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When learning concepts, cognitive psychology research has revealed that there are

two types of concept representations in the human brain: language-derived codes and

sensory-derived codes. For the objective of human-like artificial intelligence, we expect

to provide multisensory and text-derived representations for concepts in AI systems.

Psychologists and computer scientists have published lots of datasets for the two

kinds of representations, but as far as we know, no systematic work exits to analyze

them together. We do a statistical study on them in this work. We want to know if

multisensory vectors and text-derived vectors reflect conceptual understanding and

if they are complementary in terms of cognition. Four experiments are presented in

this work, all focused on multisensory representations labeled by psychologists and

text-derived representations generated by computer scientists for concept learning, and

the results demonstrate that (1) for the same concept, both forms of representations can

properly reflect the concept, but (2) the representational similarity analysis findings reveal

that the two types of representations are significantly different, (3) as the concreteness of

the concept grows larger, the multisensory representation of the concept becomes closer

to human beings than the text-derived representation, and (4) we verified that combining

the two improves the concept representation.

Keywords: concept learning, multisensory representations, text-derived representations, representational

similarity analysis, concreteness

1. INTRODUCTION

One key element of cognition is concept learning, or the capacity to identify commonalities
and emphasize contrasts across a set of related events in order to develop structured
knowledge (Roshan et al., 2001). The current availability of brain imaging techniques
has raised curiosity on how concepts are encoded in the brain. Huth et al. (2016)
mapped semantic selectivity across the cortex using voxel-wise modeling of whole-brain
blood-oxygen-level-dependent (BOLD) responses data collected while subjects listened to
hours of narrative stories. They built a comprehensive semantic atlas that demonstrates
that the distribution of semantically selective regions is symmetrical throughout the
two cerebral hemispheres, with nice individual consistency. According to neurocognitive
studies, the semantic system is topologically divided into three brain modules: multimodal
experiential representation, language-supported representation, and semantic control, leading to
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the proposal of a tri-network model of semantic processing
(Xu et al., 2017). Psychological studies have shown that the
human brain has (at least) two types of object knowledge
representations: one based on sensory-derived codes and one
based on language/cognitive-derived codes, both supported
by separate brain systems. It is difficult to distinguish the
contribution of them in human subjects (Wang et al., 2020).

From the perspective of quantification, recent concept
learning researches also concentrated on two aspects:
multisensory representations and text-derived representations
(Davis and Yee, 2021). Multisensory representations are based
on embodied theory, which emphasis that meaning is grounded
in our sensory, perceptual, motor and experiences with the world
(Barsalou, 1999). While text-derived representations are relied
on the distributional hypothesis, which states that the similarity
between two concepts is rooted in the similarity of their linguistic
contexts (Harris, 1954).

On the one hand, multisensory representations are basically
obtained from psychology experiments. By asking participants
how strongly they experienced a particular concept by hearing,
tasting, feeling through touch, smelling, and seeing, Lynott and
Connell proposed modality exclusivity norms for 423 adjective
concepts (Lynott and Connell, 2009) and 400 nominal concepts
(Lynott and Connell, 2013) on strength of association with
each of the five primary sensory modalities. Analogous vectors
are now available in a variety of languages, such as French
(Bonin et al., 2014), Spanish (Díez-Álamo et al., 2017), Dutch
(Speed and Majid, 2017), Russian (Miklashevsky, 2017), Chinese
(Chen et al., 2019), and Italian (Vergallito et al., 2020). Lynott
et al. (2019) published Lancaster Sensorimotor Norms, which
expanded the norms to 11 dimensions, including six perceptual
modalities (auditory, gustatory, haptic, interoceptive, olfactory,
visual) and five action effectors (foot/leg, hand/arm, head, mouth,
torso). With 39,707 psycholinguistic concepts, this dataset is the
largest ever. Based on more recent neurobiological evidences,
Binder et al. (2016) established a set of brain-based componential
semantic representation with 65 experiential characteristics,
spanning sensory, motor, spatial, temporal, affective, social, and
cognitive experiences. This dataset includes 535 concepts and
performs well when distinguishing a priori conceptual categories
and capturing semantic similarity.

On the other hand, text-derived representations are generated
from computational linguistics. Word2vec and GloVe are two
representative models for transforming semantic and syntactic
information of words into dense vectors. Word2vec (Mikolov
et al., 2013) comprises two models: continuous bag of words
model that learns to predict the current word given the context,
and skip-gram model that learns to predict context words
given the current word. GloVe (Pennington et al., 2014) is
a specific weighted least squares model that trains on word-
word co-occurrence countsmatrix which integrates global matrix
factorization and local context information. They are the most
significant and often used text-derived representations. They’ve
recently gotten a lot of attention for their impressive results in a
variety of natural language processing tasks.

Figure 1 demonstrates the same concept “honey” in the
two types of datasets. For multisensory representations, each

dimension represents the perceptual strength while for text-
derived representations the dimension information is like a
“black box”, with weak interpretability. Despite the fact that there
has been a lot of research on how to integrate the two types of
vectors for improved concept learning (Hill and Korhonen, 2014;
Hill et al., 2014a; Kiela and Bottou, 2014; Silberer and Lapata,
2014; Collell et al., 2017; Wang et al., 2018), there has been no
systematic comparison between the vectors of different sources
as far as we know.

To verify whether these concept representation datasets
provide a solid foundation for human-like intelligence, the
quantitative analysis of the two types of representations
will be carried out through four experiments. In what
follows, we describe four experiments implicating statistical
analysis of multisensory and text-derived representations on
concept learning. The first experiment focuses on k nearest
neighbors for the same concept from multisensory and
text-derived perspectives, the second one concentrates on
representational similarity analysis on two types of vectors, the
third one emphasizes on the influence of concept’s concreteness
for multisensory and text-derived vectors, and the fourth
one proves that the combination of the two improves the
concept representation.

2. MULTISENSORY AND TEXT-DERIVED
REPRESENTATIONS: A MICRO ANALYSIS

Similar concepts will share similar features, which is an essential
characteristic of concept learning in cognitive activities. In this
section, we try to investigate whether similar concepts are also
similar in multisensory and text-derived representation spaces.

2.1. The Criterion
Semantic feature norms are a way of displaying concepts
by utilizing normalized and systematic feature descriptions
which reflect the human understanding of the concepts.
These semantic norms shed light on a variety of human
behaviors including concept perception, categorization, and
semantic memory (McRae et al., 2005). For example, the
features of the concept “celery” are “is_green”, “a_vegetable”,
“has_stalks”, “is_stringy”, “has_leaves”, “is_long”, “has_fibre”,
“is_edible”, “is_crunchy”, “eaten_in_salads”, “eaten_with_dips”,
“tastes_bland”, “tastes_good”, “grows_in_gardens”, and
“is_nutritious”. The intersection and difference of semantic
feature norms relate to the similarities and contrasts between
concepts. For example, the shared features for “car” and
“scooter” are “has_wheels”, “used_for_transportation”,
“has_an_engine”, “is_fast”, and “a_vehicle”. While the
unique features of “car” are “has_4_wheels”, “has_doors”,
“has_a_steering_wheel” and the unique features of “scooter”
are “has_2_wheels”, “has_handle_bars”, “used_with_helmets”,
showing their difference.

The primary objective of obtaining semantic feature norms
is to create interpretable conceptual representations that can
be used to evaluate theories of semantic representation and
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FIGURE 1 | A demo representation of the concept “Honey” in the concept representation dataset mentioned in this article. The circular bar of the same concept

“honey” is shown here in LC823 (Lynott and Connell, 2009, 2013), Lancaster40k (Lynott et al., 2019), BBSR (Binder et al., 2016), word2vec (Mikolov et al., 2013), and

GloVe (Pennington et al., 2014). It is obvious that the multisensory vectors have good interpretability, as each dimension has clear information referring to it, whereas

we are unsure what each dimension in the text-derived vectors represents.

computation. The most influential work in this respect is
McRae semantic feature norms, which is proposed by McRae
et al. (2005). They not only presented 541 concepts with their
feature norms, but also suggested a methodological framework
to generate them. CSLB (Centre for Speech, Language and
the Brain) is another semantic feature norms dataset which is
comparable with McRae (Devereux et al., 2014). They improved
the procedure of feature normalization and feature filtering,
collecting 866 concepts. This article takes McRae and CSLB
as the criterion for human conceptual cognition to explore
how multisensory and text-derived representations are linked to
human cognition.

2.2. The Methods
In this study, the multisensory vectors are represented by
Lancaster40k1 (Lynott et al., 2019) and BBSR (brain-based
componential semantic representation)2 (Binder et al., 2016),
whereas text-derived vectors are represented by word2vec3

(Mikolov et al., 2013) and Glove4 (Pennington et al., 2014).

1http://osf.io/7emr6/
2http://www.neuro.mcw.edu/resources.html
3https://code.google.com/archive/p/word2vec/ the pre-trained vectors were
trained on part of Google News dataset.
4https://nlp.stanford.edu/projects/glove/ the version of pre-trained text-derived
vectors is Common Crawl (840B tokens, 2.2M vocab, cased, 300d vectors, 2.03 GB
download).

Firstly, we get all the similar concepts for each concept in
multisensory and text-derived concept representation datasets
respectively (measured via cosine similarity), sort them by
similarity, and record their rankings. Next, in the semantic
feature norms datasets such as McRae and CSLB, we select the
k closest neighbors of each concept (the similarity is determined
by counting the number of features that overlap), and find the
their rankings’ median in each representation dataset separately.
The smaller the ranking, the closer the representations are to
human perception. As Table 1 shows, in the criterion dataset
McRae, the closest neighbor (k = 1) for the concept “accordion”
is “saxophone”. The “Reasons” show the overlapped features
of the concept pair. The similarity rankings of “saxophone”
for the concept “accordion” in multisensory datasets BBSR and
Lancaster40k and text-derived datasets GloVe and word2vec are
5, 48, 5, 4 separately. Finally, we obtain the average value for each
type of representations. As k varies, we can draw a scatter plot
and perform linear fitting.

2.3. Results and Analysis
Table 2 and Figure 2 illustrate the findings. The results
demonstrates that: (1) Eithermultisensory or text-derived vectors
exhibit remarkable linearity as k varies, suggesting that they both
accurately reflect the essence of the concept, which is identical
to human beings. This means that similar concepts in the space
of human cognition are also similar in the spaces of both
multisensory and text-derived representations (2) The results of
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TABLE 1 | The closest neighbor (k = 1) demo in McRae.

Concept Closest neighbor Reasons Ranking in BBSR Ranking in Lancaster40k Ranking in gloVe Ranking in word2vec

Accordion Saxophone A musical instrument; has keys;

requires air; produces music;

5 48 5 4

Blueberry Plum A fruit; is round;

is small; tastes sweet;

is edible; is juicy;

eaten in jams; tastes good

3 59 12 69

Magazine Book Has pages; has words in it;

made of article; has pictures

1 3 1 1

Pumpkin Tomato Has seeds; is round a fruit;

a vegetable; grows on vines

2 8 6 2

Truck Van Has wheels; has 4 wheels;

used for cargo; a vehicle;

is large; used for transportation;

requires gasoline; has an engine

1 2 19 1

The reasons come from the overlapped features of each concept pair.

TABLE 2 | Median rankings of k closest neighbors.

Median of rankings
McRae CSLB

k = 1 k = 3 k = 5 k = 10 k = 1 k = 3 k = 5 k = 10

BBSR 2 4.5 8 13 2 4 6 10.5

Lancaster40k 37 47 68 85 27.5 45 48 56

Average 19.5 25.75 38 49 14.75 24.5 27 33.25

GloVe 9 19 32 59 6 16 22 36

w2v 9 19 28 56 8 16.5 24 40

Average 9 19 30 57.5 7 16.25 23 38

both types of representations show the same tendency, though
with difference slope. For smaller values of k, the multisensory
representations show better performance, while the text vector-
based representations are closer to human for larger values
of k. (3) Detailedly, text-derived vectors which are trained based
on large-scale corpus are more stable, but less interpretable.
We can easily locate similar concepts for each concept, but
we have no idea what each dimension means or why they
are related. Multisensory vectors, on the other hand, are based
on psychological labeling and have high interpretability. We
know what each dimension represents, whereas the dimension
information for text-derived representations is unclear. We can
identify which modality is responsible for similarity between
the two concepts. However, there is a larger variance different
multisensory vectors. This is probably due to the fact that
Lancaster40k has just 6 dimensions and therefore has limited
representational capacity, but BBSR, with 65 dimensions, can
better deal with such a situation.

3. MULTISENSORY AND TEXT-DERIVED
REPRESENTATIONS: A MACRO ANALYSIS

The above experiment shows that both kinds of the vectors
mirror the concept itself, thus is there an inherent relationship

between multisensory and text-derived representations from a
macro perspective? To explore this, we use representational
similarity analysis (RSA) to evaluate distinct vectors and detect
the relationship between them via hierarchical clustering.

3.1. Representational Similarity Analysis
In the field of cognitive neuroscience, RSA is a computational
approach that bridges the divides between brain-activity
measurement, behavioral measurement, and computer modeling
(Kriegeskorte et al., 2008). RSA is a data-analytical framework
for analyzing how neural activity is quantitatively related to
each other, as well as to computational theory and behavior,
using representational dissimilarity matrices (RDMs), which
characterize the information carried by a given representation
in a brain or model. RSA allows us to compare representations
inside a brain or model, across brain and behavioral data, and
between humans and species (Nili et al., 2014). RSA reflects the
degree of similarity between two representation spaces. In this
study, we utilize RSA to examine the connection between the two
types of representations using their typical vectors.

3.2. The Method
Besides BBSR, Lancaster40k, word2vec, and GloVe, we also
introduce LC823 as a multisensory typical dataset that combines
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FIGURE 2 | The median of k closest neighbors’ ranking in McRae and CSLB.

Lynott and Connell’s data from 20095 (Lynott and Connell,
2009) and 20126 (Lynott and Connell, 2013). For the sake of
consistency, we will focus on the effects of five types of senses in
this experiment: vision, touch, sound, smell, and taste.We use the
first five dimensions of Lancaster40k, while we normalize the data
and use the average value of the sub-dimensions corresponding
to these five senses in BBSR.

For these five datasets of different sources, we analyze each
two as a pair separately. We obtain the overlapped concepts
from the corresponding datasets in this pair and construct RDMs
using these concepts. RDM is symmetric about a diagonal of
zeros, and each cell carries a score that indicates the difference
between concept pairs. Additionally, the concepts in each of the
two RDMs are presented in the same order. In this article, we
use cosine distance tomeasure the dissimilarity. Figure 3 exhibits
RDM demonstrations. The RDMs between BBSR and GloVe are
shown above, while the RDMs between BBSR and Lancaster40k
are shown below. For each matrix, all concepts are displayed in
order of category, with category categorization based on BBSR.

The Spearman correlation between the upper diagonal
portions of the two RDMs is referred to as “Matching
Strength”, which evaluates the macroscopic match between two
representation spaces in terms of the degree of comprehension
about the same concept. The Matching Strength between each
representation dataset pair is shown in Figure 4. For example,
the Matching Strength between BBSR and Lancaster40k is 0.67
while the Matching Strength for BBSR and word2vec is 0.16. We
perform an unsupervised clustering analysis based on the these
Matching Strength results. Euclidean distance is used and the
hierarchical clustering structure is constructed.

5https://link.springer.com/article/10.3758/BRM.41.2.558
6https://link.springer.com/article/10.3758/s13428-012-0267-0

3.3. Results and Analysis
The within-category correlation for the same concept
is higher for the same type of vector representation,
whereas the correlation between different types of
representations is lower, as shown in Figure 4 for the RSA
and clustering findings. Via unsupervised learning, the
data points are divided into two parts, which are nicely
related to multisensory and text-derived representations.
Between the two types of representations, there is a
clear distinction.

This is probably due to the fact that the two
types of representation vectors are based on different
theoretical foundations and data sources: multisensory
representations are based on embody theory, whereas text-
derived representations are based on distributed theory;
multisensory representations are primarily derived from
psychologists’ research, whereas text-derived representations
are primarily obtained from computer scientists’ training with
large-scale data.

When combined with the micro analysis results in the above
section, we could draw the interesting conclusion that there is
no significant difference in the effect of the two distinct types
of representations for the same concept, but the original aim
and source of the two representations differ. This supports the
findings of Wang et al. (2020), who claim that the human
brain has (at least) two types of concept representations.
It suggests that the available multisensory and text-derived
representation spaces are very identical to the human brain’s
representation space.

4. THE GAP ANALYSIS

So the question arises, what causes the gap between these two
types of vectors? In this experiment, we will explore the sensitivity
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FIGURE 3 | Representational dissimilarity matrices demonstration. The RDMs between BBSR and GloVe are shown above, while the RDMs between BBSR and

Lancaster40k are shown below. For each matrix, all concepts are displayed in order of category, with category categorization based on BBSR.

of the two types of representations to the concepts’ concreteness,
a quantifiable property of concepts.

4.1. Concreteness
Concreteness is a property of the concept in psychological study
that reflects the degree to which something may be experienced
via our senses. The concept with a higher concreteness rating
relates to something that exists in reality, while the concept
with a lower concreteness rating refers to something that you
cannot directly experience via your senses or actions. The
recognition and processing of concrete concepts is usually
faster than that of abstract concepts (Schwanenflugel et al.,
1988), while the emotional valence of abstract concepts is
higher than that of concrete ones, resulting in a residual
latency advantage for abstract words (Kousta et al., 2011).
Many datasets involving concreteness exist in the field of

cognitive linguistics. Concreteness40k, proposed by Brysbaert
et al. (2013) is the biggest concreteness rating dataset, with
37,058 English words and 2,896 two-word phrases gathered
from over 4,000 people through a norming research that
used internet crowdsourcing for data collecting. They utilize
a 5-point scale that ranges from abstract to concrete. The
Glasgow Norms are a another set of normative ratings for
5,553 concepts on nine psycholinguistic dimensions: arousal,
valence, dominance, concreteness, imageability, familiarity, age
of acquisition, semantic size, and gender association, and they
are the most comprehensive psycholinguistic materials ever
created (Scott et al., 2019). The Glasgow Norms’ dimensions
are all based on 7-point rating systems. For generality, in
this study, we quantify the concreteness of the concepts
separately using Concreteness40k and the concreteness part in
Glasgow Norms.
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FIGURE 4 | Representational similarity analysis on two types of representations. The matching strength between multisensory and text-derived vectors is shown in

the heatmap on the right side of the figure, and the hierarchical clustering structure on the left is constructed using the Matching Strength and Euclidean distance.

FIGURE 5 | The relationship between concreteness and closeness for each type of vectors.

4.2. Human-Like Concept Learning Metric
Most cognitive functions, such as categorization, memory,
decision-making, and reasoning, are based on human similarity
and relatedness judgments between concepts. As a result, there is
a large collection of human-labeled measure datasets to evaluate
the degree of human-likeness from the standpoint of concept
similarity and concept relatedness, particularly in the domains
of natural language processing (Lastra-Diaz et al., 2021). To
assess how well each type of representation reflects human
judgments, we compute Spearman correlations between model-
based similarity and human assessments, as is customary.The

larger the correlation coefficient, the more similar to human
cognition, i.e., more human-like.

In this article, we evaluate the closeness of multisensory
representations and text-derived representations to humans
using multiple datasets such as Ag201 (Agirre, 2009), MC28
(Miller and Charles, 1991), MEN (Baroni et al., 2014), MT235,
MT287 (Radinsky et al., 2011), MT771 (Halawi et al., 2012),
PSfull (Pirró, 2009), Rel122 (Szumlanski et al., 2013), RG65
(Rubenstein and Goodenough, 1965), RW1401, RW2034 (Luong
et al., 2013), SCWS1994 (Huang et al., 2012), SL111, SL222,
SL665, SL999 (Hill et al., 2014b), SV3500 (Gerz et al., 2016), VS
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(Silberer and Lapata, 2014), WS353, WS353r, WS353s (Agirre
et al., 2009), YP130 (Yang and Powers, 2006), as well as McRae
and CSLB utilized in Experiment 1 (the cosine similarity of
feature-based one-hot representations determines the rating for
each concept pair).

4.3. The Method
Given the large number of measure datasets involved, BBSR and
LC823 have limited concept tagged and the overlap with the
measure datasets is small, therefore in this section we just utilize
Lancaster40k as a representation of multisensory vectors, while
GloVe and word2vec remain as text-derived representatives.
In this experiment, we investigate the relationship between
the concreteness of different concepts and the closeness of
their representations to human beings for the two types
of representations.

We get the associated concreteness for each concept pair
(concpet1, concept2) in the measure dataset (if any concept in the
pair cannot bemapped, the pair is ignored) and define their mean

value as the pair’s concreteness, concpair = (concconcept1+concconcept2)
2 .

We furthermore average the concreteness of all the pairs to obtain
the concreteness of the whole measure dataset i.e., concdataset =∑

all pairs in the dataset conc
pair

# of the pairs
. For each type of vectors, we calculate the

closeness as described above for each measure dataset and obtain
the Pearson correlation between closeness closdataset and measure
dataset concreteness concdataset .

4.4. Results and Analysis
Figure 5 and Tables 3, 4 show that for the multisensory vectors,
the association between the closeness and the concreteness
of the concepts is stronger, showing that the introduction of
multimodal information can better characterize the concept itself
for concepts with larger concreteness. In contrast, the effect of the
vector of text representations is less related to the concreteness
of the concepts, and the distribution is more scattered, which
may be related to the fact that the generation method is
based on large-scale corpus training, and the acquisition of
concepts is dependent on context or word frequency, as opposed
to multisensory vectors, which take more into account the
environment.

5. THE COMBINATION

The previous three experiments show that for each concept,
the multisensory and text-derived representation can both
properly suit the concept and make the representation close to
human. However, this does not imply that the representations
of these two different types of sources are the same; on the
contrary, there are considerable distinctions between them,
particularly for concepts of varying concreteness, where various
representations have different effects. With the development of
NLP technology, text-derived representations based on large-
scale corpus training have emerged, but most of them are based
on pure text and do not include the influence of environmental
and multisensory information. T
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Existing text-derived representation datasets are much larger
in scale than multisensory representations, so current conceptual
representations of AI systems are mostly dominated by text-
derived representations. The preceding studies show that text-
only derived representations bias human cognition for concepts
with high concreteness, but multisensory representations are
better at describing such concepts. These two kinds of codes are
compatible in the human brain, and we intend to investigate
whether the vectors of the two types of representations are also
complimentary from a quantitative aspect. We also want to see if
adding multisensory information to text-derived vectors helps to
increase their representational capacity.

5.1. The Method
Lancaster40k and BBSR are still used as multisensory vectors,
whereas GloVe and w2v are used as text-derived vectors in this
experiment. This section focuses on the possibility of merging the
two vectors rather than on how the two types of vectors should be
merged to get the best outcomes, therefore the most naive merge
method is chosen to for them. For each concept, we concatenate
its multisensory vector and text-derived vector as the combined
vector to represent it. The evaluation measure utilized in this
section is still the Human-like Concept Learning Metric from the
Gap Analysis part, and this part we only utilizesMcRae and CSLB
as measure datasets.

TABLE 4 | Correlation analysis on concreteness and closeness.

Pearson correlation Concreteness40k GlasgowCNC

Lancaster40k 0.465503079 0.474294653

GloVe 0.237656528 0.210263777

word2vec 0.303239538 0.271815609

5.2. Results and Analysis
We concatenate two of the four multimodal or text vectors
together and record their separate closeness as well as the
combined closeness. As demonstrated in Figure 6, multisensory
representations and text-derived representations are obviously
complimentary. In each of the four combinations of the two
measure datasets, all the fused vectors outperformed the text-
derived vectors on their own. This implies that integrating
multisensory vectors with text-derived vectors in AI systems
could be beneficial. Six fused representations outperform non-
fused representations in all eight scenarios, showing that the
combination of direct connections improves concept learning
and makes the representation closer to human cognition.
However, this is not the case in all circumstances, suggesting that
the way in which the two representations are integrated is worth
further exploration.

6. CONCLUSION AND FUTURE WORKS

In this work, we perform four experiments for concept learning
with multisensory and text-derived representations, analyze
the similarities and differences between them, and prove that
combining the two can improve concept representations. We
verified, by means of quantitative analysis, that the available
multisensory and text-derived representation datasets are in great
agreement with cognitive findings. Combining the two types of
vectors can well enhance the representational capabilities and
help the development of human-like AI.

We utilize the two types of most typical vector datasets in all
of the above tests. However, from the perspective of cognitive
theory, these two representations still have a lot of issues to
work out. The publicly accessible vector datasets for multisensory
representation are based on psychologists’ annotations, which
are extremely interpretable but more “expensive”. Due to the

FIGURE 6 | The closeness for multisensory vectors, text-derived vectors and their combination.
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limitations of annotation engineering and some rare or abstract
concepts, the size of such concept vectors is difficult to scale
up. On the other hand, we can collect textual corpus for almost
no cost via web crawlers, databases, big data technologies,
open source communities, and so on. With various text vector
generation algorithms, we can extract concept or word vectors
from the corpus.

Although these vectors can accurately capture the vector
representation of the corpus domain and depict the similarity
and relatedness of concepts, their interpretability is limited.We
can’t grasp the meaning of a single dimension since its value is
derived by defining the loss function as well as the contextual
relationship. Unlike multisensory representations, where they
are apparent what make two concepts similar or not, for each
dimension is perceptual strength related.

Although this text-based concept learning technique based on
large-scale corpus training can deliver rapid and efficient text-
based responses in someAI systems, it would be unable to include
common sense information, making the system less human-like.
Therefore, from an algorithmic standpoint, can we avoid the
downsides of both while maximizing the benefits of both?

Aside from the aforementioned data acquisition issues,
two forms of dimensional balancing issues are also worth
investigating. Multisensory representations have modest
dimensions, a few tens at most, but text-derived representations
are relatively flexible, with approximately 300 being the most
common. How to balance the two types of information from an
algorithmic perspective remains to be explored. Additionally,
despite the fact that the two kinds of representations are derived
from different sources, one based on distributed theory and the
other on embedding theory, it remains to be seen if there are
explanatory and effective mapping models that may improve the
scale of multisensory representation.

Furthermore, this research only proves in the most basic
way that merging two distinct vectors can enhance the concept
learning system. Current fusion techniques are mostly based on

traditional machine learning technologies to design algorithms.
Spiking neural networks are a variety of brain-like neural network
algorithm that integrates temporal information, making them
more human-like in terms of information computation and
showing promise. It’s also worth investigating whether using
SNN to combine two vectors would yield better results. Even
more importantly, how do humans fuse various types of idea
representations in the brain, and do they fuse in the samemanner
for different types of concepts? There is still no conclusive answer.
We’re eager to see related research that will inspire us to produce
meaningful algorithms.
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