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Developmental selection of neurons and synapses so as to maximize pulse

synchrony has recently been used to explain antenatal cortical development.

Consequences of the same selection process—an application of the Free

Energy Principle—are here followed into the postnatal phase in V1, and

the implications for cognitive function are considered. Structured inputs

transformed via lag relay in superficial patch connections lead to the

generation of circumferential synaptic connectivity superimposed upon the

antenatal, radial, “like-to-like” connectivity surrounding each singularity. The

spatiotemporal energy and dimension reduction models of cortical feature

preferences are accounted for and unified within the expanded model, and

relationships of orientation preference (OP), space frequency preference

(SFP), and temporal frequency preference (TFP) are resolved. The emergent

anatomy provides a basis for “active inference” that includes interpolative

modification of synapses so as to anticipate future inputs, as well as

learn directly from present stimuli. Neurodynamic properties are those of

heteroclinic networks with coupled spatial eigenmodes.

KEYWORDS

free energy principle, spatiotemporal energy, dimension reduction, visual cortex,
synchronous oscillation, apoptosis, cortical self-organization

Introduction

Explication of the stimulus filter characteristics of neurons has been a major theme
in neuroscience for more than 50 years and studied in greatest detail in cortical area V1.
This analysis has contributed significantly to the field of artificial neural networks, as
well as visual processing. Yet puzzles in the organization of the filter characteristics have
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persisted, entwined with other puzzles—particularly the
functional relevance of cortical columns and their variable
definition in different cortical sites and species (Horton and
Adams, 2005; Molnaìr, 2013)—leaving uncertain the ways real
cortical mechanisms differ from the simplified solutions applied
in deep learning backpropagation networks (Domingos, 2015;
Marblestone et al., 2016). Selective filtering in real neurons has
been carried over into artificial neural networks, but is this
the only essential property? How much of the orderliness in
mesoscopic cortical anatomy has functional importance? Is
this order, or its lack, a co-incidental manifestation of growth
processes and just a metabolically efficient arrangement, or is it
essential to information processing per se?

Latterly, theoretical developments, based upon
fundamentals of information processing, computation, and
predictive coding, suggest that, via the Free Energy Principle
and its concept of “active inference” (Friston, 2005, 2010; Clark,
2013), a deeper unification of brain structure and cognitive
function may be possible. This abstract concept requires
explication in cellular specifics—literally and metaphorically,
flesh on its bones—but offers clarification of the goal to be
achieved by models of the brain. Hopefully moving toward that
goal, this paper extends our earlier “minimum free energy”
(Wright and Bourke, 2021a,b) account of antenatal mesoscopic
neocortical development into the postnatal period. We will
show that, in this extension, further functional relations between
the meso-anatomy of the cortex, the filter characteristics of
cortical neurons, and of the storage and manipulation of sensory
images become apparent.

Feature filter models and problems
encountered

From the foundational studies of Hubel and Wiesel, 1962,
1963, 1968, it was apparent that individual neurons responded
to afferent pulses preferentially, as if filtering for selected
characteristics, and were shown to exhibit anatomical order on
the basis of these filter characteristics (Bonhoeffer and Grinvald,
1991 and subsequent)—whether OP, ocular dominance (OD), or
the later emphasized SFP and TFP. Explaining how the selective
characteristics developed was, and is, the central theoretical
problem. A definitive review of early models, comparative
and in historical order, is provided by Swindale (1996, 2008).
A distinction may be drawn between models emphasizing
feed-forward connections from the visual pathways, vs. those
emphasizing contextual intracortical connections. The former
class of models has been recently reviewed by Vidyasagar and
Eysel (2015).

The initial feed-forward Hebbian models for OP share in
common a conception of OP as consequent to the generation of
a shaped field of excitation in small cortical areas and draw upon
common assumptions of patterned retinal activity, Hebbian

synapses, radially symmetric short-range excitatory and longer-
range inhibitory lateral connections, and normalization of input
strengths. Beginning from the work of von der Malsburg
(1973), subsequent models in the family (von der Malsburg and
Willshaw, 1976, 1977; Swindale, 1980, 1981a,b, 1982; Linsker,
1986a,b,c; Miller et al., 1989; Obermayer et al., 1990, 1992;
Goodhill, 1993) varied in learning rule details and updating,
range of lateral correlation and inhibitory surround, nature of
synaptic competition, distribution of synaptic terminals from
afferents, correlation of binocular inputs, etc. All produced, to a
varying degree, good accounts of the topology of OP, columnar
order, and OD but did not easily explain why ordered OP
emerged in the antenatal period without structured visual input
(Wiesel and Hubel, 1974). Internally generated retinal waves
were then supposed to provide the needed stimulus (Galli and
Maffei, 1988; Burgi and Grzywacz, 1994). Yet the converse
finding that visual stimuli are required to maintain the OP
order in post-natal life (Hubel and Wiesel, 1970; Blakemore
and Van Sluyters, 1974) even to the extent of requiring lines at
particular orientations for the development of normal dendritic
structure (Tieman and Hirsch, 1982) seemed contradictory if a
simple stimulus were sufficient. A crucial assumption—that of
a symmetric inhibitory surround extending beyond each zone
of excitation—was not justified anatomically. Further, this class
of models treated OP as a fixed filter property—not a property
interactive with other stimulus contexts—and this was to prove
problematic.

Another suggestion made early by Hubel and Wiesel
was directed not to the origin of the filter properties, but
their spatial ordering, and led to the development of another
major idea (Kohonen, 1982; Mitchison and Durbin, 1986;
Durbin and Willshaw, 1987; Durbin and Mitchison, 1990;
Swindale et al., 2000)—that all combinations of different feature
responses should be equally well represented over all positions
in visual space. This would necessarily involve conflict at
all points between continuity and completeness of all types
of filtered representations—yet would favor minimization of
axon and dendrite distances of connection between the cells.
Conflict resolution required a packing of cells of different
categories, constrained so as to fit all features closely together
in the best approximation possible. This accounted well for
the organization of OP about pinwheel singularities, linear
zones, and saddle points, and could be seen to be operating
to good effect at the margins of OD columns, and also at
elevation/azimuth lines, in variants of V1 organization (Yu et al.,
2005; Farley et al., 2007). It even accounted for extremes of either
high space frequency preference (HFSP) or low space frequency
preference (LSFP) about OP pinwheels (Issa et al., 2000), since
this produces the best general matching of all OPs with all
SFPs because of conflicts in attaining best continuity (Issa et al.,
2008). As well as introducing a “small world” notion of cortical
connections, the concept implied “dimension reduction,” since
a higher dimensional feature space was being compressed onto
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the two-dimensional cortical surface. Associated ideas from
information theory suggested that information coming from
the retina is projected to the cortex with minimization of
redundancy (Barlow, 1959) and conservation of maximum
mutual information (Linsker, 1989). The dimension reduction
model was compatible with feed-forward and Hebbian accounts
but did not depend upon them, since it could be argued
that the Hebbian group of models had been successful in
the reproduction of OP and OD simply because they had
each provided non-unique conditions imposing continuity and
completeness on the outcomes. Similar issues are now emerging
in machine learning in the form of disentangling representations
in deep (convolutional) neuronal networks (Higgins et al.,
2021).

Hebbian feedforward models then encountered another
need for revision. The separate filter characteristics were
interdependent, not independent. SFP, TFP, and stimulus
velocity were interrelated because TFP was the optimum
combination of stimulus space frequency and velocity (Baker,
1990). The OP preferences of neurons were not, as they had
initially been assumed, fixed, simple responses to a single line.
A neuron’s OP had been traditionally measured for slowly
drifting stimulus lines oriented orthogonally to their direction
of motion. However, OP varied systematically with speed of
stimulus motion for all angles of attack other than that strictly
orthogonal to motion, varying up to an OP orthogonal to that of
the lowest speed (Basole et al., 2003, 2006). Prompted by this
finding, the spatiotemporal energy model was advanced. This
treated the individual neurons’ responses as a combination of
their OP, SFP, and TFP responses, with spatiotemporal energy
defined as the product of stimulus space frequency and speed.
The individual cell’s responses could be predicted by summing
feature preferences obtained from feature preference maps in
the locale of the neuron (Zhang et al., 2007; Issa et al., 2008).
When combined with the dimension reduction model, most
problems seemed solved, but the origin of filter selectivity
remained mysterious, and it was not entirely clear how OP and
spatiotemporal energy were associated. An oddity not accounted
for was that concurrent stimulation using stimuli with different
orientation, yet all at optimum SFP, resulted in antagonistic
blockade of responses, rather than independence or summation
(Benevento et al., 1972; Blakemore and Tobin, 1972).

Arising from a rather different line of enquiry but
motivated in part by the above problems, an account of
the antenatal development of the neocortex was proposed by
the present authors (Wright and Bourke, 2013, 2016, 2021a).
The development of both columnar and of non-columnar
cortex, the nature of superficial patch-to-patch connectivity,
the organization of OP around singularities, OP linear zones
and saddle points, like-to-like superficial patch/OP connections,
and differences between monocular V1 and OD columns were
explained. The model accounts for the emergence of ultra-small-
world organization, and the generation of a transformed map

of the visual input field—but does not depend upon structured
input other than as diffuse noise. So, although consistent with
continuity and completeness requirements, it is not a dimension
reduction model in the usual sense. Synaptic competition
and Hebbian learning are assumed, but the concept of an
inhibitory surround is not required. The antenatal structure is
considered a scaffold upon which postnatal organization can
begin. The variation of OP with stimulus speed and angle of
attack are explained, not as a consequence of combinations
of features, but consequent to lag conduction within the
superficial patch system. However, considerations of SFP and
TFP were otherwise ignored. Consistent findings in non-
columnar somatosensory cortex further supported the account
(Wright et al., 2014) and it was later shown that the same
principles can be extended from mesoscopic scale to inter-areal
cortico-cortical connectivity (Wright and Bourke, 2021b). A link
emerged to the very general, abstract, approach to learning
proposed in the Free Energy Principle and related concepts
of prediction error minimization and cortical computation,
supplementing the earlier interpretations of continuity and
completeness as redundancy minimization and maximization of
mutual information.

Summary of antenatal model

Our model is applied in the very sparse one-to-many
connectivity of cortical neurons under unified fast and slow
synaptic learning rules (Izhikevich and Desai, 2003) and neural
dynamics,1 as summarized in Wright and Bourke (2021a,b).
It has been observed that during embryogenesis synchronous
firing of neurons protects them against apoptosis (Heck et al.,
2008; Sang et al., 2021), as they form into small-world
assemblies (Downes et al., 2012). This led us to propose that
selection of developing neurons and synapses by apoptosis
operates to maximize synchronous cell firing, thus shaping the
outcome of genetically regulated cell numbers, patterns of cell
migration, and differentiation into cell phenotypes (Rakic, 2009;
Geschwind and Rakic, 2013). Synchronous oscillation is the
“ground state” of equilibrium pulse exchanges among mixed
excitatory and inhibitory cells (Chapman et al., 2002), so that,
while constantly seeking equilibrium, the developing neurons
also maximize their uptake of growth stimulation factors
and thus tend to survive. Minimum resource consumption
requires an approach to ultra-small-world configuration, further
favoring avoidance of apoptosis early in embryogenesis.

1 The neural field models upon which our arguments are based
follow from the work of Freeman (1975) and Liljenstrom (1991), and
their development is recounted in Wright (2016). They model the
power spectrum, frequency wavenumber content, evoked responses,
and synchrony of electrocortical waves (Wright and Liley, 1996; Robinson
et al., 1997, 2001; Rennie et al., 2002; Chapman et al., 2002).
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Extension of these principles would also regulate the generation
and pruning of synapses at later stages.

In the developing cortex, early spontaneous synchrony
comes under the influence of the sensory periphery as soon
as afferents reach the cortex (Schmidt et al., 1999; Espinosa
and Stryker, 2012; Molnaìr et al., 2020), and there is no clear
transition from an antenatal to a postnatal state—merely an
early phase and later stages through to adulthood. However,
for purposes of convenience in the following account, we have
referred to all later development once sensory inputs become
structured as “postnatal,” although no definite time of transition
between antenatal to postnatal is clear.

The early selection process is followed in a population of
short and long-axon excitatory intracortical cells mixed with
short-axon inhibitory partners. Polysynaptic flow in the one-
to-many sparse connectivity of neurons leads to multi-stable
equilibria of pulse exchange between all cells even though few
are initially monosynaptically connected. This explains how
long-range correlation of firing of developing neurons appears
even before long-range connections are established (Smith et al.,
2018).

Equilibrium requires the excitatory and inhibitory
populations each fire in phase with cells of the same type,
and in inverse phase between the two populations, so that early
in development

ϕij (t) = ϕji (t) (1)

where ϕij and ϕji represent the exchanged pre-synaptic fluxes
between i-th and j-th neurons over all pathways of connection.
Competition and feedbacks inherent in synaptic learning rules
lead toward bidirectional symmetry of gains along the prolific
pathways, so a trend develops such that

ρijgijεij = ρjigjiεji (2)

where ρij,ji is the net structural synaptic connectivity between
the two cells over all paths of connection, gij,ji is their slowly
consolidated synaptic gain, and εij,ji is fast transient synaptic
efficacy. Each of the three factors converges on a separate
time scale toward symmetry. Neurons unsuccessful in these
competitive processes are eliminated, and initial, almost entirely
unidirectional excitatory synaptic links become supplemented
by an increased proportion of bidirectional monosynaptic
connections, emerging from the polysynaptic background.
Consistent with the Free Energy Principle, development follows
a governing equation

F = A− C (3)

where A is the population sum of pulse autocorrelations, C
is the sum of pulse cross-correlations, and F, the analog of
thermodynamic free energy, is continuously minimized as
bidirectional monosynaptic connections increase in number.
This formulation of self-organization of the functional
architecture of visual cortex reflects a key fact of the Free

Energy Principle: many self-organizing systems move toward
generalized synchrony and minimization of prediction errors,
until all interactions have become established and reliable, and
provide a complementary interpretation of Equation 3.

Freeenergy = accuracy minus complexity.

Accuracy (under the free energy principle) is the expected
log likelihood of some observable outcome (e.g., presynaptic
strengths), while complexity scores the divergence between
posterior and prior representations of the latent causes of
observable inputs. This can be read as the degrees of freedom
that are induced by presynaptic inputs to cause a change in
internal representations stored in a neuronal population.

The geometrical consequences for cell organization are
indicated in Figure 1. Symmetry of the formation of synapses
in small-world configuration requires the longer-axon cells
to become superficial patch cells, forming patch-to-patch
connections with other long-axon cells, while the short-axon
cells form local clusters. Short and long-axon cells connect
reciprocally at a range at which the population density of their
axonal trees are similar, creating in the process an approach
to classical “like to like” OP connections [although in this
model, and in reality, patch cells communicate more broadly
than strictly “like to like” (Martin et al., 2014)]. This results
in the formation of “global to local maps,” where the “global
map” is defined as the topography of an extended part of the
cortical surface surrounding a local short-axon cluster, and the
“local map” is the projection of the global map onto excitatory
neurons of the local cluster. This leads to column formation,
or to diffuse, apparently formless, connectivity, depending on
the relative lengths of short and long axons—yet with the
same pattern of small world organization—an order based on
inverse synchrony-vs.-distance relations, synaptic competition,
and local self-stabilization of pulse frequencies.

The emergent system provides lateral contextual
information to neurons, determining their pattern of activation
when they are also directly triggered by their extra-areal inputs.
With regard to OP, coverage is both continuous and complete.
This involves dimension reduction in a second sense, since, as
bidirectional monosynaptic connections increase in number
and free energy is minimized, system dimension falls.

The global to local maps are not simple Euclidean maps.
Instead, they require projections to the inter-winding and cross-
connected networks of local neurons and can be represented
in the following mathematical form. P is a complex number
position on the cortical surface and p is a complex number
position within a local map with map center origin, p0. The
global map projection to any of many neighboring local maps
takes the approximate form of projection of a Euclidean plane
to intersecting Mobius strips, as

P→
{
p = ± p′ (P−p0)

n

|P−p0|
n−1 + p0

}
(4)
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FIGURE 1

Patterns of synaptic connectivity seen in outcomes of growth simulations. (Left) Superficial patch cells. A representative long-axon (patch) cell
(large red central spot) and patch connections. Surrounding zones of potential connection with other patch cells have been delineated in light
gray concentric circles. Dark gray patches occur where other clusters of patch cells are positioned and able to make reciprocal connections,
regularly spaced, patch-to-patch. Patch cell connections to short-axon local cells, maximizing resonance under stimulation of a particular
angular domain are shown as darkened blue areas of “like to like” connections. (Middle) Local connectivity. Sparse short-axon cell connections
have been marked in black or white, showing how interweaving networks occur. Some connections result in partial closure rather than
complete independence of the interpenetrating networks. Fields of synaptic connections from patch cells to local cells are colored red, green,
and blue according to their origins from diametrically opposite patch cell clusters These oppositely placed cell groups establish synapses on
interpenetrating, distinct parts of the local cell network in a pattern best maximizing synchronous resonance, and creating local maps. (Right) A
representation of intermingled networks of short-axon local cells conceptualized as cross-connected systems analogous to Mobius strips. Red,
blue, and green bands indicate synaptic connections to/from the surrounding patch cell network. The degree of overlap of closed local cell
connections can vary from clearly columnar to blurring with the apparent absence of columnar order.

where p′ =
√
−1k defines the rotation and scale

of the local map, ± indicates map chirality, and
p0 = p0 (1) , p0 (2) , p0 (3) , are the local map centers.
Symmetric reciprocal connections develop between superficial
patch cells and local cells in arcs radiating from each map
center, while maximum synchronous resonance requires the
interpenetrating local networks are cross-linked into closed
loops. Consequently n must take even integer values—the
simplest case, n = 2, being that of projection to a single
Mobius strip, or to multiple cross-linked Mobius strip-like
networks. Other cases representing more complicated patterns
of higher n may also be embedded and cross-linked with each
other, but all appear similar to the simplest case, n = 2, when
describing the appearance on the cortical surface, as if it were
two dimensional.

Each inverse map, describing the return of reciprocal
monosynaptic connections from local to patch cells, is given by

∓P← ±
1
p′
(
∓p-p0

) 1
n
∣∣∓p-p0

∣∣n−1
− p0 (5)

The ∓ sign (distinct from the use of ± for map chirality)
is here introduced because the input map results in coincident
mappings (as viewed in two dimensions) to the 0− π and
π− 2π (i.e., + or −) “limbs” in the Mobius representation
from the Euclidean global positions at angles 0− 2π, thus
creating the typical form of OP about a singularity at
each map center.

Further maximizing synchronous resonance, adjacent
local maps are arrayed in an approximately mirror-
image formation, with cross-links between homologous
map positions between neighbors. This results in

the formation of linear zones and saddle points
with, to greater or lesser degrees, interpenetration
with other maps.

In proposing that developmental self-organization is based
upon synchrony, we do not intend to exclude the possible
relevance of alternative or complementary effects—as examples,
organization of patch cell connectivity in a chemical diffusion
model (Bauer et al., 2014), or recent revision of the retinal
wave hypothesis (Kim et al., 2020)—and as a model of
contextual interactions, there is some overlap with the model
of Grabska-Barwinska and von der Malsburg (2008). However,
the range of anatomical features explained by synchronous
selection is so extensive that this model appears sufficient in
itself.

Requirements for approach to
minimum prediction error

Overarching rules for adaptation included in the Free
Energy Principle (Friston, 2005, 2010; Friston et al., 2012; Clark,
2013; Ramstead et al., 2018) help define goals for the outcome
of the present model. The Free Energy Principle requires that,
as learning progresses, the states of lower neural subsystems
are precisely predicted, and their perturbing effects minimized,
by subsystems higher in the sensory hierarchy. Zero prediction
error requires that for any cortical area (with V1 representative)
as external signals are input to the intracortical cells, signals later
return from their distributions to the local maps to the sites of
input in a precisely required match.
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In the antenatal model, the bidirectional intra-areal
exchange of signals can be represented as

O
(
P, t − |P−p|

ν

)
→
{
o
(
p, t
)}

(6)

and {
o
(
p, t
)}
→ O

(
P, t + |P−p|

ν

)
(7)

where ν is the speed of intracortical signal conduction,
{
o
(
p, t
)}

are sets of synchronous pulse activity generated in the local
maps, and O

(
P, t ± |P−p|

ν

)
are the patterns of activity

generating forward and backward pulse trains between sites of
arrival of the input signals and the laterally distributed local
maps. At an asymptotic limit of fully completed learning the
difference in forward and backward signals must be minimized
to zero in the face of ongoing perturbation by the inputs. That is

{
o
(
p, t
)}
↔ O (P, t) ∀

(
P, p

)
(8)

At that idealized limit, the input field and stored
representations would exchange complete mutual information.
This requires the exchanges must take place with group
modes (eigenvectors of a delay matrix) that are invariant and
bidirectionally symmetrical. There is an exact physical analogy
to transmission without distortion of signals in fiber-optic
cables, where absence of distortion (i.e., invariant group modes)
requires continuous coupled interaction of spatial eigenmodes
(Carpenter et al., 2016). So, our model may be expected to
exhibit an analogous physiological expression of coupled spatial
eigenmodes.

There are further demands to be made for a reasonably
complete account. How will the newly induced selective-filter
topography differ from the old? The stored information must
enable association over both short and long ranges within
the cortex. It should be seen how the antenatal organization
provides a template for later development better than a
random connectivity, and learning must converge more rapidly
than a random walk.

Postnatal development

Spatiotemporal energy mapping via
patch cells to local cells

We next consider the way in which inputs from the global
field are conveyed to each local map.

Positions P (1) and P (2) on the cortical surface are crossed
by a stimulus representation projected to the cortex, and convey
pulses via superficial patch cells to a pair of closely situated local
cells at positions p (1) and p (2) within any one of several local
maps. We consider initially only the simplest cases, in which
p (1) and p (2) pairs are always in the same limb of the same map.
We need to determine conditions for arrival of synchronous,

and near-synchronous, pulses at p (1) and p (2), since these will
favor ongoing synaptic development within each local map.

Equivalent to a single space frequency in the representation
of a moving object, consider a sinusoidal grating, with grating
spacing L, and space frequency K = 1/L, moving over the
surface at speed V , and angle θ to the line P (1) P (2)−itself
oriented at an angle φ in the P plane relative to the local map in
which p (1) and p (2) lie (Figure 2, left). For simplicity, assume
one action potential pulse is generated each time a grating line
crosses P (1) or P (2). Pulses will be generated at a rate KV at
P (1) and P (2), and KV is spatiotemporal energy.

Inputs to p (1) and p (2) travel a distance 1S further from
P (1) than from P (2)

1S =
∣∣P (1)− p (1)

∣∣− ∣∣P (2)− p (2)
∣∣ (9)

so the difference in time of pulse travel to p (1) and p (2) from
the respective source is

1T = 1S
ν

(10)

where ν is the speed of axonal conduction.
As grating lines cross P (1) and P (2), each grating line will

traverse along P (1) P (2) at a velocity Vsinθ, so the same grating
line will generate pulses at P (1) and then P (2) after an interval
δT

δT = |P(1)−P(2)|
Vsinθ (11)

|P (1)− P (2)| is necessarily some multiple of L, so

δT = mL
Vsinθ (12)

Pairs of pulses must arrive at p (1) and p (2) with a time
separation, λ

λ = 1T − δT = 1S
ν
−

mL
Vsinθ (13)

In the case that λ = 0, synchronous pulse-pairs arrive
simultaneously at p (1) and p (2), and do so at a rate, ω, the rate
of generation of synchronous pairs

ω = 1
1T =

ν
1S =

KVsinθ
m (14)

The relative length, m, of P (1) P (2), has an effect equivalent
to alteration of the spatial frequency, so writing K ′ = K/m

ω = ν
1S = K ′Vsinθ (15)

Since ω is a fixed function of 1S, for any given P (1)
and P (2), synchronous pairs can be created only for specific
triplet combinations of {K,V, sinθ} (see Figure 2, middle). This
means that as synchronous pair arrivals stimulate synchrony
and encourage bidirectional synaptic connections among local
neurons, they are also tuning these cells to specific combinations
of spatiotemporal energy and the direction of object movement.

In all cases in which λ 6= 0, pulse pairs reach p (1) and
p (2) asynchronously, with either a lead or lag. Unidirectional
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FIGURE 2

Geometric considerations determining the evolution of post-natal connectivity as structured external signals are imposed on the cortical field.
(Left) Grating lines cross a pair of points, P (1) and P (2), in the global field, and axonal pulses are then relayed to closely situated local map cells,
p (1) and p (2) via patch cell connectivity. (Middle) Polar diagram showing parameter combinations leading to synchronous pair arrival at p (1)
and p (2). Circles show combinations resulting in synchronous pairs. Dashed vectors indicate a few of many possible asynchronous pulse
arrivals at p (1) and p (2). (Right) Limiting cases of spatiotemporal orientation. Top: P (1) and P (2) are arranged radially to the local map
singularity within which p (1) and p (2) lie. Bottom: P (1) and P (2) are arranged circumferentially.

monosynaptic connections will thus be promoted between p (1)
and p (2), permitting the development of recurrent chains of
connections promoting self-excitation among local cells. Self-
exciting chains provide a basis for “winnerless competition”
in synapse formation—an essential requirement of heteroclinic
neural dynamics (Rabinovich et al., 2008). These considerations
indicate that learned synaptic modifications will be capable of
storing information about moving stimulus objects.

Spatiotemporal orientation

It can be seen from Equations 13 and 14–15 that λ

and ω vary continuously for small changes of 1S and θ,
and all four terms are dependent upon the alignment, φ, of
P (1) P (2). Comparing the pairing of pulses generated from
two closely situated pairs of cortical positions, P (1) P (2) vs.
P (3) P (4), their difference in synchronous frequency is greatest
when one pair of cortical positions is circumferential and one
radially aligned (Figure 2, right). Conversely, afferent pulse
pairs can approach concurrent synchrony when P (1) P (2) and
P (3) P (4) are closely aligned and positioned. This relation
of synchrony/asynchrony to alignment and position makes it
helpful to define φ as the Spatiotemporal Orientation (STO).

Table 1 shows the bounds of the STO-related parameters,
enabling these to be referred to as equivalents, according to the
context.

The effects of STO on the organization of connections
among local neurons are discussed in the following section,

TABLE 1 Bounds of STO.

φ (STO) 0
π

2
1S mL 0

ω =
ν

1S
ν

mL
∞

“Concurrent evolution of local cell connections: Dimension
reduction, minimized prediction error, and eigenmode
dynamics,” and the implications for experimental findings in the
sections subsequent, “Space frequency preference and temporal
frequency preference experimental characteristics” and “Space
frequency preference topographic order.”

Concurrent evolution of local cell
connections: Dimension reduction,
minimized prediction error, and
eigenmode dynamics

The impact of synchronous pair arrivals upon synaptic
organization in the local map can be anticipated from the
same neurodynamic principles applied in the antenatal model
(Chapman et al., 2002; Wright and Bourke, 2021a). Cooperative
processes of excitatory synaptic connection generation, and
antagonistic excitatory/inhibitory interactions, must each be
considered.

From the considerations in sections “Spatiotemporal energy
mapping via patch cells to local cells” and “Spatiotemporal
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orientation,” the induction of synchrony among local cells by
the arrival of synchronous pulse pairs must bring about synapse
formation such that the spatial arrangement of P (1) and P (2),
vs. P (3) and P (4) pairs becomes mapped onto the density of
synaptic connectivity between corresponding p (1) and p (2)
vs. p (3) and p (4) pairs—inducing a shift from the antenatal
radial arrangement of “like to like” connections toward a revised
system in which a new circumferential order is imposed upon
the prior radial arrangement, as shown in Figure 3, left and
middle. Thus, STO becomes an imposed local map property,
as a continuous variable distributed over the complete antenatal
small world representation of stimulus space.

As a secondary effect, some connectivity will also emerge
between cells at p (1) and p (2) and those at p (3) and p (4)
because of local interactions. The amplitude of synchrony
between any two neurons reflects the “in-phase” (even)
components received by each, with dissipation of odd
components (Chapman et al., 2002) and in case of four cells,
the degree to which all four achieve co-synchrony achieves the
highest magnitude where the cells share a common resonance
frequency—so locally generated synchrony between p (1) and
p (2) and p (3) and p (4) bring about a partial merging of
their STO responsivity, also weighted, in accord with their
ultra-small-world organization, by their squared separation
distance, r2. Certain p (1) and p (2) cell pairs that achieve early
establishment of STO, {φi}, by achieving the most stable pattern
of co-synchrony over the local map, will force preliminary STO
upon the more slowly developing connectivity. Provisional STO,
{φint} thus imposed, can be approximated by interpolation,2 as

φint = arg
i = n∑
i = 1

φi
1+Cri2

(16)

where C scales the range of interactions, but is without
qualitative effects on the ordering of STO. The outcome in an
example is shown in Figure 3, middle and right.

By this mechanism, local linkage between neurons of
disparate STO will remain small compared to neurons of similar
STO, achieving the compromise of continuity vs. completeness
as well as smoothing and dimension reduction of the STO
map. The modification and smoothing of STO at longer
ranges has an important implication for learning because the
property of spatiotemporal continuity at the level of the external
stimulus world can be thus transferred to spatiotemporal
continuity within the final STO organization of the local map—
so as learning progresses, the interpolated circumferential/radial
order must approximate more closely than chance the definitive

2 Values of φi were specified as unit vectors—either 1, 0 to represent
a radial STO, or 0, 1, to represent a circumferential STO. These seeding
values for interpolation were then used to compute interpolated STOs,
{φint}, throughout the local map, as arguments of weighted vector sums,
in accord with Equation 16. This method utilizes the property that STO
maps to positions in the local map, but is not a function of position—only
of radial/circumferential orientation.

order that will ultimately be attained. This constitutes a form of
anticipatory prediction, minimizing future error, and facilitating
Bayesian minimization during learning, not only minimizing
prediction error on the basis of already-experienced inputs but
anticipating aspects of the stimulus field not yet encountered.

As well as this cooperative organization of local connections,
dynamic antagonism of radial and circumferential organizations
must also arise, since these organizations share relatively
few excitatory cross-links. Synchronous oscillation arises from
equilibrium of exchange between both excitatory and inhibitory
cells, with phase inversion between excitatory and inhibitory
components (Wright and Bourke, 2021a), and it can be
shown that where neurons lack strong excitatory cross-links,
yet share interaction via intervening inhibitory short-axon
cells, then equilibria can be reached by suppression of firing
in either group by the other. Radially and circumferentially
connected systems of neurons, engaging in crossed-inhibitory
interactions, provide the anticipated analogy to coupled
eigenmode dynamics, able to mediate the complicated time-
sequences anticipated in heteroclinic dynamics. It may be
noticed that this excitatory/inhibitory arrangement is not
equivalent to the older concept of inhibitory surround.

Space frequency preference and
temporal frequency preference
experimental characteristics

Comparisons can be made with experimental observations,
where synaptic connections have formed as described above.

(i) A neuron driven from any global position P (1) by a drifting
grid will respond by emitting pulses at frequency KV and
will achieve maximum response at the frequency, ω, that
best elicited synchronous resonance among the assembly
of locally connected p (1) and p (2) pairs to which the
stimulated neuron belongs—so exhibiting its TFP. That
is, TFP = ω. TFP is more easily approached for cells
with low TFP, given the relatively low stimulus speeds
and wavenumbers that are experimentally practicable,
compared to the high spatiotemporal energy required to
approach TFP for cell with broad bandwidth, where1S→
0. So, for HSFP cells, their TFP will generally be outside the
experimental range.

(ii) SFP = K for given V , where KV = ω

(iii) Cells with broad bandwidth and thus high SFP will respond
better to stimuli with a broad space frequency spectrum,
and therefore more strongly to square waves than single
sinusoidal inputs.

These properties can account for findings reported in
Zhang et al. (2007) and Issa et al. (2008) in support of the
spatiotemporal energy model. They explained response curves
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FIGURE 3

(Left) The antenatal local map. Like-to-like patch connections impose position and orientation on the global field onto the local map in radial
form. (Middle) The early imposition of new patterns of local cell synaptic connection, based upon STO. Amber: local cells with circumferential
orientation. Blue: radial orientation. (Right) Subsequent smoothing and dimension reduction via local synaptic connections. Zones of high and
low spatial-frequency preference merge as local cell links provide smoothed interpolation between radial and circumferential extremes.

as composites of specific responses according to a combination
of SFP and TFP. A strong TFP component (available by closer
approach to ω in LSFP cells) explained the stronger recruitment
of LSFP cells by increasing drift speed, compared to cells with
HSFP, and the broader spatial bandwidth of square waves
recruited HSFP neurons more than LSFP neurons.

Issa et al. (2008) also accounted for the change in OP with
increasing stimulus speed and changes in stimulus angle of
attack in spatiotemporal energy terms. As previously remarked,
we have explained the same findings in terms of Doppler shift of
lateral waves generated by a moving stimulus, without reference
to OP/SFP linkage as such (Wright and Bourke, 2013). However,
since both accounts successfully match the experiment, they can
be considered equivalent time-series vs. Fourier explanations
of the phenomena—or put in other terms, the Doppler-shifted
spatiotemporal energy of input signals affects the SF and TFP of
the local cells.

The crossed inhibition exerted each upon the other by
circumferential and radially arrayed linked groups explains why
response to concurrent presentation of stimulus grids of similar
space frequency and speed, but differing orientations, produces
not summation but cancelation of response—a property not
otherwise explained in earlier models. This effect has further
consequences for the topography of SFP.

Space frequency preference
topographic order

Figure 4 shows the way in which SFP becomes
topographically ordered in the way found experimentally
and shows that the topological order reflects the degree of
synergy or conflict between STO and OP responses in different
situations. 4S→ 0 isolines can be constructed circling the
singularity at all distances, and orthogonal to the antenatal
radial like-to-like lines, for which 4S ≈ mL. The antagonistic

cross-inhibitory interactions of circumferential and radial
arrangements induce conflicts near the singularity. For stable
synaptic consolidations to be attained, distinct domains of
either high, or of low, SFP, must appear randomly located
around OP singularities, consequent to conflict resolution
one way or the other. Conversely, the association of HSFP
areas with OP linear zones also follows, as there is minimal
conflict far from the singularity, where OP is itself essentially
circumferential in relationship to the adjacent singularities. This
can be seen in the form of the curved like-to-like connections
shown in Figure 3 left, and the same effect is suggested by
dashed curved lines in Figure 4, left and center. This joint
alignment at the map periphery causes STO and OP to be
synergic, both connection systems arising with low 1S, and
therefore SFP high.

With these extensions from the antenatal to the postnatal
situation, the properties of SFP and TFP order are added to
those of OP order. The present model thus incorporates
the properties of both the dimension-reduction and
spatiotemporal energy models.

The storage of correlations at long
range

Developing local connections permits association over
short global distances, but how can learning of short-range
correlations be generalized to association over the wider field
of a cortical area? To answer this question, we consider the
general case, in which cell pairs ∓p (1) and ∓p (2) are closely
physically proximate in the cortical surface, but instead of
being only close neighbors in the same limb of a single map
as we first considered above—the two cells may be located
in the same, or different limbs, within a single map, or in
different intertwined maps, which may be of the same, or of
different, chirality.
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FIGURE 4

Synaptic competition and the emergence of experimentally observed spatial-frequency preference. (Left) Diagram shows the circumferential
arrangement of p (1) and p (2) pairs responding to higher spatial frequencies, and the radial (along “like-to-like” lines) arrangement of pairs
responding to lower spatial frequencies. At the periphery of the local map, like-to-like connections curve into a more circumferential array, as
indicated by the dashed continuation of the radial lines. (Middle) Cut-out sections (top) show that on the local map periphery, where OP is
normally continuous with that in the adjacent local map, circumferential pairs can be arranged contiguously with low conflict with radial
arrangement. In contrast, near the singularity (lower cut-out sections) conflicts of radial and circumferential arrangement can lead to one or
other of alternate HSFP or LSFP outcomes. (Right) Consequently, OP and high SFP are found together in OP linear zones, while SFP around the
singularity must be either HSFP or LSFP (cp Issa et al., 2008).

FIGURE 5

Establishment of long-range correlations. The antenatal neural connections are shown as in Figure 1 (right), and postnatal connection
modifications are shown in dashed black and white. (Left) Within a single Mobius- like connection system, some antenatal connections are
preferentially reinforced, while new post-natal connections also form, bridging the limbs of the earlier system. (Middle) Postnatal bridging
connections establish further longer-range correlations within a multiplicity of such systems all surrounding a single singularity, each with only
a partially complete representation of SFP. (Right) Further extending the possible range of association, overlapping local maps, surrounding
separate singularities, are similarly brought into association by further postnatal bridges.

The way in which4S in the global field is related to distances
within different local maps, or different limbs of the same local
map, follows from the inverse maps (Equation 5)

4S =
∣∣∣ ± 1

p′
(
∓p (1)− p0 (1)

) 1
n
∣∣∓p (1)− p0 (1)

∣∣n−1
− p0(1)

∣∣∣
−

∣∣∣ ± 1
p′
(
∓p (2)− p0 (2)

) 1
n
∣∣∓p (2)− p0 (2)

∣∣n−1
− p0 (2)

∣∣∣
(17)

and similar considerations apply to the creation of synchronous
pair inputs as in the simpler case.

Therefore the general case includes the possibility of
long-range associations by local synaptic linkages—of
disparate inputs from widely separated positions, differing
relative orientations, and translations in the global field—
all created by further cross-connections, breaking the

antenatal Mobius-like order. The richness and range of
cross connections that can be made in this way depend
on overlap of local maps and suggest why the apparently
random non-columnar order in most cortical areas may be
functionally advantageous.

The positioning of cell positions with regard to breakdown
of the Mobius order is shown in Figure 5.

Conclusion

The goals for the extension of our antenatal model
to postnatal development appear to have been met.
Without the introduction of new assumptions, we have
shown that the change from random noise inputs to
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structured inputs can transform the small world model
of spatial positions and their short-range correlations
to a finer grain of association at short and long ranges,
and in temporal sequences. In this way, the antenatal
structure acts as a scaffold able to guide finer resolution
of spatiotemporal information within the pre-existing
antenatal local maps.

This model conforms to expectation from the Free
Energy Principle, with reduction of variational free energy
and dimension reduction accompanying continually
increasing mutual information between external inputs and
the synaptic order, and provides a mechanism (coupled
spatial eigenmodes) for asymptotic approach to zero
“surprisal.” The previously unexplained observation that
space-frequency-tuned responses delivered at multiple
orientations block one another, seems to be of crucial
significance, since this effect underlies the interaction of
spatial eigenmodes.

It appears that the antenatal scaffold promotes later
learning by “active inference” in ways that go beyond back-
propagation in random networks, as usually conceived.
First, the antenatal scaffold arising because of the declining
synchrony-vs.-distance relationship general among cortical
neurons establishes initial connections that conveniently
approximate the topological order of generally declining
cross-correlation-vs.-distance relationships of the sensory
world in space and time. The initial antenatal order then
gives way to postnatal connections that progressively
represent ever more detailed partial correlations in the
sensory world, superimposed upon, and given order by,
the basic framework. Second, the establishment of later
learning on the antenatal framework further exploits the cross-
correlated structure of space and time to fill in tentative
synaptic connections by the extrapolation mechanism
described in section “Concurrent evolution of local cell
connections: Dimension reduction, minimized prediction
error, and eigenmode dynamics,” in advance of receipt
of later inputs. That is, the general statistical order of
the known is used to continuously update anticipation of
the likely structure of the unknown. Generalizing to all
subsequent exchanges within the cortical hierarchy, this
would contribute a degree of flexible creativity to the brain’s
self-supervision.

The long-standing interpretation of feature preferences
as inherent filter properties of individual neurons is further
qualified, and we have introduced a new concept, STO. Our
account explains all the data incorporated in the spatiotemporal
energy and dimension reduction models, and provides an
explanatory mechanism for both, unifying this with other
anatomical features explained by the earlier antenatal model.
It does not purport to be an exhaustive model, of course.
Discrepancies include the occurrence of OP fractures, and
the occurrence of direction preference in some species,

alluded to in Issa et al. (2008). Properties of the input
pathways lying outside our consideration may account for these
discrepancies.

Further testing of this model is within the realm of
existing technologies. Further single cell testing using
the methods described in Zhang et al. (2007) could
test whether the postulated link between strength and
preferred frequency of synchrony among cells in a small
locale, and their individual TFP, is in fact the case.
Detailed neurodynamic simulations are required to further
demonstrate that the evolution of connections follows the
paths we have here indicated. Synaptic architectonics
at the micro- and meso-scales could be analyzed to see
that the proposed general organization of local cells and
patch cells follows the same form, whether the cortex is
columnar or non-columnar, and accords with a Mobius-
like organization. A relatively simple test would be to
confirm or deny that superficial patch synapses from
neurons on opposite sides of an OP singularity terminate
on different “limbs” of the Mobius-like sheafs of local neuron
connections.

As is emphasized in the Free Energy Principle, systems
that learn—or develop—to minimize variational free energy are
simply those in which members of an ensemble can predict
each other accurately and with minimum complexity cost
(i.e., maximum information and thermodynamic efficiency;
Jarzynski, 1997). Since this phenomenon can be seen in
in vitro cell cultures exposed to a structured input (Isomura
and Friston, 2018) there is a possibility of testing the
model by using structured inputs in cell culture preparations,
to see what extent epigenetic scaffolding emerges and is
necessary.

Although presented in terms of V1, there is reason to
believe the model sufficiently general to apply throughout
neocortex. Provisional extension to inter-areal interactions,
and to computation mediated by inter-areal interactions
(Perlovsky et al., 2011), as well as the necessary additional
role of brain-stem mediated reward-based learning, have
been discussed in association with other commentators
in Wright and Bourke (2021b). If ultimately shown
to be valid, this model may have implications for the
further development of artificial intelligence, since it
differs considerably from current orthodox deep learning
networks, and, in its alliance with aspects of the Free
Energy Principle, suggests the capacity for unsupervised
learning.
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