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The design of modern convolutional artificial neural networks (ANNs) composed of
formal neurons copies the architecture of the visual cortex. Signals proceed through a
hierarchy, where receptive fields become increasingly more complex and coding sparse.
Nowadays, ANNs outperform humans in controlled pattern recognition tasks yet remain
far behind in cognition. In part, it happens due to limited knowledge about the higher
echelons of the brain hierarchy, where neurons actively generate predictions about
what will happen next, i.e., the information processing jumps from reflex to reflection.
In this study, we forecast that spiking neural networks (SNNs) can achieve the next
qualitative leap. Reflective SNNs may take advantage of their intrinsic dynamics and
mimic complex, not reflex-based, brain actions. They also enable a significant reduction
in energy consumption. However, the training of SNNs is a challenging problem, strongly
limiting their deployment. We then briefly overview new insights provided by the concept
of a high-dimensional brain, which has been put forward to explain the potential power
of single neurons in higher brain stations and deep SNN layers. Finally, we discuss the
prospect of implementing neural networks in memristive systems. Such systems can
densely pack on a chip 2D or 3D arrays of plastic synaptic contacts directly processing
analog information. Thus, memristive devices are a good candidate for implementing
in-memory and in-sensor computing. Then, memristive SNNs can diverge from the
development of ANNs and build their niche, cognitive, or reflective computations.

Keywords: spiking neural networks (SNNs), memristors and memristive systems, high-dimensional brain,
plasticity, reflective systems

INTRODUCTION

Brief History of Artificial Neural Networks
Since the early steps of artificial intelligence (AI) ,there have been several moments in history when
it approached neuroscience in searching for bio-inspiration. In the middle of the twentieth century,
the biomimetic approach was critical for developing artificial neural networks (ANNs). In 1943, W.
McCulloch and W. Pitts proposed a model of the first artificial neuron (McCulloch and Pitts, 1943).
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The neuron received several synaptic-like inputs and generated
an output if the number of activated synapses exceeded a
threshold, thus mimicking the “all-or-none” principle of action
potentials. Later, F. Rosenblatt further developed this idea and
coined the term perceptron (Rosenblatt, 1958). Subsequent
studies have shown the unreasonable effectiveness of artificial
neurons coupled into networks in a constantly growing number
of AI applications.

Mathematically speaking, an ANN is a function y = f (x) that
maps input data, x, into output, y. Thus, it can emulate reflex
responses. For example, to decide if there is a cat or a dog on an
image, we can designate the image as the input x, and the animal
category as y. Then, by presenting a photo to the ANN, we could
quickly determine which animal appears in the image. But are
we sure that there is such an ANN? In other words, can ANNs
approximate arbitrarily complex functions?

The universal approximation theorem provides the answer. In
1989, G. Cybenko showed that an ANN with sigmoid activation
could approximate any continuous function (Cybenko, 1989).
Later, this result was extended into Lebesgue integrable functions
and the rectified linear unit (ReLU) activation function (Lu
et al., 2017; Hanin, 2019). In practical terms, no matter what
f (x) is, there is an ANN approximating it with an arbitrary
degree of accuracy.

However, mere existence is not enough for AI applications.
The input and output sets and the function f (x) can be arbitrarily
complex and high-dimensional. It makes impracticable, the use
of human-tailored standard techniques like extracting a set of
predictive features by principal component analysis, Fourier
transform, etc. The main advantage of ANNs is the ability to learn
from data, although such learning is data-hungry.

The synaptic weights of each neuron (i.e., the parameters
of function f (x)) can be adjusted by a training process aiming
at minimizing the prediction error. The optimization is usually
done by a version of the stochastic gradient descent method
(Robbins and Monro, 1951) based on the derivatives of the loss
function evaluated by the backpropagation algorithm (Rumelhart
et al., 1986). Thus, an ANN can automatically identify the hidden
features essential for the classification. Then, the trained ANN
can predict the output for unseen inputs taken from the same
distribution, i.e., it gains the generalizing capability.

While feedforward fully connected ANNs were achieving solid
results in many areas, until recently, they have been ineffective
in tasks that are comparatively easy for humans (Schmidhuber,
2015). In 1997, Deep Blue, a chess machine developed by IBM,
defeated the world champion, Garry Kasparov, while those days
computers could not compete with kids in recognizing faces.
This problem was utterly complex for AI systems, much harder
than chess. To process an RGB photo with a rather mediocre
resolution of 1 Mpx, the input layer of an ANN must have 3× 106

neurons. If the second layer has only 1,000 neurons, we approach
1010 synaptic weights to train. Thus, we rapidly get numbers
prohibitive for modern computers, databases, and algorithms.

A critical breakthrough has been achieved by copying the
converging architecture of the visual system of the brain
(Olshausen and Field, 2004). In a seminal work, LeCun et al.
(1989) reported a new class of ANNs, convolutional neural

networks (CNNs; Goodfellow et al., 2016). The CNN architecture
mimics the primate’s visual cortex (Hubel and Wiesel, 1968;
Laskar et al., 2018). The V1 and V2 cortex regions are similar
to convolutional and subsampling layers of a CNN, whereas the
inferior temporal area resembles the higher layers (Grill-Spector
et al., 2018; Khan et al., 2020).

Different filters using convolution have been known for a long
time in image processing. But CNNs offered the possibility of
learning these filters from the data automatically. As in the visual
cortex, the first CNN layers detect simple shapes, such as lines and
circles, and combine them into more complex features at each
successive layer. The detected features stop making sense for a
human observer at some point, but they encapsulate the essence
of images (Altenberger and Lenz, 2018).

Thus, the rise of CNNs provided a methodology that allowed
for outperforming humans in object recognition. In 2012, the
AlexNet was the first CNN that beat traditional geometric
approaches in the object recognition contest (Krizhevsky et al.,
2012; Russakovsky et al., 2015). Since then, CNNs have constantly
improved the results of the state-of-the-art (Altenberger and
Lenz, 2018). The current winner, CoAtNet-7 (Dai et al., 2021),
provides 90.88% of the Top 1 accuracy in image classification
on the ImageNet benchmark (Imagenet, 2022). Although
CNNs achieved superhuman performance in the visual pattern
recognition in controlled competitions, humans are still much
better in general recognition tasks (Schmidhuber, 2015).

From Reflex to Reflective Neural
Networks Aiming at Cognition
Artificial neural networks are already widely used in the first
domestic robots, cars with an increasing autonomy to make in-
driving decisions, and apps that manage our data and anticipate
our actions and desires in daily life (Mackenzie, 2013; Lee et al.,
2016; Bogue, 2017; Hussain and Zeadally, 2018). However, along
with these successes, there emerges an awareness of fundamental
limitations, mainly associated with the reflex nature of ANNs and
shortcuts in simulating deep cognition, i.e., the mental process
ruling our interactions with the environment. In the late 80s,
Moravec (1988), Minsky, and others anticipated the unexpected
slow progress in deep artificial cognition. The Moravec paradox
says: It will be much easier to create a robot capable of talking with
us than a robot ready to move among us. After almost 40 years, we
can only confirm the prophecy.

Experimental studies on rats have shown that reinforcement
is not necessary for learning (Tolman and Honzik, 1930). Rats
actively process information rather than operate on a stimulus-
response relationship as most contemporary ANNs do. Based on
these data, in 1948, Edward Tolman coined the term cognitive
map, which is an internal representation of one’s environment.
Such an internal representation emerges as a reflective (thinking)
processing of external information. Recent advances provided
evidence of time compaction performed by the human brain
when dealing with dynamic situations (Villacorta-Atienza et al.,
2021). Theoretically, such compaction occurs through an active
wave propagating in a neuronal lattice (Villacorta-Atienza et al.,
2010, 2015). Thus, the fundamental difference between the
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biological neural networks in higher brain stations and modern
ANNs is reflective vs. reflex information processing.

Future ANNs will also address the issue of energy efficiency.
In modern ANNs, the information flow occurs continuously,
and usually, all neurons are active and consume energy.
Implementations of ANNs on GPUs are “hot ovens,” much
hungrier for energy than the biological brains. Current trends
in chip building go by increasing the power density (now
about 100 W/cm2 vs. 0.01 W/cm2 for the brain) and the clock
frequency (about 10 GHz vs. 10 Hz; Merolla et al., 2014).
In the brain, only a tiny fraction of neurons are active at a
given time. Neurons efficiently communicate by brief spikes and
often remain quiet. Therefore, spiking neural networks (SNNs)
mimicking real neurons progressively gain importance. However,
the intrinsic complexity of SNNs slows down their expansion.
In practical applications, current SNNs trained by supervised
learning algorithms have already caught up with ANNs in
recognition tasks (Shrestha and Orchard, 2018; Zambrano et al.,
2019; Panda et al., 2020; Yin et al., 2021; Zenke and Vogels,
2021; Chen et al., 2022). However, the use of SNNs within
the reflex paradigm limits the range of tasks to be solved and
our understanding of the brain. We foresee that the future
of SNNs will concentrate on the development of cognitive
devices based on novel mathematical paradigms beyond standard
ANN applications.

The recent experimental discovery of concept cells (Quian
Quiroga, 2012) and the associated mathematical concept of a
high-dimensional brain (Gorban et al., 2019) can boost the use
of SNNs in tasks related to reflective information processing.
Reflective SNNs can take advantage of their intrinsic dynamics
and emulate complex, not reflex-based, brain actions, such as
generating new abilities from previously learned skills. SNNs can
be implemented as analog computational systems. We foresee
that such systems will use the emerging memristive hardware
paradigm for this purpose.

Memristors are passive elements of electrical circuits that
can be densely packed in 2D or 3D matrices on a chip and
emulate plastic changes in synaptic contacts in ANNs (Strukov
and Williams, 2009; Jo et al., 2010). This enables a natural
implementation of the synaptic integration of information in
neurons. Thus, memristive crossbars are good candidates for
building in-memory calculations for future reflective neural
networks. The latter may open new horizons for deploying
compact, low-power wearable devices that will provide a next-
level cognitive experience to a user.

SPIKING NEURAL NETWORKS AS AN
ALTERNATIVE FOR BUILDING
REFLECTIVE ARTIFICIAL INTELLIGENCE

Models of Spiking Neurons
The synergy between neuroscience and novel mathematical
approaches can be a solution for building novel systems
exhibiting reflective AI. In contrast to formal neurons used in
ANNs, biological cells exchange information by brief pulses,

called action potentials or spikes. Then, complex internal
dynamics of neurons can significantly affect the processing and
transmission of information, and the spike times matter.

Many mathematical models of spiking neurons have been
proposed (Hodgkin and Huxley, 1952; FitzHugh, 1961; Koch
and Segev, 1999; Izhikevich, 2003). They differ in the degree
of biological realism. The most complete models use the
Hodgkin–Huxley (HH) formalism. However, such models are
computationally demanding, and their analytical analysis is
complicated. In many practical applications, one can use an HH
model only with the leaky current and assume that a neuron
fires a spike if its membrane potential crosses a threshold. This
reduction yields the simplest leaky integrate-and-fire model of
spiking neurons (Abbott, 1999). Its most significant disadvantage
is a reduced repertoire of dynamic behaviors, e.g., the absence
of neuronal adaptation. However, if biological relevance is
of no concern, integrate-and-fire models are attractive for
large-scale simulations (Delorme et al., 1999). The Izhikevich
model provides a balance between the computational cost and
the variety of behaviors it can reproduce (Izhikevich, 2005).
Besides modeling the neuronal membrane, there is a class
of models, called multicompartmental, that also simulate the
neuron’s morphology (Bower and Beeman, 1998; Koch and Segev,
1999). Such models are essential for studying complex processes
occurring in a neuronal tissue, e.g., the spreading of depression
or migraines (Makarova et al., 2010; Dreier et al., 2017).

The Challenge of Training Spiking Neural
Networks
Spiking neural networks are arguably more biologically realistic
than ANNs, and the only viable option if one wants to simulate
brain computations. Nevertheless, the reverse side of the coin
is intrinsic complexity. The output of a neuron is no longer a
univocal function of the input, which in turn is a fundamental
property of a reflective system. Training SNNs usually employs
diverse forms of supervised, unsupervised, or reinforcement
learning. Different versions of Hebbian learning, particularly
spike-timing dependent plasticity (STDP), have shown significant
potential in a variety of cognitive tasks. Being experimentally
supported, STDP strengthens a connection if the postsynaptic
neuron generates a spike after the presynaptic one and weakens
in the opposite case (Markram et al., 1997; Bi and Poo, 1998;
Sjöström et al., 2001). We note that this type of plasticity
has inherent elements of synaptic competition, which makes
the “success” of the synapse dependent on the spike timings
(Song et al., 2000).

Most modern attempts in training SNNs are still based
on algorithmic approaches working well in ANNs, e.g., the
minimization of loss (error) functions (Taherkhani et al., 2020).
The so-called ANN-to-SNN conversion adopts methods already
existing in deep ANNs. First, a corresponding ANN is trained,
and then, taking into account some restrictions, the obtained
synaptic weights are transferred to a similar SNN (Cao et al., 2015;
Esser et al., 2016). Under this approach, the firing rates of spiking
neurons should match the graded activations of formal neurons.
Various optimization techniques and theoretical generalizations
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FIGURE 1 | Spike-timing dependent plasticity (STDP)-driven spatial computing in spiking neural networks (SNNs). (A) The synaptic vector field of an SNN reveals the
potentiation of centrifugal connections after local stimulation. (B) Connectome rearrangements lead to the transformation of patches of spike activity into traveling
waves. (C) A neurorobot driven by an SNN avoids the dangerous zone (marked by pink) after learning.

of this approach have been proposed (Diehl et al., 2015; Ruckauer
et al., 2017).

In image processing, ANN-to-SNN methods allow for
obtaining high accuracy, close to the performance of classical
deep learning in ANNs (Neil et al., 2016; Tavanaei et al., 2019).
When using event-based input data, e.g., from dynamic vision
sensors, and energy-efficient hardware implementation, such
SNN-based solutions can compete with deep ANNs (Cao et al.,
2015; Esser et al., 2016).

Another approach to training SNNs relies on adapting the
backpropagation algorithm to the temporal coding scheme
in which input and output data are represented by relative
spikes’ times (or delays). Several backpropagation-like algorithms
for multilayer SNNs have been proposed, such as SpikeProp
(Bohte et al., 2002), backpropagation with momentum (Xin and
Embrechts, 2001), Levenberg–Marquardt algorithm for SNNs
(Silva and Ruano, 2005), QuickProp and Resilient propagation
(RProp) versions of SpikeProp (McKennoch et al., 2006; Ghosh-
Dastidar and Adeli, 2007), and SpikeProp based on adaptive
learning rate (Shrestha and Song, 2015). Mostafa (2018) used
a transformation of variables in a feedforward SNN and
showed that the input–output relation is differentiable and
piecewise linear in a temporal coding scheme. Thus, methods
of training ANNs can be used in SNNs. In the proposed back

propagation-based algorithm, the performance of the SNN was
slightly inferior to ANN. Still, it showed a much shorter time in
the network response to a pattern presented to the input.

These approaches use only the first spike of each neuron
during SNN learning and operating (the so-called time-to-first-
spike or TTFS coding). Such limitation is overcome by methods
using neurons capable of learning to fire a precise temporal spike
pattern in response to a particular sequence of spike trains at
the input: ReSuMe (Ponulak, 2005; Ponulak and Kasiński, 2010),
tempotron (Gütig and Sompolinsky, 2006), chronotron (Florian,
2012), and SPAN (Mohemmed et al., 2012). These algorithms
use biological-like elements in learning rules (such as STDP
and anti-STDP window), but they work only with one (output)
layer of spiking neurons or even with a single neuron. Further
development of this idea offered supervised learning methods for
multilayer networks with hidden neurons (Sporea and Grüning,
2013; Taherkhani et al., 2018).

Recently, the concept of surrogate gradients in SNNs has
addressed the problem of the discontinuous derivative of the
spike functions (Neftci et al., 2019). In particular, the spike
function was approximated by a continuous one that served
as the surrogate for the gradient. This approach enables direct
training of deep SNNs using input spikes both in the temporal
and rate coding schemes. The effectiveness of surrogate gradients
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FIGURE 2 | Memory enhancement in a neuron-astrocyte network. (A) Network topology. The SNN (79 × 79) consists of randomly coupled excitatory neurons. The
astrocyte network (26 × 26) consists of diffusely connected cells. Blue lines show connections between elements in each layer. (B–F) Snapshots of training (B–D)
and testing (E,F).

in training deep SNNs achieved the state-of-the-art performance
for an ANN in a significant number of standard tests (Shrestha
and Orchard, 2018; Lee C. et al., 2020; Panda et al., 2020; Yin et al.,
2021; Zenke and Vogels, 2021).

Collective Dynamics in Spiking Neural
Networks: Architecture vs. Function
Communication by spikes via plastic synaptic contacts provides
different encoding modalities, including successive excitation,
number of spikes in a train, spike timings (or phases) relative to
a clock signal, rate encoding, etc. Various learning schemes for
SNNs employ a binary categorization of processed information
(Taherkhani et al., 2020; Dora and Kasabov, 2021). In other
words, SNNs are initially thought of as biological neuron-like
analog processing units that operate with digital computing
tasks and tools.

Analog units with theoretically unlimited degrees of freedom
are hardly controllable. Therefore, existing SNNs frequently lose
in competition with modern ANNs originally constructed as
algorithmic digitized networks solving logic computational tasks.
However, reflecting SNNs mimicking structural and functional
features of brain circuits have untapped the potential in exploring
cognitive tasks, thereby bringing un closer to “intelligent” AI.

To explore this potential, one should try to employ concepts of
modern neuroscience from cellular and molecular to cognitive
levels. Let us now have a short excursion into the concepts of
structural and functional plasticity, which might be helpful in
training SNNs to process data in a biologically relevant way.

In the brain, neuronal plasticity plays a crucial role in
establishing functions. In common words, plasticity is an activity-
dependent change in the dynamics of neurons and synapses
at cellular (local) and circuit (global) levels. Features of the
local synaptic plasticity typically appear as a change of synaptic
strength depending on the local activity of corresponding
neurons. The Hebbian learning rule is represented by STDP
which corrects the synaptic strengths depending on spiking times
between the pre- and postsynaptic neurons (Morrison et al.,
2008). These changes may facilitate or depress particular signal
transmission pathways in an unsupervised manner. In other
words, STDP results in the formation of specific synaptic network
architecture reflecting current activity patterns and, hence, may
be specific to input data.

At the circuit level, plastic changes can lead to different
behaviors. The vector field method can be used to visualize the
network architecture and functionality (Ponulak and Hopfield,
2013; Lobov et al., 2016, 2017). Figure 1A shows an example of
the network reorganization provoked by a stimulus. Recently, it
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has been shown that there is an interplay between the anatomic
architecture and functionality, and functional changes can drive
the rebuilding of the network and vice versa (Lobov et al., 2021b).

Experimental data suggested that propagating patches of
spike activity (Figure 1B) can play the role of basic functional
units in brain information processes (Gong and Van Leeuwen,
2009; Muller et al., 2018). Based on this hypothesis, the
concept of spatial computing was proposed, which can be
defined as computations in neural networks mediated by the
interaction of waves and patches of propagating excitation. This
coding principle enables the detection of different signals and
performing various stimulus transformations, for example, signal
frequency reduction (Villacorta-Atienza and Makarov, 2013).
One of the implementations of this concept can be considered
a learning model in a neural network based on the STDP
association of interacting traveling waves (Alexander et al., 2011;
Palmer and Gong, 2014). Spatial computing in small neural
circuits and modular SNNs can simulate Pavlovian conditioning
and operant learning in neurorobots (Lobov et al., 2020b, 2021a).
Another possible way to implement spatial computations is
cognitive maps and spatial memory with positive (Ponulak and
Hopfield, 2013) or negative (Lobov et al., 2021b) environmental
stimuli (Figure 1C). Note that due to the presence of spontaneous
activity in SNNs (unlike ANNs), they can “live” without external
input, determining the “behavior” of neurorobots (Lobov et al.,
2020b, 2021a,b).

The formation of cognitive maps and extraction of
information from them can be based on the dependence of
wave propagation on the connectom (Keane and Gong, 2015;
Naoumenko and Gong, 2019; Lobov et al., 2021c). On the
other hand, there are mechanisms for rapid switching of wave
dynamics based on the balance of inhibition and excitation
(Heitmann et al., 2012). Generalized cognitive maps provide
another example of wave computations. In particular, the
propagation of a wave of excitation in an SNN generates a
cognitive map of a dynamic situation observed by a subject in
the environment (Villacorta-Atienza et al., 2010; Makarov and
Villacorta-Atienza, 2011).

Several studies have used unsupervised Hebbian learning
in the STDP form to solve classification problems (Querlioz
et al., 2013; Diehl and Cook, 2015; Tavanaei and Maida,
2015). Elements of reward in SNNs can force learning in a
desirable direction (Izhikevich, 2007; Chou et al., 2015; Mozafari
et al., 2018). Methods of supervised SNN learning are also
proposed based on both temporal and frequency coding by
stimulating target neurons (Legenstein et al., 2005; Lobov
et al., 2020a). Another way to implement supervised learning is
feedback from output neurons and element associative learning
(Lebedev et al., 2020).

Interplay of Neurons and Glial Cells in
Spiking Neural Networks
In recent decades, experimental findings in cellular and
molecular neuroscience revealed that glial cells also participate
in information processing (Santello et al., 2019). Glial cells,
specifically astrocytes accompanying neural networks, can

effectively modulate local synaptic transmission (Perea and
Araque, 2007; Durkee and Araque, 2019). Neurotransmitters
diffusing from the synaptic cleft and bounding to specific
receptors expressed in the plasma membrane activate
astrocytes. In turn, the latter release neuroactive chemicals,
called gliotransmitters, that activate specific receptors on both
pre- and postsynaptic neurons. Such an interplay changes the
efficacy of synaptic transmission on neighboring synapses. The
modulation may last for dozens of seconds and have bidirectional
influence, either facilitating or depressing synapses.

Interacting with both pre- and postsynaptic neurons,
astrocytes form a so-called tripartite synapse (Araque et al.,
1999). In terms of information processing, astrocytes may
enhance the learning capability of the network. Gordleeva
et al. (2021) showed the possibility of memory enhancement
by exploring an SNN interacting with astrocytes that served
as reservoir preserving information patterns independently on
neurons within dozens of seconds (Figure 2).

Local changes of synaptic strength, due to, e.g., short-term
plasticity, regulate signal transmission in a synapse depending
on its activity, often referred to as homosynaptic regulations.
There is also another type of regulation called heterosynaptic
plasticity when other inactive synapses change their efficiency
(Chater and Goda, 2021). Heterosynaptic plasticity has different
forms working at a similar time scale as the Hebbian plasticity.
It can lead to both long-term potentiation and depression
(LTP and LTD) of synapses. Thus, it can also play a crucial
role in learning-related changes. Understanding of molecular
and cellular mechanisms of heterosynaptic plasticity remains
fragmentary. At the functional level, astrocytes may provide
coordination between different signal transmission pathways
(Gordleeva et al., 2019). Being activated by one of the synapses,
astrocytes may release gliotransmitters back to the active synapses
and inactive ones located at different spatial sites.

Homeostatic Plasticity Is Relevant for
Learning in Spiking Neural Networks
In living neural networks, homeostatic plasticity sustains the
physiological conditions of functioning and balance (Keck et al.,
2017). It prevents neurons from hyper- and hypo excitations.
Thus, it acts mainly opposite the Hebbian learning rule that
potentiates synapses in an activity-dependent manner.

Learning of complex patterns by an SNN requires neuronal
competition (i.e., competition of the “outputs” of the network)
similar to the “winner-takes-all” rule: the winning neuron should
selectively recognize the pattern that caused its activation (refer
to Section “Novel Mathematical Principles for Spiking Neural
Networks: Concept Cells and High-Dimensional Brain”). It can
be achieved by lateral inhibition (Quiroga and Panzeri, 2013;
Lobov et al., 2020a,b). In addition to the neuronal competition, it
is necessary to implement synaptic competition (i.e., competition
of the “inputs” to the network). It can be achieved directly (Bhat
et al., 2011; Lobov et al., 2020b) or indirectly via the homeostatic
plasticity and synaptic scaling (Keck et al., 2017; Turrigiano,
2017) or synaptic forgetting (Panda et al., 2018; Lobov et al.,
2020a).
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FIGURE 3 | Some properties of the distributions of random vectors in high-dimensional (HD) spaces (n is the space dimension). (A) The mean (black) and standard
deviation (yellow) of the distance between two randomly chosen points sampled from a uniform distribution in the hypercube [−1, 1]n, normalized to

√
n. Distances

concentrate around
√

2n/3. (B) Left: Examples of the angles between pairs of randomly chosen vectors for n 2, 20, and 500. For high n, angles concentrate
around π/2. Right: Proportion of quasi-orthogonal (with the tolerance 0.1 rad) vectors vs. the space dimension. For high enough dimensions, almost all vectors are
quasi-orthogonal. (C) Sketch of the distribution of random points (blue dots) in a high-dimensional space.

Mechanisms of homeostatic plasticity were thoroughly
studied, including synaptic scaling, changing postsynaptic
density, control of excitation/inhibition balance, sliding
thresholds for LTP, and LTD induction in Hebbian plasticity
(Keck et al., 2017). An interesting point in the homeostatic
changes concerns the activity of the brain extracellular matrix
(ECM; Dityatev et al., 2010). The ECM is an activity-dependent
environment for SNNs affecting synaptic transmission by
synaptic scaling on the postsynaptic side and ECM receptors
on the presynaptic one. At the functional level, the ECM works
at much longer time scales (hours or days) and may serve as a
long-term reservoir containing memory traces (Kazantsev et al.,
2012; Lazarevich et al., 2020).

At the network level, changes in network architecture are
driven by structural plasticity (Yin and Yuan, 2015). It accounts
for structural changes in the number of synaptic receptors
expressed in the dendritic spines, the number of synapses, and
the number of neurons. The structural plasticity implements
two essential strategic functions: (1) Sustain homeostasis. For
example, the number of inhibitory synapses can increase
to compensate for hyperexcitation (Keck et al., 2017). (2)
Enhance learning capabilities (Hellrigel et al., 2019; Calvo Tapia
et al., 2020a; Rentzeperis et al., 2022). For instance, synaptic
receptors and synapses can be additionally generated to extend
a specific signal-transmitting channel. In other words, the

network architecture becomes dynamic. A network can change
its dimension depending on the activity and entrust tasks.
Thus, structural plasticity is crucial for learning, and network
robustness compensates for injuries and ill-functioning states.

NOVEL MATHEMATICAL PRINCIPLES
FOR SPIKING NEURAL NETWORKS:
CONCEPT CELLS AND
HIGH-DIMENSIONAL BRAIN

How Does the Brain Encode Complex
Cognitive Functions?
As we mentioned in the Introduction, the brain is not inert
but actively generates predictions about what will happen next.
Such predictions presumably occur in higher brain stations that
summarize and process converging information from different
sensory pathways. An intriguing question concerns the role of
individual neurons in complex cognitive functions and, in the
end, in conciseness. This question is as old as Neuroscience
itself. It yielded many significant results, such as discovering
efficient or sparse coding (Barlow, 1961; Field, 1987; Olshausen
and Field, 1997), and is far from being satisfactorily answered
(Valdez et al., 2015).

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 859874

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-859874 June 11, 2022 Time: 14:31 # 8

Makarov et al. Toward Reflective Spiking Neural Networks

A somewhat extended opinion says that complex intellectual
phenomena result from a perfectly orchestrated collaboration
between many cells (Bowers, 2009). This idea, known as the
“million-fold democracy,” was put forward by C. Sherrington
(1940). Our actions are driven by the joint activity of millions
of neurons in an “election” in which some neurons vote more
often than others. It yielded the concept of population coding:
The brain encodes information by populations or clusters of cells
rather than by single neurons (Pouget et al., 2000). For example,
in the primate primary motor cortex, individual neurons are
tuned to the direction of arm movement, and populations of such
neurons have to be pooled together to compute the direction a
monkey is about to move its arm (Georgopoulos et al., 1986). This
finding prompted the development of brain–machine interfaces
using population coding (Lebedev and Nicolelis, 2017).

In 1890, even before the pioneering works on neuroanatomy
by S. Ramon y Cajal, W. James (1890) proposed that neurons have
individual consciousness and that there is one “pontifical” cell
to which our consciousness is attached. Although such an idea
sounds absurd nowadays, it may not be so far from the truth.
According to J. Edwards (2005), to combine different flows of
information into a smoothly unrolling, multi-modal experience
of reality, the relevant bits of information must come together in
one unit somewhere. A brain or its parts are too big, but a single
neuron may be just about right. Gnostic (i.e., single-cell) coding
may also provide metabolic efficiency. The high cost of spiking
drives the brain to use codes that minimize the number of active
neurons (Lennie, 2003).

Individual Concept Cells Can Be
Responsible for Cognitive Phenomena
The “degree” of consciousness in gnostic cells may depend
on the spatial pattern a neuron receives (Sevush, 2006; Cook,
2008). The conscious activity of neurons in the initial relay
stations is simple and cannot directly affect the animal’s
macroscopic behavior. However, at higher brain stations, neurons
operate with complexity and diversity sufficient to account
for complex conscious experiences. Converging experimental
evidence confirms that small neuron groups or single cells
can implement complex cognitive functions, such as generating
abstract concepts.

Some pyramidal neurons in the medial temporal lobe (MTL)
can exhibit remarkable selectivity and invariance to complex
stimuli (Quian Quiroga et al., 2005; Mormann et al., 2011). It
has been shown that the so-called concept cells (or grandmother
cells) can fire when a subject sees one of seven different pictures
of Jennifer Aniston but not the other 80 pictures of other
persons and places. Concept cells can also fire to the spoken
or written name of the same person (Quian Quiroga, 2012).
Thus, a single concept cell responds to an abstract concept but
not to the sensory features of the stimuli. Moreover, concept
cells are relatively easily recorded in the hippocampus (Quian
Quiroga, 2019). Thus, they must be abundant, at least in the
MTL, contrary to the common opinion that their existence is
highly unlikely (Bowers, 2009). Kutter et al. (2018) have found
that single neurons in MTL encode numbers. They suggested

that number neurons provide the neuronal basis of human
number representations that ultimately give rise to number
theory and mathematics.

Spiking Neural Networks Can Take
Advantage of the Blessing of
Dimensionality
The discovery of concept cells has stimulated theoretical research,
which led to the theory of a high-dimensional brain (Tyukin
et al., 2019). It uses fundamental properties of high-dimensional
(HD) data. On the one hand, in HD-spaces, we can observe the
curse of dimensionality, the term coined by Bellman (1957). It
highlights, for instance, the combinatorial explosion. To sample
n Boolean features, we must check 2n cases. Even for a relatively
low dimensional space with n = 30, this number goes to almost
1010, prohibitive for modern computers. Another example is the
concentration of the distances between randomly selected points.
If n increases, the pairwise distances concentrate around the
mean value (Figure 3A). Then, the distance-based methods, such
as k-nearest neighbors work poorly (Beyer et al., 1999; Pestov,
2013; Lin et al., 2014).

On the other hand, it turns out that rather general stochastic
processes can generate HD signals with relatively simple
geometric properties (Gorban et al., 2019, 2020). In 2000, D.
Donoho introduced the term “blessing of dimensionality,” with
which the curse of dimensionality are two sides of the same
coin (Donoho, 2000). As a system becomes more complex, it
has been observed that its analysis can be complicated at first,
but then it becomes simpler (Kreinovich and Kosheleva, 2021).
A good example is the Central Limit Theorem. A statistical
analysis of a few random variables can be highly complicated.
However, a mixture of many random variables follows a Gaussian
distribution and can be easily described by the mean and the
standard deviation.

Both the curse and the blessing of dimensionality are
the consequences of the measure concentration phenomena
(Ledoux, 2005; Gorban et al., 2016; Gorban and Tyukin, 2018).
Figure 3B illustrates examples of the angle between two randomly
chosen vectors (sampled from a uniform distribution in a
hypercube [−1, 1]n). Together with the distribution of the
inter-point distances, we can conclude that all vectors having
approximately equal length, are nearly orthogonal, and the
distances between data points are roughly equal (Figure 3B).
Figure 3C illustrates a sketch of how random data points
appear in the HD space. Tyukin et al. (2019) hypothesized that
neurons could take advantage of such a notorious simplicity of
the distribution and use simple mathematical mechanisms for
processing complex, HD data.

High-Dimensional Neurons Can Exhibit
Unexpected Properties
According to Sevuch and Cook (see, e.g., Sattin et al., 2021), the
synaptic connections within a neural network could represent
the substrate of cognition. The pattern complexity plays a key
role, and conscious human behavior requires the processing
of complex multidimensional data. Recent empirical evidence
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shows that a variation in the dendrite length and hence in the
number of synapses n can explain up to 25% of the variance in IQ
scores between individuals (Goriounova et al., 2018).

Figure 4A illustrates a theoretical model of an HD neuron
(Tyukin et al., 2019). The neuron receives as an input an HD
vector pattern x = (x1, . . ., xn)T ∈ [−1, 1]n, such that the number
of individual inputs or the neuronal dimension n� 1. The
inputs are connected to the neuronal membrane through synaptic
contacts. The output of the neuron is given by a transfer function,
e.g., ReLU. During operation, the synaptic weights of the neuron
change by a Hebbian-type rule (Calvo Tapia et al., 2020a).

Given that the distribution of the input patterns in a big but
finite set of stimuli has no strong clots, it has been shown that
the neuron can accurately learn a single pattern from the entire
set. An important consequence is that no a priori assumptions on
the structural organization of neuronal ensembles are essential
for explaining the fundamental concepts of static and dynamic
memories. Cognitive functionality develops with the dimension
of single neurons in a series of steps (Gorban et al., 2019; Tyukin
et al., 2019).

The neuronal selectivity emerges when the dimension exceeds
some critical value, around n = 30 (Figure 4A). At this crucial
transition, single neurons become selective to single information
items. The second critical transition occurs at significantly larger
dimensions, around n = 300. At this second stage, the neuronal
selectivity to multiple uncorrelated stimuli develops. The ability
to respond selectively to a given set of numerous uncorrelated
information items is crucial for rapid learning “by temporal
association” in such neuronal systems.

Single High-Dimensional Neurons in
Deep Spiking Neural Network Layers
May Provide Cognition
Remarkably, a simple generic model offers a clear-cut
mathematical explanation of a wealth of empirical evidence
related to in vivo recordings of “grandmother” cells and rapid
learning at the level of individual neurons. It also sheds light on
the question of why Hebbian learning may give rise to neuronal
selectivity in the prefrontal cortex (Lindsay et al., 2017) and
explain why adding single neurons to deep layers of ANNs is
an efficient tool to acquire novel information while preserving
previously trained data representations (Draelos et al., 2017).

Calvo Tapia et al. (2020b) extended results into the problem
of building abstract concepts by binding individual items of the
same kind. Figure 4B illustrates the model mimicking primary
signaling pathways in the hippocampus. It considers the stratified
structure of the hippocampus that facilitates ramification of
axons, leaving multiple buttons in the passage and conveying the
same HD input to multiple pyramidal cells (Teyler and Discenna,
1984). The latter has been supported by electrophysiological
observations showing that Schaffer collaterals create modules of
coherent activity with a large spatial extension in the CA3 region
(Benito et al., 2014, 2016). Thus, the hippocampal formation
possesses rather exclusive anatomical and functional properties
required for the emergence of concept cells.

In the beginning, the receptive fields of all neurons (areas
in the sensory domain evoking a response) in both strata form
a disordered mixture of random regions (see the cartoon in
Figure 4C, left). Thus, the output of the concept stratum is
random, and the system cannot follow the music. The purpose
of learning is to organize the receptive fields so that the concept
cells become note-specific (Figure 4C, right). In this case, each
concept cell will not be stimulus-specific but represent a set of
associated stimuli or a concept, e.g., note A.

The network has been tested on the perception of the 9th
Symphony by Beethoven (Figure 4D). The selective stratum
detects individual sound waves, while the concept stratum puts
them together and forms the note-specific output (Calvo Tapia
et al., 2020a). Thus, concept cells respond to particular notes
regardless of the phase of sound waves, and the “brain” now does
follow the music. This result supports the hypothesis of a strong
correlation between the level of neuronal connectivity in living
organisms, and different cognitive behaviors such organisms can
exhibit (Herculano-Houzel, 2012).

THE MEMRISTIVE ARCHITECTURE
ENABLES THE IMPLEMENTATION OF
REFLECTIVE SPIKING NEURAL
NETWORKS

What Is a Memristor?
In 1971, Leon Chua (1971) discovered the memristor as
a hypothetical fourth passive element of electrical circuits.
A memristor relates a change in the magnetic flux with a
variation of the electric charge flowing through this element.
Mathematically, it is equivalent to a nonlinear resistor that
changes its resistance depending on the history of the
electric current. Therefore, it was called a memristor, i.e., a
memory resistor.

In 2008, Strukov et al. (2008) associated the memristive
effect with resistive switching in thin-film metal-oxide-metal
structures. Such films were actively studied as early as the
middle of the twentieth century (Dearnaley, 1970). Starting in
2008, the current wave of interest in memristors began to rise.
Although memristors have been thoroughly studied, there are
still debates and doubts about the existence of an ideal memristor
satisfying the original definition and the validity of its correlation
with resistive switching (Vongehr and Meng, 2015; Demin and
Erokhin, 2016; Kim et al., 2020). Despite that, the generalized
definition of a memristor as a dynamical system, which Chua and
Kang (1976) proposed in 1976, remains valid. According to it, a
memristor is a system described by the following equations:

I (t) =
V(t)

R(x,V)
(1a)

dx
dt
= f (x,V) , (1b)

where I(t) is the current flowing through the system, V(t)
is the voltage drop, R(x,V) is the resistance with memory or
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FIGURE 4 | The concept of an HD brain. (A) A neuron receives an HD pattern x and produces output if the pattern matches the pattern of synaptic weights. The
cognitive functionality of a neuron develops in steps. At dimensions n 30, the neuron becomes capable of selectively detecting a single stimulus from a large set
(orange curve). At n 300, a new ability appears. The neuron can now detect multiple uncorrelated stimuli. (B) Model mimicking the information flow in the
hippocampus. A stimulus, e.g., a sound wave, goes to HD neurons in the selective stratum. Neurons learn different sound waves and send collaterals to neurons in
the concept stratum. Concept cells extract concepts of musical notes. (C) Under learning, the rearrangement of the neuronal receptive fields leads to the formation
of note-specific concept cells (different colors correspond to the receptive fields of different neurons). (D) Binding of sounds into notes for a fragment of the 9th
Symphony by Beethoven “Ode to joy”.

memristance, x(t) ∈ Rm is an m-dimensional dynamic variable
describing the internal state of the system, and f : Rm

× R→
Rm is a nonlinear function.

From a physical point of view, Equation 1 is Ohm’s law,
which describes any nonlinear memory resistor, regardless of

the nature of the nonlinearity and the mechanism of resistance
change. Thus, the generalized definition (1) of the memristive
effect applies to the description of resistive switching in
any materials: inorganic (Ohno et al., 2011), organic (Demin
et al., 2014), molecular (Goswami et al., 2020), etc. Various
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physical and chemical phenomena, including ion migration and
redox reactions, ferroelectric and magnetoresistive effects, and
phase transitions, can be responsible for the change in the
resistance of inorganic materials and structures. Wang et al.
(2020) provided a detailed comparison of different resistive
switching mechanisms and concluded that resistive random-
access memory (RRAM) are superior in terms of dimension
(nanometer-scale), number of distinguishable resistive states
(>64), switching speed (picoseconds), endurance (1012 cycles),
and retention (103 years).

The metal-oxide-metal structures of the RRAM type
(Figure 5A) are the most compatible materials to be integrated
into the conventional CMOS process (Ielmini and Waser,
2016). Such devices can store Boolean values given by the
conductivity and allow it to be changed in the same physical
place, implementing new “non-von Neumann” paradigms of
in-memory computation (Papandroulidakis et al., 2017; Erokhin,
2020; Lee S. H. et al., 2020). It is provided by the typical current-
voltage characteristics with a pinched hysteresis (Figure 5B). It
exhibits a wide range of resistances, as well as the pronounced
and inherent stochastic nature of the conductance switching in
memristors. The change in conductivity of a memristive device
in response to spiking activity is analogous to the plasticity of
a biological synapse and is usually described by the STDP rule
(Figure 5C; Zamarreño-Ramos et al., 2011; Emelyanov et al.,
2019; Demin et al., 2021).

The simple two-terminal structure of the memristor enables
the building of superdense and, in future, three-dimensional
“crossbar” arrays (Figure 5A). Based on Ohm’s and Kirchhoff’s
laws, such arrays naturally implement analog operations of
matrix-vector and matrix-matrix products, underlying the
massive computations in traditional ANNs (Xia and Yang, 2019;
Mehonic et al., 2020). Recently, using an analog-digital platform,
it has been shown that a memristive crossbar can perform analog
operations while digital circuits control the crossbar and enable
writing synaptic weights into them (Bayat et al., 2018; Cai et al.,
2019; Wang et al., 2019; Yao et al., 2020; Zahari et al., 2020). Thus,
hardware-based ANN algorithms for learning and operating have
been implemented based on memristors. They can significantly
improve the parameters of neuromorphic computing systems,
which have been actively developed in recent years due to new
applications, algorithms, and element base (Indiveri et al., 2011;
Schuman et al., 2022).

Memristor as a Key Element in Building
Reflective Spiking Neural Networks
Let us now discuss the rich dynamics of memristive systems
and present some examples within the framework of the above-
mentioned conceptual approaches. The universal description of
the memristor system expressed in Equation 1, hides a plethora
of sound effects that yield various functional applications of
memristors (Figure 6). The function f (x,V) plays a central role
in the dynamics of a memristive system and determines the
complexity of the internal state of the system (Pershin and Slipko,
2019a). Moreover, the function f (x,V) can include both internal
and external noise, making it possible to describe a memristor as
a stochastic system (Agudov et al., 2020).

Contrary to a popular belief and the standard approach
focused on studying the state equation with a linear function,
f (x,V) plays a decisive role in achieving the complex dynamics
of a memristive system. Moreover, for complex dynamics, the
memristance R(x,V) should be a nonlinear and a nonseparable
function of its variables (Guseinov et al., 2021a). It yields the
condition R(x,V) 6= g(x)p(V). Different combinations of these
desired properties enable simple or arbitrarily complex behaviors
of real memristive devices.

Among the simple examples that can be obtained by using
the first-order linear models, we can mention the widespread
Hebbian plasticity described by the STDP rule (Figure 5C). It can
be achieved by overlapping signals from pre- and postsynaptic
neurons applied to a memristor (Zamarreño-Ramos et al., 2011;
Emelyanov et al., 2019; Demin et al., 2021).More complex
versions of plasticity, for example, frequency-dependent, require
at least two dynamic variables operating at different time scales
(Du et al., 2015; Kim et al., 2015; Matsukatova et al., 2020). Three
state variables yield a neuron-like activity of a memristive device
based on a volatile type of resistive switching (Kumar et al., 2020).

It is worth noting that the rich dynamics of memristive
devices allows for going beyond the conditional rules of
plasticity. We can build neural networks from the first
principles based on the self-organization of adaptive memristive
connections and the synchronization of neurons coupled by
memristive devices. The coupling of neurons by the stochastic
plasticity in memristive connections has been illustrated
experimentally for several neurons in an ensemble (Ignatov
et al., 2016, Ignatov et al., 2017; Gerasimova et al., 2017). The
experimentally observed complex dynamics of memristively
connected neurons requires description using high-order
dynamical models to design larger brain-like cognitive systems
(Gerasimova et al., 2021).

The use of a nonlinear potential function describing the
state of memristors leads to the appearance of different types
of attractors in the state space, which drives the dynamic
characteristics of the memristors (Pershin and Slipko, 2019a,b).
The multidimensionality of this space, combined with nonlinear
and nonseparable memristance, provides the necessary and
sufficient conditions for observing the complex dynamics of the
memristor response to external periodic stimulation (Guseinov
et al., 2021a). The corresponding transition from periodic
response modes to intermittency and chaos can partially explain
the variability in the parameters of real memristive devices
(Guseinov et al., 2021b).

Stochasticity is an intrinsic property of a memristor (Carboni
and Ielmini, 2019). Noise can be used both to study the
multistable nature and to control the behavior, thanks to such
well-known effects as stochastic resonance and enhancement
of the stability of metastable states (Mikhaylov et al., 2021),
resonant activation (Ryabova et al., 2021), etc. These and other
phenomena related to the constructive role of noise can be
described within the framework of analytical stochastic models
(Agudov et al., 2020, 2021). They are well suited for design at
the circuit level.

Thus, the presented range of functional capabilities of
memristive systems already makes it possible to implement SNN
architectures in hardware. Although memristor-based SNNs
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FIGURE 5 | Memristive systems. (A) An array of crossbar metal-oxide-metal memristive devices integrated into the top metallization layers back-end-of-line (BEOL)
of the CMOS layer front-end-of-line (FEOL). (B) Typical current-voltage characteristics of a memristive device with stochastic switching between low- and
high-resistance states. (C) Synaptic functionality of the memristive device mimicking the STDP rule.

FIGURE 6 | Schematic illustration of the variety of practical effects hidden in the basic properties of the generalized memristor model.
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FIGURE 7 | The concept of a memristive HD neuron. (A) Hardware implementation of an HD neuron. A neuronal membrane (purple) is an inverting adder receiving
input from the synaptic connections made of memristors R1, ..., Rn (blue). The feedback loop enhances couplings of pre- and post-neurons under learning through
the controlled amplifier (green). (B) The result of simulations of the electric circuit. As the HD-theory predicts, the neuronal selectivity steeply increases with the
dimension and attains 100% for n = 50− 70.

have already been developed and even tested in crossbars
(Ankit et al., 2017; Prezioso et al., 2018; Demin et al., 2021),
they roughly simulate STDP to implement local learning rules.
However, STDP does not cover the whole variety of biochemical
processes and describes only one of the mechanisms determining
synaptic plasticity (Feldman, 2012). Moreover, the memristive
STDP models use a simplified algorithm based on a temporal
overlap of pre- and postsynaptic spikes at a millisecond time
scale (Demin et al., 2021). They essentially can be reduced to
the direct programming of the memristor resistive state. Such
an approach significantly complicates the electric circuits of the
developed SNNs and compromises their energy efficiency and
performance. However, it is still relevant for building small-sized
demonstration prototypes. We foresee further implementations
of various mechanisms of synaptic plasticity, multistability,
and stochasticity at the complexity level critical to building
perfect systems from imperfect elements. At the same time,
the immature memristive technology cannot currently meet the
constantly growing requirements for ANNs from developing
digital services. Large-scale crossbar arrays suffer from several
parasitic effects.

In the section below, we overview two approaches that
should reveal the potential of memristive devices in reflective
(“thinking”) information and computing systems. They are
being developed as alternatives to the standard “digital”
approach based on programming the states of memristive
devices as customarily done in traditional electronics. The
first approach aims at creating self-learning SNNs based
on the rich dynamics of memristive devices and simple
architectures, using elegant and efficient solutions prompted
by nature and corresponding to the well-known principle of
simplicity in neurosciences (refer to Section “Novel Mathematical
Principles for Spiking Neural Networks: Concept Cells and
High-Dimensional Brain”). The second approach proceeds by
completely rejecting digital algorithms and implies direct (on-site
or at the edge) processing of analog information from outside.

It aims to effectively implement such perception functions as
vision, hearing, etc.

Memristive High-Dimensional Neurons
as Building Blocks for Artificial Cognitive
Systems
The possibility of a mathematical description and hardware
implementation of synaptic functions based on a memristive
device enables implementation of even the most daring
mathematical concepts in hardware. Recent advances
use simplified architectures of neurons and include the
concept of the high-dimensional brain (Section “Novel
Mathematical Principles for Spiking Neural Networks:
Concept Cells and High-Dimensional Brain”), which
explains the unreasonable efficiency of single cognitively
specialized neurons. The system consists of software and
hardware parts and is controlled by a microcontroller
(Shchanikov et al., 2021). Memristive devices based on a
metal-oxide-metal thin-film structure, where yttrium-stabilized
zirconium dioxide acts as a switching medium, can implement
adaptable synaptic weights of a high-dimensional neuron
(Mikhaylov et al., 2020).

Figure 7A illustrates an electric circuit implementing a high-
dimensional (HD) neuron. An HD input vector pattern encoded
by bipolar pulses v = (V1, ...,Vn)

T is fed to the circuit input.
The resistances of the memristive devices R1, ...,Rn determine
the weights of the synaptic connections, and their combination
for a particular neuron determines the neuron selectivity as
discussed in Section “Novel Mathematical Principles for Spiking
Neural Networks: Concept Cells and High-Dimensional Brain”.
Then, an inverting adder implements the main functionality
of the neuronal membrane by integrating n informational
channels and the membrane threshold, Vθ. Such a neuron
performs mathematical operations of multiplication and addition
following Ohm’s and Kirchhoff’s laws.
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FIGURE 8 | The concept of analog memristive vision. (A) Schematic representation of the vision system. It includes a 1D1R memristive sensor capturing images,
synaptic connections (memristive crossbar), and an SNN. There is no need for an analog-to-digital converter (red cross). (B) Process of transformation of spikes in
the memristive SNN. (C) A layer of memristive neurons implemented by an array of memristors in a crossbar.

The proposed analog circuit implementation of an HD neuron
is simple but, at the same time, allows for simulating the concept
described in Section “Novel Mathematical Principles for Spiking
Neural Networks: Concept Cells and High-Dimensional Brain”.
Figure 7B shows the result of simulations of the operational
performance of a memristive HD neuron with memristive
devices working in the resistance range of 4− 400 kOhm. At
high dimensions, the neuron exhibits absolute selectivity to the
input stimuli. Such neurons can be used to implement a variety of
cognitive behaviors (Tyukin et al., 2019; Calvo Tapia et al., 2020b;
see also Section “Novel Mathematical Principles for Spiking
Neural Networks: Concept Cells and High-Dimensional Brain”).
The switching dimension depends on the circuit components
and starts at n = 50. By adjusting the value of Rf , we can
achieve absolute selectivity even for the relatively low resolution
of neuron weights (Figure 7B).

Learning the proposed HD neuron is automatic and goes
the following way (Calvo Tapia et al., 2020b). At the beginning,
the memristors have arbitrary initial resistances, which means
that the neuron has some combination of the synaptic weights.
Then, we supply to the neuron a sequence of input data
vectors encoded by the inverted voltage amplitudes of the
input signal v. The maximal amplitude must not exceed the
switching voltage of the memristors Vth to maintain the
original combination of the resistances. At the presentation
of a certain input vector, the ReLU output will become
positive, which means the neuron has detected the vector.
Then, following the Hebbian rule, the coupling of pre-

and postsynaptic neurons is strengthened. It is achieved
by setting voltages at the inputs of the neuron required
to increase or decrease the resistance of the corresponding
memristors in the range [Rmin,Rmax] for positive and negative
inputs, respectively.

To train an HD neuron at the hardware level, we can
use noninverting operational amplifiers with controlled gain
(controlled amplifier in Figure 7A). The gain is adjusted by
adding a load to the feedback of the operational amplifier when
the voltage-controlled switch is opened. In the feedback loop, the
voltage Vpost is set at the ReLU output only when the neuron
detects an input pattern, and this pulse opens the keys and
increases the amplitude of the input pulses V1, ..., Vn. In turn, it
causes a change in the resistance of R1, ..., Rn, and in the strength
of the synaptic connections.

Bio-Inspired Analog Signal Processing
Enabled by Memristors
According to the second alternative approach, memristive
devices and SNNs may also facilitate the implementation
of neuromorphic analog machine vision systems. HP Labs
and the University of Berkeley have shown one of the first
implementations of an ANN with memristive devices used for
pattern recognition. Bayat et al. (2018) described a device based
on passive crossbars with 20× 20 memristors, which implements
a multilayer feed-forward perceptron capable of recognizing
Latin alphabet letters with 97% accuracy.
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A publicly available simulator of the human retina
(Eshraghian et al., 2019; Baek et al., 2020) can be used to develop
advanced analog vision systems. Based on computing systems
with memristor chips, a Hopfield ANN and a convolutional
ANN were implemented and tested in pattern recognition tasks
and associative memory (Zhou et al., 2019; Li et al., 2020; Yao
et al., 2020). It has been shown that the implementation of ANNs
on memristive devices of the size 128 × 64 is several times faster
than graphics and signal processors in terms of speed and lower
power consumption (Li et al., 2018a,b). In general, the results
of comparing memristive devices with modern systems of a
hardware implementation of ANNs show their advantages in
accuracy, speed, power consumption, etc. (Xia and Yang, 2019;
Amirsoleimani et al., 2020; Lee S. H. et al., 2020; Qin et al., 2020).

At the same time, the need for analog-to-digital and digital-
to-analog conversions minimizes the potential energy gain from
using memristors in traditional architectures (Amirsoleimani
et al., 2020). Memristive devices allow for creating neuromorphic
systems in which all processing takes place in an analog form.
Thus, it seems reasonable to exclude analog-to-digital and digital-
to-analog conversions from machine vision systems. The signals
from the photosensor can be fed to an SNN without digitization.
Then, the conductivities of the memristors will shape the model
of visual information processing and simultaneously perform this
processing (in-sensor computing).

The first steps have already been taken to combine memristive
devices with photosensors. The described architecture of a 1D1R
sensor for machine vision is a 20 × 20 or 32 × 32 matrix of SiNx
memristive devices coupled to a photodiode or a phototransistor
(Vasileiadis et al., 2021a,b). The coupling of memristors with
photosensors shows that this approach can simulate some retinal
functions (Chen et al., 2018; Eshraghian et al., 2018). Adding such
photosensors to layers of SNNs based on memristors may allow
for the implementation of the concept of analog machine vision.

Figure 8 illustrates the concept of analog memristive vision
exploiting coupled memristors and photodiodes (Vasileiadis
et al., 2021a,b). The 1D1R memristive sensor receives visual
information (Figure 8A). The sensor is a photodetector
consisting of photodiodes D1, ..., Dn connected to a voltage
source Vin and memristors of resistances R1, ..., Rn. The
voltage source forms spikes at the input of the SNN. After
exposure, the memristors change their resistances depending
on the illumination. Therefore, a different voltage drop will
occur in each input channel when voltage pulses are applied.
Then, the first SNN layer consisting of integrate-and-fire neurons
fires spikes with frequencies depending on the resistance of the
memristors and the thresholds T1, ..., Tn (Figure 8B).

Thus, visual information can be encoded by analog spikes
without analog-to-digital conversions and transmitted directly to
the input of the memristive SNN. The main element of the SNN is
the memristive crossbar (Figure 8C). Memristors in the crossbar
can change their conductivities and play the role of synapses.
Since spikes come at different frequencies at the input, the STDP
model can be used in the SNN to implement local learning rules.

We note that the concept of a high-dimensional brain and
analog machine vision complement each other and may bring
this area to a qualitatively new level. Although we have described

only the simplest selective effect emerging in HD neurons, more
complex architecture (see, e.g., Calvo Tapia et al., 2020b) are
ready to be implemented in memristive architectures and SNNs.

CONCLUSION

In recent decades, SNNs have increasingly gained attention.
This study has provided an overview of current theoretical,
computational, and hardware approaches to building reflective
SNNs. Some of the discussed problems, such as learning
in SNNs, are unsolved and require new efforts from the
scientific community. The synergy between neuroscience and
mathematical approaches can be a solution for building novel
systems demonstrating reflective AI.

Current neural networks usually deal with the abstraction of
“static” stimuli (objects, persons, landscapes, or even speech).
The abstraction of actions and behaviors is a great challenge
that should be addressed in the future. Some of the proposals
argue that it can be done through a specific type of internal
representation (Calvo Tapia et al., 2020c) or through building
motor motifs (Calvo Tapia et al., 2018). Now our knowledge
about higher echelons of information processing in the brain is
limited. There is no clear evidence on how biological neurons
represent spatiotemporal concepts and end up with cognition.
However, it likely happens in an active manner through
a constant interplay between the intrinsic brain dynamics
and external input.

The theory of the HD brain, based on the measure
concentration phenomena, suggests that individual neurons can
become “intelligent” through a series of quantum leaps if the
complexity of information they process grows. It helps explain
that a cognitive phenomenon is not a linear combination of
component functions. Adding up components increases the
system dimension, and at some key points, novel faculties emerge.
These advances suggest that learning in higher brain stations can
be majorly local, and different versions of Hebbian rules, e.g.,
STDP, can be behind various cognitive phenomena.

The hardware friendliness of SNNs has stimulated the search
for methods of their implementation in low-power hardware
devices. We foresee that memristive technology is a strong
candidate for a breakthrough in this area. The review has
discussed recent successful attempts to reproduce synaptic
plasticity and implement in-memory/in-sensor computations.
Together with SNNs and the theory of the high-dimensional
brain, the latter can produce novel approaches to neuromorphic
computing. Then, SNNs can diverge from the development
of ANNs and build their niche, cognitive, or reflective
computations. The energetic efficiency and computational speed
of future devices will be significantly improved. In turn, it may
allow for overcoming the heat and memory walls that the current
CMOS technology is facing.
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