory inputs conveying information about the environment are often noisy and
incomplete, yet the brain can achieve remarkable consistency in recognizing objects.
Presumably, transforming the varying input patterns into invariant object representations
is pivotal for this cognitive robustness. In the classic hierarchical representation
framework, early stages of sensory processing utilize independent components of
environmental stimuli to ensure efficient information transmission. Representations
in subsequent stages are based on increasingly complex receptive fields along a
hierarchical network. This framework accurately captures the input structures; however,
it is challenging to achieve invariance in representing different appearances of objects.
Here we assess theoretical and experimental inconsistencies of the current framework.
In its place, we propose that individual neurons encode objects by following the principle
of maximal dependence capturing (MDC), which compels each neuron to capture
the structural components that contain maximal information about specific objects.
We implement the proposition in a computational framework incorporating dimension
expansion and sparse coding, which achieves consistent representations of object
identities under occlusion, corruption, or high noise conditions. The framework neither
requires learning the corrupted forms nor comprises deep network layers. Moreover, it
explains various receptive field properties of neurons. Thus, MDC provides a unifying
principle for sensory processing.

Keywords: object recognition (OR), computational modeling, invariant representation, sparse recovery (SR),
redundancy reduction, redundancy capturing, sparse coding, grandmother cell

INTRODUCTION

The world is organized into objects that form the basis of our daily experience. Objects
can be assigned meanings from their associations with others and can predict future events.
Object recognition is a subject of intensive study in neuroscience, machine vision, and artificial
intelligence. It refers to a collection of problems that involve identifying an object from
varying input patterns. The most studied object recognition tasks include image segmentation,
size and location invariance, representation of 3-D images, identifying occluded objects, and
object classification.
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Object recognition is a hard problem because a given object
can turn up in numerous appearances, can be obscured and
occluded, yet the brain readily recognizes it (Ullman, 1996;
Riesenhuber and Poggio, 1999b; DiCarlo and Cox, 2007). The
prevailing framework of object recognition divides the problem
into two subproblems: representation and decision (DiCarlo and
Cox, 2007). Objects are thought to be represented in the cortical
regions, which are then distinguished and properly classified.
With this division are two sets of difficulties. The first is to identify
the computational rules that allow the transformation of sensory
inputs into accurate and invariant representations. The canonical
framework is vision-centric, based on our understanding of
highly advanced visual systems such as those in primates.
Under this framework, object representation is achieved through
hierarchically organized networks of neurons (Riesenhuber and
Poggio, 2000; Serre, 2014). In the meantime, it is also premised on
efficient coding, where individual neurons transmit information
efficiently. There are no intrinsic computation rules that allow
the mapping of variant inputs onto the same representation. The
second set of difficulties is related to resolving the ambiguities
in the representations and determining whether a representation
belongs to a specific object or a class of objects. The canonical
solution to this problem is for a network to be trained using
a large set of examples to achieve statistical robustness in
object identification. How different representations are properly
classified based on statistical learning has created difficult
challenges (Chen et al., 2018; Fiser and Aslin, 2001; Turk-Browne
et al., 2005; DiCarlo and Cox, 2007).

Animals appear to solve object recognition seamlessly. They
exhibit the acute ability to discriminate similar sensory inputs and
identify objects in complex natural environments to guide their
behaviors, often in a fraction of a second. Species with limited
brain complexity can perform robust recognition. Juxtaposing
the ease of most animals’ seemingly effortless ability to recognize
objects and the difficulty of current models to solve this problem,
one must ask, why is object recognition hard? We suggest that
the vision-centric approaches have largely ignored the ethological
need for object recognition from the perspective of animals.
They do not provide the explanatory power to other senses,
nor to visual systems that are less sophisticated but equally
powerful in performing object recognition. The models may
have incorporated specific elements from the visual system
that are not needed for object recognition in general and
created unnecessary complexity and difficulties in the field.
Auditory and olfactory objects are recognizable entities with
direct ethological relevance, but their input patterns are less
defined than visual input. The neural circuits that process
auditory or olfactory information do not have deep structures,
but the recognition of odor or audio objects is nonetheless
robust. Visual recognition is also strong even in species with
simpler and less organized visual systems, such as rodents,
arachnids, and insects. A general theory of object recognition
must accommodate these systems.

In this article, we assess the assumptions, the framing,
and key concepts in the current framework and offer new
perspectives of the problem. We introduce an information-
theoretical definition of object recognition and hypothesize that

maximal dependence capturing is a general principle in sensory
processing. We present evidence from mathematical simulations
that the new framework allows robust object representation.
At the same time, it also provides the power to interpret the
firmly established experimental observations that form the basis
of current models.

A CRITIQUE OF THE CURRENT
FRAMEWORK OF OBJECT
RECOGNITION

The classic framing of the object recognition problem has
been representational, i.e., neurons faithfully represent
sensory features (Hubel and Wiesel, 1962, 1968). Object
images are decomposed into elemental components that
are processed across various stages (Figure 1A). This parts-
based decomposition was the idea behind the computations
performed in perceptron (Rosenblatt, 1957, 1958) and the
theory of recognition by components (Biederman, 1985, 1987).
Guided by brain anatomy and physiology, later theories
propose the hierarchical assembly of elemental features into
increasingly complex structures across multiple stages of
sensory processing (Barlow, 1961; Atick, 1992; Riesenhuber
and Poggio, 1999b; Ullman et al., 2002). In this set of theories,
combinations of largely independent features form the basis
of brain representations of the objects (Hubel and Wiesel,
1962; Marr, 1969; Marr and Nishihara, 1978; DiCarlo et al.,
2012). The framework successfully explains the increase in
size and complexity of receptive fields in the mammalian
brains (Boussaoud et al., 1991; Rolls and Milward, 2000;
Rolls, 2001). It can attain shift and scale invariance while
representing 2-dimensional images (Fukushima and Miyaek,
1982; Anderson and Vanessen, 1987; Olshausen et al., 1993).
Object representations can also be robust against occlusion
(Fukushima, 2003, 2005; Johnson and Olshausen, 2005).

In more recent studies, numerous layers of convolutional
and recurrent neural networks are trained to perform specific
tasks (Yamins and DiCarlo, 2016a; Richards et al., 2019). These
deep learning models can perform at levels that rival or exceed
human performances (Cireşan D. C. et al., 2011; Cireşan D.
et al., 2011; Sermanet and LeCun, 2011; Krizhevsky et al., 2012;
Russakovsky et al., 2015). The success in deep learning and other
AI approaches have reinforced the notion that the hierarchical
architecture and computational rules associated with it may just
be what neuroscientists have been looking for. Indeed, recent
efforts have been comparing deep neural networks (DNNs) with
brain structures in performing certain tasks (Lee et al., 2007;
Yamins and DiCarlo, 2016b; Ponce et al., 2019; Bao et al., 2020).

However, building something to perform a similar function
does not mean we have reproduced biology – an airplane uses
completely different mechanics from birds to fly. Questions arise
whether the DNNs recapitulate the inner working of the brain
and if there is a need to engineer less artificial intelligence (Sinz
et al., 2019). We believe that there are fundamental conceptual
problems inherent in the current framework. Here, we wish to
identify these problems. We do not clearly distinguish between
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FIGURE 1 | Illustration of the classic and the maximal dependence capturing frameworks for object representation. (A) Classic framework. Inputs are decomposed
into independent features and are reassembled hierarchically into more complex combinations to represent separate objects. Two randomly shaped objects are
depicted. Their representations at later stages are color-coded. Gray patches depict the receptive field properties of representation neurons. (B) The problem of
missing parts. (i) Occlusion (depicted as the gray oval obscuring the object) needs to be associated with the un-occluded one to be identified. (ii,iii) The classic
models require learning the occluded feature or feature combinations to be the same at every stage of processing. There is also a need to learn every corrupted form
to reach robustness. (C) In the MDC framework, coding units capture structural relationships among the features and encode them as a whole. (D) In the MDC
model, missing feature (grayed out area) does not affect the encoding because redundancy allows the same units to represent the features and the objects even
when parts are missing. There is no need to learn from all corrupted forms.

the two fields because both the brain and AI models adopt the
same assumptions and framing.

One Problem, Disparate Solutions
To individual organisms, object recognition is for the purpose of
determining the presence of an object. In computation models,
the task has been divided into multiple problems for the brain
to solve. The solution that addresses a specific problem often
does not apply to others. For example, dividing the cognitive task
into two distinct operations creates incompatible solutions. In
the first operation, sensory features belonging to an object are
hierarchically represented. Various features associated with the
same object must be segregated from the background elements,
and they need to be bound together (Von der Malsburg, 1995)
(Riesenhuber and Poggio, 1999a; Singer, 1999). As such, the
representation of objects also must solve the “binding” problem,
which differs from the segmentation problem that assigns
features to the proper objects when ambiguity arises (Treisman,
1999). Studies have suggested utilizing the temporal synchrony
of neurons (Singer, 1999; Von der Malsburg, 1995) or non-linear
maximum pooling of their activities to solve these segmentation
and binding problems (Riesenhuber and Poggio, 1999a,b).

In the representation stages, perspective invariant
representation is also to be achieved. The main model maps
various perspectives of a 3D object to a stored standard view to
achieve perspective invariance (Ullman and Basri, 1991; Ullman,
1996, 1998). However, at this stage, activities of view-tuned
neurons are combined linearly as weighted summation (Poggio
and Edelman, 1990; Poggio and Girosi, 1990) rather than
non-linear maximum pooling proposed for the binding problem.

In the second operation, the process of discrimination and
classification requires yet another set of rules. These rules are
mostly associated with statistical learning, for example, manifold
learning to disentangle representations of the same objects from
others (Chen et al., 2018; DiCarlo and Cox, 2007). Moreover,
the learning process requires labels for the classes. In the
artificial networks, only the readouts at the final stages contain
information to unambiguously classify or identify the objects
(Krizhevsky et al., 2012; Goodfellow et al., 2016). This design does
not have a parallel in the brain.

The framing of object recognition as a two-step process
is problematic not simply because of the disparate solutions
required. It has fundamental flaws in the assumptions. First, the
various forms of input corresponding to the same object will
have as many representations. There is no a priori label to tell
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that these patterns belong to the same object and allow the type
of learning in current neural network models. Second, even if
such a mechanism exists, it requires storing class information of
individual objects separate from the representations themselves,
which is a problem in and of itself. Finally, it is unknown
where in the brain the separation between representation and
classification takes place.

The Conundrum of Hierarchical
Assembly
Since Hubel and Wiesel first proposed hierarchical organization
to explain the complexity of the receptive field properties
observed in the visual pathway, the concept has become a
cornerstone in understanding visual processing (Hubel and
Wiesel, 1962; Marr, 1969; Marr and Nishihara, 1978; DiCarlo
et al., 2012). Furthermore, studies of the visual processing
streams have revealed shape-specific cells in high-order centers
like V4 and IT. These cells are selectively tuned to faces or
objects (Gross et al., 1969; Tanaka et al., 1991; Gross, 1992;
Tanaka, 1992) and are involved in their recognition (Damasio
et al., 1990; Damasio and Damasio, 1993). However, while
physiological evidence is consistent with the hierarchical model,
there is little anatomical evidence to demonstrate the progressive
integration of elemental features along the hierarchy. Although
cells in V1 have larger receptive fields than the retina, there
is no obvious difference between V1 and V2 (Van den Bergh
et al., 2010). In rodents, the receptive field is already large
in V1, where the neurons’ spatial tuning can be as large as
34 degrees (Van den Bergh et al., 2010). Nor is there strong
evidence indicating that the cortical neurons perform stepwise
integration. In fact, Felleman and Van Essen have argued
that “there is no a priori reason to restrict the notion of
hierarchical processing to a strictly serial sequence” and “any
scheme in which there are well-defined levels of processing can be
considered hierarchical” (Felleman and Vanessen, 1991). Indeed,
it appears that each stage is reorganizing the input patterns
for specific purposes (Bruce et al., 1981; Desimone et al., 1984;
Tsao and Livingstone, 2008).

Nevertheless, many hierarchical models of object recognition
rely on serial integration to achieve object representation
(Fukushima and Miyaek, 1982; Anderson and Vanessen, 1987;
Olshausen et al., 1993). These models share a conundrum with
regard to how specific a cell should be in its response to
sensory features. Experimental observations indicate that high-
order neurons can be highly specific (Quiroga et al., 2005; Ponce
et al., 2019). Many cortical neurons respond robustly to specific
stimulus patterns, but slight changes in input could greatly reduce
their responses (Rolls, 1984; Tanaka et al., 1990; Tanaka, 1993,
1996). If neurons are highly selective, the number of neurons
needed to accommodate the possible feature combinations is
astronomical. The improbability of the Grandmother Cells best
illustrates this issue (McCulloch et al., 1959; Konorski, 1967;
Barlow, 1995; Gross, 2002; Bowers, 2009). The concept of a
grandmother cell refers to a neuron sitting at the top of a
hierarchy to represent specific objects uniquely, even though it
was initially raised as a singular addressable memory unit (Gross,

2002). While it is possible to create this type of highly selective
cells, the requirement of generating specific cells that lead to the
buildup of the grandmother cells is improbable.

In an alternate scenario, neurons can be less selective to
avoid combinatorial explosion. Rather than relying on the
highly specific responses, a population of less specific neurons
can collectively encode the objects (Young and Yamane, 1992;
Pasupathy and Connor, 2002; Chang and Tsao, 2017). However,
it will be difficult to resolve ambiguities and distinguish similar
input patterns in this arrangement. Recently it has been proposed
that neurons at higher levels of visual processing do not represent
specific feature combinations but encode individual axes in a
high-dimensional linear space where each location corresponds
to an object (Chang and Tsao, 2017). While such coding is
possible, it may not be very effective in dealing with external and
internal noises in the system. Deciding on the dimensionality of
the object space creates another challenge. Moreover, there does
not appear to be a need to code the entire space when only a few
points in the space are relevant. This problem currently does not
have a solution in the hierarchy model.

Problem With the Efficient Code
Most sensory neurons are ambiguous in representing the physical
or chemical properties of stimuli. Photoreceptors and cochlear
hair cells respond to a range of light and sound spectra,
respectively (Russell and Sellick, 1978, 1983; Crawford and
Fettiplace, 1980, 1981; Goldsmith, 1990; Rodieck and Rodieck,
1998). In the olfactory system, multiple odorants activate
individual sensory neurons (Ressler et al., 1993; Vassar et al.,
1993; Mombaerts et al., 1996; Treloar et al., 2002; Mombaerts,
2006; Fantana et al., 2008; Ma et al., 2012). In addition,
the neurons are noisy, and their response changes as they
adapt to stimulus intensity, duration, or context (Stockman
et al., 2006; Rieke and Rudd, 2009; Rudd et al., 2009). Such
response characteristics create confound in deciphering the
precise stimulus. Early processing stages appear to mitigate
this confound. One theoretical foundation of the early sensory
transformations is efficient coding (Attneave, 1954; Barlow,
1961). Adapted from Information Theory, efficient coding has
focused on minimizing redundancy in information transmission
by encoding independent features present in natural stimuli
(Laughlin, 1981; Olshausen and Field, 1996; Bell and Sejnowski,
1997; Lewicki, 2002; Smith and Lewicki, 2006). Individual
neurons tuned to these features serve as independent encoders
that efficiently relay information about the surroundings (Field,
1994; Olshausen and Field, 1996, 1997; Bell and Sejnowski, 1997).
Models based on this theory successfully explain the receptive
fields of neurons in the retina and the primary sensory cortices
(Laughlin, 1981; Olshausen and Field, 1996; Bell and Sejnowski,
1997; Lewicki, 2002; Smith and Lewicki, 2006). Also, as the theory
predicts, the response properties of neurons in the retina, the
thalamus, and the primary visual and auditory cortices conform
to the statistics of natural stimuli (Barlow et al., 1957; Hartline
and Ratliff, 1972; Srinivasan et al., 1982; Atick and Redlich, 1990;
Dong and Atick, 1995; Olshausen and Field, 1996, 1997; Bell and
Sejnowski, 1997; Simoncelli and Olshausen, 2001; Geisler, 2008).
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However, these results are not without controversy. Neuronal
recordings have revealed overlapping receptive fields and
synchronized activity among the retinal ganglion and V1 cells
in many species (Meister and Berry, 1999; Nirenberg et al.,
2001; Reich et al., 2001; Puchalla et al., 2005; Pillow et al., 2008;
Ohiorhenuan et al., 2010). Recent rodent studies show large
spatial tunings of V1 cells and a much less organized primary
visual cortex (Martinez et al., 2005; Niell and Stryker, 2008). In
the mouse olfactory cortex, any given odorant activates multiple
neurons not specific to the odorant (Poo and Isaacson, 2009;
Stettler and Axel, 2009). These observations do not conform
to efficient coding. They suggest a high correlation among
neurons and redundant information transmission. Indeed, the
presence of redundancy in neuronal responses has led Barlow to
suggest that redundancy is useful for encoding object identities,
although he has not proposed how the information is used
(Barlow, 2001).

The efficient coding hypothesis, in fact, poses serious
problems for cognitive robustness. An object is not merely
a collection of features. The relationship among its features
defines it. Encoding independent features remove information
about these relationships from the sensory input. Consequently,
the system faces a challenge to recover and store this
information. The task becomes exceedingly difficult when
occlusion, internal or external noise, or inactivity of neurons
causes ambiguity in the input signal. Any inference of the
absent fraction of the signal or the input is impossible without
the relational information. Mechanisms like pattern completion
can help in certain situations (Rao and Ballard, 1999; Lee
and Mumford, 2003). However, these mechanisms require
storing the relational information, a problem that does not
have a ready answer.

Unsolved Problems With Statistical
Learning
To achieve robustness, the current frameworks of object
recognition rely heavily on statistical learning or post-
representational inference (Figure 1B). For example, a 3-D
object can be aligned and associated with its multiple 2D
views (Biederman, 1987; Ullman and Basri, 1991; Ullman,
1996). Similarly, corrupted and occluded inputs can be linked
with their non-corrupted forms along a manifold through
learning (DiCarlo and Cox, 2007). As such, recent neural
network-based models utilize extensive training using many
examples to identify objects from incomplete images or novel
perspectives. Presumably, such comprehensive training reveals
features and their relationships that facilitate robust recognition
(Figures 1Bii,iii).

However, the robustness provided by statistical learning is
retrospective, meaning that only the learned examples, or those
closely resembling them can be identified with high accuracy.
On the other hand, the animal brain can recognize objects
with prospective robustness, which we define as the accuracy
in identifying novel objects and their different forms without
additional learning. Animal brains learn a new object and
recognize it without having to experience all of its variations in

form. This ability to use few examples and perform prospective
recognition is missing in models based on statistical learning.

NEW PERSPECTIVES OF OBJECT
RECOGNITION

Given the caveats of the current framework, we wish to offer
new perspectives of object recognition. Specifically, we intend
to establish a framework that considers the animal’s ethological
needs and affords both retrospective and prospective robustness.

Before discussing the details of the framework, a short note on
“objects” is necessary. Physical “objects” that we see and recognize
are explicit in visual inputs. However, other sensory modalities
also signal “objects” that serve similar functions. For example, an
acoustic object comprises a specific combination of sounds with
characteristic frequencies and durations (Griffiths and Warren,
2004). A distinct blend of odorants constitutes an odor object
(Keller et al., 2007; Barwich, 2014, 2018, 2019; Smith, 2015).
These “objects” are amorphous, but they signal the presence
of their emitters. Further, an animal can trace them through
directionality or concentration gradients. We believe that any
discussion on object recognition must include these objects and
should not just concern the visual ones.

The Ethological Perspective
To understand object recognition, it is imperative to consider
its behavioral and evolutionary purpose rather than the accuracy
in representing the physicochemical properties of the stimuli
(Burge, 2010). An object is meaningful to an animal when
it is informative of its associated consequences. Accordingly,
recognizing the presence of an object through its identity is
paramount to the behavioral consequences. Once the animal
establishes the object’s identity, it can act appropriately to increase
the chances of its survival. Thus, the core objective of recognition
is to determine objects’ identities to trigger proper behavior.

How does one determine object identities? All object features
do not convey the identity information equally. Some features or
feature combinations are more useful than others in identifying
objects. Sensory organs capture information redundantly, which
can be useful in eliminating input ambiguity in object identities.
Accurately representing every physiochemical property of the
stimulus may not be necessary. From this perspective, an
animal does not need to know every detail about the object to
identify it correctly.

In his seminal study, Barlow has described the “on-off” retinal
ganglion cells in the frogs as “the detectors of snap-worthy
objects” (Barlow, 1953, 1961). He argued that a prey fly at a
reachable distance from the frog would exactly fill the receptive
field of these cells and generate the most vigorous response in
them (Barlow, 1953). Thus, the frog visual system can detect flies
without representing every detail and reliably set off the hunting
sequence. Indeed, a later study further characterizing these cells’
properties revealed hallmarks of perception rather than simple
sensation (Lettvin et al., 1959).

However, the current models have lost this initial insight.
While the idea of representing object identities without the
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specifics is not entirely new (Marr and Nishihara, 1978;
Barlow, 1989; Logothetis et al., 1994; Marr, 2010), the principal
focus in current models is on accurate feature representation
and reproducing the receptive field properties of the cells.
Representation of object identities is pushed to the top of the
hierarchal representation structure, and the hierarchy and deep
structures have become obligatory for object recognition.

Arguably, object representations at different levels of hierarchy
serve different purposes. If a part of the nervous system
can accumulate sufficient information from the features or
combination of features to guide behaviors, it has achieved object
recognition. It does not need representation at the top of the
hierarchy. Frogs can snag prey using just “on-off” cells in their
retina. Moreover, there is no need for processing through a
deep structure of neural networks. Relatively shallow structures
process odor information in species across phyla. The insect
and mammalian olfactory systems have two processing stages:
the antennal lobe and the mushroom body in insects, and the
olfactory bulb and the olfactory cortices in mammals. This
shallow structure nonetheless allows robust recognition of odor
objects to guide behaviors (Kobayakawa et al., 2007). Lastly, the
early stages are not required for processing at the later stages.
For example, the primary auditory cortex is not required for
speech recognition (Hamilton et al., 2021). Thus, encoding object
identity does not require an accurate representation of stimulus
features along a hierarchy.

An Information-Theoretical Perspective
What is sufficient information to determine object identity?
Multiple objects often share the same features; therefore, these
features cannot uniquely identify an object. The uniqueness of
an object resides in the specific combination and the structural
relationships among these features (Hoffman and Richards, 1984;
Biederman, 1987; Hummel and Biederman, 1992). For example,
recognizing a predator in various concealments or camouflages
is possible because the relative configuration of the colors, spots,
and shapes, though only visible partially due to the concealment,
is adequate for its identification. In other words, the information
sufficient for recognizing an object is embedded in feature
combinations that considerably reduce the uncertainty about it.

Notably, for a given object, there can be multiple feature
combinations that uniquely identify it. From the information-
theoretical perspective, these feature sets provide redundant
information about the object, which can be useful in resolving
ambiguities. Therefore, any sensory processing framework
must address encoding the most informative structural
components and using redundancy to generate consistent
object representations across different experiences.

To better understand the informativeness of features about
objects, suppose we need to identify N objects, each defined by
a unique combination of M features. For a given object Oi, let
its full set of features be ffull. Assuming a condition where only
a subset fsubset of ffull is available to the system, the following
relation with regard to the entropy H holds:

H
(
Oi
∣∣ fsubset

)
= H

(
ffull|fsubset

)
= H(ffull) − I

(
ffull; fsubset

)
(1)

i.e., the uncertainty in predicting the full set of features or
the object given an input subset decreases as the mutual
information (I) between the given subset and the full set
increases. This mutual information is the informativeness of the
given subset of features about the object. From this information-
theoretical perspective, object recognition is achieved when the
subset of features is maximally informative and uncertainty about
the object vanishes. At this point, the subset unambiguously
informs the brain of the object’s presence. Multiple feature
combinations can be equally informative about the object;
therefore, multiple ways of representing the same object based on
these combinations are possible.

With this definition, we propose that the problem of object
recognition be stated as finding the computational rule that
allows the neurons to robustly encode object identities using
the most informative feature combination. We next develop this
idea to propose the maximal dependence capturing principle and
provide a mathematical solution to the problem.

The Maximal Dependence Capturing
Principle
We can express the informativeness of features as the information
provided by the representation units (the encoders). If there are K
encoder {x1..., xj..., xK}, each capturing a different substructure
of the object O, then the mutual information between encoder j
and the object I

(
O; xj

)
is the same as the informativeness of the

sub-structure about the object. In noiseless conditions∑
j

I
(
O; xj

)
≥ I (O;X) (2)

where X is the representation of the object.
This relation shows that in a noiseless situation the sum

of all information about the object from individual encoders
will be more than the information about the object from
its entire representation. This extra information can help
resolve ambiguities. Further, fewer encoders can be sufficiently
informative when the system maximizes the mutual information
between the object and individual encoders. The higher the
mutual information, the fewer the encoders are needed, and the
more robust the encoders can be in identifying an object.

Most frameworks of sensory processing consider the
encoders to be independent. This arrangement minimizes
the mutual information between them, creating situations
where individual encoders are not informative of any object.
In contrast, we suggest that individual neurons capture
maximum information about individual objects and are not
independent. We refer to this as the maximal dependence
capturing (MDC) principle because mutual information
measures dependence. Further, we propose sensory processing
to follow this principle.

This principle, as we show, leads to a sensory coding
framework that can enable robust object recognition
(Figures 1C,D). In this framework, neurons do not serve
as independent encoders but encode the structural relationship
among sensory features. It is not difficult to see that if a neuron
captures the entire object structure, it can uniquely represent
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it. Other neurons may detect the object’s substructures and
convey redundant information, but they are not needed. Using
a mathematical model, we demonstrate that a specific form of
sparse coding enables capturing such dependence and generates
unique representations of the same object in various forms.
This framework can achieve prospective robustness without
the requirement of deep layers or statistical learning. We show
that the framework is adaptive to object sets and can naturally
lead to simple cell-like receptive field properties that have been
characterized as independent encoders.

From this framing, several disparate problems can be
treated as the same. Corruption and occlusion, for example, are
problems of recovering full identities from partial signals.
If neurons encode the dependence between the visible
features and the object, missing parts can be inferred from
the dependence to effectively solve the occlusion problem.
As the dependence does not change with scale or location,
the corresponding invariances can be achieved. The same
holds even for 3-D object representations. Since each 2-D
view can be considered a unique combination of a subset of
an object’s features, multiple 2-D views can provide the same
identification. Therefore, the view angle problem becomes
whether a particular view of an object contains sufficient
information to determine its identity. From the information-
theoretical perspective, the solution to these disparate problems
is the same: capturing the most information about the object as
feature combinations. Moreover, as we show below, the activity
of the most informative units can be maintained the same
even when the input pattern is incomplete. This characteristic
removes the inference requirement, thereby allowing the
same set of rules to accommodate both representation
and classification.

THE MODEL

We find that during the linear transformation of input
patterns to representations, individual neurons can get
tuned to comprehensive input structures if we constrain
the representations to be sparse and make the transformation
process non-negative. The sparsity constraint ensures that
any object representation comprises a minimal number of
active neurons and is maximally distinct from others. Non-
negativity in transformation prevents encoding inputs as
differences of structures. This type of coding eliminates the
chances of neurons getting tuned to superpositions of multiple
objects. Also, a non-negative representation is biologically
more meaningful because action potentials are positive
signals.

The specific objective function that we optimize to attain the
desired transformation for a finite set of objects is

argmin
8,A

||X−8A||22 + λ||A||1 subject to 8 ≥ 0 and A ≥ 0 (3)

Here X is a matrix of inputs, and A is a matrix of
corresponding representations. 8 is a matrix with columns
corresponding to the tuning properties of the representational

neurons. It serves as the basis set for representations and
comprises the inputs’ informative structures. We refer to it as the
dictionary according to convention.

The first term in the objective function measures the difference
between the input structure and the structures captured in their
representations. Minimizing it ensures that the representations
reflect most of the input structures. The second term is a measure
of representation sparseness. It serves as a penalty on the total
activity of neurons in a representation. Note that the intention
is to reduce the number of active units in a representation, i.e.,
the l0 norm, to minimize representation overlap. Mathematically,
however, an analytical solution to l0 minimization is not possible.
Therefore, we minimize neurons’ total activity in representations
(the l1 norm of representations). Also, note that we set the
representation dimension to be larger than the inputs to achieve
sparseness. In this setting, the transformation conforms to the
observation that higher brain centers often possess several folds
more neurons than the sensory organs.

The optimization function is similar to those employed to
capture the natural scenes’ independent components (Olshausen
and Field, 1996, 1997; Simoncelli and Olshausen, 2001; Geisler,
2008). However, we use this objective function in a different
context. Instead of identifying the independent features based on
the statistics of the entire input space, the goal here is to represent
a limited set of inputs by capturing their most informative
structures. Furthermore, the non-negativity and the sparsity
constraints force individual neurons to tune to comprehensive
input structures. Without non-negativity, the tuning properties
of neurons can be arbitrarily complex (Olshausen, 2013).

Dependence Capturing
We illustrate this framework’s key characteristics by encoding
binary symbol images from world languages (Figure 2 and
Supplementary Figure 1A). With 256 input and 800 output
units, the representations in these simulations are dimensionally
expanded (Figure 2A). Learning to represent 1,000 symbols
results in dictionary elements containing local and global
structures (Figure 2B). Structures of individual dictionary
elements contain varying information about different inputs.
The localized structures are less informative about any input,
but the comprehensive structures are unique to specific inputs
and contain the most information about them (Figure 2C). We
plotted the histogram of the dictionary elements’ maximum
information contents for any input (Figure 2D). The histogram
is heavily skewed toward larger values, indicating that the
framework successfully captures the highly informative
structures. An interesting observation in these simulations
is that multiple dictionary elements are structurally similar.
For example, several dictionary elements shown in Figure 2B
have the same oval-like shapes. These dictionary elements are
utilized in distinctively representing very similar input symbols
(Figure 3A). These symbols have subtle differences, which
are captured in these matching dictionary elements. Thus, the
finding demonstrates that the MDC framework does not just
capture the distinguishing structures. It allows the redundant
encoding of features shared by multiple objects. The computation
in the framework can successfully extract complex structures
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FIGURE 2 | Dependence Capturing by the MDC framework. (A) Illustration of encoding in the MDC framework. Symbols from world languages are converted to 256
(16 × 16) pixel images (x) that are transformed into the activity of a set of 800 representation units (a) to encode symbol identities. An example of the process is
shown using a character encoded by a single representation unit to indicate the ability to encode complex structural features. (B) Structures of the dictionary
elements (receptive fields) learned from 1,000 symbols. Highlighted elements displayed in the larger size are most active while representing the inputs shown in
Figure 3. Note the similarity among some of the elements. (C) Information contents of sample dictionary elements normalized to the maximum observed information
content. While very simple structures are least informative about any object, more comprehensive structures are highly informative. (D) Distribution of the normalized
information contents of the dictionary elements. Most of the structures are highly informative about specific objects indicating that the mathematical framework
captures features that share maximum dependence with the inputs.

naturally present in the stimuli without creating arbitrary or
overly complicated dictionary elements.

Prospective Robustness in Invariant
Representation
We next test whether the MDC framework can encode objects
distinctively, especially in conditions of noise and corruption.
In classic frameworks, neural network models require deep
layers to enhance robustness. The MDC framework captures
comprehensive input structures, and we expect it to be robust
against corruption without the deep layers. To obtain the
representations of corrupted input patterns using the learned
dictionary, we optimized the following objective function under
the non-negativity constraint:

minimize||a||1 subject to ||x−8a||2 ≤ ε (4)

The optimization ensures that the MDC framework
utilizes the same computational rule for learning to obtain
representation. Thus, it distinguishes itself from the hierarchical

assembly, where the learning rule is separate from the
transformation. This approach also contrasts with the previous
approaches that use direct convolution of input with the
dictionary to generate representations (Olshausen and Field,
1997; Rao and Ballard, 1999; Rozell et al., 2008; Lörincz et al.,
2012).

The two-layer model based on our framework readily
distinguishes highly similar patterns and represents them
differently (Figure 3A). Representation neurons have minimum
correlation (Figure 3B), and the symbol representations
are sparse (Figure 3C). Whereas the correlation matrix of
representation units is very close to identity, there are similar
non-zero correlations among pixels in both the input and
the dictionary (Supplementary Figures 1B,C). Resembling
correlations indicate that the dictionary captures complete
input structures.

Moreover, this framework achieves the desired invariance
in representation. Without learning from corrupt examples,
the model can transform inputs corrupted by Gaussian noise
(Figure 3Cii), randomly missing pixels (Figure 3Ciii), or partial
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FIGURE 3 | Invariant object representations in the MDC framework. (A) Representation of inputs by the activity of the dictionary elements. Only the most active ones
are shown. The height of the bars indicates activity evoked by the input patterns. Note that the inputs only activate the dictionary elements that are most similar to
them despite the similarity among the elements. Such coding results in very sparse input representations. (B) Correlation among representation units is minimal, and
the pairwise correlation matrix of the representation units is an identity. (C) Representations of original (i) and corrupted inputs under noisy (ii), pixel loss (iii), and
occlusion (iv) conditions. Representations of the corrupted signals (Repre) are similar to those of the originals. Reconstructed images (Recon) from the output units
resemble the original symbols. (D) Example of two highly similar symbols being distinctly and robustly represented. The original input signals (i) corrupted by noise
(ii) or occlusion (iii) are transformed to output activities that are similar to each other. Reconstructed images recover the original signals. (E) Z-scored similarity
(specificity) between representations of corrupted and original signals as a function of total pixels in the input layer [randomly selected as in panel (Ciii)]. Scores
calculated with different pixel numbers (blue dots) is fit to a sigmoidal curve (red line).

occlusion (Figure 3Civ) to representations identical to those
of the uncorrupted input forms (Figure 3Ci). Reconstructing
images by linearly combining dictionary elements restores whole
symbols rather than parts (Figure 3C). Using the Z-score of
the pairwise cosine distances between the representation of
corrupted inputs and all learned symbols, we observe high
specificity for the correct input-symbol pairs, indicating that
the framework generates precise representations. Notably, the
representations are sensitive to small differences in the input
patterns. For example, two highly similar input patterns are
represented differently and robustly under various corruptive
conditions (Figure 3D). Monte Carlo simulations with randomly
missing input units yield highly specific representations with
as few as 60 (23.4% of the 256) units (Figure 3E). Thus, the
computational framework fulfills the requirements of stability

and sensitivity set forth by Marr and Nishihara (1978) without
requiring deep layers or learning from many variable examples.
Importantly, this example shows prospective robustness, as the
stable representation of symbol identity does not depend on
statistical learning through many corrupt examples.

A Robust Code for Face Recognition
We next tested the two-layers model in encoding complex, non-
binary signals such as human faces (Figure 4). We trained the
model on 2,000 human faces (Figure 4A). The learned dictionary
elements are composed of a complex assemblage of facial features,
again suggesting that the algorithm captures complex structures
present in the training set (Figure 4B). The face representations
are stable, unique, and robust against common alterations such
as headwear, facial hair, or eyewear (Figure 4C). The model
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FIGURE 4 | Robust representation of human faces. (A) Examples of face images in a library of 2,000 (1,000 male and 1,000 female) used to train a two-layer model.
(B) Examples of dictionary elements learned from the face library. Note that they incorporate complex combinations of facial features but are not necessarily part or
whole of any specific face. (C) Representation and recovery of faces with different alterations. A face (i) was altered to wear a pair of sunglasses (ii), a mustache (iii),
or both (iv). The altered faces’ representations were nearly identical to the original, even though these examples were not in the training set. Images reconstructed
from the representations based on the dictionary were similar to the original images. (D) Representation and recovery of occluded faces. Four different occlusions of
a face—top (ii), bottom (iii), left (iv), and right (v) were generated. Representations of the occluded faces were highly similar to the original one (i). Reconstructions
also matched the original face. (E) Face identity was not preserved in representations based on PCA performed on the 2,000 training faces. Representations of
original (i) and occluded faces (ii–v) were obtained in the principal space (the first 25 components are shown to highlight the differences). Representations of
occluded faces are different from the original. Reconstructed images match the corrupted rather than original faces. (F,G) Specificity (Z-score similarity) of face
representations (F) and cosine similarity between reconstructed and original images (G) were calculated for MDC and PCA models. 50 faces were chosen randomly
from the training set to create the four occluded versions.

produces nearly identical representations while transforming
the same face with a mustache, a pair of sunglasses, or both.
It maintains representation consistency even when we block
half the input face in different positions (Figure 4D). Inversely
reconstructed images from the representations are similar to the
unadulterated faces (Figures 4C,D). Notably, the model achieves
robustness from learning only 2,000 examples and without
using any corrupted images. Achieving such consistency is in
direct contrast to many approaches using variegated examples
as training sets.

Moreover, the dictionary learned from the training set can
be applied to an entirely new set of faces. We used it to obtain
representations of facial images in the Yale face base, which

contains 15 individual faces, 11 different lighting conditions, and
facial expressions. The representation correctly categorized the
faces according to the individuals (Supplementary Figure 2).

We compared our code against a recently proposed principal
components-based face code (Chang and Tsao, 2017). Using
dictionaries obtained through principal component analysis
(PCA), the same face with different parts occluded generated
different representations. Image recovery produces occluded but
not uncorrupted images (Figure 4E). In contrast, images
recovered from the MDC representations of corrupted
inputs are similar to the original ones (Figure 4C,D).
Quantification of specificity using Z-scores shows that our
model generates highly specific representations (Figure 4F).
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PCA-based decoding does not exhibit such selectivity or
similarity (Figures 4F,G). Thus, a face code based on the
MDC framework is robust against corruption, whereas the
one proposed before is not (Chang and Tsao, 2017; Stevens,
2018).

Adaptive Nature of the Maximal
Dependence Capturing Code
In the MDC framework, an increase in the number of objects can
influence the dictionary elements’ structures. We explored the
relationship by varying the numbers of encoded inputs (N) and
representation neurons (K). With N fixed, at low K, dictionary
elements are more localized (Figure 5A). The representations are
less sparse and more active neurons encode the same symbol
(Figure 5B). Increasing the number of neurons makes the
response sparser.

Conversely, with a fixed K, an increase in the number of inputs
causes a divergence of the dictionary element structures from the
structure of inputs (measured using the K-L divergence (Kullback
and Leibler, 1951) of pixel distribution between the input and the
dictionary; Figure 5C). As more representation units encode each
symbol, redundancy among them also increases (Figure 5D). At
high N, the redundancy approaches that of the input, suggesting
a decreased efficiency. The same observation holds for complex
signals. The dictionary elements for faces are more localized
at low K values, resembling local facial features (Figure 5E).
At high dimensions, they become more complex and face-like
(Figure 5F). More units are required to encode each face at lower
dimensions (Figure 5G).

The MDC framework’s premise is that individual encoders
maximally capture structures from the input signals, which
results in complex dictionary elements. This characteristic
appears to be contradictory to the localized receptive fields
observed in primary sensory cortices. While the efficient coding
hypothesis explains simple tuning structures as the independent
components of natural inputs, we tested whether the MDC
framework could also produce these localized receptive fields.

In our simulations, the tuning properties of neurons shift from
being comprehensive to localized as the network encodes more
objects. This trend suggests that the MDC framework captures
simpler features when forced to encode more objects. In the visual
system, the primary visual cortex relays all visual information.
So, it must accommodate all visual objects. We reason that the
overwhelming number of visual objects can force the cortical
cells to adapt to the natural statistics of the visual input and
tune them to the localized features. To test our reasoning, we
trained the network with varying numbers of image patches taken
from natural images (Van Hateren and van der Schaaf, 1998)
(Figure 6A). Our method is like the approach of Olshausen
and Field (Olshausen and Field, 1996; Olshausen and Field,
1997) but with non-negative constraints and a more limited
number of training inputs. We parsed the images into positive
and negative signals to simulate the On and Off channels in the
mammalian visual system.

Training with up to 30,000 patches develops local, simple cell-
like, and complex dictionary elements (Figure 6B). With a low

number of training images, the dictionary elements are relatively
complex (Figure 6C). Despite high correlations among the
images, we observe minimal correlation among representation
units (Supplementary Figures 3A,B). Increasing the training
set size produces more dictionary elements with localized and
orientation-selective projective fields similar to the receptive
fields of simple cells in the mammalian primary visual cortex
(Hubel and Wiesel, 1962) (Figures 6B,C). The simple cell-like
dictionary elements resemble Gabor filters, as found in earlier
studies (Field, 1987; Jones and Palmer, 1987).

Interestingly, complex receptive fields persist in all training
conditions. The percentage of simple projective fields in the
dictionary increases with the size of the training set. With a fixed
set of training images, an increase in the encoding dimension
reduces correlation among the encoding units but increases
the correlations among dictionary elements (Supplementary
Figure 3C). Thus, simple receptive fields conforming to the
classic interpretation emerge when the model encodes many
natural images under the MDC framework (Laughlin, 1981; Atick
and Redlich, 1990; Dan et al., 1996; Lewicki, 2002; Smith and
Lewicki, 2006). Importantly, complex tuning is always present
in our model without any synthesis from the simple cells, as the
classic model predicts (Hubel and Wiesel, 1962).

DISCUSSION

We propose that maximal dependence capturing is a general
principle of sensory processing and an alternative to the
redundancy reduction principle. The primary motivation behind
redundancy reduction is to arrive at a factorial code for
object representation to optimize information transmission
(Barlow, 1961, 1989). However, a factorial code based on
independent features is unsuitable for invariant coding, especially
in corruption or occlusion cases. Hierarchical models learn
complex feature combinations to achieve robustness and no
longer use independent components for representations. With
this “reduce and capture” strategy, where the model reduces
redundancy among features before pooling them together by
deep networks, the classic framework is self-conflicting and
creates unnecessary problems. The MDC framework resolves the
conflict with a “capture and reduce” strategy for redundancy.
By assuming that dependence capturing is the essence of the
sensory system, the coding units extract the most informative
combination of features that uniquely identify specific objects.
Though it makes representation redundant, sparse coding
ensures that minimum correlation exists among the coding units.
Thus, the framework obviates the need for a hierarchical assembly
to associate features. It embeds individual features in complex
dictionary element structures. Moreover, since the dictionary
captures the dependence a priori, the framework does not require
multiple corrupted forms to learn the associations.

The MDC framework’s unique characteristic is that the
receptive fields capture highly informative structures about
individual objects. With this characteristic, tuning of individual
units can be very similar and correspond to multiple objects.
As a result, correlations may develop in their responses.
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FIGURE 5 | Complexity of tuning properties is determined by the number of objects and dimension of the representation. (A) The structures of dictionary elements
for the symbols in Figure 2 with a 300-unit output layer. Compared with that of the 800-unit shown in Figure 2B, there are more localized features.
(B) Representation sparsity increases with increased dimensions. (C) K-L divergence between pixel distributions in the input signal and in the dictionary element as a
function of the number of symbols to be encoded. (D) Coding redundancies in input and output (representation) while encoding increasing numbers of symbols. (E,F)
dictionary elements of faces with a 500-dimension (E) or 1,000-dimension (F) encoder-set. (G) Response elicited by faces are sparser with increased dimensions.

This characteristic appears to be antithetical to the notion of
redundancy reduction, which demands individual encoding units
to be as independent as possible. However, representations
achieved under the MDC framework also satisfy a sparsity
constraint. This constraint shrinks the activities of competing
neurons and decorrelates individual units’ responses even when
their receptive fields have high levels of overlap. Thus, the MDC
framework allows the efficient encoding, but the coding is for
object identities. It is done by capturing complex features.

The MDC framework makes specific predictions that can
be tested through anatomical and physiological experiments.
For example, it predicts that the connectivity required to
achieve the orientation specific tuning of early neurons should
be less organized than previous models predict (Hubel and
Wiesel, 1962, 1968; Fukushima and Miyaek, 1982; Anderson
and Vanessen, 1987; Olshausen et al., 1993; Rolls and Milward,

2000). Decorrelation among neurons through lateral connections
is an essential feature of the MDC framework. Shutting down
inhibitory lateral connections is expected to reveal highly
overlapped receptive fields among the neurons. On the contrary,
models based on connectivity alone would predict a much
smaller degree of receptive field expansion. Moreover, while
inhibition-mediated decorrelation is a common feature in the
nervous system, our model would predict that cells with similar
tuning properties are likely to have stronger mutual inhibitory
connectivity. Manipulating the lateral connections would give
insight about this prediction.

We have shown that the robust representation of object
identity does not require deep network structures. Thus, this
framework can explain robust object recognition in animals
with less complex brain or sensory systems that do not possess
complex hierarchical organizations. Nevertheless, hierarchical
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FIGURE 6 | The emergence of simple and complex receptive fields from training with natural images in MDC. (A) Illustration of image patches derived from the
natural scene. (B) Examples of structures of individual dictionary elements. Both simple (cyan) and complex (magenta) elements are observed (i) and can be
determined using Fourier transforms of the structures (ii). (C) As the number of training images increases, encoders’ tuning properties become more localized, and
the percentage of simple PFs increases.

organization can arise to deal with increasingly complex stimuli
during evolution. We suggest that as the animal needs to identify
more objects, early processing can shift to encode localized
features resembling the independent components. As we show,
there is a relationship between the number of encoded objects
and the complexity of the tuning properties, which allows
both simple and complex receptive fields to develop under the
same rule. When each neuron encodes the local association of
features, multiple neurons are required to encode individual
objects. The MDC framework allows subsequent levels to capture
the global dependence among the local feature combinations.
From the evolutionary perspective, the sensory systems have
evolved to detect ethologically relevant signals. Analyzing
environmental stimuli and parsing them into components of
minimal redundancy is not necessary for this goal.

In a way, the MDC framework produces sparse distributed
representations, which can account for some experimental
observations, including the appearance of “grandmother cells”
(Quiroga et al., 2005; Bowers, 2009; Rey et al., 2020). However,
the previous models have mainly focused on reproducing the key
features of neuronal tuning (Olshausen and Field, 1996, 1997; Bell
and Sejnowski, 1997) and memory storage (Laurent, 1999; Palm,
2013). They do not provide a strong explanation for the change in

the complexity of tuning properties along the processing stream.
The MDC framework neither requires hierarchical assembly
nor an account of all possible feature combinations. Since the
encoders only capture the naturally occurring structure, the
generation of “grandmother cell” like representation is a feature
of the MDC framework. The cells, however, are not the traditional
sense of “grandmother cells” because they do not sit at the top
of any hierarchy.

A point worth noting is that the receptive fields of
individual coding units resemble the objects themselves when
the representations are sparsest. One may consider the coding
scheme using these cells as a form of template matching (Burr,
1981; Buhmann et al., 1990; Yuille, 1991; Brunelli and Poggio,
1993). As we have shown, however, the MDC framework is
not template-matching. The receptive fields may resemble whole
structures of the objects, but they are not identical. Moreover,
these receptive fields change as the coding units adapt to different
numbers of inputs.

In this study, we have shown invariant representation
for corrupted or occluded input patterns. Representation
invariance takes many forms. Invariant representations result
from scale, translational, and affine transformations are
common. Although we have not explored these forms, we

Frontiers in Computational Neuroscience | www.frontiersin.org 13 March 2022 | Volume 16 | Article 857653

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-857653 March 21, 2022 Time: 13:41 # 14

Raj et al. Maximal Dependence Capturing

believe the framework will allow easy incorporation of these
transformations without evoking additional mechanisms. As
the name of the MDC principle indicates, dependencies among
the features are captured by neurons. The dependencies, and
the informativeness of features, do not change with linear
transformation. Thus, the framework will naturally generate
covariant receptive field properties that are thought to enable
invariant representation of the visual stimuli at higher levels of
processing (Lindeberg, 2013, 2021).

Likewise, understanding temporal dependencies between
objects and events and the ability to predict future is fundamental
to survival of the organisms. More recent studies have focused on
efficient representation of moving images (Rao and Ballard, 1997;
Rao, 1999; Srivastava et al., 2015), whereas some have produced
models encoding features that best predict future (Bialek et al.,
2001; Palmer et al., 2015; Salisbury and Palmer, 2016). Although
we have not explored the effectiveness of the MDC framework
in capturing temporal redundancies, it is in principle achievable.
At the minimum, the framework can be combined with other
models to incorporate temporal dependence capturing. For
example, Singer et al. introduces a two layered feedforward
network to predict future frames of movies (Singer et al., 2018).
It should be straightforward to achieve invariant representations
of static frames, which can be utilized together with the Singer
model to predict future frames more accurately. Alternatively, a
unified model, which may involve multiple layers, can capture
not only spatial but also temporal dependencies to predict
environmental stimuli in the spatiotemporal domain.

In summary, this work offers a novel perspective of object
representation. We propose that the sensory system should
utilize the most informative structures from objects as the basis
of their representations. The maximal dependence capturing
principle allows neurons to capture these structures by learning
the relationships among features that identify the objects. This
type of learning eliminates the need for an analytical step to
break down objects into its composing features and the need
of the classic hierarchical assembly where brain representations
of objects are built sequentially from their elementary features.
Learning is possible without the deep structures or large training
set. These characteristics of our framework make it generalizable
to any system irrespective of its complexity. It achieves the main
objective of object recognition that is to establish the identities
of objects and use the information to predict future events.
Taken together, maximal dependence capturing offers a single
framework to achieve robust object representation and explain
seemingly contradictory observations on the neurons’ receptive
field properties in different brain hierarchies.

MATERIALS AND METHODS

Learning Algorithm
Dictionary learning is treated as a blind source separation (BSS)
problem (Comon, 1994; Comon and Jutten, 2010). An input
signal is modeled as the response of M primary encoders. In
the case of images, M = m1·m2, where m1 and m2 are the
horizontal and vertical dimensions of the images. A set of N
signals is presented for training as an input matrix X ∈ RM × N ,

representing the response of M pixel to N patterns. The matrix X
is then factorized into two matrices A and 8, so that X = 8A.
Here, A ∈ RK × N is the matrix representation of N patterns in a
K dimensional basis set defined by 8 ∈ RM × K .

To get the factor matrices through BSS, we imposed restriction
on A to be sparse. The measure of sparsity was chosen to be l0
norm, but the solution is achieved through minimizing l1 norm.
In addition to this sparsity constrain, we demanded both A and
8 to be non-negative.

Several possible BSS algorithms could result in an appropriate
matrix decomposition under the given constraints (Hoyer, 2002,
2004; Rapin et al., 2013a; Allen et al., 2014). In particular, we
used non-negative blind source separation algorithm nGMCA
(Donoho and Elad, 2003; Rapin et al., 2013a,b). When a l1
measure of sparseness is used, then the sum of the absolute values
of coefficients of A is minimized. The minimization problem
takes the form of:

argmin
8,A

1
2
||X−8A||22 + λ||A||1, subject to A ≥ 0; 8 ≥ 0

Thus, the process to solve this problem requires the
minimization of the Frobinius norm difference (i.e., the Euclidean
Distance) between the two sides of the equation and the
minimization of the l1 norm.

Each time BSS is performed, the 8 matrix was seeded
with random numbers. Optimization was performed
until convergence or when predefined number of
iterations was reached.

Sparse Coding
Once the dictionary 8 is learned, any input pattern can
be transformed into its corresponding representation.
Transformation of input patterns is the process of finding
the representation a that satisfies the equation: x = 8a. In our
case, the dimension of the representational layer is chosen to be
higher than that of the input layer, i.e., K > M. Here, decoding
becomes an under-determined problem. Theories developed
independently by Donoho (Donoho and Elad, 2003; Donoho,
2006a,b), and by Candes and Tao (Candes and Romberg, 2005;
Candes et al., 2006; Candes and Tao, 2006) show that a unique
solution can be obtained by imposing a sparseness constraint to
the equation when solving the optimization problem. The most
common use of sparsity definition includes l0 and l1. In our
approach we perform l1 minimization to solve:

min ||a||1 subject to ||x−8a||2 ≤ ε
The l1-minimization problem can be implemented by

a standard convex optimization procedure, which can be
found in several publications (Chen et al., 2001; Boyd and
Vandenberghe, 2004; Candes and Tao, 2005; Donoho, 2006b;
Donoho et al., 2012).

Redundancy Measurement
To measure redundancy in encoding objects, we treated
the objects as following a uniform distribution, i.e.,
P (Oi) = 1/N, where N is the total number of objects.
The entropy of the ensemble of the objects is therefore
H (O) = logN. We then calculated the capacity of the input
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unit set (C) using the probabilities of occurrence of each
encoder, P (xi = 1) = pi:

C =
M∑

i=1

pilog
1
pi
+
(
1− pi

)
log

1(
1− pi

)
Redundancy was calculated as

R = 1−
H (O)

C
= 1−

logN
C

The redundancy for representational units was calculated in
a similar way, the only difference being that the representations
were converted to binary forms using a Heaviside step function
so that their l0 norms could be considered while calculating
probability of occurrence of individual encoders.

Kullback–Leibler Divergence Between
Dictionary and Images
We used the Kullback–Leibler divergence (KL Divergence)
to quantify the structural differences between symbols and
dictionary elements. KL divergence [DKL(P||Q)] is a measure of
information gained when a posterior probability distribution P is
used to calculate the entropy instead of the prior distribution Q.
Denoting Q to be distribution over the states of a single pixel in
symbol space and P to be the distribution over states of the same
pixel in dictionary space, DKL(P||Q) measures the information
gained in considering the pixel to be coming from a dictionary
element rather than symbols. A low divergence for all the pixels
indicates that there is no gain in information if we consider any
pixel to be coming from dictionary, indicating that the structure
of the dictionary elements is same as structure of the symbols.

To calculate the distribution over the states of pixels in the
dictionary space, all dictionary elements were binarized using a
Heaviside step function. Probability of occurrence of individual
pixels was calculated based on the number of dictionary elements
in which the pixel is active. For instance, if a particular pixel xi
was active in n out of K dictionary elements, then the probability
of occurrence of pixel xi was calculated as

P (xi = 1) =
n
K

Probability of occurrence of the same pixel in symbol space is
calculated based on the number of symbols m in which it is active
i.e.,

Q (xi = 1) =
m
N

Here N is the number of symbols being encoded. Finally, the
KL Divergence between the two distributions is calculated as

DKL (xi) = P (xi = 1) log
P (xi = 1)

Q (xi = 1)

+ (1− P (xi = 1)) log
(1− P (xi = 1))

(1− Q (xi = 1))

Specificity Calculations
To quantify the specificity of a representational vector in
representing the original object, we computed Z-scored

similarity. Cosine similarity score between the representation of
the test object (atest) and all objects in the training set (Atraining)
were calculated and Z-scored. A high Z-score indicated high
similarity between the representations of the test object and a
particular object in Atraining . In the figures, we plot the Z-scores
for altered images with their unadulterated counterpart, which
show high specificity in representing the original object.

Simulating Corrupted Signals
To test the robustness of object representation by the MDC
framework, signals from the training set were selected and
corrupted. The corrupted signals were subject to sparse decoding
to generate their representations, which were then compared
with those of the signals in the training set. We performed the
following three types of corruption:

Noise-added corruption: we introduce noise by adding a
Gaussian i.i.d. matrix N of varying standard deviation to the
input matrix X. i.e., XN = X +N , where XN ∈ RM × N , is a
matrix representation of noisy input. For Monte Carlo analysis,
as described below, each time a simulation was performed, a
different noise matrix N was introduced.

Pixel corruption: For a given signals, a fraction of the M
pixels was selected from the input. Their values were maintained
whereas the coefficients of the rest were set to zero.

Occlusion: For images, a contiguous set of pixels were selected,
and their values were set to zero.

Monte Carlo Analysis
We performed Monte Carlo simulations by applying pixel
corruption to the input signals and varying the number of
corrupted pixels. 100 random sets (numbers varied from 2 to
M) of pixels were selected. Using each of these randomly chosen
sets, we performed sparse decoding to generate representation of
the input patterns.

Input Identification
To calculate the correct identification of the object, we used the
representation of each input in the training set as a library. The
representation of each corrupted signal was compared with that
in the library and cosine distances were computed. An input
pattern was considered correctly identified if the cosine distances
between its representation and that of the original signal was
minimum (smaller than with representation of other patterns).

Projective Fields Generation From
Natural Images
The mammalian visual systems process visual information in
On and Off channels. On channel images were the normal
images whereas Off channel images were the inverted images.
To simulate parallel processing of the two channels, the On and
Off images were concatenated along the rows and dictionary
elements were generated by performing BSS on the concatenated
matrix. The projective fields were constructed by superposing the
On-channel portion of the dictionary element with the negative
of Off-channel portion of the dictionary element.
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Data
Symbols: A set of 1,000 symbols from word languages were
obtained and digitized to 16× 16 pixel arrays.

Natural images: Natural scenes from Van Hateren data base
(Van Hateren and van der Schaaf, 1998) were digitized as
grayscale pictures. Image patches of 16 × 16 size were randomly
selected from the images. A total of 3,000 patches were used to
form a training set.

Facial images: For face recognition, 2,000 frontal faces were
obtained from Google search of publicly available images,
trimmed and resized to 25 × 25 pixels. The Yale Face Database
is obtained from http://cvc.cs.yale.edu/cvc/projects/yalefaces/
yalefaces.html.
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