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INTRODUCTION

The prevalence of dementia is increasing globally and carries a growing personal and societal
burden (Guerchet et al., 2013). Multimodal and longitudinal neuroimaging provides biomarkers
about disease progression and informs early detection of dementia (Ten Kate et al, 2018).
However, current empirical data is still insufficient to infer the underlying mechanisms of
the disorder necessary for developing targeted therapeutics. Equally important to the lack of
empirical data, there is an absence of sufficient theoretical tools to investigate the relationships
among the genetic risks, neuropathophysiology, clinical symptoms and environmental factors in
neurodegenerative diseases.

We argue that the recent advances in computational psychiatry and computational neurology
offer a promising translational neuroscience framework for integrating multiple levels of
abstractions and investigating neurobiological and pathological mechanisms of dementia. In
addition, they can derive mechanistic models that predict disease trajectory and treatment effects.
Here, we extend historical discussions on this topic (Adams et al., 2016; Paulus et al., 2016;
Hitchcock et al., 2022) by discussing the potential of integrative computational modeling for
dementia research. We will discuss the potential translational benefits and how it might account
for some of the current limitations in dementia research.

COMPUTATIONAL PSYCHIATRY AND COMPUTATIONAL
NEUROLOGY

With the rise of computational and data sciences applications in biological, medical, biomedical,
and psychological disciplines since the early 2010s, computational psychiatry and computational
neurology have demonstrated the potential to help account for some of the limitations of traditional
techniques (Montague et al., 2012). Computational psychiatry and neurology are interwind and
overlap in disorders like dementia, so in the context of this paper, we do not distinguish them.
There are several different dichotomies of computational psychiatry and neurology
models (e.g., descriptive vs. predictive, discriminative vs. generative, exploratory vs.
confirmatory models). We recognize that all these dichotomies have their value in
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describing specific classes of computational models. However,
in this paper, we would like to make a distinction between
two types of scientific research approaches by their different
objectives: data-driven vs. theory-driven approaches. We argue
that the former primarily aims to explain patterns in novel
data or information “about” the diseased brain, while the latter
primarily aims to develop, validate, or falsify theories which
describe information of the brain.

Data-Driven Computational Approaches
The primary objective of data-driven approaches is to “label”
experimental data based on multivariate patterns or statistical
regularities in the data (e.g., by using machine learning). An
advantage of data-driven approaches is that they require minimal
prior assumptions about the data (Magoulas and Pentza, 1999).
However, this very characteristic also makes the interpretation
of data-driven models challenging as discussed by Goecks and
colleagues (Goecks et al., 2020).

The current applications of machine learning in dementia
research focus on disease detection and prediction. For example,
by using neuroimaging, biological, and clinical data based on
recurrent neural networks, support vector machines, decision
trees, Naive Bayes classifiers, clustering, or other methods (Cui
and Liu, 2019; Kuan et al., 2021; Skolariki et al., 2021). Moreover,
the efforts were made to develop a personalized dementia risk
model that could predict the onset of dementia years before
patients develop symptoms by using ensemble learning from
demographic and medical history data (Danso et al., 2021).
Data-driven applications were also used to discriminate different
types of dementia (Dauwan et al., 2016; Bougea et al., 2021)
or to decrease the number of measures necessary for diagnosis
(Weakley et al., 2015). Other computer-aided diagnosis systems
that automatically detect neurological abnormalities have been
developed for the identification of dementia from neuroimaging
data (Siuly and Zhang, 2016). However, translating these efforts
into clinical practice is still problematic and need more of easily
used real-time methods that can be incorporated into everyday
clinical practice.

Although, some examples that directly aim to model disease
mechanisms, neuropathology, or subtypes exist (Young et al.,
2014; Oxtoby et al.,, 2018; Su et al, 2018, 2021), majority of
mainstream data-driven approaches do not explicitly intend to
capture the neurobiological and neuropathological mechanisms
underlying dementia. While applicable for disease prediction
and diagnosis, data-driven approaches alone are still limited to
inform novel treatments and capture the underlying complexities
of dynamic nature of dementia (ie., interactions of multiple
disease factors on different levels that can evolve in complex ways
over time).

Theory-Driven Computational Approaches

Theory-driven approaches for computational psychiatry and
neurology are used to describe the mechanisms of altered
pathology or information processing related to the “cause” of
psychiatric or neurological conditions. They are used as tools for
characterizing what nervous systems do (i.e., descriptive models),
determining how they function (i.e., mechanistic models),

and understanding why they operate in particular ways (i.e.,
interpretive models) at multiple levels of abstraction (Dayan and
Abbott, 2001). Thus, their goal is fundamentally different from
data-driven approaches as they “force” us to seek mechanisms
and causality (Figure 1A).

First, biophysical models of synaptic, cellular, and neural
circuits aim to describe the association between psychiatric
symptoms and abnormal information processing intrinsic to
assemblies of neurons and microcircuit dysfunctions. These
models aim to investigate mechanisms underlying cognitive
decline and dementia. For instance, early work like the “synaptic
deletion and compensation” model (Horn et al., 1993; Ruppin
and Reggi, 1995) demonstrated that synaptic connections in
Alzheimer’s disease are associated with memory loss and
learning difficulties. Second, large-scale neural network models
address the links between psychiatric problems and information
processing dysfunction intrinsic to large circuit functions (e.g.,
Raj and Itturia-Medina, 2019). Third, normative models address
how the nervous system should behave and how certain behavior
or neural activity deviates from those standards (e.g., “Perception
and Attention Deficit model”; Collerton et al., 2005; Makin et al.,
2013).

A concern with many theory-driven models is that they are
often based upon mechanisms that are not directly accessible
from experimental data (Moran et al., 2011) and provide
very specific assumptions that do not lead to empirically
testable predictions (Baker et al., 2018). Hence, methods that
can bridge the gap between modeling the clinically relevant
symptoms (at macro-level) and modeling the brain where the
neurobiological mechanisms are implemented (at micro-level)
are urgently needed. Here, we argue that intermedium level
models would complement macro- and micro-level models,
being specifically targeted at “meso-level” modeling. This allows
for directly represented distributed control of neural mechanisms
and neurobiologically detailed cellular functions.

At this meso-level, the model has sufficient complexity to
prescribe the hierarchical architecture of the brain (i.e., a layer
of units rather a single unit representing a brain region);
while each layer still can implement macro-level distributed
representations for perception, action, and language. Each
unit in the model also includes micro-level biological details
(e.g., membrane potentials, ion channels, neurotransmitters)
allowing empirical validation such as by using neuroimaging.
This has the potential to extend traditional models that are
predominantly informative on only one level of abstraction
(Figure 1B).

Examples of such models include our work on modeling
attentional impairments in Alzheimer’s disease and making
predictions about possible electrophysiological features in the
relevant neural circuits (Mavritsaki et al., 2019). These models
can be seen as “virtual” patients capturing the cognitive
dysfunctions on computer simulations. By testing the models
with neuroimaging, biological and clinical data from real
patients, we can obtain mechanistic understanding and develop
new drug treatments in-silico before they are experimented on
animals and humans. This can further speed up translational
effects and drug development in an area of great unmet need,
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reduce socio-economic impact, and add to sustainability efforts
in dementia research.

Combining Data-Driven and Theory-Driven

Computational Approaches

Combining theory-driven and data-driven approaches in a
single modeling framework has the potential to account for the
complexity of different forms of dementia while considering
overlapping pathologies and clinical symptoms (Figure 1C). This
is particularly crucial for: (I.) providing the understanding of
the underlying mechanisms and “causal” interactions obtained
by theoretical models, and for (II.) overcoming the current
scalability limitations of theoretical models (Baker et al., 2018).
For example, Maia and Frank (2011) used reinforcement learning
to quantify the learning ability of individuals with Parkinson’s
disease based on the underlying dopaminergic mechanisms.
Pinaya et al. (2021) used deep learning on normative models
of brain structure to detect Alzheimer’s disease progression.
Bayesian models such as Dynamic Causal Modeling (DCM;
Friston et al., 2016) can be applied to neuroimaging data to
describe effective connectivity within and among neural circuits

providing a principled data-driven way to fit subsets of model
parameters in theory-driven models.

Theory-driven models provide prior knowledge and context
for estimating features specifically relevant to disorders. This
enables data-driven models to derive parameters for further
modeling (e.g., biophysically realistic recurrent neural network
models, algorithmic reinforcement learning models, Bayesian
models) with increased efficiency and reliability (Huys et al,
2016). Hence, combining these approaches and linking between
the levels of abstraction have the potential to increase
translational benefits by relating symptoms and cognitive
functions to clinically traceable entities such as cellular processes.

For instance, AI models based on recurrent neural networks
are approaching human-level performance in many domains.
Thus, if implemented with plausible biological details, recurrent
neural networks can be “meso-level” models trained to simulate
patients’ clinical symptoms while the model parameters are
simultaneously fitted to patients’ neuroimaging and biological
data. These models often contain tens of thousands of
artificial neurons, making them large enough to model complex
symptomology while remaining tractable to study neural
mechanisms in unprecedented detail. Previous work summarized
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the application of such models to complex psychiatric disorders
where sufficient information about the relevant circuits exist,
such as in schizophrenia (Huys et al,, 2016). We argue that
there is potential to extend these applications to study underlying
mechanisms of different forms of dementia. Additionally, by
integrating computational models with neuroimaging, neuronal
dysfunction underlying psychosis symptoms in dementia such
as hallucinations, delusions, paranoia could be explained by
impairments in multiple neurotransmitter systems (Marreiros
et al., 2013). This could link clinical symptoms with biological
details more comprehensively than was previously available.

DISCUSSION

Computational ~ psychiatry and neurology endeavor a
biopsychological and mechanistic perspective by showing
how each level of abstraction ranging from molecular to circuit
levels can provide a context for the human brain’s hierarchical
architecture, functioning and disorders. Computational
approaches provide a whole new lexicon for understanding
neural processes (Montague et al., 2012). Machine learning
techniques can detect complex and subtle mental and brain
dysfunctions and their neurobiological underpinnings that are
otherwise difficult to uncover.

Computational approaches are a valuable tool moving forward
in research, but the current implementation introduces several
challenges. First, the availability of good quality data is crucial
to create reliable, accurate, and robust data-driven and theory-
driven models of mental health illnesses and brain disorders.
This includes the need for widely generalisable, open access
and reproducible data of different dementia types with large
sample sizes (Pellegrini et al., 2018). Second, the differences
in the standardization in the dementia care pathway across
clinical practices, assessment centers and research might pose
a further challenge in appropriate data digitalisation, curation,
and integration (Wong-Lin et al, 2020). Third, researchers
should additionally ensure that data pre-processing steps do not
introduce unrealistic attributes to general healthcare datasets
when used in modeling less-common types of dementia.

When interpreting models, researchers need to be conscious
of potential challenges. For instance, predictive models in
psychiatry still suffer from overfitting and lack of generalisability
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